FUJITSU SEMICONDUCTOR DATA SHEET DS04-22420-3E ASSP Communication Control CMOS FAST-20 SCSI Protocol Controller MB86606A ■ DESCRIPTION The MB86606A is an intelligent SCSI protocol controller (SPC) conforming to the ANSI (FAST-20) standard and integrating a PCI local bus interface function. The specification of SCSI controller block is based on the MB86605’s one which is a Wide SCSI protocol controller, but the device functions/features to achieve the FAST-20 data transfer rate of maximum 40 Mbyte/sec at 16-bit FAST-20 SCSI, such as the size of internal data register FIFO, are larged on the MB86606A. As for the SCSI bus pins, a totem pole type single-ended driver/ receiver is incorporated in the device so that it can drive the SCSI bus directly. Furthermore, the MB86606A is capable of connecting the external differential type driver/receiver. The SCSI bus sequence is controlled by commands issued via the system interface. So, it supports sequential commands that perform the phase-to-phase sequences to reduce the overhead of system’s sequence operations. As another key feature to reduce the system overhead, the device has a 2 Kbytes user program memory to store the user program with the commands. Due to this, all the SCSI bus sequences including the data transfer can be performed automatically. As the system interface block, it incorporates a 32-bit PCI local bus interface that easily realizes the SCSI interface on the motherboards of PCI bus based PCs and WSs, in addition to a 16-bit separate MPU and DMA buses. For the on-chip PCI bus interface, the MB86606A also incorporates a 32-bit DMA controller that is capable of supporting the scatter-gather function so that the data transfers can be controlled by both user program and the host system. The device is fabricated by the advanced CMOS process and is housed in an 144-pin plastic Quad Flat Package (Suffix: -PMT2). ■ PACKAGE 144 pin plastic LQFP (FPT-144P-M08) MB86606A ■ FEATURES SCSI Protocol Controller Block: • Operable as initiator and target • WIDE and FAST-20 data transfers Synchronous transfer (max. 40 Mbytes/s: Up to 256 offset values can be set.) Asynchronous transfer (max. 10 Mbytes/s) • 512-byte FIFO register for data phase • Two types (send-only and receive-only) of 32-byte data buffers for message, command, and status phases (MCS Buffers) • On-chip totem pole type SCSI single-ended driver/receiver • Supports external SCSI differential driver/receiver connectivity • On-chip memory to store transfer parameters for each ID (up to 15 connected devices) • On-chip 16-bit transfer block counter and 24-bit transfer byte counter Maximum Transfer Byte : 1 Tbyte at fixed length data transfer : 16 Mbyte at variable length data transfer • Supports various control commands: Sequential Commands : can perform phase-to-phase sequential operations (functions only when issuing from a system side.) Discrete Commands : can perform any desired sequence to program in the user program memory Data Transfer Commands : can program the transfer data length at the user program operation. • On-chip direct control register for SCAM (SCSI Configured AutoMatically) Level-1 Protocol • Supports Multi Selection/Reselection Responses Selection and Reselection responses can be done to plural IDs. • On-chip 2 Kbyte User Program Memory Two Modes : 2 Kbyte × 1 bank and 1 Kbyte × 2 banks (While 1 Kbyte × 2 banks are selected, host system can access another bank even if the user program is executing.) Access to User program : Burst transfer via I/O access port : Direct access to 2 Kbyte user program memory (only for PCI bus I/F mode) • User Selectable Interrupt Report Unnecessary interrupt reports can be disabled depending on user’s applications to reduce a system ISR overhead. • Two automatic receive modes Initiator : can automatically receive information for new phase to which target switched Target : can automatically receive attention condition generated by initiator • Automatic selection/reselection For command issues : automatically performs to receive MSG/CMD to the selection/reselection request from partner device For user program operation : pauses the program currently executed and automatically jumps to the specified selection /reselection routine in response to the selection/reselection request from partner device. • Operation Clock System Clock: Max. 40 MHz Internal Processor Operating Clock: Max. 20 MHz (Continued) 2 MB86606A (Continued) System Interface Block: • Separate MPU and DMA buses called 16-bit Bus Mode Directly connectable to 68-series or 80-series MPU Two transfer modes (Program transfer and DMA transfer (slave mode)) • PCI Bus Interface Mode Directly connectable to the 32-bit PCI local bus. On-chip 32-bit DMAC for PCI bus master Supports the PERR&SERR function Supports the INTA# Interrupt Signals Max. 64 bytes burst transfer PCI system clock: Max. 33 MHz • Data Bus Parity and Address Bus Parity (only for PCI bus interface mode) generation/check function Others • Compact 144-Pin Plastic Quad Flat Package (LQFP, Package Suffix: –PMT2) • Pin compatible with MB86605 • Supply Voltage: 5V ± 5% 3 D2 D1 D0 V SS LDP UDS/BHE V DD LDS/WR V SS R/W/RD CS1 CS0 V DD INT A4 A3 V SS SCLK A2 A1 A0 V SS MODE1 MODE0 S/DSEL TARG V DD INIT SELOE V SS RSTOE BSYOE DBOE11 DBOE10 DBOE9 DBOE8 4 (FPT-144P-M08) 70 65 60 55 50 45 1 40 DMD9 V SS DMD8 DMD7 DMD6 V DD DMD5 V SS DMD4 DMD3 DMD2 V SS DMD1 DMD0 LDMDP V SS UDP V DD D15 D14 V SS D13 D12 D11 V SS D10 D9 D8 D7 V SS V DD D6 D5 D4 V SS D3 110 115 120 125 130 135 140 144 DMD10 DMD11 DMD12 DMD13 V SS DMD14 DMD15 V DD UDMDP DMR/W/DMRD V SS DMLDS/DMWR DMUDS/DMBHE V DD DREQ DACK V SS RESET TP DMA0 DBOE12 DBOE13 V SS DBOE14 DBOE15 UDBOEP DBOE0 DBOE1 V DD DBOE2 DBOE3 DBOE4 V SS DBOE5 DBOE6 DBOE7 MB86606A ■ PIN ASSIGNMENT • 16-Bit Bus Mode (TOP VIEW) 5 105 INDEX 10 100 15 95 20 90 25 85 30 80 35 75 LDBOEP V DD DB12 DB13 DB14 DB15 V SS UDBP DB0 DB1 V SS DB2 DB3 DB4 DB5 V SS DB6 DB7 LDBP ATN V SS BSY ACK RST MSG SEL V SS C/D REQ I/O DB8 V SS DB9 DB10 DB11 V DD MB86606A • PCI Bus Interface Mode 110 115 120 125 130 135 1 105 5 INDEX 100 10 95 15 90 20 85 25 80 30 75 70 65 60 55 50 45 40 35 LDBOEP V DD DB12 DB13 DB14 DB15 V