FUJITSU MB89PV150CF-103

FUJITSU SEMICONDUCTOR
DATA SHEET
DS07-12506-4E
8-bit Proprietary Microcontroller
CMOS
F2MC-8L MB89150/150A Series
MB89151/151A/152/152A/153/153A/154/154A/155/155A
MB89P155/PV150
■ DESCRIPTION
The MB89150/A series has been developed as general-purpose version of the F2MC*-8L family consisting of
proprietary 8-bit, single-chip microcontrollers.
In addition to a compact instruction set, the MB89150 series microcontrollers contain a variety of peripheral
functions such as dual-clock control system, five operating speed control stages, timers, a serial interface, a
remote control transmission output, external interrupts, an LCD controller/driver, an LCD booster, and a watch
prescaler.
*: F2MC stands for FUJITSU Flexible Microcontroller.
■ FEATURES
•
•
•
•
•
•
•
•
•
•
F2MC-8L family CPU core
Dual-clock system
High-speed processing at low voltage
Minimum execution time: 0.95 µs/2.7 V, 1.33 µs/2.2 V
I/O ports: max. 43 channels
21-bit time-base timer
8/16-bit timer/counter: 1 channel (8 bits × 2 channels)
8-bit serial I/O: 1 channel
LCD controller/driver: Max. 36 segments × 4 commons (built-in booster)
Remote control transmission output
(Continued)
■ PACKAGE
80-pin Plastic QFP
(FPT-80P-M06)
80-pin Plastic LQFP
(FPT-80P-M11)
80-pin Plastic LQFP
80-pin Ceramic MQFP
(FPT-80P-M05)
(MQP-80C-P01)
MB89150/150A Series
(Continued)
• Buzzer output
• Watch prescaler (15 bits)
• External interrupts (wake-up function)
Four independent channels with edge detection function plus eight level-interrupt channels
■ PRODUCT LINEUP
Part number
Parameter
MB89151/A MB89152/A MB89153/A MB89154/A MB89155/A MB89P155 MB89PV150
Classification
Mass production products
(mask ROM products)
ROM size
One-time
PROM
product
Piggyback/
evaluation
product (for
evaluation and
development)
4 K × 8 bits 6 K × 8 bits 8 K × 8 bits 12 K × 8 bits 16 K × 8 bits 16 K × 8 bits 32 K × 8 bits
(internal
(internal
(internal
(internal
(internal
(internal
(external
mask ROM) mask ROM) mask ROM) mask ROM) mask ROM) PROM,
ROM)
programming
with generalpurpose
EPROM
programmer)
RAM size
128 × 8 bits
256 × 8 bits
CPU functions
Number of instructions:
Instruction bit length:
Instruction length:
Data bit length:
Minimum execution time:
Interrupt processing time:
Ports
I/O port (N-ch open-drain):
136
8 bits
1 to 3 bytes
1, 8, 16 bits
0.95 µs/4.2 MHz
8.57 µs/4.2 MHz
8 (6 ports also serve as peripherals, 3 ports
are a high-current drive type.)
Output port (N-ch open-drain): 18 (16 ports also serve as segment pins, 2 ports
serve as boost capacitor connection pins.)*1
I/O port (CMOS):
16 (12 ports also serve as an external interrupt.)
Output port (CMOS):
1 (Also serves as a remote control.)
Total:
43 (max.)
Timer/counter
8-bit timer counter × 2 channel or 16-bit event counter × 1 channel
8-bit serial I/O
8 bits
LSB first/MSB first selectability
LCD controller/
driver
External
interrupts
512 × 8 bits
Common output:
Segment output:
Bias power supply pins:
LCD display RAM size:
Booster for LCD driving:
Dividing resistor for LCD driving:
4
32 (max.)*1
4
36 × 4 bits
Built-in*1
Built-in (an external resistor selectability)
No reference
voltage
generator
and booster
for LCD
driving
4 (edge selectability)
8 (level interrupt only)
(wake-up function)
Buzzer output
1 (7 frequencies are selectable by the software.)
(Continued)
2
MB89150/150A Series
(Continued)
Part number
MB89151/A MB89152/A MB89153/A MB89154/A MB89155/A MB89P155 MB89PV150
Parameter
Remote control
transmission
output
1 (Pulse width and cycle are software selectable.)
Standby modes
Sleep mode, stop mode, and watch mode
Process
CMOS
2.2 V to 6.0 V (single clock)/2.2 V to 4.0 V (dual clock)
Operating voltage*2
EPROM for use
2.7 V to 6.0 V
MBM27C256A
-20TV (LCC
package)
*1: Selected by the mask option. See section “■ Mask Options.”
*2: Varies with conditions such as the operating frequency and the connected ICE. (See section “■ Electrical
Characteristics.”)
■ PACKAGE AND CORRESPONDING PRODUCTS
MB89151/A
MB89152/A
MB89153/A
MB89154/A
MB89155/A
Package
MB89P155
MB89PV150
FPT-80P-M06
×
FPT-80P-M11
×
FPT-80P-M05
×
MQP-80C-P01
: Available
×
×
× : Not available
Note: For more information about each package, see section “■ Package Dimensions.”
3
MB89150/150A Series
■ DIFFERENCES AMONG PRODUCTS
1. Memory Size
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.
Take particular care on the following points:
• On the MB89151/A, addresses 0140H and later of the register bank cannot be used. On the MB89152/A,
153/A, 154/A, 155/A, and MB89P155, addresses 0180H and later of each register bank cannot be used.
• On the MB89P155, addresses BFF0H to BFF6H comprise the option setting area, option settings can be read
by reading these addresses.
• The stack area, etc., is set at the upper limit of the RAM.
2. Current Consumption
• In the case of the MB89PV150, add the current consumed by the EPROM which is connected to the top socket.
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume
more current than the product with a mask ROM.
However, the current consumption in sleep/stop modes is the same. (For more information, see sections
“■ Electrical Characteristics” and “■ Example Characteristics.”)
3. Mask Options
Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section “■ Mask Options.”
Take particular care on the following point:
• On the MB89PV150, options are fixed, except for the segment output selection.
