FUJITSU SEMICONDUCTOR DATA SHEET DS05-50110-1E MCP (Multi-Chip Package) FLASH MEMORY & SRAM CMOS 8M (× 8/× 16) FLASH MEMORY & 2M (× 8) STATIC RAM MB84VD2002-10/MB84VD2003-10 ■ FEATURES • Power supply voltage of 2.7 to 3.6 V • High performance 100 ns maximum access time • Operating Temperature –20 to +85°C — FLASH MEMORY • Simultaneous operations Read-while Erase or Read-while-Program • Minimum 100,000 write/erase cycles • Sector erase architecture Two 16 K byte, four 8 K bytes, two 32 K byte, and fourteen 64 K bytes. Any combination of sectors can be concurrently erased. Also supports full chip erase. • Boot Code Sector Architecture MB84VD2002: Top sector MB84VD2003: Bottom sector • Embedded EraseTM Algorithms Automatically pre-programs and erases the chip or any sector • Embedded ProgramTM Algorithms Automatically writes and verifies data at specified address • Data Polling and Toggle Bit feature for detection of program or erase cycle completion • Ready-Busy output (RY/BY) Hardware method for detection of program or erase cycle completion • Automatic sleep mode When addresses remain stable, automatically switch themselves to low power mode. • Low VCC write inhibit ≤ 2.5 V • Erase Suspend/Resume Suspends the erase operation to allow a read in another sector within the same device • Please refer to "MBM29DL800TA/BA" data sheet in detailed function — SRAM • Power dissipation Operating : 35 mA max. Standby : 50 µA max. • Power down features using CE1s and CE2s • Data retention supply voltage: 2.0 V to 3.6 V Embedded EraseTM and Embedded ProgramTM are trademarks of Advanced Micro Devices, Inc. MB84VD2002-10/MB84VD2003-10 ■ BLOCK DIAGRAM VCCf VSS A0 to A18 RY/BY A0 to A18 A-1 DQ8 to DQ15 8 M bit Flash Memory RESET CEf BYTE DQ0 to DQ7 VCCs VSS A0 to A16 2 M bit Static RAM SA WE OE CE1s CE2s ■ EXAMPLE OF CONNECTION WITH CHIPSET VCC A[1:19] A[0:19] A0 A[0:18] SA VCCf BYTE RESET ROM_CS/ CEf RAM_CS/ CE1s Battery Backup Control RY/BY VCCs CE2s BATTERY BACKUP HWR/ LWR/ WE RD/ OE D[0:15] D[0:15] CHIPSET 2 DQ[0:15] MB84VD2002/3 MB84VD2002-10/MB84VD2003-10 ■ PIN ASSIGNMENTS (Top View) A B C D E F G H 6 CE1s VSS DQ1 A1 A2 A4 CE2s A9 5 A10 DQ5 DQ2 A0 A3 A7 RY/BY A14 4 OE DQ7 DQ4 DQ0 A6 A18 RESET A15 3 A11 A8 A5 DQ8 DQ3 DQ12 A12 BYTE 2 A13 A17 SA* CEf DQ10 VCCf DQ6 DQ15/A-1 1 WE VCCs A16 VSS DQ9 DQ11 DQ13 DQ14 *: A17 for SRAM Table 1 Pin Configuration Pin A0 to A16 Function Input/ Output Address Inputs (Common) I A-1, A17 to A18 Address Input (Flash) I SA Address Input (SRAM) I DQ0 to DQ7 Data Inputs/Outputs (Common) I/O DQ8 to DQ15 Data Inputs/Outputs (Flash) I/O CEf Chip Enable (Flash) I CE1s Chip Enable (SRAM) I CE2s Chip Enable (SRAM) I OE Output Enable (Common) I WE Write Enable (Common) I RY/BY Ready/Busy Outputs (Flash) O BYTE Selects 8-bit or 16-bit mode (Flash) I Hardware Reset Pin/Sector Protection Unlock (Flash) I RESET N.C. No Internal Connection — VSS Device Ground (Common) Power VCCf Device Power Supply (Flash) Power VCCs Device Power Supply (SRAM) Power 3 MB84VD2002-10/MB84VD2003-10 ■ PRODUCT LINE UP Flash Memory Ordering Part No. VCC = 3.0 V +0.6 V –0.3 V SRAM MB84VD2002-10/MB84VD2003-10 Max. Address Access Time (ns) 100 100 Max. CE Access Time (ns) 100 100 Max. OE Access Time (ns) 40 50 ■ BUS OPERATIONS Table 2 User Bus Operations (BYTE=VIL) Operation (1), (3) CEf CE1s CE2s H X X L X X H X X L H X X L OE WE DQ0 to DQ7 DQ8 to DQ15 RESET X X HIGH-Z HIGH-Z H H H HIGH-Z HIGH-Z H L H DOUT HIGH-Z H H L DIN HIGH-Z H Full Standby H Output Disable X Read from Flash (2) L Write to Flash L Read from SRAM H L H L H DOUT HIGH-Z H Write to SRAM H L H X L DIN