SS UDBP DB0 DB1 V SS DB2 DB3 DB4 DB5 V SS DB6 DB7 LDBP ATN V SS BSY ACK RST MSG SEL V SS C/D REQ I/O DB8 V SS DB9 DB10 DB11 V DD C/BE0 AD7 AD6 V SS AD5 AD4 V DD AD3 V SS AD2 AD1 AD0 V DD INT PO1 PO0 V SS SCLK PI1 PI0 N. C. V SS MODE1 MODE0 S/DSEL TARG V DD INIT SELOE V SS RSTOE BSYOE DBOE11 DBOE10 DBOE9 DBOE8 AD23 V SS AD22 AD21 AD20 V DD AD19 V SS AD18 AD17 AD16 V SS C/BE2 FRAME IRDY V SS TRDY V DD DEVSEL STOP V SS PERR PAR C/BE1 V SS AD15 AD14 AD13 AD12 V SS V DD AD11 AD10 AD9 V SS AD8 140 IDSEL C/BE3 AD24 AD25 V SS AD26 AD27 V DD AD28 AD29 V SS AD30 AD31 V DD PREQ GNT V SS RESET PCLK SERR DBOE12 DBOE13 V SS DBOE14 DBOE15 UDOBEP DBOE0 DBOE1 V DD DBOE2 DBOE3 DBOE4 V SS DBOE5 DBOE6 DBOE7 (TOP VIEW) (FPT-144P-M08) 5 MB86606A ■ PIN LIST 16-bit bus mode PCI bus I/F mode PCI bus I/F mode 16-bit bus mode Pin Pin no. Mode 0 (68 I/F) Mode 1 (80 I/F) Mode 3 (PCI I/F) no. Mode 0 (68 I/F) Mode 1 (80 I/F) Mode 3 (PCI I/F) I/O Pin name 1 I/O DMD9 2 — VSS 3 I/O DMD8 4 I/O Pin name I/O Pin name I/O AD23 I/O Pin name I/O Pin name I/O 31 Pin name — VDD 32 I/O D6 I/O AD11 I/O AD22 33 I/O D5 I/O AD10 I/O DMD7 I/O AD21 34 I/O D4 I/O AD9 5 I/O DMD6 I/O AD20 35 6 — VDD 7 I/O DMD5 8 — VSS 9 I/O DMD4 — VSS 36 I/O D3 I/O AD8 37 I/O D2 I/O C/BE0 38 I/O D1 I/O AD7 I/O AD18 39 I/O D0 I/O AD6 10 I/O DMD3 I/O AD17 40 11 I/O DMD2 I/O AD16 41 I/O LDP 12 I/O AD19 — VSS 42 13 I/O DMD1 I/O C/BE2 43 14 I/O DMD0 I/O FRAME 44 15 I/O LDMDP I/O IRDY 45 16 — VSS 17 I/O UDP 18 I/O TRDY — VDD — VSS I UDS I/O AD5 I BHE I/O AD4 I WR I/O AD3 I RD I/O AD2 — VDD I LDS — VSS 46 I R/W 47 I CS1 I/O AD1 48 I CS0 I/O AD0 19 I/O D15 I/O DEVSEL 49 — VDD 20 I/O D14 I/O STOP 50 O/ OD INT 51 I A4 O PO1 I A3 O PO0 21 — VSS 22 I/O D13 I/O PERR 52 23 I/O D12 I/O PAR 53 24 I/O D11 I/O C/BE1 54 25 — VSS — VSS I SCLK 55 IU A2 IU PI1 26 I/O D10 I/O AD15 56 IU A1 IU PI0 27 I/O D9 I/O AD14 57 IU A0 IU N.C. 28 I/O D8 I/O AD13 58 — VSS 29 I/O D7 I/O AD12 59 I MODE1 60 I MODE2 30 — VSS (Continued) 6 MB86606A (Continued) 16-bit bus mode PCI bus I/F mode 16-bit bus mode PCI bus I/F mode Pin Pin no. Mode 0 (68 I/F) Mode 1 (80 I/F) Mode 3 (PCI I/F) no. Mode 0 (68 I/F) Mode 1 (80 I/F) Mode 3 (PCI I/F) I/O Pin name I/O Pin name I/O Pin name I/O Pin name I/O Pin name I/O 61 I S/DSEL 91 I/O DB7 62 O TARG 92 I/O DB6 63 — VDD 93 — VSS 64 O INIT 94 I/O DB5 65 O SELOE 95 I/O DB4 66 — VSS 96 I/O DB3 67 O RSTOE 97 I/O DB2 68 O BSYOE 98 — VSS 69 O DBOE11 99 I/O DB1 70 O DBOE10 100 I/O DB0 71 O DBOE9 101 I/O UDBP 72 O DBOE8 102 — VSS 73 — VDD 103 I/O DB15 74 I/O DB11 104 I/O DB14 75 I/O DB10 105 I/O DB13 76 I/O DB9 106 I/O DB12 77 107 — VDD — VSS 78 I/O DB8 108 O LDBOEP 79 I/O I/O 109 O DBOE7 80 I/O REQ 110 O DBOE6 81 I/O C/D 111 O DBOE5 82 112 — VSS — VSS Pin name 83 I/O SEL 113 O DBOE4 84 I/O MSG 114 O DBOE3 85 I/O RST 115 O DBOE2 86 I/O ACK 116 — VDD 87 I/O BSY 117 O DBOE1 88 — VSS 118 O DBOE0 89 I/O ATN 119 O UDBOEP 90 I/O LDBP 120 O DBOE15 (Continued) 7 MB86606A (Continued) 16-bit bus mode PCI bus I/F mode PCI bus I/F mode 16-bit bus mode Pin Pin no. Mode 0 (68 I/F) Mode 1 (80 I/F) Mode 3 (PCI I/F) no. Mode 0 (68 I/F) Mode 1 (80 I/F) Mode 3 (PCI I/F) I/O Pin name I/O Pin name I/O Pin name 121 O DBOE14 133 122 — VSS 134 — VSS 123 O DBOE13 135 124 O DBOE12 136 I/O UDMDP 125 I DMA0 126 I TP 127 I RESET OD SERR I PCLK 129 I DACK I 130 O DREQ GNT O PREQ 131 — VDD 132 I DMUDS I I DMLDS DMR/W Pin name I DMWR I/O AD30 I DMRD I/O AD29 I/O AD28 137 — VDD 138 I/O DMD15 I/O AD27 139 I/O DMD14 I/O AD26 140 — VSS 128 — VSS I DMBHE I : Input pin O : Output pin I/O : Input/Output pin IU : Input pin with pull-up resistor OD : Open-drain output pin 8 I/O Pin name I/O Pin name I/O I/O AD31 141 I/O DMD13 I/O AD25 142 I/O DMD12 I/O AD24 143 I/O DMD11 I/O C/BE3 144 I/O DMD10 I IDSEL MB86606A ■ PIN DESCRIPTION 1. SCSI Interface Pin no. 84, 81 89, 79 80, 86 Pin name I/O Function MSG, C/D ATN, I/O These are the SCSI control signal input and output pins. They can be connected directly to a single-ended I/O SCSI connector. Either open-drain or totem pole output can be selected. REQ, ACK These are the SCSI control signal input and output pins. I/O They can be connected directly to a single-ended SCSI connector. The output buffer is the totem pole type. These are used for output control of SCSI control signals. They should be used as control signals for the external differential driver/receiver circuit. 68 65 67 BSYOE SELOE RSTOE O 87 83 85 BSY SEL RST These are the SCSI control signal input and output pins. I/O They can be connected directly to a single-ended SCSI connector. The output buffer is the open-drain type. 120, 121, 123, 124, 69 to 72 119 109 to 111, 113 to 115, 117, 118 108 103 to 106, 74 to 76, 78 101 91, 92, 94 to 97, 99, 100 90 64 62 DBOE15 to DBOE8 UDBOEP DBOE7 to DBOE0 LDBOEP O DB15 to DB8 UDBP DB7 to DB0 LDBP These are used to input and output SCSI data bus signals. They can be connected directly to a single-ended I/O SCSI connector. Either open-drain or totem pole output buffer can be selected. INIT TARG These are used for output control of SCSI data bus signals. They should be used as control signals for the external differential driver/receiver circuit. O These are used to output signals indicating the chip operating status. They should be used as control signals for the external differential driver/receiver circuit. 61 S/DESL I This is used to input signal for selecting the chip operation mode. Single-ended: Input 0 Differential-ended: Input 1 While 0 is input to this pin, all the SCSI control signals, data bus output control signals, INIT, and TARG signals are fixed with L level. 54 SCLK I This pin is used for a system clock input for SCSI protocol controller block. (Max. 40 MHz) 9 MB86606A 2. 16-Bit Bus Mode-MPU Interface Pin no. I/O Function 48 CS0 I This is used to input signals for the MPU to select the SPC as the I/O device. 