4
MB89150/150A Series
■ PIN ASSIGNMENT
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
P42/SEG22*4
P41/SEG21*4
P40/SEG20*4
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
(Top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
SEG2
SEG1
SEG0
COM3
COM2
COM1
COM0
VCC
V3
V2
V1
V0
P32*2/C0*1
P31*2/C1*1
P30/RCO
X1A
X0A
P27/BUZ*3
P26*3
P25/SCK
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
P01/INT21
P02/INT22
P03/INT23
P04/INT24
P05/INT25
P06/INT26
P07/INT27
P10/INT10
P11/INT11
P12/INT12
P13/INT13
P14
P15
P16
P17
P20/EC
P21*3
P22/TO
P23/SI
P24/SO
P43/SEG23*4
P44/SEG24*4
P45/SEG25*4
P46/SEG26*4
P47/SEG27*4
P50/SEG28*4
P51/SEG29*4
P52/SEG30*4
P53/SEG31*4
P54/SEG32*4
P55/SEG33*4
P56/SEG34*4
VSS
P57/SEG35*4
X1
X0
MOD1
MOD0
RST
P00/INT20
(FPT-80P-M05)
*1: For products with a booster circuit
*2: For products without a booster circuit
*3: N-ch open-drain high-current drive type
*4: Selected using the mask option (in units of 4 pins)
5
MB89150/150A Series
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
P42/SEG22*4
P41/SEG21*4
P40/SEG20*4
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
(Top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
P01/INT21
P02/INT22
P03/INT23
P04/INT24
P05/INT25
P06/INT26
P07/INT27
P10/INT10
P11/INT11
P12/INT12
P13/INT13
P14
P15
P16
P17
P20/EC
P21*3
P22/TO
P23/SI
P24/SO
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
P43/SEG23*4
P44/SEG24*4
P45/SEG25*4
P46/SEG26*4
P47/SEG27*4
P50/SEG28*4
P51/SEG29*4
P52/SEG30*4
P53/SEG31*4
P54/SEG32*4
P55/SEG33*4
P56/SEG34*4
VSS
P57/SEG35*4
X1
X0
MOD1
MOD0
RST
P00/INT20
(FPT-80P-M11)
*1: For products with a booster circuit
*2: For products without a booster circuit
*3: N-ch open-drain high-current drive type
*4: Selected using the mask option (in units of 4 pins)
6
SEG2
SEG1
SEG0
COM3
COM2
COM1
COM0
V CC
V3
V2
V1
V0
P32*2/C0*1
P31*2/C*1
P30/RCO
X1A
X0A
P27/BUZ*3
P26*3
P25/SCK
MB89150/150A Series
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
P40/SEG20*4
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
(Top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
SEG4
SEG3
SEG2
SEG1
SEG0
COM3
COM2
COM1
COM0
V CC
V3
V2
V1
V0
P32*2/C0*1
P31*2/C1*1
P30/RCO
X1A
X0A
P27/BUZ*3
P26*3
P25/SCK
P24/SO
P23/SI
P03/INT23
P04/INT24
P05/INT25
P06/INT26
P07/INT27
P10/INT10
P11/INT11
P12/INT12
P13/INT13
P14
P15
P16
P17
P20/EC
P21*3
P22/TO
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
P41/SEG21*4
P42/SEG22*4
P43/SEG23*4
P44/SEG24*4
P45/SEG25*4
P46/SEG26*4
P47/SEG27*4
P50/SEG28*4
P51/SEG29*4
P52/SEG30*4
P53/SEG31*4
P54/SEG32*4
P55/SEG33*4
P56/SEG34*4
VSS
P57/SEG35*4
X1
X0
MOD1
MOD0
RST
P00/INT20
P01/INT21
P02/INT22
(FPT-80P-M06)
*1: For products with a booster circuit
*2: For products without a booster circuit
*3: N-ch open-drain high-current drive type
*4: Selected using the mask option (in units of 4 pins)
7
MB89150/150A Series
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
P40/SEG20*2
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
(Top view)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
100
99
98
97
96
95
94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
101
102
103
104
105
106
107
108
109
110
111
112
81
82
83
84
93
92
91
90
89
88
87
86
85
SEG4
SEG3
SEG2
SEG1
SEG0
COM3
COM2
COM1
COM0
VCC
V3
V2
V1
V0
P32
P31
P30/RCO
X1A
X0A
P27/BUZ*1
P26*1
P25/SCK
P24/SO
P23/SI
P03/INT23
P04/INT24
P05/INT25
P06/INT26
P07/INT27
P10/INT10
P11/INT11
P12/INT12
P13/INT13
P14
P15
P16
P17
P20/EC
P21*1
P22/TO
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
P41/SEG21*2
P42/SEG22*2
P43/SEG23*2
P44/SEG24*2
P45/SEG25*2
P46/SEG26*2
P47/SEG27*2
P50/SEG28*2
P51/SEG29*2
P52/SEG30*2
P53/SEG31*2
P54/SEG32*2
P55/SEG33*2
P56/SEG34*2
VSS
P57/SEG35*2
X1
X0
MOD1
MOD0
RST
P00/INT20
P01/INT21
P02/INT22
(MQP-80C-P01)
*1: N-ch open-drain high-current drive type
*2: Selected using the mask option (in units of 4 pins).
• Pin assignment on package top
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
81
N.C.
89
A2
97
N.C.
105
OE
82
VPP
90
A1
98
O4
106
N.C.
83
A12
91
A0
99
O5
107
A11
84
A7
92
N.C.
100
O6
108
A9
85
A6
93
O1
101
O7
109
A8
86
A5
94
O2
102
O8
110
A13
87
A4
95
O3
103
CE
111
A14
88
A3
96
VSS
104
A10
112
VCC
N.C.: Internally connected. Do not use.
8
MB89150/150A Series
■ PIN DESCRIPTION
Pin no.
Pin name
LQFP*1*3
MQFP*4
QFP*2
16
18
X0
15
17
X1
18
20
MOD0
17
19
MOD1
19
21
20 to 27
Circuit
type
Function
A
Main clock oscillator pins
C
Operating mode selection pins
Connect directly to VSS.
RST
D
Reset I/O pin
This pin is an N-ch open-drain output type with a pullup resistor and a hysteresis input type. “L” is output
from this pin by an internal reset source. The internal
circuit is initialized by the input of “L”.
22 to 29
P00/INT20 to
P07/INT27
E
General-purpose I/O ports
Also serve as an external interrupt 2 input (wake-up
function).
External interrupt 2 input is hysteresis input.
28 to 31
30 to 33
P10/INT10 to
P13/INT13
E
General-purpose I/O ports
Also serve as external interrupt 1 input.
External interrupt 1 input is hysteresis input.
32 to 35
34 to 37
P14 to P17
F
General-purpose I/O ports
36
38
P20/EC
H
N-ch open-drain general-purpose I/O port
Also serves as the external clock input for the timer.
The peripheral is a hysteresis input type.
37
39
P21
I
N-ch open-drain general-purpose I/O port
38
40
P22/TO
I
N-ch open-drain general-purpose I/O port
Also serves as a timer output.
39
41
P23/SI
H
N-ch open-drain general-purpose I/O port
Also serves as the data input for the 8-bit serial I/O.
The peripheral is a hysteresis input type.
40
42
P24/SO
I
N-ch open-drain general-purpose I/O port
Also serves as the data output for the 8-bit serial I/O.
41
43
P25/SCK
H
N-ch open-drain general-purpose I/O port
Also serves as the clock I/O for the 8-bit serial I/O.
The peripheral is a hysteresis input type.
42
44
P26
I
N-ch open-drain general-purpose I/O port
43
45
P27/BUZ
I
N-ch open-drain general-purpose I/O port
Also serves as a buzzer output.
*1:
*2:
*3:
*4:
FPT-80P-M11
FPT-80P-M06
FPT-80P-M05
MQP-80C-P01
(Continued)
9
MB89150/150A Series
(Continued)
Pin no.
LQFP*1*3
MQFP*4
QFP*2
48
50
47
Circuit
type
Function
P32
J
Functions as an N-ch open-drain general-purpose
output port only in the products without a booster.
C0
—
Functions as a capacitor connection pin in the
products with a booster.
P31
J
Functions as an N-ch open-drain general-purpose
output port only in the products without a booster.
C1
—
Functions as a capacitor connection pin in the
products with a booster.
G
General-purpose output-only port
Also serves as a remote control transmission output.
46
48
P30/RCO
14
16
P57/SEG35
12 to 6
14 to 8
P56/SEG34 to
P50/SEG28
5 to 1
7 to 3
P47/SEG27 to
P43/SEG23
80,
79,
78
2,
1,
80
77 to 58
79 to 60
SEG19 to
SEG0
K
LCD controller/driver segment output-only pins
57 to 54
59 to 56
COM3 to COM0
K
LCD controller/driver common output-only pins
52 to 49
54 to 51
V3 to V0
—
LCD driving power supply pins
44
46
X0A
B
Subclock crystal oscillator pins (32.768 kHz)
45
47
X1A
53
55
VCC
—
Power supply pin
13
15
VSS
—
Power supply (GND) pin
*1:
*2:
*3:
*4:
10
49
Pin name
FPT-80P-M11
FPT-80P-M06
FPT-80P-M05
MQP-80C-P01
J/K
N-ch open-drain general-purpose output ports
Also serve as LCD controller/driver segment output.
Switching between port and common output is done by
the mask option.
J/K
P42/SEG22,
P41/SEG21,
P40/SEG20
MB89150/150A Series
• External EPROM pins (MB89PV150 only)
Pin no.
Pin name
I/O
Function
82
VPP
O
“H” level output pin
83
84
85
86
87
88
89
90
91
A12
A7
A6
A5
A4
A3
A2
A1
A0
O
Address output pins
93
94
95
O1
O2
O3
I
Data input pins
96
VSS
O
Power supply (GND) pin
98
99
100
101
102
O4
O5
O6
O7
O8
I
Data input pins
103
CE
O
ROM chip enable pin
Outputs “H” during standby.
104
A10
O
Address output pin
105
OE
O
ROM output enable pin
Outputs “L” at all times.
107
108
109
A11
A9
A8
O
Address output pins
110
A13
O
111
A14
O
112
VCC
O
EPROM power supply pin
81
92
97
106
N.C.
—
Internally connected pins
Be sure to leave them open.
11
MB89150/150A Series
■ I/O CIRCUIT TYPE
Type
A
Circuit
Remarks
Crystal or ceramic oscillation type (main clock)
• At an oscillation feedback resistor of approximately
1 MΩ/5.0 V
X1
X0
Standby control signal
CR oscillation type (main clock)
(except MB89PV150/P155)
X1
X0
Standby control signal
B
Crystal oscillation type (subclock)
• At an oscillation feedback resistor of approximately
4.5 MΩ/3.0 V
X1A
X0A
Standby control signal
C
D
• At output pull-up resistor (P-ch) of approximately
50 kΩ/5.0 V
• Hysteresis input
R
P-ch
N-ch
E
R
• CMOS I/O
• The peripheral is a hysteresis input type.