HIGH-Z H Flash Hardware Reset X H X X L X X HIGH-Z HIGH-Z L Table 3 User Bus Operations (BYTE=VIH) Operation (1), (3) CEf CE1s CE2s H X X L X X H X X L H X X L OE WE DQ0 to DQ7 DQ8 to DQ15 X X HIGH-Z HIGH-Z H H H HIGH-Z HIGH-Z H L H DOUT DOUT H H L DIN DIN H Full Standby H Output Disable X Read from Flash (2) L Write to Flash L Read from SRAM H L H L H DOUT HIGH-Z H Write to SRAM H L H X L DIN HIGH-Z H Flash Hardware Reset X H X X L X X HIGH-Z HIGH-Z L Legend: L = VIL, H = VIH, X = VIL or VIH. See DC Characteristics for voltage levels. Notes: 1. Other operations except for indicated this column are inhibited. 2. WE can be VIL if OE is VIL, OE at VIH initiates the write operations. 4. Do not apply CEf = VIL, CE1s = VIL and CE2s = VIH at a time. 4 RESET MB84VD2002-10/MB84VD2003-10 ■ FLEXIBLE SECTOR-ERASE ARCHITECTURE on FLASH MEMORY • Two 16 K byte, four 8 K bytes, two 32 K byte, and fourteen 64 K bytes. • Individual-sector, multiple-sector, or bulk-erase capability. (×8) (×16) (×8) FFFFFH 7FFFFH 16K byte/8K word FFFFFH 7FFFFH 64K byte/32K word FC000H 7E000H 32K byte/16K word F0000H 78000H 64K byte/32K word F4000H 7A000H 8K byte/4K word E0000H 70000H 64K byte/32K word F2000H 79000H 8K byte/4K word Bank 1 D0000H 68000H 64K byte/32K word F0000H 78000H 8K byte/4K word C0000H 60000H 64K byte/32K word EE000H 77000H 8K byte/4K word B0000H 58000H 64K byte/32K word EC000H 76000H 32K byte/16K word A0000H 50000H 64K byte/32K word E4000H 72000H Bank 2 16K byte/8K word 90000H 48000H 64K byte/32K word E0000H 70000H 64K byte/32K word 80000H 40000H 64K byte/32K word D0000H 68000H 64K byte/32K word 70000H 38000H 64K byte/32K word C0000H 60000H 64K byte/32K word 60000H 30000H 64K byte/32K word B0000H 58000H 64K byte/32K word 50000H 28000H 64K byte/32K word A0000H 50000H 64K byte/32K word 40000H 20000H 64K byte/32K word 90000H 48000H 64K byte/32K word 30000H 18000H 64K byte/32K word 80000H 40000H 64K byte/32K word 20000H 10000H 16K byte/8K word 70000H 38000H Bank 2 (×16) 64K byte/32K word 1C000H 0C000H 32K byte/16K word 60000H 30000H 64K byte/32K word 14000H 0A000H 8K byte/4K word 50000H 28000H 64K byte/32K word 12000H 09000H 8K byte/4K word 40000H 20000H Bank 1 64K byte/32K word 10000H 08000H 8K byte/4K word 30000H 18000H 64K byte/32K word 0E000H 07000H 8K byte/4K word 20000H 10000H 64K byte/32K word 0C000H 06000H 32K byte/16K word 10000H 08000H 64K byte/32K word 04000H 02000H 16K byte/8K word 00000H 00000H MBM29DL800TA Sector Architecture MB84VD2002 Sector Architecture 00000H 00000H MBM29DL800BA Sector Architecture MB84VD2003 Sector Architecture 5 MB84VD2002-10/MB84VD2003-10 Table 4 Sector Address Tables (MB84DV2002) Sector Address Bank Sector Bank Address Sector Size (Kbytes/ Kwords) (×8) Address Range (×16) Address Range A18 A17 A16 A15 A14 A13 A12 SA0 0 0 0 0 X X X 64/32 00000H to 0FFFFH 00000H to 07FFFH SA1 0 0 0 1 X X X 64/32 10000H to 1FFFFH 08000H to 0FFFFH SA2 0 0 1 0 X X X 64/32 20000H to 2FFFFH 10000H to 17FFFH SA3 0 0 1 1 X X X 64/32 30000H to 3FFFFH 18000H to 1FFFFH SA4 0 1 0 0 X X X 64/32 40000H to 4FFFFH 20000H to 27FFFH SA5 0 1 0 1 X X X 64/32 50000H to 5FFFFH 28000H to 2FFFFH SA6 0 1 1 0 X X X 64/32 60000H to 6FFFFH 30000H to 37FFFH SA7 0 1 1 1 X X X 64/32 70000H to 7FFFFH 38000H to 3FFFFH SA8 1 0 0 0 X X X 64/32 80000H to 8FFFFH 40000H to 47FFFH SA9 1 0 0 1 X X X 64/32 90000H to 9FFFFH 48000H to 4FFFFH SA10 1 0 1 0 X X X 64/32 A0000H to AFFFFH 50000H to 57FFFH SA11 1 0 1 1 X X X 64/32 B0000H to BFFFFH 58000H to 5FFFFH SA12 1 1 0 0 X X X 64/32 C0000H to CFFFFH 60000H to 67FFFH SA13 1 1 0 1 X X X 64/32 D0000H to DFFFFH 68000H to 6FFFFH SA14 1 1 1 0 0 0 X 