NEC UPD98405GL-PMU

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD98405
155M ATM INTEGRATED SAR CONTROLLER
DESCRIPTION
The µPD98405 (NEASCOT-S20TM) is a high-performance SAR chip that performs segmentation and reassembly of
ATM cells. It has a PCI bus interface, a SONET/SDH 155-Mbps framer, and a clock recovery circuit and supports an
ABR function in hardware.
The µPD98405 conforms to ATM Forum and has the functions of the AAL-5 SAR
sublayer, ATM layer, and TC sublayer.
FEATURES
• Conforms to ATM Forum.
• Host bus interface supporting PCI bus/generic bus.
-
PCI interface (5/3.3 V, 32/64 bits, 33 MHz): Conforms to PCI Specification 2.1
-
Generic bus interface (5/3.3 V, 32 bits, 33 MHz)
• AAL-5 SAR sublayer, ATM layer, and TC sublayer functions
• Hardware support of AAL-5 processing
• Software support of non-AAL-5 traffic
• SONET STS-3c/SDH STM-1 155-Mbps framer function
• Clock recovery/clock synthesizer function
• Supports up to 32 K virtual channels (VCs)
• Sixteen traffic shapers for VBR for transmission scheduling
• Hardware support of CBR/VBR/ABR/UBR service
• Supports multi-cell burst transfer for transmission and reception
• MIB counter function
• Supports LAN emulation function
• Receive FIFO of 96 cells
• External PHY devices connectable: UTOPIA Level-1 interface
• 0.35-µm CMOS process, +5-/3.3-V power supply
-
Bus interface +5 V: +5-/3.3-V power supply
-
Bus interface +3.3 V: +3.3-V power supply
• 304-pin plastic QFP
ORDERING INFORMATION
Part Number
Package
µPD98405GL-PMU
304-pin plastic QFP (0.5-mm fine pitch) (40 × 40 mm)
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Document No. S12689EJ2V0DS00 (2nd edition)
Date Published April 1999 N CP(K)
Printed in Japan
The mark
shows major revised points.
©
1997, 1999
µPD98405
SYSTEM CONFIGURATION EXAMPLE
ATM Interface Card
Rx
PMD
Control
memory
Tx
µ PD98405
Expansion
ROM
EEPROMTM
PCI bus
2
Data Sheet S12689EJ2V0DS00
ATM
network
Data Sheet S12689EJ2V0DS00
DMA block
DMA input
block
Host command
FIFO
(10 commands)
DMA output
block
Transmit
queue
buffer
(64 cells)
Transmit data
FIFO (10 cells)
Transmit controller
Sequencer
Receive controller
Receive data FIFO (96 cells)
Control memory
Transmit
PHY
interface
Control memory interface
Receive
PHY
interface
Receive
framer
Transmit
ATM
interface
&
FIFO
(4 cells)
Transmit
framer
Control interface
Receive
ATM
interface
&
FIFO
(4 cells)
UTOPIA interface
µPD98405
BLOCK DIAGRAM
PMD
PMD interface
& Clock recovery
& Clock synthesizer
PCI interface
Host system
3
µPD98405
OUTLINE OF PINS
304-pin plastic QFP (0.5-mm fine pitch) (40 × 40 mm)
304
229
228
1
JTAG
PMD
PHY device
EEPROM
PCI
Expansion ROM
µ PD98405GL-PMU
Control memory
76
153
77
4
152
Data Sheet S12689EJ2V0DS00
µPD98405
PIN NAME
ABRT_B
: Abort
PERR_B
: Parity Error
ACK64_B
: Acknowledge 64-bit Transfer
PHCE_B
: PHY Chip Enable
AD63-AD0
: Address/Data
PHINT_B
: PHY Interrupt
AGND
: Ground for Analog Part
PHOE_B
: PHY Output Enable
ASEL_B
: Slave Address Select
PHRST_B
: PHY Reset
ATTN_B
: Attention
PHR/W_B
: PHY Read/Write
AVDD3
: +3.3 V Power Supply for
PHYALM
: Physical Alarm
Analog Part
RCLK
: Receive Clock
BE3_B-BE0_B
: Byte Enable
RCIC
: Receive Clock Input Complement
CA18-CA0
: Control Memory Address
RCIT
: Receive Clock Input True
CBE3_B-CBE0_B
: Local Port Byte Enable
RDIC
: Receive Data Input Complement
CD31-CD0
: Control Memory Data
RDIT
: Receive Data Input True
CLK
: Clock
PDY_B
: Target Ready
COE_B
: Control Memory Output Enable
REFCLK
: Reference Clock
CPAR3-CPAR0
: Control Memory parity
RENBL_B
: Receive Enable
CWE_B
: Control Memory Write Enable
REQ64_B
: Request 64-bit Transfer
DEVSEL_B
: Device Select
REQ_B
: Request
DR/W_B
: DMA Read/Write
RGND
: Ground for Receive PLL Part
EMPTY_B/RCLAV
: PHY Empty/Rx Cell Available
ROMA15-ROMA0: Expansion ROM Address
ERR_B
: Error
ROMCS_B
E2PCLK
: Clock for EEPROM
ROMD7-ROMD0 : Expansion ROM Input Data
E2PCS
: EEPROM Chip Select
ROMOE_B
: Expansion ROM Chip Select
: Expansion ROM Output Enable
E2PDI
: Serial Data Input from EEPROM
RSOC
: Receive Start Cell
E2PDO
: Serial Data Output to EEPROM
RST_B
: Reset
FRAME_B
: Cycle Frame
RVDD3
: +3.3 V Power Supply for Receive
FULL_B/TCLAV
: PHY Buffer full/Tx Cell Available
GND
: Ground for Digital Part
Rx7-Rx0
: Receive Data Bus
GNT_B
: Grant
SCLK
: SAR System Clock
HGND
: Ground for High-Speed Part
SD
: Signal Detect
HVDD3
: +3.3 V Power Supply for
SEL_B
: Slave Select
SERR_B
: System Error
High-Speed Part
PLL Part
IDSEL
: ID Select
SIZE2-SIZE0
: Burst Size
INITD
: Initialization Disable
SR/W_B
: Slave Read /Write
INTR_B
: Interrupt
STOP_B
: Stop
IRDY_B
: Initiator Ready
TCLK
: Transmit Clock
JCK
: JTAG Test Pin
TDOC
: Transmit Data Output Complement
JDI
: JTAG Test Pin
TDOT
: Transmit Data Output True
JDO
: JTAG Test Pin
TENBL_B
: Transmit Enable
JMS
: JTAG Test Pin
TEST
: Test Mode Pin
JRST_B
: JTAG Test Pin
TFKC
: Transmit Reference Clock Complement
OE_B
: Output Enable
TFKT
: Transmit Reference Clock True
PAR
: Parity
TRDY_B
: Target Ready
PAR3-PAR0
: Bus Party
TSOC
: Transmit Start of Cell
PAR64
: Parity 64 bits
Tx7-Tx0
: Transmit Data Bus
PCBE7_B-PCBE0_B: Bus Command and Byte Enables
VDD3
: +3.3 V Power Supply for Digital Part
PCI_MODE
VDD5
: +5 V Power Supply for Digital Part
: PCI Mode
Data Sheet S12689EJ2V0DS00
5
µPD98405
PIN CONFIGURATION
304-pin plastic QFP (0.5-mm fine pitch) (40 × 40 mm)
No.
PCI Mode
Generic
Mode
No.
PCI Mode
Generic
Mode
No.
PCI Mode
Generic
Mode
No.
PCI Mode
Generic
Mode
1
GND
GND
39 AD12
AD12
77 GND
GND
115 AD32
–
2
VDD3
VDD3
40 AD11
AD11
78 VDD3
VDD3
116 PAR64
–
3
AD24
AD24
41 AD10
AD10
79 AD57
4
PCBE3_B
BE3_B
42 AD9
AD9
80 AD56
5
IDSEL
–
43 GND
GND
81 VDD5
6
AD23
AD23
44 VDD5
VDD5
82 AD55
7
GND
GND
45 AD8
AD8
8
VDD5
VDD5
46 PCBE0_B
BE0_B
9
–
117 GND
–
118 PCI_MODE PCI_MODE
VDD5
GND
119 CD31
CD31
–
120 CD30
CD30
83 AD54
–
121 CD29
CD29
84 AD53
–
122 CD28
CD28
AD22
AD22
47 AD7
AD7
85 AD52
123 CD27
CD27
10 AD21
AD21
48 AD6
AD6
86 GND
GND
–
124 GND
GND
11 AD20
AD20
49 GND
GND
87 VDD3
VDD3
125 VDD3
VDD3
12 AD19
AD19
50 VDD3
VDD3
88 AD51
–
126 CD26
CD26
13 GND
GND
51 AD5
AD5
89 AD50
–
127 CD25
CD25
14 VDD3
VDD3
52 AD4
AD4
90 AD49
–
128 CD24
CD24
15 AD18
AD18
53 AD3
AD3
91 AD48
–
129 CD23
CD23
16 AD17
AD17
54 AD2
AD2
92 GND
GND
130 CD22
CD22
17 AD16
AD16
55 GND
GND
93 VDD5
VDD5
131 GND
GND
18 PCBE2_B
BE2_B
56 VDD5
VDD5
94 AD47
–
132 CD21
CD21
19 GND
GND
57 AD1
AD1
95 AD46
–
133 CD20
CD20
20 VDD5
VDD5
58 AD0
AD0
96 AD45
–
134 CD19
CD19
21 FRAME_B
SEL_B
59 ACK64_B
OE_B
97 AD44
–
135 CD18
CD18
22 IRDY_B
ASEL_B
60 REQ64_B
DR/W_B
98 GND
GND
136 CD17
CD17
23 TRDY_B
RDY_B
61 GND
GND
99 VDD3
VDD3
137 GND
GND
24 DEVSEL_B
SR/W_B
62 VDD3
VDD3
100 AD43
138 VDD3
VDD3
25 GND
GND
63 PCBE7_B
SIZE2
101 AD42
–
139 CD16
CD16
26 VDD3
VDD3
64 PCBE6_B
SIZE1
102 AD41
–
140 CD15
CD15
27 STOP_B
ABRT_B
65 PCBE5_B
SIZE0
103 AD40
–
141 CD14
CD14
28 PERR_B
ERR_B
66 PCBE4_B
PAR3
104 GND
GND
142 CD13
CD13
–
67 VDD5
VDD5
105 VDD5
VDD5
143 CD12
CD12
–
29 SERR_B
30 PAR
–
68 GND
GND
106 AD39
–
144 CD11
CD11
31 GND
GND
69 AD63
PAR2
107 AD38
–
145 GND
GND
32 VDD5
VDD5
70 AD62
PAR1
108 AD37
–
146 CD10
CD10
33 PCBE1_B
BE1_B
71 AD61
PAR0
109 AD36
–
147 CD9
CD9
34 AD15
AD15
72 VDD3
VDD3
110 GND
GND
148 CD8
CD8
VDD3
35 AD14
AD14
73 AD60
–
111 VDD3
149 CD7
CD7
36 AD13
AD13
74 AD59
–
112 AD35
–
150 CD6
CD6
37 GND
GND
75 AD58
–
113 AD34
–
151 VDD3
VDD3
38 VDD3
VDD3
76 GND
114 AD33
–
152 GND
GND
6
GND
Data Sheet S12689EJ2V0DS00
µPD98405
No.