47 CS1 I This is used to input select signals (external circuit select signals) for the MPU to input and output the DMA data bus data via the SPC. 19, 20, 22 to 24, 26 to 28 17 D15 to D8 UDP I/O Upper byte and parity of data bus When CS0 input valid: I/O ports for internal registers in SPC When CS1 input valid: I/O ports for DMA bus data 29, 32 to 34, 36 to 39 41 D7 to D0 LDP I/O Lower byte and parity of data bus When CS0 input valid: I/O ports for internal registers in SPC When CS1 input valid: I/O ports for DMA bus data 51, 52, 55 to 57 A4 to A0 IU These are used to input addresses for selecting the Internal registers. I In 80-series mode: This is used to input the read strobe signal for reading data from the SPC to the MPU. In 68-series mode: This is used to input the R/W control signal for reading and writing data from the MPU to the SPC. I In 80-series mode: This is used to input the write strobe signal for writing data from the MPU to the SPC. In 68-series mode: This is used to input the LDS signal output by the MPU when the lower byte of the data bus is valid. I In 80-series mode: This is used to input the BHE signal output by the MPU when the upper byte of the data bus is valid. In 68-series mode: This is used to input the UDS signal output by the MPU when the upper byte of the data bus is valid. 46 44 42 10 Pin name RD (R/W) WR (LDS) BHE (UDS) MB86606A 3. 16-Bit Bus Mode – DMA Interface Pin no. Pin name I/O Function 130 DREQ O This is used to output DMA transfer request signals to the DMAC. DMA data transfer between the SPC and memory is requested. 129 DACK I This is used to input DMA-enabling signals from the DMAC. When the DMA enabling signal is active, DMA reading and writing are executed. 138, 139, 141 to 144, 1, 3 DMD15 to 8 136 UDMDP 4, 5, 7, 9 to 11, 13, 14 15 135 133 DMD7 to 0 LDMDP DMRD (DMR/W) DMWR (DMLDS) Upper byte and parity of DMA data bus When CS1 input valid: The MPU data bus is directly I/O connected. When 80-series mode: The 2nd data is input/output. When 68-series mode: The 1st data is input/output. Lower byte and parity of DMA data bus When CS1 input valid: The MPU data bus is directly I/O connected. When 80-series mode: The 1st data is input/output. When 68-series mode: The 2nd data is input/output. I In 80-series mode: This is used to input the IORD or RD signal for outputting data from the SPC to the DMA bus. In 68-series mode: This is used to input the R/W control signal for outputting and inputting data from the DMAC to the SPC. I In 80-series mode: This is used to input the IOWR or WR signal for inputting data from the DMA bus to the SPC. In 68-series mode: This is used to input the LDS signal output by the DMAC when the lower byte of the DMA data bus is valid. 132 DMBHE (DMUDS) I In 80-series mode: This is used to input the BHE signal output by the DMAC when the upper byte of the DMA data bus is valid. In 68-series mode: This is used to input the UDS signal output by the DMAC when the upper byte of the DMA data bus is valid. 125 DMA0 I This is used to input the address data A0 signal output by the DMAC in the 80-series mode. In 68-series mode: Connect to power supply pin (VDD). 126 TP (Transfer permission) I This is used to input DMA-transfer-enabling signals. When the TP signal is active, the SPC performs the DMA transfer. When this signal becomes inactive during DMA transfer, the transfer stops temporarily at the block boundary. 11 MB86606A 4. PCI Bus Interface Mode Pin no. Pin name Function 130 PREQ O This pin is used to request the bus arbiter for use of the bus. 129 GNT I This is the response signal input pin to the REQ signal from the bus arbiter. 132, 133, 135, 136, 138, 139, 141, 142, 1, 3 to 5, 7, 9 to 11, 26 to 29, AD31 to AD0 32 to 34, 36, 38, 39, 41, 42, 44, 46 to 48 143, 13, 24, 37 12 I/O I/O PCI 32-bit address and data multiplexed pins C/BE3 to C/BE0 I/O Bus command and Byte Enable signals multiplexed pins. 23 PAR This is an even parity signal pin for the AD31 to AD0 and C/ I/O BE3 to C/BE0 signals. This PAR signal becomes valid after one clock. 14 FRAME I/O 17 TRDY I/O Data Ready signal of Target side. 15 IRDY I/O Data Ready signal of Initiator (Bus master) side. 20 STOP I/O 19 DEVSEL Device select pin. While the device is a target, this pin outputs the select signal that indicates the self device is I/O selected. While the device is a master this pin functions as an input pin to indicate that a device on the bus is selected. 144 IDSEL I This is a chip select signal that indicates the configuration access. 126 PCLK I PCI bus clock input pin. The maximum clock frequency is 33 MHz. 22 PERR I/O Data parity error input and output pin. 125 SERR OD Address parity error output pin. This is a frame signal pin that indicates data are transferring on the bus. This is a stop request signal to stop the data transfer from target to master. MB86606A 5. Other Signals Pin No. 127 Pin name RESET I/O O Function This pin is used to input system reset signals. These pins are used for setting the device operation mode as listed in the table below. MODE1 MODE0 59, 60 50 MODE1, MODE0 INT I Operation Mode 0 0 16-bit bus mode (68 series mode) 0 1 16-bit bus mode (80 series mode) 1 0 Reserved 1 1 PCI bus interface mode Interrupt output pin. Either totem pole or open-drain output O/ buffer can be selected. This pin has an internal pull-up OD resistor. 6, 18, 31, 43, 49, 63, VDD 73, 107, 116, 131, 137 — Power supply pin 2, 8, 12, 16, 21, 25, 30, 35, 40, 45, 53, 58, 66, 77, 82, 88, 93, 98, 102, VSS 112, 122, 128, 134, 140 — Ground pin 51, 52 PO1, PO0 O General purpose output ports that can control the external active SCSI bus terminator etc. Initial signal level on each pin is “L”. Those pins are available only for PCI bus interface mode. 55, 56 PI1, PI0 IU General purpose input ports. Available only for PCI bus interface mode. N.C. No connection and unused pins. These pins exist on the only — PCI bus mode. These are internally pulled-up, and do not connect to the pins. 57 I : Input pin O : Output pin I/O : Input and Output pin OD : Open-drain output pin IU : Input pin with pull-up resistor 13 MB86606A ■ BLOCK DIAGRAM BHE (UDS) A4 to 0 CS1 CS0 RD (R/W) WR (LDS) D15 to 8, UDP D7 to 0, LDP INT 1. 