P-ch
P-ch
N-ch
Port
Peripheral
• Pull-up resistor optional (except MB89PV150)
(Continued)
12
MB89150/150A Series
(Continued)
Type
Circuit
Remarks
F
• CMOS I/O
R
P-ch
P-ch
N-ch
• Pull-up resistor optional (except MB89PV150)
G
• CMOS output
• P-ch output is a high-current drive type.
P-ch
N-ch
H
R
• N-ch open-drain I/O
• CMOS input
• The peripheral is a hysteresis input type.
P-ch
N-ch
Port
Peripheral
I
• Pull-up resistor optional (except MB89PV150/P155)
• N-ch open-drain I/O
• CMOS input
R
P-ch
• P21, P26, and P27 are a high-current drive type.
N-ch
• Pull-up resistor optional (except MB89PV150/P155)
J
• N-ch open-drain output
R
P-ch
• Pull-up resistor optional (except MB89PV150/P155)
• P31 and P32 are not provided with a pull-up resistor.
N-ch
K
• LCD controller/driver segment output
P-ch
N-ch
P-ch
N-ch
13
MB89150/150A Series
■ HANDLING DEVICES
1. Preventing Latchup
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins
other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum
Ratings” in section “■ Electrical Characteristics” is applied between VCC and VSS.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When
using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital
power supply (VCC) when the analog system power supply is turned on and off.
2. Treatment of Unused Input Pins
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down
resistor.
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.
4. Treatment of N.C. Pins
Be sure to leave (internally connected) N.C. pins open.
5. Power Supply Voltage Fluctuations
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage
could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.
6. Precautions when Using an External Clock
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and
wake-up from stop mode.
14
MB89150/150A Series
■ PROGRAMMING TO THE EPROM ON THE MB89P155
The MB89P155 is an OTPROM version of the MB89150/A series.
1. Features
• 16-Kbyte PROM on chip
• Options can be set using the EPROM programmer.
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)
2. Memory Space
Memory space in the EPROM mode is diagrammed below.
Address
Normal operating mode
0000 H
0080 H
EPROM mode
(Corresponding addresses on the EPROM programmer)
0000 H
I/O
RAM
Vacancy
(Read value FFH)
0180 H
Not available
3FF0 H
8000 H
Option area
3FF6 H
Not available
Vacancy
(Read value FFH)
C000 H
4000 H
Program area
(EPROM)
PROM
FFFFH
7FFFH
15
MB89150/150A Series
3. Programming to the EPROM
In EPROM mode, the MB89P155 functions equivalent to the MBM27C256A. This allows the PROM to be
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by
using the dedicated socket adapter.
• Programming procedure
(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH
while operating as a normal operating mode assign to 4000H to 7FFFH in EPROM mode).
Load option data into addresses 3FF0H to 3FF5H of the EPROM programmer. (For information about each
corresponding option, see “7. Setting OTPROM Options.”)
(3) Program with the EPROM programmer.
4. Recommended Screening Conditions
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked
OTPROM microcomputer program.
Program, verify
Aging
+150°C, 48 Hrs.
Data verification
Assembly
5. Programming Yield
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.
For this reason, a programming yield of 100% cannot be assured at all times.
6. EPROM Programmer Socket Adapter
Package
Compatible socket adapter
FPT-80P-M05
ROM-80SQF-28DP-8L
FPT-80P-M06
ROM-80QF-28DP-8L3
FPT-80P-M11
ROM-80QF2-28DP-8L2
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
16
MB89150/150A Series
7. Setting OTPROM Options
The programming procedure is the same as that for the PROM. Options can be set by programming values at
the addresses shown on the memory map. The relationship between bits and options is shown on the following
bit map:
• OTPROM option bit map
Bit 7
Bit 6
Vacancy
Vacancy
Oscillation stabilization time Vacancy
3FF0H Readable
Readable
WTM1
WTM0
See section “■ Mask
Options.”
Readable
P07
Pull-up
3FF1H
1: No
0: Yes
P06
Pull-up
1: No
0: Yes
P05
Pull-up
1: No
0: Yes
P04
Pull-up
1: No
0: Yes
P17
Pull-up
3FF2H
1: No
0: Yes
P16
Pull-up
1: No
0: Yes
P15
Pull-up
1: No
0: Yes
Vacancy
Vacancy
Readable
3FF3H
3FF4H
3FF5H
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset pin
output
1: Yes
0: No
Clock mode Power-on
selection
reset
1: Dual clock 1: Yes
0: Single clock 0: No
P03
Pull-up
1: No
0: Yes
P02
Pull-up
1: No
0: Yes
P01
Pull-up
1: No
0: Yes
P00
Pull-up
1: No
0: Yes
P14
Pull-up
1: No
0: Yes
P13
Pull-up
1: No
0: Yes
P12
Pull-up
1: No
0: Yes
P11
Pull-up
1: No
0: Yes
P10
Pull-up
1: No
0: Yes
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Readable
Readable
Readable
Readable
Readable
Readable
Readable
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Readable
Readable
Readable
Readable
Readable
Readable
Readable
Readable
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Vacancy
Readable
Readable
Readable
Readable
Readable
Readable
Readable
Readable
Notes: • Set each bit to 1 to erase.
• Do not write 0 to the vacant bit.
The read value of the vacant bit is 1, unless 0 is written to it.
17
MB89150/150A Series
■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE
1. EPROM for Use
MBM27C256A-20TV
2. Programming Socket Adapter
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato
Co., Ltd.) listed below.
Package
Adapter socket part number
LCC-32(Rectangle)
ROM-32LC-28DP-YG
LCC-32(Square)
ROM-32LC-28DP-S
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
3. Memory Space
Memory space in each mode is diagrammed below.
Address
Normal operating mode
Corresponding addresses on the EPROM programmer
0000 H
0080 H
0000 H
I/O
RAM
0280 H
Not available
8000 H
EPROM
32 KB
PROM
32 KB
FFFFH
7FFFH
4. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 4000H to 7FFFH.
(3) Program to 0000H to 7FFFH with the EPROM programmer.
18
MB89150/150A Series
■ BLOCK DIAGRAM
21-bit time-base
timer
Main clock
oscillator
X0
X1
Clock controller
P22/TO
Port 2
Subclock oscillator
(32.768 kHz)
X0A
X1A
Internal bus
8-bit timer/counter
8-bit timer/counter
P20/EC
Reset circuit
(WDT)
RST
8
8
External interrupt 2
(wake-up function)
Port 0
P00/INT20
to P07/INT27
8-bit serial I/O
P25/SCK
P24/SO
P23/SI
Buzzer output
P27/BUZ*4
2
CMOS I/O port
P21*4,P26*4
N-ch open-drain I/O port
4
P14 to P17
External interrupt 1
(wake-up function)
4
N-ch open-drain output port
16
CMOS I/O port
RAM
( M ax . 256 × 8bit s )
F 2 M C- 8L
LCD controller/
driver
Port 4 and port 5
P10/INT10
to P13/INT13
4
Port 1
4
4
4
4
P54/SEG32*3
to P57/SEG35*3
P50/SEG28*3
to P53/SEG31*3
P44/SEG24*3
to P47/SEG27*3
P40/SEG20*3
to P43/SEG23*3
20
CPU
SEG0 to SEG19
4
COM0 to COM3
RO M
( M ax . 16 K × 8 bit s )
M O D0, M O D1, V CC , V SS
36 × 4 bits
VRAM
Reference voltage
generator and
booster*1
V0 to V3
Port 3
Other pins
4
Remote control
output
P32/C0*2
P31/C1*2
P30/RCO
N-ch open-drain output port
(Only P30 is a CMOS output type.)
*1: Selected by mask option
*2: Used as ports without a reference voltage generator and booster
*3: Functions selected by mask option
*4: N-ch open-drain high-current drive type
19
MB89150/150A Series
■ CPU CORE
1. Memory Space
The microcontrollers of the MB89150/A series offer a memory space of 64 Kbytes for storing all of I/O, data,
and program areas. The I/O area is located at the lowest address. The data area is provided immediately above
the I/O area. The data area can be divided into register, stack, and direct areas according to the application.
The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables
of interrupt reset vectors and vector call instructions toward the highest address within the program area. The
memory space of the MB89150/A series is structured as illustrated below.