PCI Mode
Generic
Mode
No.
PCI Mode
Generic
Mode
No.
PCI Mode
153 GND
GND
191 CBE3_B
CBE3_B
229 GND
154 VDD3
VDD3
192 CBE2_B
CBE2_B
230 ROMOE_B
155 CD5
CD5
193 CBE1_B
CBE1_B
156 CD4
CD4
194 CBE0_B
CBE0_B
Generic
Mode
GND
No.
PCI Mode
Generic
Mode
267 SD/
PHCE_B
SD/
PHCE_B
–
268 REFCLK/
PHINT_B
REFCLK/
PHINT_B
231 E2PDI
–
269 AVDD3
AVDD3
232 E2PDO
–
270 AGND
AGND
157 CD3
CD3
195 CWE_B
CWE_B
233 E2PCLK
–
271 TEST
TEST
158 CD2
CD2
196 COE_B
COE_B
234 E2PCS
–
272 HGND
HGND
159 CD1
CD1
197 INITD
INITD
235 Rx7
Rx7
273 TDOT
TDOT
160 GND
GND
198 SCLK
SCLK
236 Rx6
Rx6
274 TDOC
TDOC
161 CD0
CD0
199 GND
GND
237 Rx5
Rx5
275 HVDD3
HVDD3
162 CPAR3
CPAR3
200 ROMA15
–
238 Rx4
Rx4
276 HVDD3
HVDD3
163 CPAR2
CPAR2
201 ROMA14
–
239 Rx3
Rx3
277 RDIC
RDIC
164 CPAR1
CPAR1
202 ROMA13
–
240 Rx2
Rx2
278 RDIT
RDIT
165 CPAR0
CPAR0
203 ROMA12
–
241 Rx1/TFKC
Rx1/TFKC
279 HGND
HGND
166 CA18
CA18
204 ROMA11
–
242 Rx0/TFKT
Rx0/TFKT
280 RVDD3
RVDD3
167 GND
GND
205 ROMA10
–
243 GND
GND
281 JRST_B
JRST_B
168 CA17
CA17
206 ROMA9
–
244 RCLK
RCLK
282 JCK
JCK
169 CA16
CA16
207 ROMA8
–
245 VDD3
VDD3
283 JMS
JMS
170 CA15
CA15
208 VDD3
246 RENBL_B
RENBL_B
284 JDO
JDO
171 CA14
CA14
209 ROMA7
–
247 RSOC
RSOC
285 JDI
JDI
172 CA13
CA13
210 ROMA6
–
248 EMPTY_B/
RCLAV/
RCIC
EMPTY_B/
RCLAV/
RCIC
286 RGND
RGND
173 CA12
CA12
211 ROMA5
–
249 FULL_B/
TCLAV/
RCIT
FULL_B/
TCLAV/
RCIT
287 VDD5
VDD5
VDD3
174 GND
GND
212 ROMA4
–
250 TSOC
TSOC
288 INTR_B
INTR_B
175 VDD3
VDD3
213 ROMA3
–
251 TENBL_B
TENBL_B
289 RST_B
RST_B
176 CA11
CA11
214 GND
252 GND
GND
290 CLK
CLK
177 CA10
CA10
215 ROMA2
–
253 TCLK
TCLK
291 GNT_B
GNT_B
178 CA9
CA9
216 ROMA1
–
254 VDD3
VDD3
292 GND
GND
179 CA8
CA8
217 ROMA0
–
255 Tx7
Tx7
293 VDD3
VDD3
180 CA7
CA7
218 ROMD7
–
256 Tx6
Tx6
294 REQ_B
REQ_B
GND
181 CA6
CA6
219 ROMD6
–
257 Tx5
Tx5
295 AD31
AD31
182 GND
GND
220 ROMD5
–
258 Tx4
Tx4
296 AD30
AD30
183 CA5
CA5
221 ROMD4
–
259 GND
GND
297 AD29
AD29
184 CA4
CA4
222 ROMD3
–
260 Tx3
Tx3
298 GND
GND
185 CA3
CA3
223 ROMD2
–
261 Tx2
Tx2
299 VDD5
VDD5
186 CA2
CA2
224 ROMD1
–
262 Tx1
Tx1
300 AD28
AD28
187 CA1
CA1
225 ROMD0
–
263 Tx0
Tx0
301 AD27
AD27
188 CA0
CA0
226 ROMCS_B
264 PHRST_B
PHRST_B
302 AD26
AD26
189 GND
GND
227 VDD3
VDD3
–
265 PHOE_B
PHOE_B
303 AD25
AD25
190 VDD3
VDD3
228 GND
GND
266 PHYALM/
PHR/W_B
PHYALM/
PHR/W_B
304 GND
GND
Remark Open the pins to which no function is allocated (pins marked “–” in the Generic Mode column in the
above table) in the Generic mode. Fix pin 5 (IDSEL) to the low/high level.
Data Sheet S12689EJ2V0DS00
7
µPD98405
CONTENTS
1. PIN FUNCTIONS ...............................................................................................................................
9
1.1 PHY Layer Device Interface Signal ..........................................................................................
9
1.1.1 UTOPIA interface ...........................................................................................................................
9
1.1.2 PHY device control interface (external PHY mode, PHM of GMR register = 1) .............................
11
1.2 Bus Interface Signals ................................................................................................................ 12
1.2.1 Generic bus interface signals (PCI_MODE pin: low level).............................................................
1.3
1.4
1.5
1.6
1.7
1.8
12
1.2.2 PCI bus interface signal (PCI_MODE pin: high level)....................................................................
15
Control Memory Interface Signals ...........................................................................................
PMD Interface Signals (internal PHY mode, PHM of GMR register = 0) ...............................
JTAG Boundary Scan Signals ..................................................................................................
Other Signals .............................................................................................................................
Power and Ground.....................................................................................................................
Pin Status during and after Reset ............................................................................................
19
20
21
21
22
23
2. ELECTRICAL SPECIFICATIONS ..................................................................................................... 25
3. PACKAGE DRAWING ...................................................................................................................... 60
4. RECOMMENDED SOLDERING CONDITIONS ............................................................................... 61
8
Data Sheet S12689EJ2V0DS00
µPD98405
1. PIN FUNCTIONS
The package of the µPD98405 has 304 pins. For details on how to use each pin, refer to µPD98405 User’s
Manual (S12250E).
1.1 PHY Layer Device Interface Signal
The PHY Layer device interfaces include a UTOPIA interface by which the µPD98405 exchanges ATM cells with a
PHY device, and PHY control interface that is used to control a PHY device. The µPD98405 supports two types of
PHY layer device interfaces: UTOPIA octet and cell level. These modes are selected by setting the UOC bit of the
GMR register.
The PHY layer device interface signals are for an external PHY layer device. When using an internal PHY layer,
open all the pins except the common pins. Even when the internal PHY layer is used, an external receive FIFO can
be connected to the µPD98405 via the UTOPIA interface.
1.1.1 UTOPIA interface
(1/2)
Pin Name
Pin No.
I/O
I/O Level
Function
Rx7-Rx0
(Rx1 and
Rx0: Shared
with TFKC
and TFKT)
235-242
I
TTL
Receive data bus.
These pins constitute an 8-bit input bus that inputs receive data
from the network to the µPD98405 from the PHY layer device in
byte format. The µPD98405 reads the data on this bus in
synchronization with the rising edge of RCLK. Rx7 through Rx2
are internally pulled down.
Open the pins of this bus when they are not used. Pull up Rx1
when it is not used, and pull down Rx0 when it is not used.
RSOC
247
I
TTL
Receive cell start position.
This signal is input from the PHY layer device in synchronization
with the first byte of cell data. It is high while the first byte of a
header is input to Rx7 through Rx0.
This signal is internally pulled down.
RENBL_B
246
O
TTL
Receive enable.
This signal informs the PHY layer device that the µPD98405 is
ready to receive data in the next clock cycle.
Data Sheet S12689EJ2V0DS00
9
µPD98405
(2/2)
Pin Name
Pin No.
I/O
I/O Level
Function
EMPTY_B/
RCLAV
(shared with
RCIC)
248
I
TTL
PHY layer buffer empty/receive cell available.
This signal informs the µPD98405 that the PHY receive FIFO
has no cell data to be transferred and that the PHY device
cannot supply receive data. This signal functions as EMPTY_B
when the UTOPIA interface is in the octet level handshake
mode, to indicate that the data on Rx7 through Rx0 is invalid in
the current clock cycle. In the cell level handshake mode, it
functions as RCLAV, informing the µPD98405 that no more
cells are to be supplied after transfer of the current cell is
completed.
Pull down this pin when it is not used.
RCLK
244
O
TTL
Receive clock.
This clock is used for synchronization when the µPD98405
transfers cell data to and from the PHY layer device at the
reception side. The SAR system clock input to the SCLK pin is
output from this pin as is, immediately after the µPD98405 has
been reset.
255-258,
260-263
O
TTL
Transmit data bus.
These pins form an 8-bit output bus that outputs data to be
transmitted to the network, to the PHY layer device in byte
format. The µPD98405 outputs the data in synchronization with
the rising edge of TCLK.
TSOC
250
O
TTL
Transmit cell start position.
This signal is output in synchronization with the first byte of
transmit cell data.
TENBL_B
251
O
TTL
Transmit enable.
This signal informs the PHY layer device that data has been
output to Tx7 through Tx0 in the current clock cycle.
FULL_B/
TCLAV
(shared with
RCIT)
249
I
TTL
PHY layer buffer full/transmit cell available.
The FULL_B signal informs the µPD98405 that the input buffer
of the PHY device is full and that the device can receive no
more data. When the UTOPIA interface is in the octet level
handshake mode, the PHY device inputs an inactive level as
this signal if the device can receive cell data. In the cell level
handshake mode, this signal functions as TCLAV, informing the
µPD98405 that the PHY device can receive the next single cell
after transfer of the current cell is completed.
Pull up this pin when it is not used.
TCLK
253
O
TTL
Transmit clock.
This clock is used for synchronization when the µPD98405
transfers cell data to and from the PHY layer device at the
transmission side. The SAR system clock input to the SCLK pin
is output as this clock as is.
Tx7-Tx0
10
Data Sheet S12689EJ2V0DS00
µPD98405
1.1.2 PHY device control interface (external PHY mode, PHM of GMR register = 1)
Pin Name
Pin No.