16-Bit Bus Mode MPU Interface MSG C/D 1 I/O ATN 5 Internal Processor Various Registers BSYOE BSY 2 SELOE Timer 6 SEL DACK DMBHE (DMUDS) 7 (32 Bytes) 4 DMA0 Send MSG, CMD, Status Buffer Transfer Controller INIT 8 (2048 Bytes) TARG User Program Memory DB15 to 8, UDBP DMA Interface SCSI Interface ACK DREQ Phase Controller RST REQ Receive MSG, CMD, Status Buffer 3 RSTOE (32 Bytes) DMD15 to 8, UDMAP DMD7 to 0, LDMDP IOWR (DMLDS) IORD (DMR/W) DB7 to 0, LDBP 9 (512 Bytes) DBOE15 to 8, UDBOEP DBOE7 to 0, LDBOEP S/DSEL 14 Data Register TP MB86606A PCLK IDSEL SERR PERR DEVSEL STOP IRDY TRDY FRAME PAR C/BE3 to 0 AD31 to 0 GNT PREQ 2. PCI Bus Interface Mode PCI Interface MSG C/D 1 I/O ATN 5 Internal Processor Various Registers BSYOE BSY 2 SELOE Timer 6 SEL Phase Controller ACK SCSI Interface RST REQ Receive MSG, CMD, Status Buffer 3 RSTOE (32 Bytes) 11 7 (32 Bytes) 4 Send MSG, CMD, Status Buffer Transfer Controller DMA Controller INIT 8 (2048 Bytes) TARG User Program Memory DB15 to 8, UDBP DB7 to 0, LDBP DBOE15 to 8, UDBOEP 9 (512 Bytes) 10 Data Register Burst-FIFO (64 Bytes) DBOE7 to 0, LDBOEP S/DSEL 15 MB86606A ■ BLOCK FUNCTIONS 1. Internal Processor This processor provides the sequence control between each phase. 2. Timer This timer manages the time specified by SCSI and the following time: • • • • REQ/ACK assertion time for data at asynchronous transfer Selection/reselection retry time Selection/reselection timeout time REQ/ACK timeout time during transfer Asynchronous transfer (target) : Time required for initiator to assert ACK signal after asserting REQ signal Asynchronous transfer (initiator) : Time required for target to negate REQ signal after asserting ACK signal Synchronous transfer (target only) : Time required for target to receive ACK signal for setting offset value to 0 from initiator after sending REQ signal 3. Phase Controller This controller controls the arbitration, selection/reselection, data-in/out, command, status, and message-in/out phases executed on the SCSI bus. 4. Transfer Controller This controller controls the information (data, command, status, message) transfer phases executed on the SCSI bus. There are two types of transfer for executing the information transfer phases. • Asynchronous transfer • Synchronous transfer : Control by interlocking REQ and ACK signals : Control with maximum of 32-byte offset value in data-in/out phase Depending on the data migration, there are the following two modes. • Program transfer : Performed via MPU interface using data registers • DMA transfer : Performed via DMA interface using DREQ and DACK pins At synchronous transfer, the transfer parameters (transfer mode, minimum cycle period of REQ or ACK signal sent from SPC in synchronous transfer, and maximum value between REQ and ACK signals in synchronous transfer) can be saved for each ID and are automatically set when the data phase is started. The transfer byte count is determined by block length × number of blocks. 5. Various Registers • Command register This register specifies each command with an 8-bit code. When using the user program, specify “1” at the Bit 7. The lower 7 bits (Bit 6 to Bit 0) are invalid. • Nexus status register This register indicates the chip’s operating condition, the nexused partner’s ID, and data register status. • SCSI control signal status register This register indicates the status of SCSI control signals. 16 MB86606A • Interrupt status register This register indicates the interrupt status with an 8-bit code. • Command step register This register indicates the execution status of each command with an 8-bit step code. Error causes can be analyzed by referencing the interrupt status register and this register. • Group 6/7 command length setting register This register sets the group 6/7 command length not defined in the SCSI standard. Setting this register determines the group 6/7 command length. 6. Receive MSG, CMD, Status Buffer (Receive MCS Buffer) This is a 32-byte receive-only information buffer that holds the information for the message, command, and status received from the SCSI bus. 7. Send MSG, CMD, Status Buffer (Send MCS Buffer) This is a 32-byte send-only information buffer that holds the information for the message, command, and status sent on the SCSI bus. 8. User Program Memory This is a 2048-byte program memory that stores programmable commands. It can consist of 1024-byte × 2 banks or 2048-byte × 1 bank. 9. Data Register This is a 512-byte FIFO data register that holds data in the data phase executed on the SCSI bus. 10.Burst FIFO 64-byte FIFO type data buffer to perform burst transfer during the PCI bus interface mode. The device has total 576-byte FIFO with Data Register and Burst FIFO in the PCI bus interface mode. 11.DMA Controller This is a 32-bit DMA Controller that performs data transfer. This DMAC is a bus master during the PCI bus interface mode. 17 MB86606A ■ ABSOLUTE MAXIMUM RATINGS Parameter Rating Symbol Unit Min. Max. VDD VSS –0.5 6.0 V Input voltage* VI VSS –0.5 VDD +0.5 V Output voltage* VO VSS –0.5 VDD +0.5 V Operating ambient temperature Top –25 +85 °C Storage temperature Tstg –40 +125 °C Supply voltage* * : The voltages are based on VSS (= 0V) Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ■ RECOMMENDED OPERATING CONDITIONS Parameter Symbol Value Min. Typ. Max. Unit Supply voltage* VDD 4.75 5.0 5.25 V SCSI clock input frequency fSCSI 20.0 — 40.0 MHz PCI clock input frequency fPCI — — 33.0 MHz Operating temperature Ta 0 — +70 °C * : The voltages are based on VSS (= 0V) Note: The recommended operating conditions are the recommended values for assuring normal logic operation of the LSI. Requirements in electrical characteristics (DC and AC characteristics) are assured within the range of the recommended operating conditions. 18 MB86606A ■ ELECTRICAL CHARACTERISTICS 1. DC Characteristics (VDD = +5 V±5%, VSS = 0 V, Ta = 0 to +70°C) Value Symbol Condition Unit Min. Max. Parameter SCSI pins Input voltage*1 SCLK pins SDSEL pins Other pins SCSI-pin input hysteresis* 1 VIH — 1.9 — V VIL — — 1.0 V VIH — 2.4 — V VIL — — 0.8 V VIH — 2.0 — V VIL — — 0.8 V VHW — 0.3 — V VOH IOH = –7.0 mA 2.0 3.24 V VOL IOL = +48.0 mA — 0.5 V VOL IOL = +48.0 mA — 0.5 V VOL IOL = +48.0 mA — 0.5 V VOH IOH = –7.0 mA 2.0 3.24 V VOL IOL = +48.0 mA — 0.5 V VOH IOH = –7.0 mA 2.0 3.24 V VOL IOL = +3.2 mA — 0.4 V VOH IOH = –2.0 mA 4.2 — V VOL IOL = +6.0 mA — 0.55 V VOH IOH = –2.0 mA 4.2 — V VOL IOL = +3.2 mA — 0.4 V ILI VIN = 0 to VDD –10 +10 µA Input/output leakage current*2 ILOZ VIN = 0 to VDD –10 +10 µA Supply current IDD — 150 mA REQ, ACK SCSI pins In single- RST, BSY, SEL end mode Non-3ST. Others Output voltage*1 In differential mode PCI bus interface pins Other pins Input leakage current 3ST. — 3ST. : Three-state mode *1 : SCSI pins are; UDBP, DB15 to DB8, LDBP, DB7 to DB0, BSY, SEL, RST, ATN, REQ, ACK, MSG, C/D and I/O. (Total 27 pins) *2 : Leak current when the three-state output pin output and the bidirectional bus pin output are in a high impedance state. 