Memory Space
MB89PV150
0000H
0080H
MB89151/A
0000H
I/O
RAM
512 B
0100H
0080H
Not available
00C0H
RAM
128 B
0100H
Register
0080H
0100H
Register
0140H
I/O
RAM
256 B
0080H
0100H
I/O
RAM
256 B
0000H
0100H
I/O
RAM
256 B
0080H
0100H
Register
0180H
0180H
0180H
0080H
Register
Register
MB89155/A
MB89P155
MB89154/A
0000H
0000H
0000H
I/O
MB89153/A
MB89152/A
I/O
RAM
256 B
Register
0180H
0200H
0280H
Not available
Not available
Not available
Not available
Not available
Not available
8000H
External
ROM
32 KB
C000H
D000H
E000H
E800H
F000H
FFFFH
20
FFFFH
ROM
4 KB
FFFFH
ROM
6 KB
ROM
8 KB
FFFFH
ROM
16 KB
ROM
12 KB
FFFFH
FFFFH
MB89150/150A Series
2. Registers
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers
in the memory. The following dedicated registers are provided:
Program counter (PC):
A 16-bit register for indicating instruction storage positions
Accumulator (A):
A 16-bit temporary register for storing arithmetic operations, etc. When the
instruction is an 8-bit data processing instruction, the lower byte is used.
Temporary accumulator (T):
A 16-bit register which performs arithmetic operations with the accumulator
When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX):
A 16-bit register for index modification
Extra pointer (EP):
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS):
A 16-bit register for storing a register pointer, a condition code
16 bits
Initial value
FFFDH
: Program counter
PC
A
: Accumulator
Undefined
T
: Temporary accumulator
Undefined
IX
: Index register
Undefined
EP
: Extra pointer
Undefined
SP
: Stack pointer
Undefined
PS
: Program status
I-flag = 0, IL1, 0 = 11
Other bits are undefined.
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for
use as a condition code register (CCR). (See the diagram below.)
Structure of the Program Status Register
15
PS
14
13
12
RP
11
10
9
8
Vacancy Vacancy Vacancy
RP
7
6
H
I
5
4
IL1, 0
3
2
1
0
N
Z
V
C
CCR
21
MB89150/150A Series
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents
and the actual address is based on the conversion rule illustrated below.
Rule for Conversion of Actual Addresses of the General-purpose Register Area
Lower OP codes
RP
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
b1
b0
↓
↓
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and
bits for control of CPU operations at the time of an interrupt.
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared
otherwise. This flag is for decimal adjustment instructions.
I-flag:
Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0
when reset.
IL1, 0:
Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is
higher than the value indicated by this bit.
IL1
IL0
Interrupt level
0
0
0
1
1
0
2
1
1
3
1
High-low
High
Low = no interrupt
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.
Z-flag:
Set when an arithmetic operation results in 0. Cleared otherwise.
V-flag:
Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does
not occur.
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.
Set to the shift-out value in the case of a shift instruction.
22
MB89150/150A Series
The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains
eight registers. Up to a total of 8 banks can be used on the MB89151 (RAM 128 × 8 bits), and a total of 16 banks
can be used on the MB89152/3/4/5 (RAM 256 × 8 bits). The bank currently in use is indicated by the register
bank pointer (RP).
Note: The number of register banks that can be used varies with the RAM size.
Register Bank Configuration
This address = 0100H + 8 × (RP)
R0
R1
R2
R3
R4
R5
R6
R7
8 banks (MB89151)
16 banks (MB89152/3/4/5)
Memory area
23
MB89150/150A Series
■ I/O MAP
Address
Read/write
Register name
Register description
00H
(R/W)
PDR0
Port 0 data register
01H
(W)
DDR0
Port 0 data direction register
02H
(R/W)
PDR1
Port 1 data register
03H
(W)
DDR1
Port 1 data direction register
04H
(R/W)
PDR2
Port 2 data register
05H
(W)
DDR2
Port 2 data direction register
Vacancy
06H
07H
(R/W)
SYCC
System clock control register
08H
(R/W)
STBC
Standby control register
09H
(R/W)
WDTC
Watchdog timer control register
0AH
(R/W)
TBTC
Time-base timer control register
0BH
(R/W)
WPCR
Watch prescaler control register
0CH
(R/W)
PDR3
Port 3 data register
Vacancy
0DH
0EH
(R/W)
PDR4
Port 4 data register
0FH
(R/W)
PDR5
Port 5 data register
10H
(R/W)
BZCR
Buzzer register
11H
Vacancy
12H
Vacancy
13H
Vacancy
14H
(R/W)
RCR1
Remote control transmission register 1
15H
(R/W)
RCR2
Remote control transmission register 2
16H
Vacancy
17H
Vacancy
18H
(R/W)
T2CR
Timer 2 control register
19H
(R/W)
T1CR
Timer 1 control register
1AH
(R/W)
T2DR
Timer 2 data register
1BH
(R/W)
T1DR
Timer 1 data register
1CH
(R/W)
SMR1
Serial mode register
1DH
(R/W)
SDR1
Serial data register
1EH to 2FH
Vacancy
(Continued)
24
MB89150/150A Series
(Continued)
Address
Read/write
Register name
30H
(R/W)
EIE1
External interrupt 1 enable register
31H
(R/W)
EIF1
External interrupt 1 flag register
32H
(R/W)
EIE2
External interrupt 2 enable register
33H
(R/W)
EIF2
External interrupt 2 flag register
34H to 5FH
Register description
Vacancy
60H to 71H
(R/W)
VRAM
Display data RAM
72H
(R/W)
LCR1
LCD controller/driver control register 1
73H to 7BH
Vacancy
7CH
(W)
ILR1
Interrupt level setting register 1
7DH
(W)
ILR2
Interrupt level setting register 2
7EH
(W)
ILR3
Interrupt level setting register 3
7FH
Vacancy
Note: Do not use vacancies.
25
MB89150/150A Series
■ ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
( VSS = 0.0 V)
Parameter
Power supply voltage
LCD power supply voltage
Symbol
Value
Unit
Max.
VSS – 0.3
VSS + 7.0
V
VSS – 0.3
VSS + 7.0
V
V0 to V3 pins on the product
with booster
VSS – 0.3
VCC + 0.3
V
V0 to V3 pins on the product
without booster
VI1
VSS – 0.3
VCC + 0.3
V
VI1 must not exceed VSS +7.0 V.
All pins except P20 to P27
without a pull-up resistor
VI2
VSS – 0.3
VSS + 7.0
V
P20 to P27 without a pull-up
resistor
VCC
V0 to V3
Input voltage
VO1
VSS – 0.3
VCC + 0.3
V
VO1 must not exceed VSS +7.0 V.
All pins except P20 to P27, P31,
P32, P40 to P47, P50 to P57
without a pull-up resistor
VO2
VSS – 0.3
VSS + 7.0
V
P20 to P27, P31, P32, P40 to
P47, and P50 to P57, without a
pull-up resistor
IOL1
—
10
mA
All pins except P21, P26, P27,
and power supply pins
IOL2
—
20
mA
P21, P26, and P27
Output voltage
“L” level maximum output
current
Remarks
Min.
IOLAV1
—
4
mA
Average value (operating
current × operating rate)
All pins except P21, P26, P27,
and power supply pins.
IOLAV2
—
8
mA
Average value (operating
current × operating rate)
P21, P26, and P27
“L” level total maximum output
current
∑IOL
—
80
mA
“L” level total average output
current
∑IOLAV
—
40
mA
Average value (operating
current × operating rate)
“H” level maximum output
current
IOH1
—
–5
mA
All pins except P30 and power
supply pins
IOH2
—
–10
mA
P30
“L” level average output current
(Continued)
26
MB89150/150A Series
(Continued)
(VSS = 0.0 V)
Parameter
Symbol
Value
Min.
Unit
Max.
Remarks
IOHAV1
—
–2
mA
Average value (operating
current × operating rate)
All pins except P30 and power
supply pins.
IOHAV2
—
–4
mA
Average value (operating
current × operating rate)
P30
“H” level total output current
∑IOH
—
–20
mA
“H” level total average output
current
∑IOHAV
—
–10
mA
Power consumption
PD
—
300
mW
Operating temperature
TA
–40
+85
°C
Storage temperature
Tstg
–55
+150
°C
“H” level average output current
Average value (operating
current × operating rate)
Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this
data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
2. Recommended Operating Conditions
(VSS = 0.0 V)
Parameter
Power supply voltage
Symbol
VCC
Value
Unit
Remarks
Min.
Max.
2.2*1
6.0
V
Normal operation assurance range
Single clock system of the mask
ROM product.
2.2*1
4.0
V
Normal operation assurance range
Dual-clock system of the mask ROM
product.
2.7*1
6.0
V
MB89P155/PV150
1.5
6.0
V
Retains the RAM state in stop mode
LCD power supply voltage
V0 to V3
VSS
VCC*2
V
V0 to V3 pins
LCD reference power supply
input voltage
VIR
1.3
2.2
V
V1 pin on the products with a booster
Reference power external input
Operating temperature
TA
–40
+85
°C
*1: The minimum operating power supply voltage varies with the execution time (instruction cycle time) setting for
the operating frequency.