I/O
I/O Level
Function
PHR/W_B
(shared with
PHYALM)
266
O
TTL
PHY read/write.
The µPD98405 indicates the PHY layer device control direction
by using this pin.
1: Read
0: Write
PHOE_B
265
O
TTL
PHY layer output enable.
The µPD98405 enables output by the PHY layer device by
making this signal low.
PHCE_B
(shared with
SD)
267
O
TTL
PHY layer chip enable.
The µPD98405 makes this signal low when it accesses the PHY
layer device.
PHINT_B
(shared with
REFCLK)
268
I
TTL
PHY layer interrupt.
This pin inputs an interrupt signal to the µPD98405 from the
PHY layer device. The PHY layer device informs the µPD98405
that it has an interrupt source by inputting a low level to this pin.
Pull up this pin when it is not used.
PHRST_B
264
O
TTL
PHY layer reset.
This signal is used to reset the PHY layer device. The
µPD98405 keeps this pin low for the duration of 17 clock cycles
when a low level is input to the RST_B pin or when software
reset is executed.
Caution The PHCE_B/SD pins are multiplexed pins and their functions differ depending on whether the
internal PHY mode or external PHY mode is selected (by using the PHM bit of the GMR register).
Because the PHCE_B/SD pins change the mode between input and output depending on the
selected mode, be sure to correctly set the PHM bit of the GMR register.
Data Sheet S12689EJ2V0DS00
11
µPD98405
1.2 Bus Interface Signals
The µPD98405 supports a PCI bus interface or generic bus interface. Whether the PCI bus interface or generic
bus interface is to be supported is selected by the PCI_MODE signal.
The PCI bus interface can be directly connected to a PCI bus. The generic bus interface can be connected to a
general I/O bus with a few circuits.
1.2.1 Generic bus interface signals (PCI_MODE pin: low level)
(1/3)
Pin Name
Pin No.
I/O
I/O Level
295-297,
300-303,
3, 6, 9-12,
15-17,
34-36,
39-42,
45, 47, 48,
51-54,
57-58
I/O
3-state
TTL
Address/data.
These pins constitute a 32-bit address/data bus. They are
input/output pins multiplexing an address bus and a data bus.
An address is transferred at the first input/output clock. From
the second clock and onward, data is transferred. When the
µPD98405 is not accessing the bus, the AD bus goes into a
high-impedance state.
BE3_B
BE2_B
BE1_B
BE0_B
4
18
33
46
O
3-state
TTL
Byte enable.
These pins determine the byte that becomes valid in the master
cycle of the µPD98405. BE3_B corresponds to AD31 through
AD24, and BE0_B corresponds to AD7 through AD0. BE3_B
through BE0_B go into a high-impedance state when the
µPD98405 is not accessing a bus or when it is accessing a
slave.
PAR3
PAR2
PAR1
PAR0
66
69
70
71
I/O
3-state
TTL
Bus parity.
These pins indicate the parity of AD31 through AD0. A parity
check mode is set by the GMR register. Whether the parity is
enabled or disabled, whether an odd parity or even parity is
used, and whether a word parity or byte parity is used can be
specified. When byte parity is used, PAR3 indicates the parity
of AD31 through AD24, and PAR0 indicates the parity of AD7
through AD0. In the case of word parity, PAR2 through PAR0
do not function, and PAR3 serves as an input/output pin. These
pins function as output pins when an address is output and
when data is written, and as input pins when data is read.
AD31-AD0
Function
When the µPD98405 is not accessing a bus, PAR3 through
PAR0 go into a high-impedance state. Pull up these pins when
they are not used.
OE_B
12
59
I
TTL
Output enable.
When this pin is low, the µPD98405 allows AD31 through AD0
and PAR3 through PAR0 to operate normally as three-state I/O
pins. These pins go into a high-impedance state while a high
level is input to this pin. Fix this pin to the low level in a system
where the above pins do not have to forcibly go into a highimpedance state.
Data Sheet S12689EJ2V0DS00
µPD98405
(2/3)
Pin Name
SIZE2
SIZE1
SIZE0
Pin No.
I/O
I/O Level
63
64
65
O
TTL
Function
Burst size.
These pins indicate the size of current DMA transfer. They are
used to interface with a bus (such as S bus) that requires an
explicit burst size.
SIZE2
SIZE1
SIZE0
0
0
0
1-word transfer
0
0
1
2-word burst
0
1
0
4-word burst
0
1
1
8-word burst
1
0
0
16-word burst
1
0
1
12-word burst
Others
Function
Undefined
DR/W_B
60
O
TTL
DMA read/write.
This pin indicates the direction of DMA access.
1: Read access
0: Write access
ATTN_B
294
O
TTL
Attention (DMA request).
The µPD98405 makes the ATTN_B signal low when it is to
execute a DMA operation. The ATTN_B signal becomes
inactive in synchronization with the rising edge of CLK when
only one more word of data is to be transferred by means of
DMA.
GNT_B
291
I
TTL
Bus enable.
The GNT_B signal goes low when the bus arbiter grants the
µPD98405 the bus mastership in response to a DMA request
from the µPD98405. When the µPD98405 detects that the
GNT_B signal has gone low, it starts a DMA operation,
assuming that the bus mastership has been granted.
RDY_B
23
I
TTL
Target device ready.
This signal informs the µPD98405 in the DMA cycle that the
target device is ready for input/output. The µPD98405 makes
the RDY_B signal low if valid data exists on AD31 through AD0
when it executes a DMA read operation. When executing a
DMA write operation, the µPD98405 makes the ATTN_B signal
low if the target device is ready for reception.
The timing at which the µPD98405 samples the RDY_B and
ABRT_B signals can be bring forward by 1 clock depending on
the setting of an internal register (GMR register).
Data Sheet S12689EJ2V0DS00
13
µPD98405
(3/3)
Pin Name
Pin No.
I/O
I/O Level
Function
ABRT_B
27
I
TTL
Abort.
This signal is used to abort a data transfer cycle. If this signal
goes low in the middle of a data transfer cycle, that cycle is
aborted, and the µPD98405 resumes burst starting from the
aborted data. While a low level is input to ABRT_B, the RDY_B
signal does not function. The user can bring forward the timing
at which the µPD98405 samples the RDY_B and ABRT_B
signals by 1 clock (early mode) by using an internal register
(GMR register). Pull up this pin when it is not used.
ERR_B
28
I
TTL
System bus error.
If an error is detected on the system bus, the device that
manages the bus uses this pin to stop the operation by the
µPD98405.
When a low level is input to this pin, the µPD98405 stops all bus
operations, sets the system bus error bit (bit 25) of the GSR
register (when not masked), and generates an interrupt. Pull up
this pin when it is not used.
SR/W_B
24
I
TTL
Slave read/write.
This signal determines the direction of slave access.
1: Read access
0: Write access
SEL_B
21
I
TTL
Slave select.
This signal is asserted active (low) when slave access is
selected for the µPD98405. Make sure that the SEL_B signal
goes low at the same time as or after the ASEL_B signal has
gone low. In addition, insert an inactive period of two system
clocks or more after the SEL_B signal has become inactive and
before it becomes active next time.
ASEL_B
22
I
TTL
Slave address select.
The ASEL_B signal selects the direct address register of the
µPD98405.
When a low level is input to ASEL_B, the µPD98405 samples
the AD bus at the first rising edge of CLK.
CLK
290
I
TTL
Clock.
This is a system bus clock input pin. A clock of up to 33 MHz
can be input.
RST_B
289
I
TTL
Reset.
The RST_B signal initializes the µPD98405 (on starting). After
reset, the µPD98405 can start normal operation. When a low
level is input to RST_B, the internal state machine and registers
of the µPD98405 are reset, and all the three-state signals go
into a high-impedance state. Reset input is asynchronous. If it
is input during operation, the operation status at that time is lost.
Keep RST_B low at least for the duration of one clock cycle.
INTR_B
288
O
N-ch
open-drain
14
Interrupt output.
Pull up this signal because it is an open-drain signal.
This signal informs the CPU that an unmasked interrupt bit of
the interrupt GSR register has been set.
Data Sheet S12689EJ2V0DS00
µPD98405
1.2.2 PCI bus interface signal (PCI_MODE pin: high level)
The µPD98405 has a 32-/64-bit PCI bus interface. This bus interface can be directly connected to a PCI bus. In
addition, the µPD98405 also has a serial EEPROM interface and an expansion ROM interface.
<1> PCI bus interface signals
(1/2)
Pin Name
Pin No.
I/O
I/O Level
Function
AD31-AD0
295-297,
300-303,
3, 6, 9-12,
15-17,
34-36,
39-42,
45, 47, 48,
51-54,
57-58
I/O
3-state
PCI
Address/data.
AD31 through AD0 constitute a 32-bit multiplexed address/data
bus. When the µPD98405 operates as a bus master, it drives
an address at the first clock and transfers data at the second
clock and onward.
PCBE3_B
PCBE2_B
PCBE1_B
PCBE0_B
4
18
33
46
I/O
3-state
PCI
Bus command/byte enable.
These signals define a “bus command” (bus transaction that
occurs) in the address phase. In the data phase, they indicate
which byte lane holds valid data. The PCBE3_B pin
corresponds to byte 3 (bits 31 through 24), and PCBE0_B pin
corresponds to byte 0 (bits 7 through 0).
PAR
30
I/O
3-state
PCI
Parity.
This signal indicates an even parity on the AD31 through AD0
and PCBE3_B through PCBE0_B pins, including the PAR
signal. When the µPD98405 is operating as a master, the PAR
signal becomes active in the address and write data phases.
When the µPD98405 is operating as a target, this signal
becomes active in the read data phase.
FRAME_B
21
I/O
Sustained
3-state
PCI
Frame.
This signal indicates the start and period of a bus transaction.
When this signal is asserted active, it indicates the start of a bus
transaction. While it is active, data is transferred. It is
deasserted inactive when the next data transfer phase will
transfer last data of the transaction.
TRDY_B
23
I/O
Sustained
3-state
PCI
Target ready.
This signal goes low when the target device is ready to
complete the transaction of the current data. This signal is used
in combination with IRDY_B, and read/write data transfer is
executed when both IRDY_B and TRDY_B signals are low.
IRDY_B
22
I/O
Sustained
3-state
PCI
Initiator ready.
This signal goes low when the initiator is ready to complete the
transaction of the current data. This signal is used in
combination with TRDY_B, and read/write data transfer is
executed when both IRDY_B and TRDY_B are low.
If FRAME_B and IRDY_B are both inactive, the bus cycle is not
executed. A wait cycle is inserted until both IRDY_B and
TRDY_B are asserted active.
Data Sheet S12689EJ2V0DS00
15
µPD98405
(2/2)
Pin Name
Pin No.
I/O
I/O Level
Function
STOP_B
27
I/O
Sustained
3-state
PCI
Stop.
This signal goes low when the target device requests the master
device to stop the current transaction.
DEVSEL_B
24
I/O
Sustained
3-state
PCI
Device select.