16/8 E0000H to E3FFFH 70000H to 71FFFH 0 1 X SA15 1 1 1 0 32/16 E4000H to E7FFFH, 72000H to 73FFFH, E8000H to EBFFFH 74000H to 75FFFH Bank 2 1 0 X SA16 1 1 1 0 1 1 0 8/4 EC000H to EDFFFH 76000H to 76FFFH SA17 1 1 1 0 1 1 1 8/4 EE000H to EFFFFH 77000H to 77FFFH SA18 1 1 1 1 0 0 0 8/4 F0000H to F1FFFH 78000H to 78FFFH SA19 1 1 1 1 0 0 1 8/4 F2000H to F3FFFH 79000H to 79FFFH 0 1 X SA20 1 1 1 1 1 0 X 1 1 X Bank 1 SA21 1 1 1 1 32/16 F4000H to F7FFFH, 7A000H to 7BFFFH, F8000H to FBFFFH 7C000H to 7DFFFH 16/8 FC000H to FFFFFH 7E000H to 7FFFFH Note:The address range is A18: A-1 if in byte mode (BYTE = VIL). The address range is A18: A0 if in word mode (BYTE = VIH). 6 MB84VD2002-10/MB84VD2003-10 Table 5 Sector Address Tables (MB84DV2003) Sector Address Bank Sector Bank Address Sector Size (Kbytes/ Kwords) (×8) Address Range (×16) Address Range A18 A17 A16 A15 A14 A13 A12 SA21 1 1 1 1 X X X 64/32 F0000H to FFFFFH 78000H to 7FFFFH SA20 1 1 1 0 X X X 64/32 E0000H to EFFFFH 70000H to 77FFFH SA19 1 1 0 1 X X X 64/32 D0000H to DFFFFH 68000H to 6FFFFH SA18 1 1 0 0 X X X 64/32 C0000H to CFFFFH 60000H to 67FFFH SA17 1 0 1 1 X X X 64/32 B0000H to BFFFFH 58000H to 5FFFFH SA16 1 0 1 0 X X X 64/32 A0000H to AFFFFH 50000H to 57FFFH SA15 1 0 0 1 X X X 64/32 90000H to 9FFFFH 48000H to 4FFFFH SA14 1 0 0 0 X X X 64/32 80000H to 8FFFFH 40000H to 47FFFH SA13 0 1 1 1 X X X 64/32 70000H to 7FFFFH 38000H to 3FFFFH SA12 0 1 1 0 X X X 64/32 60000H to 6FFFFH 30000H to 37FFFH SA11 0 1 0 1 X X X 64/32 50000H to 5FFFFH 28000H to 2FFFFH SA10 0 1 0 0 X X X 64/32 40000H to 4FFFFH 20000H to 27FFFH SA9 0 0 1 1 X X X 64/32 30000H to 3FFFFH 18000H to 1FFFFH SA8 0 0 1 0 X X X 64/32 20000H to 2FFFFH 10000H to 17FFFH SA7 0 0 0 1 1 1 X 16/8 1C000H to 1FFFFH 0E000H to 0FFFFH 1 0 X SA6 0 0 0 1 32/16 14000H to 17FFFH, 0A000H to 0BFFFH, 18000H to 1BFFFH 0C000H to 0DFFFH Bank 2 0 1 X SA5 0 0 0 1 0 0 1 8/4 12000H to 13FFFH 09000H to 09FFFH SA4 0 0 0 1 0 0 0 8/4 10000H to 11FFFH 08000H to 08FFFH SA3 0 0 0 0 1 1 1 8/4 0E000H to 0FFFFH 07000H to 07FFFH SA2 0 0 0 0 1 1 0 8/4 0C000H to 0DFFFH 06000H to 06FFFH 1 0 X SA1 0 0 0 0 0 1 X 0 0 X Bank 1 SA0 0 0 0 0 32/16 08000H to 0BFFFH, 04000H to 05FFFH, 04000H to 07FFFH 02000H to 03FFFH 16/8 00000H to 03FFFH 00000H to 01FFFH Note: The address range is A18: A-1 if in byte mode (BYTE = VIL). The address range is A18: A0 if in word mode (BYTE = VIH). 7 MB84VD2002-10/MB84VD2003-10 Table 6. 1 Flash Memory Autoselect Codes Type Manufacturer’s Code A6 A1 A0 A-1*1 Code (HEX) VIL VIL VIL VIL 04H VIL 4AH VIL VIL VIH X 224AH VIL CBH X 22CBH Byte MB84VD2002 Word Device Code Byte MB84VD2003 VIL VIL VIH Word *1: A-1 is for Byte mode. Table 6. 2 Expanded Autoselect Code Table Type Manufacturer’s Code Device Code DQ15 DQ14 DQ13 DQ12 DQ11 DQ10 DQ9 DQ8 DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0 04H A-1/0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 MB84VD2002 (B) (W) 4AH 224AH A-1 0 HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 MB84VD2003 (B) (W) CBH 22CBH A-1 0 HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z HI-Z 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 (B): Byte mode (W): Word mode 8 Code MB84VD2002-10/MB84VD2003-10 Table 7 Command Sequence Read/Reset Read/Reset Word Byte Word Byte Bus Write Cycles Req’d 1 3 Word 3 Autoselect Byte Program Chip Erase Sector Erase Word Byte Word Byte Word Byte Erase Suspend Erase Resume Set to Fast Mode Word Fast Program * Word Reset from Fast Mode * Word Extended Sector Protect Byte Byte Byte Word Byte 4 6 6 1 1 3 2 2 4 Flash Memory Command Definitions First Bus Second Bus Third Bus Fourth Bus