*2: The LCD power supply voltage range and optimum value vary depending on the characteristics of the liquidcrystal display element.
27
MB89150/150A Series
6
Operating voltage (V)
5
Operation assurance range
4
3
2
1
1
2
3
4
Main clock operating frequency (at an instruction cycle of 4/Fc) (MHz)
4.0
2.0
Minimum execution time (instruction cycle) (µs)
1.0
5
0.8
Note: The shaded area is assured only for the MB89151/A, 152/A, 153/A, 154/A,
and MB89155/A.
Figure 1 Operating Voltage vs. Main Clock Operating Frequency (MB89P155/PV150, and single-clock
MB89151/A, 152/A, 153/A, 154/A, and MB89155/A)
6
Operating voltage (V)
5
4
Operation assurance range
3
2
1
1
2
3
4
Main clock operating frequency (at an instruction cycle of 4/Fc) (MHz)
4.0
2.0
Minimum execution time (instruction cycle) (µs)
1.0
5
0.8
Figure 2 Operating Voltage vs. Main Clock Operating Frequency (Dual-clock MB89151/A, 152/A, 153/A,
154/A, and MB89155/A)
Figures 1 and 2 indicate the operating frequency of the external oscillator at a minimum execution time of 4/FCH.
Since the operating voltage range is dependent on the minimum execution time, see the minimum execution time
if the operating speed is switched using a gear.
28
MB89150/150A Series
3. DC Characteristics
(VCC = +5.0 V, VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
VIH
“H” level input
voltage
Condition
Value
Unit
Remarks
Min.
Typ.
Max.
0.7 VCC

VCC + 0.3
V
CMOS input
0.8 VCC

VSS + 0.3
V
Hysteresis
input
VSS − 0.3

0.3 VCC
V
CMOS input
EC, SI, SCK,
INT10 to INT13,
INT20 to INT27
VSS − 0.3

0.2 VCC
V
Hysteresis
input
VSS − 0.3

VSS + 6.0*1
V
Without
pull-up resistor
P00 to P07,
P10 to P17,
P20 to P27
RST, MOD0, MOD1,
VIHS
VIL
“L” level input
voltage
Pin
Symbol
EC, SI, SCK,
INT10 to INT13,
INT20 to INT27
P00 to P07, P10 to P17,
P20 to P27
—
RST, MOD0, MOD1,
VILS
Open-drain output
pin application
voltage
VD
P20 to P27, P31, P32,
P40 to P47, P50 to P57
“H” level output
voltage
VOH1
P00 to P07, P10 to P17
IOH = –2.0 mA
2.4


V
VOH2
P30
IOH = –6.0 mA
4.0
—
—
V
IOL = 1.8 mA
—

0.4
V
P00 to P07, P10 to P17,
VOL1
“L” level output
voltage
P30 to P32, P40 to P47,
P50 to P57
VOL2
P21, P26, P27
IOL = 8.0 mA
—
—
0.4
V
VOL3
RST
IOL = 4.0 mA
—
—
0.4
V
MOD0, MOD1, P30,
P00 to P07, P10 to P17
0.0 V < VI < VCC
—

±5
µA
Without
pull-up resistor
P20 to P27, P31, P32,
P40 to P47, P50 to P57
0.0 V < VI < 6.0 V
—
—
±1
µA
Without
pull-up resistor
25
50
100
kΩ
With
pull-up resistor
Input leakage current ILI1
(Hi-z output
leakage current)
P20, P22 to P25,
ILI2
Pull-up resistance RPULL
P00 to P07, P10 to P17,
P20 to P27, P40 to P47, VI = 0.0 V
P50 to P57, RST
Common output
impedance
RVCOM COM0 to COM3
V1 to V3 = 5.0 V
—
—
2.5
kΩ
Segment output
impedance
RVSEG
V1 to V3 = 5.0 V
—
—
15
kΩ
LCD divided
resistance
RLCD
300
500
750
Products
kΩ without a
booster only
LCD leakage
current
ILCDL
—
—
±1
µA
SEG0 to SEG35
—
V0 to V3,
COM0 to COM3,
SEG0 to SEG35
Between
VCC and V0
—
(Continued)
29
MB89150/150A Series
(VCC = +5.0 V, VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Pin
Symbol
VOV3
Booster for LCD
driving output voltage VOV2
Reference output
voltage for LCD
VOV1
driving
V3
V2
V1
Condition
V1 = 1.5 V
IIN = 0 µA
Value
Typ.
Max.
4.3
4.5
4.7
V
2.9
3.0
3.1
V
1.3
1.5
1.7
V
VCC = 5.0 V
tinst*3 = 0.95 µs
Main clock
operation
VCC = 3.0 V
tinst*3 = 15.2 µs
Main clock
operation
3.0
4.5
—
3.8
6.0
mA to 105/201 to 205
ICCL
VCC
VCC = 3.0 V
tinst*3 = 61 µs
Subclock
operation
MB89P155-101
—
0.25
0.4
MB89151/A,
152/A,153/A,
mA 154/A, 155/A,
MB89PV150101 to 105
—
0.85
1.4
mA to 105/201 to 205
MB89P155-101
—
0.05
0.1
MB89151/A,
152/A, 153/A,
mA 154/A, 155/A,
MB89PV150101 to 105
—
0.65
1.1
mA to 105/201 to 205
—
0.8
1.2
mA
—
0.2
0.3
mA
—
25
50
µA
FCL = 32.768 kHz,
Power supply
current*2
Products with
a booster only
—
FCH = 4.2 MHz,
ICC2
Remarks
MB89151/A,
152/A, 153/A,
mA 154/A, 155/A,
MB89PV150101 to 105
FCH = 4.2 MHz,
ICC1
Unit
Min.
MB89P155-101
FCH = 4.2 MHz,
ICCS1
VCC = 5.0 V
tinst*3 = 0.95 µs
Main clock
sleep mode
FCH = 4.2 MHz,
ICCS2
VCC = 3.0 V
tinst*3 = 15.2 µs
Main clock
sleep mode
FCL = 32.768 kHz,
ICCSL
VCC = 3.0 V
tinst*3 = 61 µs
Subclock
sleep mode
(Continued)
30
MB89150/150A Series
(Continued)
(VCC = +5.0 V, VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Pin
Symbol
Condition
Value
Min.
Typ.
Max.
VCC = 3.0 V
Watch mode
Remarks
—
10
15
MB89151/2/3/4/5,
MB89P155-101
µA to 105,
MB89PV150-101
to 105
—
250
400
µA MB89P155-201
FCL = 32.768 kHz,
ICCT
Unit
FCL = 32.768 kHz,
Power supply
current*2
ICCT2
VCC
VCC = 3.0 V
• Watch mode
• During
reference
voltage
generator
and booster
operation
to 205
—
ICCH
Input capacitance CIN
TA = +25°C,
VCC = 5.0 V
Stop mode
Other than VCC, VSS f = 1 MHz
MB89151A/2A/
3A/4A/5A,
0.1
1
µA MB89151/2/3/4/5
—
0.1
10
MB89PV150-101
to 105,
µA MB89P155-101
to 105
—
10

pF
*1: P31 and P32 are applicable only for products of the MB89150 series (without the “A” suffix). P40 to P47 and
P50 to P57 are applicable when selected as ports.
*2: The power supply current is measured at the external clock, open output pins, and the external LCD dividing
resistor (or external input for the reference voltage).
In the case of the MB89PV150, the current consumed by the connected EPROM and ICE is not included.
*3: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”
Note: For pins which serves as the segment (SEG20 to SEG35) and ports (P40 to P47, P50 to P57), see the port
parameter when these pins are used as ports and the segment parameter when they are used as segments.
P31 and P32 are applicable only for products without a booster (applicable as external capacitor connection
pins for products with a booster).
31
MB89150/150A Series
4. AC Characteristics
(1) Reset Timing
(VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Parameter
RST “L” pulse width
Value
Condition
tZLZH
—
Min.
Max.
48 tHCYL
—
Unit
Remarks
ns
tZLZH
RST
0.2 VCC
(2) Power-on Reset
(VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Power supply rising time
tR
Power supply cut-off time
tOFF
Condition
—
Value
Unit
Remarks
Min.
Max.
—
50
ms
Power-on reset function only
1
—
ms
Due to repeated operations
Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is
recommended.
tR
tOFF
2.0 V
VCC
32
0.2 V
0.2 V
0.2 V
MB89150/150A Series
(3) Clock Timing
(VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Parameter
Clock frequency
Clock cycle time
Input clock pulse width
Input clock pulse
rising/falling time
Value
Pin
Min.