When the µPD98405 is operating as a target, it makes this
signal low after the FRAME_B signal has been asserted active
and the µPD98405 has recognized an address. When the
µPD98405 is operating as a master, it samples this signal to
check to see if a target device has been selected.
IDSEL
5
I
PCI
Initialization device select.
This signal is high when the configuration register of the
µPD98405 is read or written.
REQ_B
294
Note
PCI
Request.
The µPD98405 makes this signal low to request the arbiter for
the bus mastership.
GNT_B
291
I
PCI
Grant.
This signal goes low when the arbiter grants the µPD98405 the
bus mastership.
PERR_B
28
I/O
Sustained
3-state
PCI
Parity error.
This signal indicates that the µPD98405 has detected a data
parity error. It is enabled when the “Parity Error Response” bit of
the configuration register is set to “1”.
SERR_B
29
O
N-ch
open-drain
System error.
This signal indicates that the µPD98405 has detected an
address parity error. It is enabled when both the “Parity Error
Response” and “System Error Enable” bits of the configuration
register are set to “1”.
INTR_B
288
O
N-ch
open-drain
Interrupt output.
Pull up this signal because it is an open-drain signal. INTR_B
informs the CPU that an unmasked interrupt bit of the interrupt
GSR register has been set.
CLK
290
I
PCI
Clock.
This is a system bus clock input pin. A clock of up to 33 MHz is
input.
RST_B
289
I
PCI
Reset.
This signal initializes the µPD98405 (on starting, etc.).
When a low level is input to RST_B, the internal state machine
and registers of the µPD98405 are reset, and all the three-state
signals go into a high-impedance state. The reset input is
asynchronous. When this signal is input during operation, the
operating status at that time is lost. Keep RST_B low at least
for the duration of one clock cycle. After reset, do not access
the µPD98405 for the duration of at least 20 clocks.
O
Note According to “PCI Local Bus Specification Revision 2.1”, the REQ_B pin should go into a high-impedance
state while a low level is input to the RST_B pin. The REQ_B pin of the µPD98405, however, outputs a
high level.
16
Data Sheet S12689EJ2V0DS00
µPD98405
<2> PCI bus 64-bit expansion interface signals
Open AD63 through AD32, PCBE7_B through PCBE4_B, and PAR64 when using the 32-bit PCI bus interface.
Pin Name
Pin No.
I/O
I/O Level
69-71,
73-75, 79, 80,
82-85,
88-91,
94-97,
100-103,
106-109,
112-115
I/O
3-state
PCI
Address/data.
AD63 through AD32 constitutes a 32-bit multiplexed
address/data bus that extends the PCI bus to 64 bits. This
address/data bus transfers the high-order 32 bits of a 64-bit
address in the address phase. It outputs the high-order 32 bits
of 64-bit data in the data phase when both REQ64_B and
ACK64_B are asserted.
PCBE7_B
PCBE6_B
PCBE5_B
PCBE4_B
63
64
65
66
I/O
3-state
PCI
Bus command/byte enable.
These signals define a “bus command” (bus transaction that
occurs) in the address phase. In the data phase, they indicate
which byte lane holds valid data. The PCBE7_B pin
corresponds to AD63 through AD56, and PCBE4_B pin
corresponds to AD39 through AD32.
PAR64
116
I/O
3-state
PCI
Parity 64.
This signal indicates an even parity on AD63 through AD32 and
PCBE7_B through PCBE4_B pins, including the PAR64 signal.
When the µPD98405 is operating as a master, the PAR signal
becomes active in the address and write data phases. When
the µPD98405 is operating as a target, it becomes active in the
read data phase.
REQ64_B
60
I/O
3-state
PCI
Request 64.
This signal indicates the start and period of a 64-bit bus
transaction. When the µPD98405 is operating as a master, it
asserts REQ64_B active to request 64-bit data transfer.
REQ64_B is the same as FRAME_B in timing.
ACK64_B
59
I/O
Sustained
3-state
CPI
Acknowledge 64.
When the µPD98405 is operating as a target, it makes this
signal low after the REQ64_B signal has been asserted active
and the µPD98405 has recognized an address. When the
µPD98405 is operating as a master, it samples this signal to
check whether the target device has acknowledged 64-bit
transfer. ACK64_B is the same as DEVSEL_B in timing.
AD63-AD32
Function
Data Sheet S12689EJ2V0DS00
17
µPD98405
<3> Serial EEPROM interface signals
The µPD98405 has a serial EEPROM interface supporting MICROWIRETM interface.
Through this serial
EEPROM interface, the contents of the PCI configuration register can be loaded from an EEPROM connected.
Remark It is recommended that National Semiconductor’s “NM93C46” be connected as the EEPROM.
Pin Name
Pin No.
I/O
I/O Level
Function
E2PCS
234
O
TTL
EEPROM chip select.
This is a chip select signal for EEPROM.
E2PDI
231
I
TTL
EEPROM data input.
This signal is connected to the data output pin of the EEPROM.
This signal is internally pulled down.
E2PDO
232
O
TTL
EEPROM data output.
This signal is connected to the data input pin of the EEPROM.
E2PCLK
233
O
TTL
EEPROM clock.
This pin supplies the clock necessary for transferring data with
the EEPROM. It divides the clock input to the CLK pin by 36 for
output.
<4> Expansion ROM interface signals.
The µPD98405 has an expansion ROM interface as option.
Pin Name
Pin No.
I/O
I/O Level
ROMA15ROMA0
200-207,
209-213,
215-217
O
TTL
ROM address.
These are address signals to access the 64K expansion ROM.
ROMD7ROMD0
218-225
I
TTL
ROM data.
These are expansion ROM data signals and are internally pulled
down.
ROMCS_B
226
O
TTL
ROM select.
This is a chip select signal for the expansion ROM.
ROMOE_B
230
O
TTL
ROM output enable.
This signal enables the output buffer of the expansion ROM
during a read operation.
18
Function
Data Sheet S12689EJ2V0DS00
µPD98405
1.3 Control Memory Interface Signals
The control memory interface is used by the µPD98405 to access the external control memory and external PHY
layer device. This interface consists of a 19-bit address bus, a 32-bit data bus. The control memory of the host
system can be accessed only through this interface.
Pin Name
Pin No.
I/O
I/O Level
119-123,
126-130,
132-136,
139-144,
146-150,
155-159, 161
I/O 3-state
TTL
Control memory data.
These three-state I/O pins constitute a 32-bit data bus that is
used to transfer data to and from the control memory or PHY
layer device.
These signals are internally pulled down.
162-165
I/O
TTL
Control memory parity.
These signals indicate the parity of CD31 through CD0 every 8
bits. In the read cycle, the µPD98405 checks the parity (when
enabled). In the write cycle, it outputs the parity.
These signals are internally pulled down.
166, 168-173,
176-181,
183-188
O
TTL
Control memory address.
These signals constitute a 19-bit address bus that outputs an
address to the control memory or PHY layer device during a
read/write operation.
CWE_B
195
O
TTL
Control memory write enable.
This signal indicates the direction in which the control memory
is accessed.
1: Read access
0: Write access
COE_B
196
O
TTL
Control memory output enable.
This signal enables or disables data output of the control
memory.
191-194
O
TTL
Local port byte enable.
These signals indicate the byte of the control port to be read or
written.
197
I
TTL
Initialization disable.
This signal is used to disable automatic initialization of the
control memory during chip test. Directly connect INITD to GND
during normal operation other than test.
CD31-CD0
CPAR3CPAR0
CA18-CA0
CBE3_BCBE0_B
INITD
Function
Data Sheet S12689EJ2V0DS00
19
µPD98405
1.4 PMD Interface Signals (internal PHY mode, PHM of GMR register = 0)
The PMD interface is used to connect a module such as an optical transceiver/receiver.
Pin Name
Pin No.
I/O
I/O Level
RDIT
278
I
P-ECL
True (+)
RDIC
277
I
P-ECL
complement
(–)
RCIT (shared
with FULL_B)
249
I
P-ECL
True (+)
Receive serial clock input.
This pin is used when an external clock recovery/synthesizer is
connected (PLL of GMR register = 1).
Pull up this pin when it is not used.
RCIC (shared
with
EMPTY_B)
248
I
P-ECL
complement
(–)
Receive serial clock input.
This pin is used when an external clock recovery/synthesizer is
connected (PLL of GMR register = 1).
Pull down this pin when it is not used.
REFCLK
(shared with
PHINT_B)
268
I
TTL
Reference clock.
This pin inputs a system clock (19.44 MHz) to the internal clock
recovery/synthesizer.
Pull up this pin when it is not used.
TDOT
273
O
P-ECL
True (+)
Transmit serial data output.
TDOC
274
O
P-ECL
complement
(–)
Transmit serial data output.
TFKT (shared
with Rx0)
242
I
P-ECL
True (+)
Transmit serial clock input.
This pin is used when an external clock recovery/synthesizer is
connected (PLL of GMR register = 1).
Pull up this pin when it is not used.
TFKC
(shared with
Rx1)
241
I
P-ECL
complement
(–)
Transmit serial clock input.
This pin is used when an external clock recovery/synthesizer is
connected (PLL of GMR register = 1).
Pull down this pin when it is not used.
PHYALM
(shared with
PHR/W_B)
266
O
TTL
PHY layer alarm detection signal.
This signal is asserted active (high) when any of the internally
monitored error statuses (CMDARM, LOS, OOF, LOF, LOP,
OCD, LCD, Line AIS, Path AIS, Line RDI, and Path RDI) is
detected. The error status to be reported can be selected by
using the internal AMR1 and AMR2 registers. One or more
error statuses can be selected.
SD
(shared with
PHCE_B)
267
I
TTL
Signal detect.
This pin inputs the signal detect signal (when LOS is detected,
etc.) of the PMD device. When a low level is input to this pin,
the µPD98405 assumes LOS detection.
Pull up this pin when it is not used.
20
Function
Receive serial data input.
Pull up this pin when it is not used.
Receive serial data input.
Pull down this pin when it is not used.
Data Sheet S12689EJ2V0DS00
µPD98405
1.5 JTAG Boundary Scan Signals
Remark This function can be supported upon request.
These signals conform to IEEE1149.1 JTAG Boundary-Scan Standard.
Pin Name
Pin No.
I/O
I/O Level
Function
JDI
285
I
TTL
Boundary scan data input.
Connect this pin to ground when it is not used.
JDO
284
O
3-state
TTL
Boundary scan data output.
Open this pin when it is not used.
JMS
283
I
TTL
Boundary scan mode select.
Connect this pin to ground when it is not used.
JCK
282
I
TTL
Boundary scan clock input.
Connect this pin to ground when it is not used.
JRST_B
281
I
TTL
Boundary scan reset.
Connect this pin to ground when it is not used.
Pin No.
I/O
I/O Level
SCLK
198
I
TTL
SAR system clock.
This pin supplies a clock for a SAR block operation.