19 MB86606A 2. Input/Output Pin Capacitance Parameter (VDD = VIN = 0 V, f = 1 MHz, Ta = +25°C) Conditions Symbol Unit Min. Max. Pin name SCLK, PCLK (TP) Input-pin capacitance CIN Other input pins Output-pin capacitance COUT Input/output-pin capacitance Non-SCSI pins CI/O SCSI pins — 12 pF — 8 pF — 10 pF — 10 pF — 25 pF 3. Load Conditions for Measurement of AC Characteristics (1) Non-SCSI pins (VDD = +5 V±5%, VSS = 0 V, Ta = 0 to +70°C) 16-bit bus mode Measurement point Pin name MB86606A Measurement pin CL INT, DREQ 60 pF D15 to D8, UDP, D7 to D0, LDP, DMD15 to DMD8, UDMDP, DMD7 to DMD0, LDMDP 85 pF PCI bus interface mode CL Pin name PCI bus pins CL 50 pF (2) SCSI pins (VDD = +5 V±5%, VSS = 0 V, Ta = 0 to +70°C) Measurement point MB86606A Load resistance R L1 Load capacitance Measurement pin R L2 20 CL R L1 = 110Ω R L2 = 165Ω CL = 200 pF MB86606A 4. AC Characteristics (1) System clock • SCSI clock (SCLK pin) Parameter Symbol Value Min. Typ. Max. Unit Clock period tCLF 25.0 — 50.0 ns Clock pulse width (Low) tCLCH 10.0 — — ns Clock pulse width (High) tCHCL 10.0 — — ns Clock pulse rise time tCR — — 5.0 ns Clock pulse fall time tCF — — 5.0 ns Note: When the internal operating clock frequency is the same as the input clock frequency, (when using the device in divide-by-1 mode), the clock pulse width for L and H levels must have minimum 20.0 ns or longer. (i.e. When the clock conversion register value is 0Bh (address: 10h in the initial setting registers) and input clock frequency = 20 MHz.) t CLCH t CLF t CR t CF SCLK 2.4 V 0.8 V 2.4 V 2.4 V 0.8 V 0.8 V 2.4 V 0.8 V t CHCL 21 MB86606A • PCI clock (PCLK pin) Parameter Symbol Value Min. Typ. Max. Unit Clock frequency tPCY 30.0 — — ns Clock pulse width (Low) tPLO 12.0 — — ns Clock pulse width (High) tPHI 12.0 — — ns Clock slew rate tPSR 1.0 — 4.0 V/ns Clock amplitude VIHP – VILP 2.0 — — V t PHI t PCY V IHP PCLK 2.0 V 0.8 V 2.0 V 2.0 V 0.8 V 2.0 V 0.8 V 0.8 V V ILP t PLO (2) System reset Parameter Reset (RESET) pulse “L” level pulse width Symbol tWRSL t WRSL RESET 22 Value Min. Typ. Max. 4 tCLF — — Unit ns MB86606A 5. MPU Interface (1) Register write timing for 80 series Parameter Symbol Value Min. Max. Unit Address (A4 to A0), BHE setup time (1) tAWS 20 — ns Address (A4 to A0) hold time (1) tAWH 10 — ns Address (A4 to A0), BHE setup time (2) tACS 10 — ns Address (A4 to A0) hold time (2) tACH 5 — ns CS0 setup time tCWS 10 — ns CS0 hold time tCWH 5 — ns Data set up time tDWS 25 — ns Data hold time tDWH 10 — ns WR “L” level pulse width tWR 70 — ns A4 to A0 BHE t AWS t AWH tACS t ACH CS0 t CWS t WR t CWH WR t DWS t DWH D15 to 8, UDP Data D7 to 0, LDP 23 MB86606A (2) Register read timing for 80 series Parameter Symbol Value Min. Max. Unit Address (A4 to A0), BHE setup time (1) tARS 20 — ns Address (A4 to A0) hold time (1) tARH 10 — ns Address (A4 to A0), BHE setup time (2) tACS 10 — ns Address (A4 to A0) hold time (2) tACH 5 — ns CS0 setup time tCRS 10 — ns CS0 hold time tCRH 5 — ns RD set Low → data output defined time tRLD — 40 ns RD set High → data output defined time tRHD 5 — ns RD pulse duration at Low tRD 70 — ns Interrupt non-hold mode tDL — 50 ns Interrupt hold mode tDL2 — n•tCLF +50 ns INT signal clear time A4 to A0 BHE t ARH t ARS t ACS t ACH CS0 t CRS t RD t CRH RD t RLD t RHD D15 to 8, UDP Valid data D7 to 0, LDP t DL INT t DL2* (n is the division ratio) INT *: t DL2 is defined by the rising edge of strobe signal that reads out the step code for the last interrupt source. 24 MB86606A (3) Register write timing for 80 series (for external access) Parameter Value Symbol Min. Max. Unit Address (A0), BHE setup time (1) tAWSE 20 — ns Address (A0) hold time (1) tAWHE 10 — ns Address (A0), BHE setup time (2) tACSE 10 — ns Address (A0) hold time (2) tACHD 5 — ns CS1 setup time tCWSE 10 — ns CS1 hold time tCWHE 5 — ns WR set Low → DMA bus output delay time tWHLD — 40 ns WR set High → DMA bus output undefined time tWHHD 5 — ns tDHD — 20 ns MPU data bus → DMA bus output delay time A0 BHE t AWHE t AWSE t ACSE t ACHD CS1 t CWSE t CWHE WR t WLHD t WHHD D15 to 8, UDP Data D7 to 0, LDP t DHD t DHD DMD15 to 8, UDMDP Valid data DMD7 to 0, LDMDP 25 MB86606A (4) Register read timing for 80 series (for external access) Parameter Symbol Value Min. Max. Unit Address (A0), BHE setup time (1) tARSE 20 — ns Address (A0), BHE hold time (1) tARHE 10 — ns Address (A0), BHE setup time (2) tACSE 10 — ns Address (A0), BHE hold time (2) tACHD 5 — ns CS1 setup time tCRSE 10 — ns CS1 hold time tCRHE 5 — ns RD set Low → MPU bus output enable time tRLNZ — 40 ns RD set High → MPU bus output disable time tRHHZ 5 — ns DMA data bus → MPU bus output delay time tHDD — 20 ns A0 BHE t ARSE t ARHE t ACSE t ACHD CS1 t CRSE t CRHE RD DMD15 to 8, UDMDP Data DMD7 to 0, LDMDP t HDD t RLNZ t RHHZ D15 to 8, UDP Valid data D7 to 0, LDP 26 MB86606A (5) Register write timing for 68 series Parameter Value Symbol Min. Max. Unit Address (A4 to A0) setup time (1) tAWS 20 — ns Address (A4 to A0) hold time (1) tAWH 10 — ns Address (A4 to A0) setup time (2) tACS 10 — ns Address (A4 to A0) hold time (2) tACH 5 — ns CS0 setup time tCWS 10 — ns CS0 hold time tCWH 5 — ns Data setup time tDWS 25 — ns Data hold time tDWH 10 — ns tDS 70 — ns R/W setup time tRWS 10 — ns R/W hold time tRWH 10 — ns UDS/LDS “L” level pulse width A4 to A0 t AWS t AWH t ACS t ACH CS0 t CWS t CWH R/W t RWS t DS t RWH UDS/LDS t DWH t DWS D15 to 8, UDP Data D7 to 0, LDP 27 MB86606A (6) Register read timing for 68 series Parameter Symbol Value Min. Max. Unit Address (A4 to A0) setup time (1) tARS 20 — ns Address (A4 to A0) hold time (1) tARH 10 — ns Address (A4 to A0) setup time (2) tACS 10 — ns Address (A4 to A0) hold time (2) tACH 5 — ns CS0 setup time tCRS 10 — ns CS0 hold time tCRH 5 — ns Data output defined time tRLD — 40 ns Data output disable time tRHD 5 — ns UDS/LDS “L” level pulse width tDS 70 — ns R/W setup time tRWS 10 — ns R/W hold time tRWH 10 — ns tDH — 50 tDH2 — n•tCLK+50 INT signal clear time ns A4 to A0 t ARS t ARH t ACS t ACH CS0 t CRS t CRH R/W t RWS t DS t RWH UDS/LDS t RLD t RHD D15 to 8, UDP Valid data D7 to 0, LDP t DH INT (n is the division ratio) t DH2* INT *: t DH2 is defined by the rising edge of strobe signal that reads out the step code for the last interrupt source. 