Typ.
Max.
Unit
Remarks
FCH
X0, X1
1
—
4.2
MHz
Main clock
FCL
X0A, X1A
—
32.768
—
kHz
Subclock
tHCYL
X0, X1
238
—
1000
ns
Main clock
tLCYL
X0A, X1A
—
30.5
—
µs
Subclock
PWH
PWL
X0
20
—
—
ns
PWHL
PWLL
X0A
—
15.2
—
µs
tCR
tCF
X0, X0A
—
—
10
ns
External clock
X0 and X1 Timing and Conditions
tHCYL
0.8 VCC
0.2 VCC
X0
PWL
PWH
tCF
tCR
Main Clock Conditions
When a crystal
or
ceramic resonator is used
X0
X1
When an external clock
is used
X0
X1
When the CR oscillation
option is used
X0
X1
FCH
Open
FCH
FCH
C1
C2
R
C
33
MB89150/150A Series
X0A and X1A Timing and Conditions
tLCYL
0.8 VCC
0.2 VCC
X0A
PWLL
PWHL
tCF
tCR
Subclock Conditions
When a crystal
or
ceramic resonator is used
X0A
X1A
When an external clock
is used
X0A
X1A
R
FCL
When the single clock
option is used
X0A
Open
X1A
Open
FCL
C1
C2
(4) Instruction Cycle
Parameter
Symbol
Instruction cycle
tinst
(minimum execution time)
34
Value
Unit
Remarks
4/FCH, 8/FCH, 16/FCH, 64/FCH
µs
(4/FCH) tinst = 0.95 µs when operating
at FCH = 4.2 MHz
2/FCL
µs
tinst = 61.036 µs when operating at
FCL = 32.768 kHz
MB89150/150A Series
(5) Serial I/O Timing
(VCC = +5.0 V±10%, VSS= 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Pin
Condition
Serial clock cycle time
tSCYC
SCK
SCK ↓ → SO time
tSLOV
SCK, SO
Valid SI → SCK ↑
tIVSH
SI, SCK
SCK ↑ → valid SI hold time
tSHIX
SCK, SI
Serial clock “H” pulse width
tSHSL
SCK
Serial clock “L” pulse width
tSLSH
SCK
Internal shift
clock mode
External shift
clock mode
Value
Unit
Min.
Max.
2 tinst*
—
µs
–200
200
ns
0.5 tinst*
—
µs
0.5 tinst*
—
µs
1 tinst*
—
µs
1 tinst*
—
µs
0
200
ns
SCK ↓ → SO time
tSLOV
SCK, SO
Valid SI → SCK ↑
tIVSH
SI, SCK
0.5 tinst*
—
µs
SCK ↑ → valid SI hold time
tSHIX
SCK, SI
0.5 tinst*
—
µs
Remarks
* : For information on tinst, see “(4) Instruction Cycle.”
Internal Shift Clock Mode
tSCYC
SCK
2.4 V
0.8 V
0.8 V
tSLOV
2.4 V
SO
0.8 V
tIVSH
SI
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
External Shift Clock Mode
tSLSH
SCK
SO
tSHSL
0.8 VCC
0.2 VCC
tSLOV
2.4 V
0.8 V
tIVSH
SI
0.8 VCC
0.2 VCC
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
35
MB89150/150A Series
(6) Peripheral Input Timing
(VCC = +5.0 V±10%, VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Parameter
Peripheral input “H” pulse width 1
tILIH1
Peripheral input “L” pulse width 1
tIHIL1
Peripheral input “H” pulse width 2
tILIH2
Peripheral input “L” pulse width 2
tIHIL2
Value
Pin
INT10 to INT13, EC
INT20 to INT27
Max.
1 tinst*
—
µs
1 tinst*
—
µs
2 tinst*
—
µs
2 tinst*
—
µs
* : For information on tinst, see “(4) Instruction Cycle.”
tIHIL1
INT10 to 13,
EC
tILIH1
0.8 VCC
0.2 VCC
36
tILIH2
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
tIHIL2
INT20 to 27
0.2 VCC
Unit
Min.
0.8 VCC
Remarks
MB89150/150A Series
■ EXAMPLE CHARACTERISTICS
(1) “L” Level Output Voltage
VOL1 vs. IOL
VOL2 vs. IOL
VCC = 2.5 V
VCC = 2.0 V
VCC = 3.0 V
VOL1 (V)
0.6
VCC = 4.0 V
TA = +25°C
0.5
VCC = 5.0 V
VCC = 6.0 V
0.4
VOL2 (V)
VCC = 2.0 V
1.0
TA = +25°C
0.9
VCC = 2.5 V VCC = 3.0 V
0.8
0.7
VCC = 4.0 V
0.6
VCC = 5.0 V
VCC = 6.0 V
0.5
0.3
0.4
0.2
0.3
0.2
0.1
0.1
0
0
1
2
3
4
5
6
7
8
9
10
IOL (mA)
0
0
2
4
6
8
10
12 14 16 18 20
IOL (mA)
(2) “H” Level Output Voltage
VCC – VOH2 vs. IOH
VCC – VOH1 vs. IOH
VCC – VOH1 (V)
VCC = 2.0 V VCC = 2.5 V VCC = 3.0 V
1.0
TA = +25°C
0.9
0.8
0.7
0.6
VCC – VOH2 (V)
VCC = 2.0 V VCC = 2.5 V VCC = 3.0 V
1.0
TA = +25°C
0.9
VCC = 4.0 V
0.8
VCC = 4.0 V
VCC = 5.0 V
VCC = 6.0 V
0.7
VCC = 5.0 V
VCC = 6.0 V
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
0
–1
–2
–3
–4
–5
IOH (mA)
0
0
–1 –2
–3 –4 –5 –6 –7 –8 –9 –10
IOH (mA)
(Continued)
37
MB89150/150A Series
(3) “H” Level Input Voltage/“L” level Input Voltage
(CMOS input)
(Hysteresis input)
VIN vs. VCC
V IN (V)
5.0
TA = +25°C
4.5
VIN vs. VCC
V IN (V)
5.0
TA = +25°C
4.5
4.0
4.0
3.5
3.5
3.0
3.0
2.5
2.5
2.0
2.0
1.5
1.5
1.0
1.0
0.5
0.5
0
VIHS
VILS
0
1
2
3
4
5
6
7
VCC (V)
1
2
3
4
5
6
7
VCC (V)
VIHS: Threshold when input voltage in hysteresis
characteristics is set to “H” level
VILS: Threshold when input voltage in hysteresis
characteristics is set to “L” level
(4) Power Supply Current (External Clock)
ICC1 vs. VCC (Mask ROM product)
ICC2 vs. VCC (Mask ROM product)
ICC1 (mA)
5.0
TA = +25°C
4.5
ICC2 (mA)
1.0
TA = +25°C
0.9
0.8
4.0
FCH = 4.2 MHz
3.5
3.0
FCH = 3 MHz
FCH = 3 MHz
0.6
2.5
0.5
2.0
0.4
FCH = 1 MHz
0.3
1.5
FCH = 1 MHz
1.0
0.2
0.1
0.5
0
FCH = 4.2 MHz
0.7
1
2
3
4
5
6
7
VCC (V)
0
1
2
3
4
5
6
7
VCC (V)
(Continued)
38
MB89150/150A Series
ICCS1 (mA)
1.2
TA = +25°C
1.1
ICCS1 vs. VCC
ICCS2 vs. VCC
FCH = 4.2 MHz
1.0
ICCS2 (mA)
1.0
TA = +25°C
0.9
0.8
0.9
FCH = 3 MHz
0.8
0.7
0.7
0.6
0.6
0.5
FCH = 4.2 MHz
FCH = 3 MHz
0.5
FCH = 1 MHz
0.4
FCH = 1 MHz
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
VCC (V)
7
VCC (V)
ICCL vs. VCC (Mask ROM product)
ICCT vs. VCC
ICCT (µA)
30
TA = +25°C
ICCL (µA)
200
TA = +25°C
180
25
160
140
FCL = 32.768 kHz
FCL = 32.768 kHz
20
120
100
15
80
10
60
40
5
20
0
1
2
3
4
5
6
7
VCC (V)
0
1
2
3
4
5
6
7
VCC (V)
(Continued)
39
MB89150/150A Series
(Continued)
ICCSL vs. VCC
ICCSL (µA)
ICCT2 vs. VCC
ICCT2 (µA)
200
1,000
TA = +25°C
TA = +25°C
180
900
160
800
140
700
120
600
100
500
FCL = 32.768 kHz
FCL = 32.768 kHz
80
400
60
300
40
200
20
100
0
1
2
3
4
5
6
0
7
1
2
3
4
VCC (V)
RPULL (kΩ)
1,000
500
100
TA = +85°C
TA = +25°C
50
TA = –40°C
10
40
2
6
7
VCC (V)
(5) Pull-up Resistance
1
5
3
4
5
6
7
VCC (V)
MB89150/150A Series
■ INSTRUCTIONS
Execution instructions can be divided into the following four groups:
•
•
•
•
Transfer
Arithmetic operation
Branch
Others
Table 1 lists symbols used for notation of instructions.