The maximum clock frequency is 25 MHz.
PCI_MODE
118
I
TTL
PCI/generic bus mode.
This pin selects PCI or generic bus mode.
0: Generic bus mode
1: PCI bus mode
TEST
271
I
TTL
Internal test pin.
Open this pin. When a high level is input to this pin, the test
mode is selected.
This signal is internally pulled down.
The test mode is used for internal testing and cannot be used by
the user.
1.6 Other Signals
Pin Name
Function
Data Sheet S12689EJ2V0DS00
21
µPD98405
1.7 Power and Ground
Pin Name
Pin No.
I/O
VDD5
8, 20, 32, 44, 56, 67, 81, 93,
105, 287, 299
–
+5-V power (digital block).
Supply +5 V to these pins when using the bus interface 5-V
mode. In the 3.3-V mode, supply +3.3 V.
VDD3
2, 14, 26, 38, 50, 62, 72, 78,
87, 99, 111, 125, 138, 151,
154, 175, 190, 208, 227,
245, 254, 293
–
+3.3-V power (digital block).
These pins supply +3.3 V to the chip.
AVDD3
269
–
+3.3-V power (analog block).
Supply power with a high quality to this pin by inserting a filter
between AVDD3 and GND.
HVDD3
275, 276
–
+3.3-V power (high-speed block).
Supply power with a high quality to this pin by inserting a filter
between HVDD3 and HGND.
RVDD3
280
–
+3.3-V power (receive PLL block).
Supply power with a high quality to this pin by inserting a filter
between RGND and this pin.
GND
1, 7, 13, 19, 25, 31, 37, 43,
49, 55, 61, 68, 76, 77, 86,
92, 98, 104, 110, 117, 124,
131, 137, 145, 152, 153,
160, 167, 174, 182, 189,
199, 214, 228, 229, 243,
252, 259, 292, 298, 304
–
Ground (digital block).
These pins ground the chip.
AGND
270
–
Ground (analog block)
HGND
272, 279
–
Ground (high-speed block)
RGND
286
–
Ground (receive PLL block)
22
Function
Data Sheet S12689EJ2V0DS00
µPD98405
1.8 Pin Status during and after Reset
(1/2)
Pin Name
During Reset
After Reset
1
1
CLK output
CLK output
Tx7-Tx0
0
0
TSOC
0
0
TENBL_B
0
0
CLK output
CLK output
PHR/W_B (external PHY)/PHYALM (internal PHY)
0
0
PHOE_B
1
1
PHCE_B (external PHY)/SD (internal PHY)
Hi-Z (input)
Hi-Z (input)
AD31-AD0
Hi-Z (input)
Hi-Z (input)
PCBE3_B-PCBE0_B (PCI)/BE3_B-BE0_B (Generic)
Hi-Z (input)
Hi-Z (input)
PAR
Hi-Z (input)
Hi-Z (input)
FRAME_B
Hi-Z (input)
Hi-Z (input)
TRDY_B
Hi-Z (input)
Hi-Z (input)
IRDY_B
Hi-Z (input)
Hi-Z (input)
STOP_B
Hi-Z (input)
Hi-Z (input)
DEVSEL_B
Hi-Z (input)
Hi-Z (input)
1
1
PERR_B
Hi-Z (input)
Hi-Z (input)
SERR_B
Hi-Z
Hi-Z
INTR_B
Hi-Z
Hi-Z
Hi-Z (input)
Hi-Z (input)
AD60-AD56 (PCI)/(Generic)
Hi-Z (input)/Hi-Z (output)
Hi-Z (input)/Hi-Z (output)
AD55-AD32 (PCI)/(Generic)
Hi-Z (input)/0
Hi-Z (input)/0
PCBE7_B-PCBE5_B (PCI)/SIZE2-SIZE0 (Generic)
Hi-Z (input)/0
Hi-Z (input)/0
PCBE4_B (PCI)/PAR3 (Generic)
Hi-Z (input)
Hi-Z (input)
PAR64
Hi-Z (input)
Hi-Z (input)
Hi-Z/1
Hi-Z/1
E2PCS
0
0
E2PDO
0
0
E2PCLK
0
0
ROMA15-ROMA0
0
0
ROMCS_B
1
1
ROMOE_B
1
1
CD31-CD0
0
0
CPAR3-CPAR0
0
0
CA18-CA0
0
0
RENBL_B
RCLK
TCLK
REQ_B (PCI)/ATTN_B (Generic)
AD63-AD61 (PCI)/PAR2-PAR0 (Generic)
REQ64_B(PCI)/DR/W_B (Generic)
Data Sheet S12689EJ2V0DS00
23
µPD98405
(2/2)
Pin Name
During Reset
After Reset
CWE_B
1
1
COE_B
1
1
TDOT
Undefined
Undefined
TDOC
Undefined
Undefined
Hi-Z
Hi-Z
JDO
Remark The internal PHY mode is set (PHM of GMR register = 0) after reset.
24
Data Sheet S12689EJ2V0DS00
µPD98405
2. ELECTRICAL SPECIFICATIONS
* indicates changes from the Preliminary Data Sheet (document number: S12689E, 1st edition).
Absolute Maximum Ratings
Parameter
Symbol
Supply voltage
Condition
Rating
Unit
–0.5 to +4.6
V
–0.5 to +6.5
V
Normal I/O pin
–0.5 to +6.6
V
*
Note 2
PCI I/O pin
–0.5 to +6.6
V
*
P-ECL pin
–0.5 to +4.6 and VDD + 0.5
V
*
VDD
Note 1
VDD5
Input/output voltage
VI/VO
Ambient operating frequency
TA
0 to +70
°C
Storage temperature
Tstg
–65 to +150
°C
Notes 1. VDD5: Clamping diode-dedicated power supply
2. By supplying 5 V for clamping diode, the device can be protected from an 11-V reflection wave.
Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of
the product may be impaired. The absolute maximum ratings are values that may physically
damage the product(s). Be sure to use the product(s) within the ratings.
Recommended Operating Conditions
Parameter
Supply voltage
Symbol
VDD
Low-level input voltage
TYP.
MAX.
Unit
+3.0
+3.3
+3.6
V
+3.3 V PCI
+3.0
+3.3
+3.6
V
Note
+5 V PCI
+4.75
+5.00
+5.25
V
0
+70
°C
VDD5
High-level input voltage
MIN.
Note
VDD5
Ambient operating temperature
Condition
TA
VIH1
Input pins other than PCI
and P-ECL
+2.0
+5.5
V
VIH2
+5-V PCI pin
+2.0
VDD5 + 0.5
V
*
VIH3
+3.3-V PCI pin
0.5 × VDD
VDD + 0.5
V
*
VIH4
P-ECL pin
VDD – 1.49
VDD – 0.40
V
*
VIL1
Input pins other than PCI
and P-ECL
0
+0.8
V
VIL2
+5-V PCI pin
–0.5
+0.8
V
VIL3
+3.3-V PCI pin
–0.5
0.3 × VDD
V
VIL4
P-ECL pin
VDD – 2.82
VDD – 1.50
V
*
Note VDD5: Clamping diode-dedicated power supply
Data Sheet S12689EJ2V0DS00
25
µPD98405
DC Characteristics (TA = 0 to +70°C, VDD = +3.3 V ± 0.3 V)
Parameter
High-level output voltage
Low-level output voltage
Symbol
Input leakage current (normal input)
Input leakage current
Note 5
Note 1
VOH1
IOH = –3.0 mA
VOH2
IOH = –500 µA
VOH3
IOH = –2.0 mA
VOH4
RL = 50 Ω, VT = VDD – 2 V
(P-ECL)
VOL1
IOL = 9.0 mA
VOL2
IOL = 1500 µA
Note 2
(+3.3 V PCI)
Note 2
(+5 V PCI)
MIN.
TYP.
Unit
+2.4
V
0.88 × VDD
V
+2.4
V
VDD – 1.140
Note 1
Note 2
MAX.
(+3.3 V PCI)
*
VDD – 0.690
V
*
0.144 × VDD
V
*
+0.4
V
IOL = 3.0 mA
Note 2
(+5 V PCI)
+0.55
V
VOL4
IOL = 6.0 mA
Note 4
(+5 V PCI)
+0.55
V
VOL5
RL = 50 Ω, VT = VDD – 2 V
(P-ECL)
VDD – 1.755
V
*
900
mA
*
±10
µA
*
160
µA
*
VOL3
Supply current
Condition
IDD
fCLK = 33 MHz, normal operation
II1
VI = VDD
II2
VI = VDD or GND
VDD – 2.175
650
28
Notes 1. VOH1 and VOL1 are applied to the following pins (output pins other than PCI):
CD31-CD0, CPAR3-CPAR0, CA18-CA0, CBE3_B-CBE0_B, CWE_B, COE_B, JDO, RCLK, RENBL_B,
TSOC, TENBL_B, TCLK, Tx7-Tx0, PHCE_B, PHOE_B, PHRW_B, E2PCS, E2PDO, E2PCLK
2. VOH2, VOH3, and VOL2 are applied to the following pins (PCI output pins):
AD63-AD0, PCBE7_B-PCBE0_B, PAR, PAR64, REQ_B, INTR_B, FRAME_B, REQ64_B, TRDY_B,
IRDY_B, DEVSEL_B, STOP_B, SERR_B, PERR_B
3. VOL3 is applied to the following pins (with +5-V PCI):
AD31-AD0, PCBE3_B-PCBE0_B, PAR, REQ_B, INTR_B
4. VOL4 is applied to the following pins (with +5-V PCI):
FRAME_B, TRDY_B, IRDY_B, DEVSEL_B, STOP_B, SERR_B, PERR_B, AD64-AD32, PCBE7_BPCBE4_B, ACK64_B, REQ64_B, PAR64
5. II2 is applied to the following pins:
E2PDI, ROMD7-ROMD0, FULL_B, EMPTY_B, RSOC, Rx7-Rx0, CPAR3-CPAR0, CD31-CD0,
PCI_MODE
26
Data Sheet S12689EJ2V0DS00
µPD98405
Capacitance (TA = +25°C, VDD = 0 V)
Parameter
Symbol
Input capacitance
CIN
CLK input capacitance
CCLK
IDSEL input capacitance
CIDSEL
Output capacitance
COUT
I/O capacitance
CI/O
Condition
MIN.
TYP.
5
8
MAX.
Unit
10
pF
12
pF
8
pF
10
pF
8
pF
Internal pull-down resistor (TA = 0 to +70°C, VDD = +3.3 V ± 0.3 V)
Parameter
Internal pull-down resistance
Symbol
RPD
Condition
E2PDI, ROMD7-ROMD0,
RSOC, Rx7-Rx2, CPAR3CPAR0, CD31-CD0,
PCI_MODE
Data Sheet S12689EJ2V0DS00
MIN.
TYP.
MAX.