28 MB86606A (7) Register write timing for 68 series (for external access) Parameter Value Symbol Min. Max. Unit Address (A0) setup time (1) tAWSE 20 — ns Address (A0) hold time (1) tAWHE 10 — ns Address (A0) setup time (2) tACSE 10 — ns Address (A0) hold time (2) tACHD 5 — ns CS1 setup time tCWSE 10 — ns CS1 hold time tCWHE 5 — ns UDS/LDS set Low → DMA bus output delay time tWLHD — 40 ns UDS/LDS set High → DMA bus output undefined time tWHHD 5 — ns MPU data bus → DMA bus output delay time tDHD — 20 ns R/W setup time tRWS 10 — ns R/W hold time tRWH 10 — ns A0 t AWSE t AWHE t ACSE t ACHD CS1 t CWSE t CWHE R/W t RWS t DS t RWH UDS/LDS t WHHD t WLHD D15 to 8, UDP Data D7 to 0, LDP t DHD DMD15 to 8, UDMDP Valid data DMD7 to 0, LDMDP 29 MB86606A (8) Register read timing for 68 series (for external access) Parameter Symbol Value Min. Max. Address (A0) setup time (1) tARSE 20 — ns Address (A0) hold time (1) tARHE 10 — ns Address (A0) setup time (2) tACSE 10 — ns Address (A0) hold time (2) tACHD 5 — ns CS1 setup time tCRSE 10 — ns CS1 hold time tCRHE 5 — ns UDS/LDS set Low → MPU data bus output enable time tRLNZ — 40 ns UDS/LDS set High → MPU data bus output disable time tRHH 5 — ns DMA bus → MPU data bus output delay time tHDD — 20 ns R/W setup time tRWS 10 — ns R/W hold time tRWH 10 — ns A0 t ARSE t ARHE t ACHD t ACSE CS1 t CRHE t CRSE R/W t RWS t RWH UDS/LDS DMD15 to 8, UDMDP Data DMD7 to 0, LDMDP t HDD t RLNZ t RHHZ D15 to 8, UDP Valid data D7 to 0, LDP 30 Unit MB86606A 6. DMA Interface DMA access timing The time regulations are not applicable in the following cases: • • • • During SCSI input and when data buffer EMPTY, or when one byte held During SCSI output and when data buffer FULL, or when 511 bytes held When parity error detected (target) When error stopping transfer occurs in SCSI interface (1) Access cycle time (burst mode) Parameter Symbol Address cycle time Value Unit Min. Max. tDCY1 2 tCLF — ns tDCY2 3 tCLF — ns tDCY3 4 tCLF — ns tDCY4 1 tCLF — ns t DCY2 IOWR/IORD DMUDS/DMLDS t DCY1 t DCY4 t DCY3 31 MB86606A (2) Write timing (burst mode for 80 series) Parameter Symbol Value Min. Max. DREQ set High → DACK set Low tDHAL 0 — ns IOWR set Low → DREQ set Low tALDL — 25 ns DREQ set Low → DREQ set High tDLDH 0 — ns DACK set Low → IOWR set Low tALWL 0 — ns DMBHE, DMA0 setup time tDAWS 10 — ns IOWR “L” level pulse width tDWR 25 — ns IOWR set High → DACK set High tWHAH 0 — ns DMBHE, DMA0 hold time tDAWH 10 — ns Input data setup time tDDWS 25 — ns Input data hold time tDDWH 5 — ns t DLDH DREQ t DHAL t ALDL DACK t ALWL t WHAH DMBHE DMA0 t DAWS t DWR t DAWH IOWR t DDWS DMD15 to 0 UDMDP, LDMDP 32 Unit Data t DDWH MB86606A (3) Read timing (burst mode for 80 series) Parameter Symbol Value Min. Max. Unit DREQ set High → DACK set Low tDHAL 0 — ns IORD set Low → DREQ set Low tALDL — 25 ns DREQ set Low → DREQ set High tDLDH 0 — ns DACK set Low → IORD set Low tALRL 0 — ns DMBHE, DMA0 setup time tDARS 10 — ns IORD “L” level pulse width tDRD 25 — ns IORD set High → DACK set High tRHAH 0 — ns DMBHE, DMA0 hold time tDARH 10 — ns Data output defined time tDRLD — 25 ns Data output hold time tDRHD 10 — ns t DLDH DREQ t DHAL t ALDL DACK t ALRL t RHAH DMBHE DMA0 t DARS t DRD t DARH IORD t DRLD DMD15 to 0 UDMDP, LDMDP t DRHD Valid data 33 MB86606A (4) Write timing (burst mode for 68 series) Parameter Symbol Value Min. Max. DREQ set High → DACK set Low tDHAL 0 — ns DMUDS/DMLDS set Low → DREQ set Low tALDL — 25 ns DREQ set Low → DREQ set High tDLDH 0 — ns DACK set Low → DMUDS/DMLDS set Low tALDL 5 — ns R/W setup time tDRWS 10 — ns DMUDS/DMLDS “L” level pulse width tDDS 25 — ns DMUDS/DMLDS set High → DACK set High tDHAH 0 — ns R/W hold time tDRWH 10 — ns Input data setup time tDDWS 25 — ns Input data hold time tDDWH 5 — ns t DLDH DREQ t DHAL t ALDL DACK t ALDL t DHAH DMR/W t DRWS t DDS t DRWH DMUDS/DMLDS t DDWS DMD15 to 0 UDMDP, LDMDP 34 Unit Data t DDWH MB86606A (5) Read timing (burst mode for 68 series) Parameter Symbol Value Min. Max. Unit DREQ set High → DACK set Low tDHAL 0 — ns DMUDS/DMLDS set Low → DREQ set Low tALDL — 25 ns DREQ set Low → DREQ set High tDLDH 0 — ns DACK set Low → DMUDS/DMLDS set Low tALDL 5 — ns R/W setup time tDRWS 10 — ns DMUDS/DMLDS “L” level pulse width tDDS 25 — ns DMUDS/DMLDS set High → DACK set High tDHAH 0 — ns R/W hold time tDRWH 10 — ns Output data valid time tDRLD — 25 ns Output data hold time tDRHD 10 — ns t DLDH DREQ t DHAL t ALDL DACK t ALDL t DHAH DMR/W t DRWS t DDS t DRWH DMUDS/DMLDS t DRLD DMD15 to 0 UDMDP, LDMDP t DRHD Valid data 35 MB86606A 7. PCI Interface (1) PCI interface signal timing Parameter Value Symbol Min. Max. Output signal valid time tPVAL 2 11/12*1 ns Output disable time tPOFF — 28 ns Output enable time tPON 2 — ns Input setup time tPSU 7/10*2 — ns Input hold time tPHD 0 — ns *1: Applicable to PREQ pin *2: Applicable to GNT pin 2.4 V 1.5 V PCICLK 0.4 V OUTPUT H to I or L to H 1.5 V t PVAL OUTPUT H/L to Hi-Z t POFF OUTPUT Hi-Z to H/L t PON 2.4 V INPUT 1.5 V 1.5 V 0.4 V t PSU 36 Unit t PHD MB86606A (2) Configuration register read timing PCICLK FRAME IDSEL AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL STOP (3) Configuration register write timing PCICLK FRAME IDSEL AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL STOP Note: For the access to the configuration register, only one data transfer possible. When a master device executes the burst transfer, a target device asserts STOP signal, and performs the target termination. 