Fifth Bus Sixth Bus Write Cycle Write Cycle Write Cycle Read/Write Write Cycle Write Cycle Cycle Addr. Data Addr. Data Addr. Data Addr. Data Addr. Data Addr. Data XXXH F0H — — — 555H 2AAH 555H AAH 55H AAAH 555H AAAH (BA) 555H 2AAH 555H AAH 55H (BA) AAAH 555H AAAH 555H 2AAH 555H AAH 55H AAAH 555H AAAH 555H 2AAH 555H AAH 55H AAAH 555H AAAH 555H 2AAH 555H AAH 55H AAAH 555H AAAH BA B0H — — — BA 30H — — — 555H 2AAH 555H AAH 55H AAAH 555H AAAH XXXH A0H PA PD — XXXH BA XXXH 90H F0H — BA XXXH XXXH 60H SPA 60H SPA — — — — — — — F0H RA RD — — — — 90H — — — — — — A0H PA PD — — — — 555H 2AAH 555H AAH 55H 10H AAAH 555H AAAH 555H 2AAH 80H AAH 55H SA 30H AAAH 555H — — — — — — — — — — — — — — 80H 20H — — — — — — — — — — — — — — — — — — — — 40H SPA SD — — — — Notes: 1. Address bits A11 to A18 = X = “H” or “L” for all address commands except or Program Address (PA), Sector Address (SA), and Bank Address (BA). 2. Bus operations are defined in Tables 2 and 3. 3. RA = Address of the memory location to be read PA = Address of the memory location to be programmed Addresses are latched on the falling edge of the write pulse. SA = Address of the sector to be erased. The combination of A18, A17, A16, A15, A14, A13, and A12 will uniquely select any sector. BA = Bank Address (A16 to A18) 4. RD = Data read from location RA during read operation. PD = Data to be programmed at location PA. Data is latched on the falling edge of write pulse. 5. SPA =Sector address to be protected. Set sector address (SA) and (A6, A1, A0) = (0, 1, 0). SD = Sector protection verify data. Output 01H at protected sector addresses and output 00H at unprotected sector addresses. * : This command is valid while Fast Mode. 9 MB84VD2002-10/MB84VD2003-10 ■ ABSOLUTE MAXIMUM RATINGS Storage Temperature .................................................................................................. –55°C to +125°C Ambient Temperature with Power Applied .................................................................. –25°C to +85°C Voltage with Respect to Ground All pins (Note) .......................................................... –0.3 V to VCCf +0.5 V –0.3 V to VCCs +0.5 V VCCf/VCCs Supply (Note) .............................................................................................. –0.3 V to +4.6 V Note: Minimum DC voltage on input or I/O pins are –0.5 V. During voltage transitions, inputs may negativeovershoot VSS to –2.0 V for periods of up to 20 ns. Maximum DC voltage on output and I/O pins are VCCf +0.5 V or VCCs +0.5 V. During voltage transitions, outputs may positive overshoot to VCC +2.0 V for periods of up to 20 ns. WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ■ RECOMMENDED OPERATING RANGES Commercial Devices Ambient Temperature (TA) .........................................................................–20°C to +85°C VCCf/VCCs Supply Voltages.........................................................................+2.7 V to +3.6 V Operating ranges define those limits between which the functionality of the device is guaranteed. WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device’s electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand. 10 MB84VD2002-10/MB84VD2003-10 ■ DC CHARACTERISTICS Parameter Symbol Parameter Description ILI ILO Input Leakage Current Output Leakage Current ICC1f Test Conditions VCCf = VCC Max., Flash VCC Active Current CEf = VIL (Read) OE = VIH — — Byte tCYCLE = 10 MHz Word Byte tCYCLE = 5 MHz Word Min. Typ. Max. Unit –1.0 –1.0 — — — — — — — — — — +1.0 +1.0 18 20 8 10 µA µA — 35 — — — — 45 45 45 45 — 35 mA — — — 40 12 35 mA mA mA — 6 mA — 