Unit
21.8
37.1
83.1
kΩ
*
27
µPD98405
AC Characteristics (TA = 0 to +70°C, VDD = +3.3 V ± 0.3 V, output pin load: 30 pF)
CLK input (BUS interface clock - CLK pin)
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
125
ns
CLK cycle time
tCYCLK
30
CLK high-level width
tCLKH
11
ns
CLK low-level width
tCLKL
11
ns
slewCLK
1
CLK slew rate
4
V/ns
MAX.
Unit
125
ns
2.4 V (MIN.)
2.0 V
CLK
1.5 V
0.8 V
0.4 V (MAX.)
tCLKH
tCLKL
tCYCLK
SCLK input (internal system clock - SCLK pin)
Parameter
Symbol
Condition
MIN.
TYP.
SCLK cycle time
tCYSCLK
40
SCLK high-level width
tSCLKH
15
ns
SCLK low-level width
tSCLKL
15
ns
slewSCLK
1
SCLK slew rate
4
V/ns
MAX.
Unit
2.4 V (MIN.)
2.0 V
SCLK
1.5 V
0.8 V
0.4 V (MAX.)
tSCLKH
tSCLKL
tCYSCLK
RST input
Parameter
RST low-level width
RST slew rate
28
Symbol
Condition
MIN.
TYP.
tRSTL
tCYCLK
ns
slewRST
50
V/ns
Data Sheet S12689EJ2V0DS00
µPD98405
[MEMO]
Data Sheet S12689EJ2V0DS00
29
µPD98405
PCI Bus Interface
Bus master read
Parameter
Symbol
CLK ↑→ FRAME_B, REQ64_B valid
time
tDFRAME
CLK ↑→ FRAME_B, REQ64_B float
time
tDFRAMEF
Condition
MIN.
1
TYP.
MAX.
Unit
11
ns
*
28
ns
*
11
ns
*
28
ns
CLK ↑→ AD (Address) valid time
tDADDR
CLK ↑→ AD (Address) float time
tDADDRF
AD (Data) setup time
tSDATA
8
ns
*
AD (Data) hold time
tHDATA
1
ns
*
CLK ↑→ PCBE_B valid time
tDPCBE
1
11
ns
*
CLK ↑→ PCBE_B float time
tDPCBEF
28
ns
CLK ↑→IRDY_B valid time
tDIRDY
11
ns
*
CLK ↑→ IRDY_B float time
tDIRDYF
28
ns
*
TRDY_B setup time
tSTRDY
8
ns
*
TRDY_B hold time
tHTRDY
1
ns
*
DEVSEL_B, ACK64_B setup time
tSDEVSEL
8
ns
*
DEVSEL_B, ACK64_B hold time
tHDEVSEL
1
ns
*
STOP_B setup time
tSSTOP
8
ns
*
STOP_B hold time
tHSTOP
1
ns
*
CLK ↑→ PAR valid time
tDPAR
1
11
ns
*
CLK ↑→ PAR float time
tDPARF
28
ns
PAR setup time
tSPAR
8
ns
*
PAR hold time
tHPAR
1
ns
*
CLK ↑→ PERR_B valid time
tDPERR
1
11
ns
*
CLK ↑ → PERR_B float time
tDPERRF
28
ns
30
1
1
Data Sheet S12689EJ2V0DS00
µPD98405
Bus master read
CLK
tDFRAMEF
FRAME_B
REQ64_B
tDFRAME
tDADDR
AD31-AD0
tDADDRF
tSDATA
(Address)
tHDATA
(Data)
tSDATA
AD63-AD32
tHDATA
(Data)
tDPCBEF
tDPCBE
PCBE3_BPCBE0_B
tDPCBEF
tDPCBE
PCBE7_BPCBE4_B
tDIRDYF
tDIRDY
IRDY_B
tSTRDY
tHTRDY
TRDY_B
tSDEVSEL
DEVSEL_B
ACK64_B
tDPAR
PAR
PAR64
tDPARF
(Output)
tHDEVSEL
tSPAR
tHPAR
(Input)
tDPERR
tDPERRF
PERR_B
CLK
tHSTOP
STOP_B
tSSTOP
Data Sheet S12689EJ2V0DS00
31
µPD98405
Bus master write
Parameter
Symbol
CLK ↑→ FRAME_B, REQ64_B valid
time
tDFRAME
CLK ↑→ FRAME_B, REQ64_B float
time
tDFRAMEF
Condition
MIN.
1
TYP.
MAX.
Unit
11
ns
*
28
ns
*
CLK ↑→ AD (Address) valid time
tDADDR
1
11
ns
*
CLK ↑→ Data valid time
tDDATA
1
11
ns
*
CLK ↑→ Data float time
tDDATAF
28
ns
CLK ↑→ PCBE_B valid time
tDPCBE
11
ns
CLK ↑→ PCBE_B float time
tDPCBEF
28
ns
CLK ↑→IRDY_B valid time
tDIRDY
11
ns
CLK ↑→ IRDY_B float time
tDIRDYF
28
ns
TRDY_B setup time
tSTRDY
8
ns
*
TRDY_B hold time
tHTRDY
1
ns
*
STOP_B setup time
tSSTOP
8
ns
*
STOP_B hold time
tHSTOP
1
ns
*
DEVSEL_B, ACK64_B setup time
tSDEVSEL
8
ns
*
DEVSEL_B, ACK64_B hold time
tHDEVSEL
1
ns
*
CLK ↑→ PAR valid time
tDPAR
1
11
ns
*
CLK ↑→ PAR float time
tDPARF
28
ns
PERR_B setup time
tSPERR
8
ns
*
PERR_B hold time
tHPERR
1
ns
*
32
1
1
Data Sheet S12689EJ2V0DS00
*
*
µPD98405
Bus master write
CLK
tDFRAMF
FRAME_B
REQ64_B
tDFRAME
tDADDR
AD31-AD0
tDDATAF
tDDATA
(Address)
(Data)
tDDATAF
(Data)
AD63-AD32
tDPCBEF
tDPCBE
PCBE3_BPCBE0_B
tDPCBEF
tDPCBE
PCBE7_BPCBE4_B
tDIRDYF
tDIRDY
IRDY_B
tSTRDY
tHTRDY
TRDY_B
tSDEVSEL
DEVSEL_B
ACK64_B
tHDEVSEL
tDPARF
tDPAR
PAR
PAR64
(Output)
(Output)
tSPERR
tHPERR
PERR_B
CLK
tHSTOP
STOP_B
tSSTOP
Data Sheet S12689EJ2V0DS00
33
µPD98405
Target read
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
FRAME_B setup time
tSFRAME
8
ns
*
FRAME_B hold time
tHFRAME
1
ns
*
AD (Address) setup time
tSADDR
8
ns
*
AD (Address) hold time
tHADDR
1
ns
*
CLK ↑→ AD (Data) valid time
tDDATA
1
11
ns
*
CLK ↑→ AD (Data) float time
tDDATAF
28
ns
PCBE_B setup time
tSPCBE
8
ns
*
PCBE_B hold time
tHPCBE
1
ns
*
IRDY_B setup time
tSIRDY
8
ns
*
IRDY_B hold time
tHIRDY
1
ns
*
CLK ↑→ TRDY_B valid time
tDTRDY
1
11
ns
*
CLK ↑→ TRDY_B float time
tDTRDYF
28
ns
CLK ↑→ STOP_B valid time
tDSTOP
11
ns
*
CLK ↑→ STOP_B float time
tDSTOPF
28
ns
*
CLK ↑→ DEVSEL_B valid time
tDDEVSEL
11
ns
*
CLK ↑→ DEVSEL_B float time
tDDEVSELF
28
ns
1
1
PAR setup time
tSPAR
8
ns
*
PAR hold time
tHPAR
1
ns
*
CLK ↑→ PAR valid time
tDPAR
1
11
ns
*
CLK ↑→ PAR float time
tDPARF
28
ns
PERR_B setup time
tSPERR
8
ns
*
PERR_B hold time
tHPERR
1
ns
*
34
Data Sheet S12689EJ2V0DS00
µPD98405
Target read
CLK
tHFRAME
tSFRAME
FRAME_B
tSADDR
AD31-AD0
tHADDR
(Data)
(Address)
tSPCBE
tDDATAF
tDDATA
tHPCBE
PCBE3_BPCBE0_B
tSIRDY
tHIRDY
IRDY_B
tDTRDYF
tDTRDY
TRDY_B
tDDEVSELF
tDDEVSEL
DEVSEL_B
tSPAR
PAR
tHPAR
(Input)
tDPARF
tDPAR
(Output)
tHPERR
tSPERR
PERR_B
CLK
tDSTOPF
STOP_B
tDSTOP
Data Sheet S12689EJ2V0DS00
35
µPD98405
Target write
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
FRAME_B setup time
tSFRAME
8
ns
*
FRAME_B hold time
tHFRAME
1
ns
*
AD (Address) setup time
tSADDR
8
ns
*
AD (Address) hold time
tHADDR
1
ns
*
AD (Data) setup time
tSDATA
8
ns
*
AD (Data) hold time
tHDATA
1
ns
*
PCBE_B setup time
tSPCBE
8
ns
*
PCBE_B hold time
tHPCBE
1
ns
*
IRDY_B setup time
tSIRDY
8
ns
*
IRDY_B hold time
tHIRDY
1
ns
*
CLK ↑→ TRDY_B valid time
tDTRDY
1
11
ns
*
CLK ↑→ TRDY_B float time
tDTRDYF
28
ns
CLK ↑→ STOP_B valid time
tDSTOP
11
ns
*
CLK ↑→ STOP_B float time
tDSTOPF
28
ns
*
CLK ↑→ DEVSEL_B valid time
tDDEVSEL
11
ns
*
CLK ↑→ DEVSEL_B float time
tDDEVSELF
28
ns
1
1
PAR setup time
tSPAR
8
ns
*
PAR hold time
tHPAR
1
ns
*
CLK ↑→ PERR_B valid time
tDPERR
1
11
ns
*
CLK ↑→ PERR_B float time
tDPERRF
28
ns
36
Data Sheet S12689EJ2V0DS00
µPD98405
Target write
CLK
tHFRAME
tSFRAME
FRAME_B
tHADDR
tSDATA
tSADDR
AD31-AD0
tHDATA
(Data)
(Address)
tSPCBE
tHPCBE
PCBE3_BPCBE0_B
tSIRDY
tHIRDY
IRDY_B
tDTRDYF
tDTRDY
TRDY_B
tDDEVSELF
tDDEVSEL
DEVSEL_B
tSPAR
PAR
tHPAR
(Input)
(Input)
tDPERRF
tDPERR
PERR_B
CLK
tDSTOPF
STOP_B
tDSTOP
Data Sheet S12689EJ2V0DS00
37
µPD98405
Bus arbitration
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
12
ns
CLK ↑→ REQ_B valid time
tDREQ
1
GNT_B setup time
tSGNT
10
ns
GNT_B hold time
tHGNT
1
ns
Bus arbitration
CLK
tDREQ
REQ_B
tSGNT
tHGNT
GNT_B
38
Data Sheet S12689EJ2V0DS00
*
*
µPD98405
Configuration read
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
FRAME_B setup time
tSFRAME
8
ns
*
FRAME_B hold time
tHFRAME
1
ns
*
AD (Address) setup time
tSADDR
8
ns
*
AD (Address) hold time
tHADDR
1
ns
*
CLK ↑→ AD (Data) valid time
tDDATA
1
11
ns
*
CLK ↑→ AD (Data) float time
tDDATAF
28
ns
PCBE_B setup time
tSPCBE
8
ns
*
PCBE_B hold time
tHPCBE
1
ns
*
IDSEL setup time
tSIDSEL
8
ns
*
IDSEL hold time
tHIDSEL
1
ns
*
IRDY_B setup time
tSIRDY
8
ns
*
IRDY_B hold time
tHIRDY
1
ns
*
CLK ↑→ TRDY_B valid time
tDTRDY
1
11
ns
*
CLK ↑→ TRDY_B float time
tDTRDYF
28
ns
CLK ↑→ DEVSEL_B valid time
tDDEVSEL
11
ns
CLK ↑→ DEVSEL_B float time
tDDEVSELF
28
ns
11
ns
28
ns
1
*
CLK ↑→ PAR valid time
tDPAR
CLK ↑→ PAR float time
tDPARF
PAR setup time
tSPAR
8
ns
*
PAR hold time
tHPAR
1
ns
*
PERR_B setup time
tSPERR
8
ns
*
PERR_B hold time
tHPERR
1
ns
*
1
Data Sheet S12689EJ2V0DS00
*
39
µPD98405
Configuration read
CLK
tHFRAME
tSFRAME
FRAME_B
tSADDR
AD31-AD0
tHADDR
tDDATAF
tDDATA
(Data)
(Address)
tSPCBE
tHPCBE
tSIDSEL
tHIDSEL
PCBE3_BPCBE0_B
IDSEL
tHIRDY
tSIRDY
IRDY_B
tDTRDYF
tDTRDY
TRDY_B
tDDEVSELF
tDDEVSEL
DEVSEL_B
tSPAR
PAR
tHPAR
(Input)
tDPARF
tDPAR
(Output)
tSPERR
PERR_B
40
Data Sheet S12689EJ2V0DS00
tHPERR
µPD98405
EEPROM interface
Parameter
Symbol
Condition
E2PCLK high-level width
tWE2PCKLH
MIN.