37 MB86606A (4) BASIC control register read timing (target mode) • Byte or word access Burst read (target termination), single read PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL STOP Note: Only one data transfer is possible for reading BASIC control regisuter. When a master device does the burst transfer to the target device, it asserts STOP signal and performs the target termination. 38 MB86606A • Long-word access Single read PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL STOP Burst read (target termination) PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL STOP Note: For the read operation of BASIC control registers, only one data transfer possible. When a master device executes the burst transfer, a target device asserts STOP signal and performs the target termination. 39 MB86606A (5) Target mode – I/O, memory read timing (except BASIC control registers) • Byte, word access Single read PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL Burst read PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL 40 MB86606A • Long-word access Single read PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL Burst read PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL 41 MB86606A (6) Target Mode – I/O, memory write timing • Byte, word access Single write burst write PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL 42 MB86606A • Long-word access Single write PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL Burst write PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL 43 MB86606A (7) Data read timing (master mode) • Burst length = 1 and 4 Burst = 1 PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL • Burst length = 8 PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL • Burst length = 16 PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL 44 Burst = 4 MB86606A (8) Data write timing (master mode) • Burst length = 1 and 4 Burst = 1 Burst = 4 PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL • Burst length = 8 PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL • Burst length = 16 PCICLK FRAME AD31 to 00 C/BE3 to 0 IRDY TRDY DEVSEL 45 MB86606A 8. SCSI Interface (1) Initiator asynchronous input timing (target → initiator) Parameter Value Symbol Min. Max. Unit ACK set Low → REQ set High tAOLR 0 — ns REQ set High → ACK set High tRAOH — 60 ns ACK set High → REQ set Low tAOHR 10 — ns Data bus valid → REQ set Low tDTSU 10 — ns REQ set Low → data bus hold time tDHLD 20 — ns REQ set Low → ACK set Low tRAOL — 40 ns REQ set High → ACK set Low* tRACY — 3 tCLF +40 ns * : tRACY (REQ set High → ACK set Low) is defined as either longer time of (tRAOH + tAOHR +tRAOL) or tRACY itself Note: Time requirements in this section do not apply in the following cases; • When data register FULL in data phase • When last byte transferred t RACY REQ t AOLR t RAOH ACK t DTSU DB7 to 0, P DB15 to 8, P 46 t DHLD Data t AOHR t RAOL MB86606A (2) Initiator asynchronous output timing (initiator → target) Parameter Symbol Value Min. Max. Unit ACK set Low → REQ set High tAOLR 0 — ns REQ set High → ACK set High tRAOH — 60 ns ACK set High → REQ set Low tAOHR 10 — ns Data bus output defined → ACK set Low* tDVLD S•tCLF–10 — ns REQ set High → data bus hold time tDIVD 2 tCLF — ns REQ set Low → ACK set Low tRAOL — 40 ns * : The value of S varies with the setting condition of the asynchronous setup time register (address 17h). Note: This output timing regulations are not applicable when the data register is EMPTY in the data phase. t RACY* REQ t AOLR t RAOH t AOHR t RAOL ACK t DVLD DB7 to 0, P DB15 to 8, P t DIVD Valid data t DVLD Valid data * : The time (tRACY) of REQ set High → ACK set Low is defined by the longer time either (tRAOH + tAOHR +tRAOL) or (tDIVD + tDVLD). 47 MB86606A (3) Initiator synchronous transfer REQ/ACK timing Parameter Symbol Value Min. Max. ACK Assertion Period* tAKAP A•tCLF–4 — ns ACK Negation Period* tANAP N•tCLF–6 — ns REQ Assertion Period tRQAP 20 — ns REQ Negation Period tRNAP 20 — ns REQ input cycle time (1) tRQF1 1 tCLF — ns REQ input cycle time (2) tRQF2 3 tCLF — ns * : The values of A and N vary with the setting condition of the transfer period register (address 0Ch). t AKAP t ANAP ACK t RQAP t RNAP REQ t RQF1 t RQF2 48 Unit MB86606A (4) Initiator synchronous transfer input timing (target → initiator) Parameter Value Symbol Min. Max. Unit Data bus defined → REQ set Low tDTSU 5 — ns REQ set Low → data bus hold time tDHLD 15 — ns REQ t DTSU DB7 to 0, P DB15 to 8, P t DHLD t DTSU Data t DHLD Data (5) Initiator synchronous transfer output timing (initiator → target) Parameter Value Symbol Min. Max. Unit Data bus defined → ACK set Low* tDVAK N•tCLF–10 — ns ACK set Low → data bus hold time* tAKDH A•tCLF–5 — ns * : The values of A and N vary with the setting condition of the transfer period register (address 0Ch). ACK t DVAK DB7 to 0, P DB15 to 8, P Valid data t AKDH t DVAK t AKDH Valid data 49 MB86606A (6) Target asynchronous input timing (initiator → target) Parameter Symbol Value Min. Max. Unit REQ set Low → ACK set Low tROLA 0 — ns ACK set Low → REQ set High tAROH — 60 ns REQ set High → ACK set High tROHA 0 — ns Data bus defined → ACK set Low tDTSU 10 — ns ACK set Low → data bus hold time tDHLD 20 — ns ACK set High → REQ set Low tAROL — 40 ns ACK set Low → REQ set Low* tRACY — 3 tCLF + 40 ns * : tRACY (ACK set Low → REQ set Low) is defined as either longer time of (tAROH + tROHA +tAROL) or tRACY itself Note: The input timing regulations are not applicable when the data register is FULL in the data phase. t RACY REQ t ROLA t AROH t ROHA ACK t DTSU DB7 to 0, P DB15 to 8, P 50 t DHLD Data t AROL MB86606A (7) Target asynchronous input timing (target → initiator) Parameter Value Symbol Min. Max. Unit REQ set Low → ACK set Low tROLA 0 — ns ACK set Low → REQ set High tAROH — 60 ns REQ set High → ACK set High tROHA 0 — ns Data bus defined → REQ set Low* tDVLD S•tCLF – 10 — ns ACK set Low → data bus hold time tDIVD 2 tCLF — ns ACK set High → REQ set Low tAROL — 40 ns * : The value of S varies with the setting condition of the asynchronous setup time register (address 17h). Note: The output timing regulations are not applicable when the data register is EMPTY in the data phase. t RACY* REQ t ROLA t AROH t ROHA t AROL ACK t DVLD DB7 to 0, P DB15 to 8, P t DIVD Valid data t DVLD Valid data * : The time (tRACY) of ACK set High → REQ set Low is defined by the longer time either (tAROH + tROHA +tAROL) or (tDIVD + tDVLD). 