5 µA — 5 µA — 2 mA 1 2.5 µA — 55 µA 1.5 3 µA — 60 µA 1 2 µA — 5 µA — 50 µA — — 0.6 VCC+0.3* V V — 0.4 V — — V — 2.5 V Flash VCC Active Current VCCf = VCC Max., CEf = VIL, OE = VIH — (Program/Erase) Byte — Flash VCC Active Current ICC3f*** (Read-While-Program) CE = VIL, OE = VIH Word — Byte — Flash VCC Active Current ICC4f*** CE = VIL, OE = VIH (Read-While-Erase) Word — Flash VCC Active Current ICC5f (Erase-SuspendCE = VIL, OE = VIH — Program) tCYCLE =10 MHz — VCCs = VCC Max., SRAM VCC Active ICC1s Current CE1s = VIL, CE2s = VIH tCYCLE = 1 MHz — — CE1s = 0.2 V, tCYCLE = 10 MHz ICC2s SRAM VCC Active CE2s = VCCs – 0.2 V, Current tCYCLE = 1 MHz — WE = VCCs – 0.2 V VCCf = VCC Max., CEf = VCCf ± 0.3 V Flash VCC Standby ISB1f — Current RESET = VCCf ± 0.3 V Flash VCC Standby ISB2f — VCCf = VCC Max., RESET = VSS ± 0.3 V Current (RESET) SRAM VCC Standby ISB1s CE1s = VIH or CE2s = VIL — Current — VCCs TA = 25°C = 3.0 TA = –20 to V — ±10% +85°C VCCs TA = 25°C — = 3.3 TA = –20 to SRAM VCC Standby CE1s = VCC –0.2 V — ISB2s** Current V or CE2s = 0.2 V ±0.3 +85°C V — TA = 25°C VCCs TA = –20 to — = 3.0 +40°C V TA = –20 to — +85°C VIL Input Low Level — –0.3 VIH Input High Level — 2.2 Output Low Voltage IOL = 2.1 mA, VOL — Level VCCf = VCCs = VCC Min. Output High Voltage IOH = –500 µA, VCC – 0.5 VOH Level VCCf = VCCs = VCC Min. Flash Low VCC Lock-Out VLKO — 2.3 Voltage ICC2f * : VCC indicate lower of VCCf or VCCs ** :During standby mode with CE1s = VCCS – 0.2 V, CE2s should be CE2s < 0.2V or CE2s > VCCS – 0.2V *** :Embeded Algorithm (program or erase) is in progress. (@5 MHz) mA mA mA mA 11 MB84VD2002-10/MB84VD2003-10 ■ AC CHARACTERISTICS • CE Timing Parameter Symbols JEDEC Standard — tCCR Description Test Setup CE Recover Time — -10 Unit 0 ns Min. • Timing Diagram for alternating SRAM to Flash CEf tCCR tCCR tCCR tCCR CE1s CE2s • Read Only Operations Characteristics (Flash) Parameter Symbols Description JEDEC Standard tAVAV tRC Read Cycle Time tAVQV tACC tELQV Unit Min. Max. — 100 — ns Address to Output Delay CEf = VIL OE = VIL — 100 ns tCEf Chip Enable to Output Delay OE = VIL — 100 ns tGLQV tOE Output Enable to Output Delay — — 40 ns tEHQZ tDF Chip Enable to Output High-Z — — 30 ns tGHQZ tDF Output Enable to Output High-Z — — 30 ns tAXQX tOH Output Hold Time From Addresses, CEf or OE, Whichever Occurs First — 0 — ns — tREADY RESET Pin Low to Read Mode — — 20 µs — tELFL tELFH CE or BYTE Switching Low or High — — 5 ns Note: Test Conditions–Output Load: 1 TTL gate and 30 pF Input rise and fall times: 5 ns Input pulse levels: 0.0 V to 3.0 V Timing measurement reference level Input: 1.5 V Output: 1.5 V 12 -10 (Note) Test Setup MB84VD2002-10/MB84VD2003-10 • Read Cycle (Flash) tRC Addresses Stable ADDRESSES tACC CEf tOE tDF OE tOEH WE tCE HIGH-Z DQ HIGH-Z Output Valid tRC ADDRESSES Addresses Stable tACC tRH RESET tOH DQ HIGH-Z Output Valid 13 MB84VD2002-10/MB84VD2003-10 • Erase/Program Operations (Flash) Parameter Symbols JEDEC Standard tAVAV tWC Write Cycle Time tAVWL tAS tAVEL Description Unit Typ. Max. 100 — — ns Address Setup Time (WE to Addr.) 0 — — ns tAS Address Setup Time (CEf to Addr.) 0 — — ns — tASO Address Setup Time to OE Low During Toggle Bit Polling 15 — — ns tWLAX tAH Address Hold Time (WE to Addr.) 50 — — ns tELAX tAH Address Hold Time (CEf to Addr.) 50 — — ns — tAHT Address Hold Time from CE or OE High During Toggle Bit Polling 0 — — ns tDVWH tDS Data Setup Time 50 — — ns tWHDX tDH Data Hold Time 0 — — ns — tOEH Output Enable Hold Time 0 — — ns 10 — — ns — tCEPH CE High During Toggle Bit Polling 20 — — ns — tOEPH OE High During Toggle Bit Polling 20 — — ns