TYP.
tCYCLK × 18 tCYCLK × 18 tCYCLK × 18
– 50
E2PCLK low-level width
MAX.
ns
+ 50
tCYCLK × 18 tCYCLK × 18 tCYCLK × 18
tWE2PCLKL
Unit
– 50
ns
+ 50
E2PCLK ↓→ E2PCS valid time
tDE2PCS
50
ns
E2PCS ↑→ E2PCLK
tSE2PCS
50
ns
E2PCLK ↓→ E2PDO valid time
tDE2PDO
E2PDI → E2PCLK setup time
tSE2PDI
500
ns
E2PCLK → E2PDI hold time
tHE2PDI
70
ns
E2PCS ↑→ E2PDI (Status) valid
delay time
tDE2PSTV
E2PCS ↓→ E2PDI (Status) invalid
delay time
tDE2PSTI
300
0
ns
500
ns
100
ns
EEPROM interface
tWE2PCLKH
tWE2PCLKL
E2PCLK
tDE2PCS
tSE2PCS
tDE2PCS
E2PCS
tDE2PDO
E2PDO
tSE2PDI
tHE2PDI
E2PDI
(READ)
tDE2PSTV
E2PDI
(Status)
tDE2PSTI
(Status)
Data Sheet S12689EJ2V0DS00
41
µPD98405
Expansion ROM interface
Parameter
Symbol
Condition
ROMOE_B ↓→ ROMD valid time
tDROMOE
ROMCS_B ↓→ ROMD valid time
MIN.
TYP.
MAX.
Unit
ROMCS_B = VOL, ROMA valid
200
ns
tDROMCS
ROMOE_B = VOL, ROMA valid
200
ns
ROMA valid time → ROMD valid
time
tROMACC
ROMCS_B = ROMOE_B = VOL
200
ns
ROMOE_B ↑→ ROMD float time
tHROMOE
ROMCS_B = VOL, ROMA valid
0
ns
ROMCS_B ↑→ ROMD float time
tHROMCS
ROMOE_B = VOL, ROMA valid
0
ns
ROMA invalid time → ROMD hold
time
tHROMA
ROMCS_B = ROMOE_B = VOL
0
ns
Expansion ROM interface
ROMCS_B
ROMOE_B
ROMA15ROMA0
tDROMOE
tROMACC
tHROMA
ROMD7ROMD0
tDROMCS
tHROMOE
tHROMCS
42
Data Sheet S12689EJ2V0DS00
µPD98405
Generic bus interface
Slave write access
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
ASEL_B setup time
tSASEL
8
ns
ASEL_B hold time
tHASEL
3
ns
SEL_B setup time
tSSEL
8
ns
SEL_B hold time
tHSEL
1 tCYCLK + 3
ns
Address setup time
tSDADD
8
ns
Address hold time
tHDADD
3
ns
Data setup time
tSDDAT
8
ns
Data hold time
tHDDAT
3
ns
PAR setup time
tSPAR1
8
ns
PAR hold time
tHPAR1
3
ns
SR/W_B setup time
tSSRW
8
ns
SR/W_B hold time
tHSRW
3
ns
Slave write access
CLK
tHASEL
tSASEL
ASEL_B
tSSEL
tHSEL
SEL_B
tHDADD
tSDADD
AD31-AD0
Address
tHDDAT
tSDDAT
Data
tSSRW
tHSRW
SR/W_B
tSPAR1
PAR3-PAR0
tHPAR1
(Input)
Data Sheet S12689EJ2V0DS00
tSPAR1
tHPAR1
(Input)
43
µPD98405
Slave read access
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
ASEL_B setup time
tSASEL
8
ns
ASEL_B hold time
tHASEL
3
ns
SEL_B setup time
tSSEL
8
ns
SEL_B hold time
tHSEL
1 tCYCLK + 3
ns
Address setup time
tSDADD
8
ns
Address hold time
tHDADD
3
ns
CLK ↑→ data delay time
tDDDAT
CLK ↑→ data float time
tFDDAT
2
PAR setup time
tSPAR1
8
ns
PAR hold time
tHPAR1
3
ns
CLK ↑→ PAR delay time
tDPAR1
CLK ↑→ PAR float time
tFPAR1
2
SR/W_B setup time
tSSRW
8
ns
SR/W_B hold time
tHSRW
3
ns
18
ns
18
ns
18
ns
18
ns
Slave read access
CLK
tHASEL
tSASEL
ASEL_B
tSSEL
tHSEL
SEL_B
tHDADD
tSDADD
AD31-AD0
tDDDAT
Address (input)
tFDDAT
Data (output)
tHSRW
tSSRW
SR/W_B
tHPAR1
tSPAR1
PAR3-PAR0
44
(Input)
Data Sheet S12689EJ2V0DS00
tFPAR1
tDPAR1
(Output)
*
*
µPD98405
DMA write access
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
18
ns
CLK ↑→ ATTN_B delay time
tDATTN
GNT_B setup time
tSGNT
8
ns
GNT_B hold time
tHGNT
3
ns
CLK ↑→ DR/W_B delay time
tDDRW
2
18
ns
*
CLK ↑→ SIZE delay time
tDSIZE
2
18
ns
*
CLK ↑→ address delay time
tDSADD
18
ns
CLK ↑→ address/data float time
tFSADD
18
ns
CLK ↑→ BE_B delay time
tDSBE
18
ns
CLK ↑→ BE_B float time
tFSBE
18
ns
CLK ↑→ PAR delay time
tDPAR2
18
ns
CLK ↑→ PAR float time
tFPAR2
2
18
ns
RDY_B setup time
tSRDY
8
ns
RDY_B hold time
tHRDY
3
ns
2
2
Data Sheet S12689EJ2V0DS00
*
*
*
45
46
DMA write access (Example: 2-word burst)
CLK
tDATTN
tDATTN
ATTN_B
tSGNT
tHGNT
GNT_B
tDDRW
tDDRW
tDSIZE
tDSIZE
DR/W_B
Data Sheet S12689EJ2V0DS00
SIZE2-SIZE0
tDSADD
AD31-AD0
tFSADD
tFSADD
Data 0 (output)
Address (output)
Data 1 (output)
tDSBE
BE3_B-BE0_B
tFSBE
BE 0 (output)
BE 1 (output)
tSRDY
tHRDY
RDY_B
(Normal mode)
tSRDY
tHRDY
RDY_B
(Early mode)
tDPAR2
PAR3-PAR0
(Output)
tFPAR2
tDPAR2
(Output)
(Output)
µPD98405
µPD98405
DMA read access
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
18
ns
CLK ↑→ ATTN_B delay time
tDATTN
GNT_B setup time
tSGNT
8
ns
GNT_B hold time
tHGNT
3
ns
CLK ↑→ DR/W_B delay time
tDDRW
2
18
ns
*
CLK ↑→ SIZE delay time
tDSIZE
2
18
ns
*
CLK ↑→ address delay time
tDSADD
18
ns
CLK ↑→ address/data float time
tFSADD
18
ns
CLK ↑→ BE_B delay time
tDSBE
18
ns
CLK ↑→ BE_B float time
tFSBE
18
ns
CLK ↑→ PAR delay time
tDPAR2
18
ns
RDY_B setup time
tSRDY
8
ns
RDY_B hold time
tHRDY
3
ns
Data setup time
tSSDAT
8
ns
Data hold time
tHSDAT
3
ns
PAR setup time
tSPAR2
8
ns
PAR hold time
tHPAR2
3
ns
2
2
Data Sheet S12689EJ2V0DS00
*
*
47
48
DMA read access (Example: 2-word burst)
CLK
tDATTN
tDATTN
ATTN_B
tSGNT
tHGNT
GNT_B
tDDRW
tDDRW
tDSIZE
tDSIZE
DR/W_B
Data Sheet S12689EJ2V0DS00
SIZE2-SIZE0
tDSADD
AD31-AD0
tSSDAT
tFSADD
tHSDAT
Data 0
(input)
Address (output)
Data 1
(input)
tDSBE
BE3_B-BE0_B
tFSBE
BE 0 (output)
BE 1 (output)
tSRDY
tHRDY
RDY_B
(Normal mode)
tSRDY
tHRDY
RDY_B
(Early mode)
tDPAR2
PAR3-PAR0
(Output)
tSPAR2
tHPAR2
(Input)
(Input)
µPD98405
µPD98405
ABRT_B, ERR_B, and OE_B pins
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
ABRT_B setup time
tSABRT
8
ns
ABRT_B hold time
tHABRT
3
ns
ERR_B setup time
tSERR
8
ns
ERR_B hold time
tHERR
3
ns
OE_B ↓→ AD/PAR output
determination time
tDADOE
18
ns
OE_B ↑→ AD/PAR high-impedance
determination time
tFADOE
18
ns
DMA abort/ERR_B timing
CLK
ATTN_B
GNT_B
tSABRT
tHABRT
tSERR
tHERR
ABRT_B
ERR_B
OE_B timing
tFADOE
AD31-AD0
PAR3-PAR0
Data 0
(output)
tDADOE
Data 0
(output)
OE_B
Data Sheet S12689EJ2V0DS00
49
µPD98405
UTOPIA interface (external PHY mode)
Transmission operation
Parameter
SCLK ↑→ TCLK ↑ delay time
TCLK ↑→ Tx delay time
Symbol
Condition
MIN.