Table 1
Instruction Symbols
Symbol
Meaning
dir
Direct address (8 bits)
off
Offset (8 bits)
ext
Extended address (16 bits)
#vct
Vector table number (3 bits)
#d8
Immediate data (8 bits)
#d16
Immediate data (16 bits)
dir: b
Bit direct address (8:3 bits)
rel
Branch relative address (8 bits)
@
Register indirect (Example: @A, @IX, @EP)
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH
Upper 8 bits of accumulator A (8 bits)
AL
Lower 8 bits of accumulator A (8 bits)
T
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the
instruction in use.)
TH
Upper 8 bits of temporary accumulator T (8 bits)
TL
Lower 8 bits of temporary accumulator T (8 bits)
IX
Index register IX (16 bits)
(Continued)
41
MB89150/150A Series
(Continued)
Symbol
Meaning
EP
Extra pointer EP (16 bits)
PC
Program counter PC (16 bits)
SP
Stack pointer SP (16 bits)
PS
Program status PS (16 bits)
dr
Accumulator A or index register IX (16 bits)
CCR
Condition code register CCR (8 bits)
RP
Register bank pointer RP (5 bits)
Ri
General-purpose register Ri (8 bits, i = 0 to 7)
×
Indicates that the very × is the immediate data.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)
Indicates that the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(( × ))
The address indicated by the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
Columns indicate the following:
Mnemonic:
Assembler notation of an instruction
~:
Number of instructions
#:
Number of bytes
Operation:
Operation of an instruction
TL, TH, AH:
A content change when each of the TL, TH, and AH instructions is executed. Symbols in
the column indicate the following:
• “–” indicates no change.
• dH is the 8 upper bits of operation description data.
• AL and AH must become the contents of AL and AH immediately before the instruction
is executed.
• 00 becomes 00.
N, Z, V, C:
An instruction of which the corresponding flag will change. If + is written in this column,
the relevant instruction will change its corresponding flag.
OP code:
Code of an instruction. If an instruction is more than one code, it is written according to
the following rule:
Example: 48 to 4F ← This indicates 48, 49, ... 4F.
42
MB89150/150A Series
Table 2
Transfer Instructions (48 instructions)
Mnemonic
~
#
Operation
TL
TH
AH
NZVC
OP code
MOV dir,A
MOV @IX +off,A
MOV ext,A
MOV @EP,A
MOV Ri,A
MOV A,#d8
MOV A,dir
MOV A,@IX +off
MOV A,ext
MOV A,@A
MOV A,@EP
MOV A,Ri
MOV dir,#d8
MOV @IX +off,#d8
MOV @EP,#d8
MOV Ri,#d8
MOVW dir,A
MOVW @IX +off,A
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
–
–
–
–
–
AL
AL
AL
AL
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
++––
++––
++––
++––
++––
++––
++––
––––
––––
––––
––––
––––
––––
45
46
61
47
48 to 4F
04
05
06
60
92
07
08 to 0F
85
86
87
88 to 8F
D5
D6
MOVW ext,A
MOVW @EP,A
MOVW EP,A
MOVW A,#d16
MOVW A,dir
MOVW A,@IX +off
5
4
2
3
4
5
3
1
1
3
2
2
–
–
–
AL
AL
AL
–
–
–
AH
AH
AH
–
–
–
dH
dH
dH
––––
––––
––––
++––
++––
++––
D4
D7
E3
E4
C5
C6
MOVW A,ext
MOVW A,@A
MOVW A,@EP
MOVW A,EP
MOVW EP,#d16
MOVW IX,A
MOVW A,IX
MOVW SP,A
MOVW A,SP
MOV @A,T
MOVW @A,T
MOVW IX,#d16
MOVW A,PS
MOVW PS,A
MOVW SP,#d16
SWAP
SETB dir: b
CLRB dir: b
XCH A,T
XCHW A,T
XCHW A,EP
XCHW A,IX
XCHW A,SP
MOVW A,PC
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
(dir) ← (A)
( (IX) +off ) ← (A)
(ext) ← (A)
( (EP) ) ← (A)
(Ri) ← (A)
(A) ← d8
(A) ← (dir)
(A) ← ( (IX) +off)
(A) ← (ext)
(A) ← ( (A) )
(A) ← ( (EP) )
(A) ← (Ri)
(dir) ← d8
( (IX) +off ) ← d8
( (EP) ) ← d8
(Ri) ← d8
(dir) ← (AH),(dir + 1) ← (AL)
( (IX) +off) ← (AH),
( (IX) +off + 1) ← (AL)
(ext) ← (AH), (ext + 1) ← (AL)
( (EP) ) ← (AH),( (EP) + 1) ← (AL)
(EP) ← (A)
(A) ← d16
(AH) ← (dir), (AL) ← (dir + 1)
(AH) ← ( (IX) +off),
(AL) ← ( (IX) +off + 1)
(AH) ← (ext), (AL) ← (ext + 1)
(AH) ← ( (A) ), (AL) ← ( (A) ) + 1)
(AH) ← ( (EP) ), (AL) ← ( (EP) + 1)
(A) ← (EP)
(EP) ← d16
(IX) ← (A)
(A) ← (IX)
(SP) ← (A)
(A) ← (SP)
( (A) ) ← (T)
( (A) ) ← (TH),( (A) + 1) ← (TL)
(IX) ← d16
(A) ← (PS)
(PS) ← (A)
(SP) ← d16
(AH) ↔ (AL)
(dir): b ← 1
(dir): b ← 0
(AL) ↔ (TL)
(A) ↔ (T)
(A) ↔ (EP)
(A) ↔ (IX)
(A) ↔ (SP)
(A) ← (PC)
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AL
AL
–
–
–
–
AH
AH
AH
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AH
–
–
–
–
dH
dH
dH
dH
–
–
dH
–
dH
–
–
–
dH
–
–
AL
–
–
–
dH
dH
dH
dH
dH
++––
++––
++––
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
++++
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
C4
93
C7
F3
E7
E2
F2
E1
F1
82
83
E6
70
71
E5
10
A8 to AF
A0 to A7
42
43
F7
F6
F5
F0
Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics
are written. (Reverse arrangement of F2MC-8 family)
43
MB89150/150A Series
Table 3
Mnemonic
~
#
ADDC A,Ri
ADDC A,#d8
ADDC A,dir
ADDC A,@IX +off
ADDC A,@EP
ADDCW A
ADDC A
SUBC A,Ri
SUBC A,#d8
SUBC A,dir
SUBC A,@IX +off
SUBC A,@EP
SUBCW A
SUBC A
INC Ri
INCW EP
INCW IX
INCW A
DEC Ri
DECW EP
DECW IX
DECW A
MULU A
DIVU A
ANDW A
ORW A
XORW A
CMP A
CMPW A
RORC A
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19
21
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ROLC A
2
1
CMP A,#d8
CMP A,dir
CMP A,@EP
CMP A,@IX +off
CMP A,Ri
DAA
DAS
XOR A
XOR A,#d8
XOR A,dir
XOR A,@EP
XOR A,@IX +off
XOR A,Ri
AND A
AND A,#d8
AND A,dir
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
Arithmetic Operation Instructions (62 instructions)
Operation
TL
TH
AH
NZVC
OP code
(A) ← (A) + (Ri) + C
(A) ← (A) + d8 + C
(A) ← (A) + (dir) + C
(A) ← (A) + ( (IX) +off) + C
(A) ← (A) + ( (EP) ) + C
(A) ← (A) + (T) + C
(AL) ← (AL) + (TL) + C
(A) ← (A) − (Ri) − C
(A) ← (A) − d8 − C
(A) ← (A) − (dir) − C
(A) ← (A) − ( (IX) +off) − C
(A) ← (A) − ( (EP) ) − C