tGHEL tGHEL Read Recover Time Before Write (OE to CEf) 0 — — ns tGHWL tGHWL Read Recover Time Before Write (OE to WE) 0 — — ns tWLEL tWS WE Setup Time (CEf to WE) 0 — — ns tELWL tCS CEf Setup Time (WE to CEf) 0 — — ns tEHWH tWH WE Hold Time (CEf to WE) 0 — — ns Read Toggle and Data Polling tWHEH tCH CEf Hold Time (WE to CEf) 0 — — ns tWLWH tWP Write Pulse Width 50 — — ns tELEH tCP CEf Pulse Width 50 — — ns tWHWL tWPH Write Pulse Width High 30 — — ns tEHEL tCPH CEf Pulse Width High 30 — — ns tWHWH1 tWHWH1 Byte Programming Operation — 8 — µs tWHWH2 tWHWH2 Sector Erase Operation (Note 1) — 1 — sec — — 15 sec — tVCS VCCf Setup Time 50 — — µs — tVLHT Voltage Transition Time (Note 2) 4 — — µs — tVIDR Rise Time to VID (Note 2) 500 — — ns — tRB Recover Time from RY/BY 0 — — ns — tRP RESET Pulse Width 500 — — ns — tRH RESET Hold Time Before Read 200 — — ns — tEOE Delay Time from Embedded Output Enable — — 100 ns — tBUSY Program/Erase Valid to RY/BY Delay — — 90 ns — tFLQZ BYTE Switching Low to Output High-Z — — 30 ns — tFHQV BYTE Switching High to Output Active 30 — — ns Note : 1. This does not include the preprogramming time. 2. This timing is for Sector Protection Operation. 14 -10 Min. MB84VD2002-10/MB84VD2003-10 • Write Cycle (WE control) (Flash) 3rd Bus Cycle Data Polling 555H ADDRESSES tWC PA tAS PA tRC tAH CEf tCH tCS tCO OE tGHWL tWP tFOE tWHWH1 tWPH WE tOH tDS tDH DQ Notes: 1. 2. 3. 4. 5. 6. A0H PD DQ7 DOUT DOUT PA is address of the memory location to be programmed. PD is data to be programmed at byte address. DQ7 is the output of the complement of the data written to the device. DOUT is the output of the data written to the device. Figure indicates last two bus cycles out of four bus cycle sequence These waveforms are for the x16 mode. The addresses differ from x8 mode. 15 MB84VD2002-10/MB84VD2003-10 • Write Cycle (CEf control) (Flash) 3rd Bus Cycle ADDRESSES Data Polling PA 555H tWC tAS PA tAH WE tWS tWH OE tGHEL tCP tWHWH1 tCPH CEf tDS tDH DQ Notes: 1. 2. 3. 4. 5. 6. 16 A0H PD DQ7 DOUT PA is address of the memory location to be programmed. PD is data to be programmed at byte address. DQ7 is the output of the complement of the data written to the device. DOUT is the output of the data written to the device. Figure indicates last two bus cycles out of four bus cycle sequence These waveforms are for the x16 mode. The addresses differ from x8 mode. MB84VD2002-10/MB84VD2003-10 • AC Waveforms Chip/Sector Erase Operations (Flash) 2AAH 555H ADDRESSES tWC tAS 555H 555H 2AAH SA*1 tAH CEf tCS tCH OE tGHWL tWP tWPH WE tDS tDH AAH DQ 30H for Sector Erase 55H 80H AAH 55H 10H/ 30H tVCS VCC Notes: 1. SA is the sector address for Sector Erase. Addresses = 555H forChip Erase. 2. These waveforms are for the x16 mode. The addresses differ from x8 mode. 17 MB84VD2002-10/MB84VD2003-10 • AC Waveforms for Data Polling during Embedded Algorithm Operations (Flash) CE t CH t OE t DF OE t OEH WE t CE * DQ7 Data DQ7 = Valid Data DQ7 High-Z t WHWH1 or 2 DQ0 to DQ6 Data DQ0 to DQ6 Valid Data DQ0 to DQ6 = Output Flag t BUSY High-Z t EOE RY/BY * : DQ7 = Valid Data (The device has completed the Embedded operation). • AC Waveforms for Toggle Bit during Embedded Algorithm Operations (Flash) Address tAHT tASO tAHT tAS CE tCEPH WE tOEPH tOEH tOEH OE tDH DQ 6/DQ2 tOE Toggle Data Data tCE Toggle Data Toggle Data * Stop Toggling tBUSY RY/BY * : DQ6 stops toggling (The device has completed the Embedded operation). 