TYP.
tDTCLK
MAX.
Unit
15
ns
*
tDTX
2
18
ns
*
TCLK ↑→ TSOC delay time
tDTSOC
2
13.62
ns
*
TCLK ↑→ TENBL_B delay time
tDTEN
2
13.66
ns
*
FULL_B setup time
tSFULL
8
ns
FULL_B hold time
tHFULL
1
ns
Reception operation
Parameter
SCLK ↑→ RCLK ↑ delay time
Symbol
Condition
MIN.
tDRCLK
TYP.
MAX.
Unit
15
ns
Rx setup time
tSRX
8
ns
Rx hold time
tHRX
1
ns
RSOC setup time
tSRSOC
8
ns
RSOC hold time
tHRSOC
1
ns
RCLK ↑→ RENBL_B delay time
tDREN
2
EMPTY_B setup time
tSEMPT
8
ns
EMPTY_B hold time
tHEMPT
1
ns
SCLK
TCLK
tDTCLK
SCLK
RCLK
tDRCLK
50
Data Sheet S12689EJ2V0DS00
13.63
ns
*
*
UTOPIA interface (1)
Transmission timing
TCLK
tDTX
Data Sheet S12689EJ2V0DS00
Tx7-Tx0
H1
H2
H3
H4
‘00H’
Invalid
P1
P2
P3
P4
P5
P6
P7
P8
P9
TSOC
tDTSOC
tDTSOC
tDTEN
tDTEN
TENBL_B
tSFULL
tHFULL
FULL_B
H1-H4: ATM header
P1-P9: Payload data
µPD98405
51
52
UTOPIA interface (2)
Reception timing
RCLK
tSRX
Rx7-Rx0
tHRX
H1
H2
H3
Invalid
H4
H5
P1
P2
Invalid
P3
P4
P5
P6
P7
Data Sheet S12689EJ2V0DS00
RSOC
tSRSOC
tHRSOC
tDREN
tDREN
RENBL_B
tSEMPT
tHEMPT
EMPTY_B
H1-H4: ATM header
P1-P7: Payload data
µPD98405
µPD98405
Control memory access
Write
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
CA → CWE_B ↓ setup time
tSCWE
0
ns
CBE_B → CWE_B ↓ setup time
tSCWE2
0
ns
CWE_B low-level width
tCWEL
1 tSCLKL – 2
ns
CWE_B ↑→ CD float time
tFCD
0
CWE_B ↑→ COE_B delay time
tDCOE
0
ns
CA hold time (vs CWE_B ↑)
tHCA
0
ns
CBE_B hold time (vs CWE_B ↑)
tHCBE
0
ns
CD output time (vs CWE_B ↑)
tSCD
15
ns
*
CWE_B ↑→ CPAR float time
tFCPAR
0
ns
*
CPAR output time (vs CWE_B ↑)
tSCPAR
15
ns
*
1 tSCLKL
+ 8.59
1 tSCLKL
+ 8.65
ns
*
Write timing
SCLK
CBE3_BCBE0_B
tSCWE2
tHCBE
CA18-CA0
tSCWE
tCWEL
tHCA
CWE_B
tDCOE
COE_B
tSCD
CD31-CD0
tFCD
(Output)
tSCPAR
CPAR3-CPAR0
tFCPAR
(Output)
Data Sheet S12689EJ2V0DS00
53
µPD98405
Read
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
Permissible CD delay time
(vs CBE_B ↓)
tDCDCB
1 tCYSCLK
– 18
ns
*
Permissible CD delay time (vs CA)
tDCDCA
1 tCYSCLK
– 18
ns
*
Permissible CD delay time
(vs COE_B ↓)
tDCDCO
1 tCYSCLK
– 18
ns
*
CD hold time (vs CBE_B ↑)
tHCDCB
0
ns
CD hold time (vs CA)
tHCDCA
0
ns
CD hold time (vs COE_B ↑)
tHCDCO
0
ns
Permissible CPAR hold time
(vs CBE_B ↓)
tDCPCB
1 tCYSCLK
– 18
ns
*
Permissible CPAR hold time (vs CA)
tDCPCA
1 tCYSCLK
– 18
ns
*
Permissible CPAR hold time
(vs COE_B ↓)
tDCPCO
1 tCYSCLK
– 18
ns
*
CPAR hold time (vs CBE_B ↑)
tHCPCB
0
ns
CPAR hold time (vs CA)
tHCPCA
0
ns
CPAR hold time (vs COE_B ↑)
tHCPCO
0
ns
54
Data Sheet S12689EJ2V0DS00
µPD98405
Read timing
SCLK
CBE3_BCBE0_B
CA18-CA0
CWE_B
“H”
COE_B
tDCDCB
tHCDCB
tDCDCA
tHCDCA
tDCDCO
tHCDCO
CD31-CD0
(Input)
CPAR3-CPAR0
(Input)
tDCPCO
tHCPCO
tDCPCA
tHCPCA
tDCPCB
tHCPCB
Data Sheet S12689EJ2V0DS00
55
µPD98405
PHY status access
Write
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
SCLK ↑→ CA delay time
tDPCA
20
ns
SCLK ↑→ PHRW_B delay time
tDPHRW
20
ns
SCLK ↑→ PHCE_B delay time
tDPHCE
20
ns
SCLK ↑→ CD delay time
tDPCD
23
ns
PHCE_B ↑→ CD float time
tFPCD
1 tCYSCLK
+ 10
ns
MAX.
Unit
1 tCYSCLK
– 10
*
Write timing
1 clock
4 clocks
1 clock
SCLK
tDPCA
tDPCA
CA18-CA0
tDPHRW
tDPHRW
PHRW_B
tDPHCE
tDPHCE
PHCE_B
PHOE_B
“H”
tFPCD
tDPCD
(Output)
CD31-CD0
Read
Parameter
Symbol
Condition
MIN.
TYP.
CD setup time
tSPCD
10
ns
CD hold time
tHPOECD
0
ns
SCLK ↑→ CA delay time
tDPCA
20
ns
SCLK ↑→ PHRW_B delay time
tDPHRW
20
ns
SCLK ↑→ PHCE_B delay time
tDPHCE
20
ns
SCLK ↑→ PHOE_B delay time
tDPHOE
20
ns
56
Data Sheet S12689EJ2V0DS00
*
Read timing
1 clock
6 clocks
5 clocks
4 clocks
Data Sheet S12689EJ2V0DS00
SCLK
tDPCA
tDPCA
CA18-CA0
tDPHRW
PHRW_B
tDPHCE
tDPHCE
PHCE_B
tDPHOE
tDPHOE
PHOE_B
tSPCD
CD31-CD0
tHPOECD
(Input)
µPD98405
57
µPD98405
PMD serial interface (internal PHY mode)
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
51.4403
+20 ppm
ns
*
REFCLK cycle time
tCYRF
–20 ppm
REFCLK high-level width
tWRFH
0.4 ×
tCYRF
0.4 ×
tCYRF
ns
*
REFCLK low-level width
tWRFL
0.4 ×
tCYRF
0.4 ×
tCYRF
ns
*
REFCLK
tWRFH
tWRFL
tCYRF
58
Data Sheet S12689EJ2V0DS00
µPD98405
Others
Parameter
Symbol
Condition
MIN.
TYP.
MAX.
Unit
SEL_B recovery time
tRVSEL
2
tCYCLK
SEL_B ↑→ GNT_B ↓ recovery time
tRVSM
1
tCYCLK
RDY_B ↑→ SEL_B ↓ recovery time
tRVMS
1
tCYCLK
RST_B input pulse width
tRSTL
1
tCYCLK
RST_B ↑→ SEL_B ↓ recovery time
tRSTSL
20
tCYCLK
RDY_B mode during normal
operation
Others timing
CLK
SEL_B
tRVSEL
GNT_B
tRVSM
tRVMS
RDY_B
tRSTL
RST_B
tRSTSL
SEL_B
Data Sheet S12689EJ2V0DS00
59
µPD98405
3. PACKAGE DRAWING
304 PIN PLASTIC QFP (FINE PITCH) (40x40)
A
B
228
229
153
152
detail of lead end
S
C
D
R
Q
304
1
77
76
F
G
H
I
J
M
P
K
M
N S
L
NOTE
S
ITEM
Each lead centerline is located within 0.10 mm of
its true position (T.P.) at maximum material condition.
A
MILLIMETERS
42.6±0.2
B
40.0±0.2
C
40.0±0.2
D
42.6±0.2
F
1.25
G
1.25
H
0.22 +0.05
−0.04
I
0.10
J
K
0.5 (T.P.)
1.3±0.2
L
0.5±0.2
M
0.145 +0.055
−0.045
N
0.10
P
Q
3.7±0.1
0.4±0.1
R
5°±5°
S
4.3 MAX.
P304GL-50-NMU, PMU-3
60
Data Sheet S12689EJ2V0DS00
µPD98405
4. RECOMMENDED SOLDERING CONDITIONS
Solder this product under the following recommended conditions.
For details of the recommended soldering conditions, refer to information document Semiconductor Device
Mounting Technology Manual (C10535E).
For soldering methods and conditions other than those recommended, consult NEC.
Surface-mount type
• µPD98405GL-PMU: 304-pin plastic QFP (0.5-mm fine pitch) (40 × 40 mm)
Soldering Method(s)
Infrared reflow
Soldering Conditions
Package peak temperature: 235°C, Time: 30 sec max. (210°C min.),
Note
Number of times: once, Number of days: 3 (after that, prebaking is
Recommended
Conditions Symbol
IR35-203-1
necessary at 125°C for 20 hours)
Partial pin heating
Pin temperature: 300°C max., Time: 3 sec. Max. (per device side)
–
Note Number of days in storage after the dry pack has been opened. The storage conditions are at 25°C, 65%
RH MAX.
Data Sheet S12689EJ2V0DS00
61
µPD98405
[MEMO]
62
Data Sheet S12689EJ2V0DS00
µPD98405
[MEMO]
Data Sheet S12689EJ2V0DS00
63
µPD98405
• The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98. 8