51 MB86606A (8) Target synchronous transfer REQ/ACK timing Parameter Symbol Value Min. Max. REQ Assertion Period* tRQAP A•tCLF – 4 — ns REQ Negation Period* tRNAP N•tCLF – 6 — ns ACK Assertion Period tAKAP 20 — ns ACK Negation Period tANAP 20 — ns ACK input cycle time (1) tAKF1 1 tCLF — ns ACK input cycle time (2) tAKF2 3 tCLF — ns * : The values of A and N vary with the setting condition of the transfer period register (address 0Ch). t RQAP t RNAP REQ t AKAP t ANAP ACK t AKF1 t AKF2 52 Unit MB86606A (9) Target synchronous transfer input timing (initiator → target) Parameter Value Symbol Min. Max. Unit Data bus defined → ACK set Low tDTSU 5 — ns ACK set Low → data bus hold time tDHLD 15 — ns ACK t DTSU DB7 to 0, P DB15 to 8, P t DHLD t DTSU Data t DHLD Data (10) Target synchronous transfer output timing (target → initiator) Parameter Value Symbol Min. Max. Unit Data bus defined → REQ set Low* tDVRQ N•tCLF – 10 — ns REQ set Low → data bus hold time* tRQDH A•tCLF – 5 — ns * : The values of A and N vary with the setting condition of the transfer period register (address 0Ch). REQ t DVRQ DB7 to 0, P DB15 to 8, P Valid data t RQDH t DVRQ t RQDH Valid data 53 MB86606A (11) A, N, and S values in SCSI interface timing specifications • Set value for transfer period register and A, N values Transfer period register A N Transfer period register A N 1 9 8 1 0 9 9 0 1 1 10 9 0 1 0 0 10 10 1 0 1 0 1 11 10 3 1 0 1 1 0 11 11 4 3 1 0 1 1 1 12 11 0 4 4 1 1 0 0 0 12 12 0 1 5 4 1 1 0 0 1 13 12 0 1 0 5 5 1 1 0 1 0 13 13 1 0 1 1 6 5 1 1 0 1 1 14 13 0 1 1 0 0 6 6 1 1 1 0 0 14 14 0 1 1 0 1 7 6 1 1 1 0 1 15 14 0 1 1 1 0 7 7 1 1 1 1 0 15 15 0 1 1 1 1 8 7 1 1 1 1 1 16 15 1 0 0 0 0 8 8 0 0 0 0 0 16 16 4 3 2 1 0 4 3 2 1 0 0 0 0 0 1 (inhibited) (inhibited) 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 2 1 1 0 0 0 1 0 0 2 2 1 0 0 1 0 1 3 2 0 0 1 1 0 3 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 Note: The A and N values in the register setting represent the assertion and negation periods (in clock-cycle units). The numerical value is applicable to the A and N values in AC characteristics. 54 MB86606A • Set value for asynchronous setup time register and S value Asynchronous setup time setting register S 3 2 1 0 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 10 1 0 1 1 11 1 1 0 0 12 1 1 0 1 13 1 1 1 0 14 1 1 1 1 15 0 0 0 0 16 Note: The S (setup time) value of the setup time setting register in asynchronous data transfer represents the time required to assert the REQ or ACK signal after setting data at the data bus (in clock-cycle units). The numerical value is applicable to the S value in AC characteristics. 55 MB86606A ■ SYSTEM CONFIGURATION 1. 80-Series Separate Bus Type MB86606A OSC RESET circuit CLK DB15 to 8 RESET UDBP DB7 to 0 MODE0 LDBP MODE1 DBOE15 to 8 UDBOEP DBOE7 to 0 LDBOEP INT CS0 ACK MPU ADDRESS DECODE CS1 DIFFERENTIAL ATN INIT A4 to A0 ADDRESS BUS REQ D15 to D0 UDP LDP MSG DATA BUS C/D BHE RD WR I/O DR/REV TARG BSY DMD15 to 0 UDMDP LDMDP DMA BUS BSYOE SEL SELOE DREQ DACK DMBHE IORD IOWR RST RSTOE DMA0 TP SDSEL 56 DMA CONTROL ADDRESS DATA BUFFER MEMORY MB86606A 2. 68-Series Separate Bus Type MB86606A OSC RESET circuit CLK DB15 to 8 RESET UDBP DB7 to 0 MODE0 LDBP MODE1 DBOE15 to 8 UDBOEP DBOE7 to 0 LDBOEP INT MPU A0 CS0 ACK ADDRESS DECODE DIFFERENTIAL CS1 ATN INIT A4 to A1 ADDRESS BUS REQ D15 to D0 UDP LDP MSG DATA BUS C/D R/W UDS LDS I/O DR/REV TARG BSY DMD15 to 0 UDMDP LDMDP DMA BUS BSYOE SEL SELOE DREQ DACK DMR/W DMUDS DMLDS DMA CONTROL ADDRESS DATA BUFFER MEMORY RST RSTOE DMA0 TP SDSEL 57 MB86606A 3. 80-Series Common Bus Type MB86606A OSC RESET circuit CLK DB15 to 8 RESET LDBP DB7 to 0 MODE0 UDBP MODE1 DBOE15 to 8 UDBOEP DBOE7 to 0 LDBOEP INT CS1 ACK MPU ADDRESS DECODE CS0 DIFFERENTIAL ATN INIT A4 to A0 ADDRESS BUS REQ D15 to D0 UDP LDP MSG DATA BUS C/D BHE RD WR I/O DR/REV TARG BSY DMD15 to 0 UDMDP LDMDP DMA BUS BSYOE SEL SELOE DREQ DACK DMBHE IORD IOWR RST RSTOE DMA0 TP SDSEL 58 DMA CONTROL MB86606A 4. 68-Series Common Bus Type MB86606A OSC RESET circuit CLK DB15 to 8 RESET LDBP DB7 to 0 MODE0 UDBP MODE1 DBOE15 to 8 UDBOEP DBOE7 to 0 LDBOEP INT MPU A0 CS1 ACK ADDRESS DECODE CS0 DIFFERENTIAL ATN INIT A4 to A1 ADDRESS BUS REQ D15 to D0 UDP LDP MSG DATA BUS C/D R/W UDS LDS DR/REV I/O TARG BSY DMD15 to 0 UDMDP LDMDP DMA BUS BSYOE SEL SELOE DREQ DACK DMR/W DMUDS DMLDS DMA CONTROL RST RSTOE DMA0 TP SDSEL 59 MB86606A 5. Example of Connection in Differential Mode (Example of Driver/Receiver Connection) (TOP VIEW) RO 1 8 V CC R RE 2 7 DO, RI DE 3 6 DO, RI DI 4 D 5 GND MB561 MB86606A 18 DB15 to 0 UDBP LDBP R (+) SIGNAL 18 DBOE15 to 0 UDBOEP LDBOEP (−) SIGNAL D 2 ACK, ATN R INIT (+) SIGNAL (−) SIGNAL SCSI BUS D 4 REQ, MSG C/D, I/O R (+) SIGNAL TARG (−) SIGNAL D BSY, SEL RST BSYOE, SELOE RSTOE 3 R 3 (−) SIGNAL D SDSEL 60 (+) SIGNAL MB86606A 6. Example of Connection in Single-end Mode MB86606A DB15 to 0 UDBP LDBP 18 18 (OPEN) DBOE15 to 0 UDBOEP LDBOEP 2 ACK, ATN INIT SCSI BUS (OPEN) 4 REQ, MSG C/D, I/O TARG BSY, SEL RST BSYOE, SELOE RSTOE (OPEN) 3 3 (OPEN) SDSEL 61 MB86606A ■ ORDERING INFORMATION Part number MB86606APMT2 62 Package 144-pins, Plastic LQFP (FPT-144P-M08) Remarks MB86606A ■ PACKAGE DIMENSION 144-pin plastic LQFP (FPT-144P-M08) 22.00±0.30(.866±.012)SQ 1.70(.67)MAX (Mounting height) 20.00±0.10(.787±.004)SQ 108 0(0)MIN (STAND OFF) 73 109 72 17.50 (.686) REF 21.00 (.827) NOM Details of "A" part 0.15(.006) 0.15(.006) INDEX 0.15(.006)MAX 144 37 0.40(.016)MAX "A" LEAD No. 1 36 0.50(.0197)TYP 0.20±0.10 (.008±.004) 0.08(.003) Details of "B" part M 0.15±0.05 (.006±.002) 0 0.10(.004) C 1995 FUJITSU LIMITED F144019S-1C-2 10° 0.50±0.20(.020±.008) "B" Dimensions in mm (inches) 63 MB86606A FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: (800) 866-8608 Fax: (408) 922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 http://www.fujitsu-ede.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 http://www.fmap.com.sg/ F9904 FUJITSU LIMITED Printed in Japan 64 All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.