18 Output Valid MB84VD2002-10/MB84VD2003-10 • RY/BY Timing Diagram during Write/Erase Operations (Flash) CEf The rising edge of the last WE signal WE Entire programming or erase operations RY/BY tBUSY • RESET, RY/BY Timing Diagram (Flash) WE RESET tRP tRB RY/BY tREADY • Timing Diagram for Word Mode Configuration (Flash) CE BYTE Data Output (DQ0 to DQ7) DQ0 to DQ14 tELFH DQ15/A-1 Data Output (DQ0 to DQ14) tFHQV A-1 DQ15 19 MB84VD2002-10/MB84VD2003-10 • Timing Diagram for Byte Mode Configuration (Flash) CE BYTE DQ0 to DQ14 tELFL Data Output (DQ0 to DQ7) Data Output (DQ0 to DQ14) DQ15/A-1 DQ15 A-1 tFLQZ • BYTE Timing Diagram for Write Operations (Flash) The falling edge of the last WE signal CE or WE Input Valid BYTE tSET (tAS) tHOLD (tAH) • Temporary Sector Unprotection (Flash) VCC tVIDR tVCS tVLHT VID 3V 3V RESET CE WE tVLHT Program or Erase Command Sequence RY/BY Unprotection period 20 tVLHT MB84VD2002-10/MB84VD2003-10 • Back-to-back Read/Write Timing Diagram Address Read Command Read Command Read Read tRC tWC tRC tWC tRC tRC BA2 (PA) BA1 BA2 (PA) BA2 (555H) BA1 tAS BA1 tACC tAH tAS tAHT tCE CE tOE tCEPH OE tGHWL tDF tOEH tWP WE tDS DQ Valid Output tDH Valid Intput (A0H) tDF Valid Output Valid Intput (PD) Valid Output Status 21 MB84VD2002-10/MB84VD2003-10 • Extended Sector Protection (Flash) VCC tVCS RESET tVLHT tVIDR Add SPAX SPAX SPAY A0 A1 A6 CE OE TIME-OUT WE Data 60H 60H 40H 01H tOE SPAX : Sector Address to be protected SPAY : Next Sector Address to be protected TIME-OUT : Time-Out window = 150 µs (min) 22 60H MB84VD2002-10/MB84VD2003-10 • Read Cycle (SRAM) Parameter Symbol Parameter Description Min. Max. Unit 100 — ns tRC Read Cycle Time tAA Address Access Time — 100 ns tCO1 Chip Enable (CE1s) Access Time — 100 ns tCO2 Chip Enable (CE2s) Access Time — 100 ns tOE Output Enable Access Time — 50 ns tCOE Chip Enable (CE1s Low and CE2s High) to Output Active 5 — ns tOEE Output Enable Low to Output Active 0 — ns tOD Chip Enable (CE1s High or CE2s Low) to Output High-Z — 40 ns tODO Output Enable High to Output High-Z — 40 ns tOH Output Data Hold Time 10 — ns • Read Cycle (Note 1) (SRAM) tRC ADDRESSES tAA tOH tCO1 CE1s tCOE tOD tCO2 CE2s tOD tOE OE tOEE tODO tCOE DQ VALID DATA OUT Note: 1. WE remains HIGH for the read cycle. 23 MB84VD2002-10/MB84VD2003-10 • Write Cycle (SRAM) Parameter Symbol Parameter Description Min. Max. Unit tWC Write Cycle Time 100 — ns tWP Write Pulse Width 60 — ns tCW Chip Enable to End of Write 80 — ns tAS Address Setup Time 0 — ns tWR Write Recovery Time 0 — ns tODW WE Low to Output High-Z — 40 ns tOEW WE High to Output Active 0 — ns tDS Data Setup Time 40 — ns tDH Data Hold Time 0 — ns • Write Cycle (Note 4) (WE control) (SRAM) tWC ADDRESSES tAS tWP tWR WE tCW CE1s CE2s DOUT tCW tODW tOEW Note 2 Note 3 tDS DIN Note 5 tDH VALID DATA IN Note 5 Notes: 2. If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the output will remain at high impedance. 3. If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the output will remain at high impedance. 4. If OE is HIGH during the write cycle, the outputs will remain at high impedance. 5. Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied. 24 MB84VD2002-10/MB84VD2003-10 • Write Cycle (Note 4) (CE1s control) (SRAM) tWC ADDRESSES tAS tWP tWR WE tCW CE1s CE2s tCW tCOE tODW DOUT tDS DIN Note 5 tDH VALID DATA IN Note 5 Notes: 2. If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the output will remain at high impedance. 3. If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the output will remain at high impedance. 4. If OE is HIGH during the write cycle, the outputs will remain at high impedance. 5. Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied. 25 MB84VD2002-10/MB84VD2003-10 • Write Cycle (Note 4) (CE2s Control) (SRAM) tWC ADDRESSES tAS tWP tWR WE tCW CE1s CE2s tCW tCOE tODW DOUT tDS DIN Note 5 tDH VALID DATA IN Note 5 Notes: 2. If CE1s goes LOW (or CE2s goes HIGH) coincident with or after WE goes LOW, the output will remain at high impedance. 3. If CE1s goes HIGH (or CE2s goes LOW) coincident with or before WE goes HIGH, the output will remain at high impedance. 4. If OE is HIGH during the write cycle, the outputs will remain at high impedance. 5. Because I/O signals may be in the output state at this Time, input signals of reverse polarity must not be applied. 26 MB84VD2002-10/MB84VD2003-10 ■ ERASE AND PROGRAMMING PERFORMANCE (Flash) Limits Parameter Unit Comment Min. Typ. Max. Sector Erase Time — 1 10 sec Byte Programming Time — 8 300 µs Word Programming Time — 16 360 µs Chip Programming Time — 8.4 T.B.D sec 100,000 — — cycles Erase/Program Cycle Excludes programming time prior to erasure Excludes system-level overhead Excludes system-level overhead ■ DATA RETENTION CHARACTERISTICS (SRAM) Parameter Symbol Parameter Description Min. Typ. Max. Unit 2.0 — 3.6 V VDH = 3.0 V — — 50* µA VDH = 3.6 V — — 60 µA Chip Deselect to Data Retention Mode Time 0 — — ns Recovery Time 5 — — ms VDH Data Retention Supply Voltage IDDS2 Standby Current tCDR tR * : 5 µA (Max.) at TA = –20°C to +40°C • CE1s Controlled Data Retention Mode (Note 1) VCCs DATA RETENTION MODE 2.7 V See Note 2 See Note 2 VIH CE1s VCCS –0.2 V tCDR tR GND 27 MB84VD2002-10/MB84VD2003-10 • CE2s Controlled Data Retention Mode (Note 3) VCCs DATA RETENTION MODE 2.7 V VIH CE2s tCDR tR VIL 0.2 V GND Notes: 1. In CE1s controlled data retention mode, input level of CE2s should be fixed Vccs to Vccs-0.2V or Vss to 0.2V during data retention mode. Other input and input/output pins can be used between -0.3V to Vccs+0.3V. 2. When CE1s is operating at the VIH min. level (2.2 V), the standby current is given by ISB1s during the transition of VCCs from 3.6 to 2.2 V. 3. In CE2s controlled data retention mode, input and input/output pins can be used between between -0.3V to Vccs+0.3V. ■ PIN CAPACITANCE Parameter Symbol Parameter Description Test Setup Typ. Max. Unit CIN Input Capacitance VIN = 0 T.B.D T.B.D pF COUT Output Capacitance VOUT = 0 T.B.D T.B.D pF CIN2 Control Pin Capacitance VIN = 0 T.B.D T.B.D pF Note: Test conditions TA = 25°C, f = 1.0 MHz ■ HANDLING OF PACKAGE Please handle this package carefully since the sides of packages are right angle. ■ CAUTION 1.)The high voltage (VID) can not apply to address pins and control pins except RESET. Therefore, it can not use autoselect and sector protect function by applying the high voltage (VID) to specific pins. 2.)For the sector protection, since the high voltage (VID) can be applied to the RESET, it can be protected the sector useing "Extended sector protect" command. 28 MB84VD2002-10/MB84VD2003-10 ■ PACKAGE 48-pin plastic FBGA (BGA-48P-M06) ■ PACKAGE DIMENSIONS 48-pin plastic BGA (BGA-48P-M06) Note: The actual shape of coners may differ from the dimension. 11.00±0.15(.433±.006) 1.40±0.20 (.055±.008) 0.30±0.10 (.012±.004) 10.00±0.15 (.394±.006) 7.00±0.15(.276±.006) Ø0.40±0.10 (Ø.016±.004) 5.00±0.15 (.197±.006) 0.15(.006) 1st PIN INDEX C 1998 FUJITSU LIMITED MCM-M001-2-3 1.00±0.15 (.039±.006) INDEX Dimension in mm (inches). 29 MB84VD2002-10/MB84VD2003-10 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: (800) 866-8608 Fax: (408) 922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 http://www.fujitsu-ede.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 http://www.fmap.com.sg/ F9805 FUJITSU LIMITED Printed in Japan 30 All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.