(A) ← (T) − (A) − C
(AL) ← (TL) − (AL) − C
(Ri) ← (Ri) + 1
(EP) ← (EP) + 1
(IX) ← (IX) + 1
(A) ← (A) + 1
(Ri) ← (Ri) − 1
(EP) ← (EP) − 1
(IX) ← (IX) − 1
(A) ← (A) − 1
(A) ← (AL) × (TL)
(A) ← (T) / (AL),MOD → (T)
(A) ← (A) ∧ (T)
(A) ← (A) ∨ (T)
(A) ← (A) ∀ (T)
(TL) − (AL)
(T) − (A)
→ C→A
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
00
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
dH
–
–
–
–
dH
–
–
–
dH
dH
00
dH
dH
dH
–
–
–
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
+++–
––––
––––
++––
+++–
––––
––––
++––
––––
––––
++R–
++R–
++R–
++++
++++
++–+
28 to 2F
24
25
26
27
23
22
38 to 3F
34
35
36
37
33
32
C8 to CF
C3
C2
C0
D8 to DF
D3
D2
D0
01
11
63
73
53
12
13
03
C ← A←
–
–
–
++–+
02
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++++
++++
++++
++++
++++
++++
++++
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
14
15
17
16
18 to 1F
84
94
52
54
55
57
56
58 to 5F
62
64
65
(A) − d8
(A) − (dir)
(A) − ( (EP) )
(A) − ( (IX) +off)
(A) − (Ri)
Decimal adjust for addition
Decimal adjust for subtraction
(A) ← (AL) ∀ (TL)
(A) ← (AL) ∀ d8
(A) ← (AL) ∀ (dir)
(A) ← (AL) ∀ ( (EP) )
(A) ← (AL) ∀ ( (IX) +off)
(A) ← (AL) ∀ (Ri)
(A) ← (AL) ∧ (TL)
(A) ← (AL) ∧ d8
(A) ← (AL) ∧ (dir)
(Continued)
44
MB89150/150A Series
(Continued)
Mnemonic
~
#
AND A,@EP
AND A,@IX +off
AND A,Ri
OR A
OR A,#d8
OR A,dir
OR A,@EP
OR A,@IX +off
OR A,Ri
CMP dir,#d8
CMP @EP,#d8
CMP @IX +off,#d8
CMP Ri,#d8
INCW SP
DECW SP
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
Operation
(A) ← (AL) ∧ ( (EP) )
(A) ← (AL) ∧ ( (IX) +off)
(A) ← (AL) ∧ (Ri)
(A) ← (AL) ∨ (TL)
(A) ← (AL) ∨ d8
(A) ← (AL) ∨ (dir)
(A) ← (AL) ∨ ( (EP) )
(A) ← (AL) ∨ ( (IX) +off)
(A) ← (AL) ∨ (Ri)
(dir) – d8
( (EP) ) – d8
( (IX) + off) – d8
(Ri) – d8
(SP) ← (SP) + 1
(SP) ← (SP) – 1
Table 4
Mnemonic
BZ/BEQ rel
BNZ/BNE rel
BC/BLO rel
BNC/BHS rel
BN rel
BP rel
BLT rel
BGE rel
BBC dir: b,rel
BBS dir: b,rel
JMP @A
JMP ext
CALLV #vct
CALL ext
XCHW A,PC
RET
RETI
~
#
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
Mnemonic
PUSHW A
POPW A
PUSHW IX
POPW IX
NOP
CLRC
SETC
CLRI
SETI
~
#
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++++
++++
++++
++++
––––
––––
67
66
68 to 6F
72
74
75
77
76
78 to 7F
95
97
96
98 to 9F
C1
D1
Branch Instructions (17 instructions)
Operation
If Z = 1 then PC ← PC + rel
If Z = 0 then PC ← PC + rel
If C = 1 then PC ← PC + rel
If C = 0 then PC ← PC + rel
If N = 1 then PC ← PC + rel
If N = 0 then PC ← PC + rel
If V ∀ N = 1 then PC ← PC + rel
If V ∀ N = 0 then PC ← PC + reI
If (dir: b) = 0 then PC ← PC + rel
If (dir: b) = 1 then PC ← PC + rel
(PC) ← (A)
(PC) ← ext
Vector call
Subroutine call
(PC) ← (A),(A) ← (PC) + 1
Return from subrountine
Return form interrupt
Table 5
TL
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
––––
––––
––––
––––
––––
––––
––––
––––
–+––
–+––
––––
––––
––––
––––
––––
––––
Restore
FD
FC
F9
F8
FB
FA
FF
FE
B0 to B7
B8 to BF
E0
21
E8 to EF
31
F4
20
30
Other Instructions (9 instructions)
Operation
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
–––R
–––S
––––
––––
40
50
41
51
00
81
91
80
90
45
L
46
F
A
ADDC
ADDC
A
SUBC
SUBC
A
MOV
A
XOR
AND
OR
SETC
CLRB
BBC
INCW
DECW MOVW MOVW
dir: 1 dir: 1,rel
SP
SP
SP,A
A,SP
MOV
CMP
DAS
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNC
A,R0
A,R0
A,R0
A,R0
R0,A
A,R0
A,R0
A,R0 R0,#d8 R0,#d8
dir: 0 dir: 0,rel
R0
R0
#0
rel
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BC
A,R1
A,R1
A,R1
A,R1
R1,A
A,R1
A,R1
A,R1 R1,#d8 R1,#d8
dir: 1 dir: 1,rel
R1
R1
#1
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BP
A,R2
A,R2
A,R2
A,R2
R2,A
A,R2
A,R2
A,R2 R2,#d8 R2,#d8
dir: 2 dir: 2,rel
R2
R2
#2
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BN
A,R3
A,R3
A,R3
A,R3
R3,A
A,R3
A,R3
A,R3 R3,#d8 R3,#d8
dir: 3 dir: 3,rel
R3
R3
#3
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNZ
A,R4
A,R4
A,R4
A,R4
R4,A
A,R4
A,R4
A,R4 R4,#d8 R4,#d8
dir: 4 dir: 4,rel
R4
R4
#4
rel
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BZ
A,R5
A,R5
A,R5
A,R5
R5,A
A,R5
A,R5
A,R5 R5,#d8 R5,#d8
dir: 5 dir: 5,rel
R5
R5
#5
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BGE
A,R6
A,R6
A,R6
A,R6
R6,A
A,R6
A,R6
A,R6 R6,#d8 R6,#d8
dir: 6 dir: 6,rel
R6
R6
#6
rel
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BLT
A,R7
A,R7
A,R7
A,R7
R7,A
A,R7
A,R7
A,R7 R7,#d8 R7,#d8
dir: 7 dir: 7,rel
R7
R7
#7
rel
8
9
A
B
C
D
E
F
rel
rel
rel
rel
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
CLRB
BBC
MOVW MOVW MOVW XCHW
A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP @EP,#d8 @EP,#d8
dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16
A,EP
7
CLRB
BBC
MOVW MOVW MOVW XCHW
dir: 6 dir: 6,rel A,@IX +d @IX +d,A IX,#d16
A,IX
CLRB
BBC
MOVW MOVW MOVW XCHW
dir: 4 dir: 4,rel
A,ext
ext,A A,#d16
A,PC
MOV
MOV
CLRB
BBC
INCW
DECW MOVW MOVW
@A,T
A,@A
dir: 2 dir: 2,rel
IX
IX
IX,A
A,IX
XOR
AND
OR
DAA
A,#d8
A,#d8
A,#d8
XCH
XOR
AND
OR
A, T
A
A
JMP
CALL
PUSHW POPW MOV
MOVW CLRC
addr16 addr16
IX
IX
ext,A
PS,A
A,@IX +d A,@IX +d A,@IX +d A,@IX +d @IX +d,A A@,IX +d A,@IX +d A,@IX +d @IX +d,#d8 @IX +d,#d8
CMP
CMP
A
MOV
E
6
D
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
CLRB
BBC
MOVW MOVW MOVW XCHW
A,dir
A,dir
A,dir
A,dir
dir,A
A,dir
A,dir
A,dir dir,#d8 dir,#d8
dir: 5 dir: 5,rel
A,dir
dir,A SP,#d16
A,SP
C
5
B
CLRB
BBC
INCW
DECW JMP
MOVW
dir: 0 dir: 0,rel
A
A
@A
A,PC
A
MOV
CMP
ADDC SUBC
A,#d8
A,#d8
A,#d8
A,#d8
A
DIVU
SETI
9
4
8
RORC CMPW ADDCW SUBCW XCHW XORW ANDW ORW
MOVW MOVW CLRB
BBC
INCW
DECW MOVW MOVW
A
A
A
A
A, T
A
A
A
@A,T
A,@A
dir: 3 dir: 3,rel
EP
EP
EP,A
A,EP
7
3
6
ROLC
5
PUSHW POPW MOV
MOVW CLRI
A
A
A,ext
A,PS
4
2
A
RETI
3
MULU
RET
2
1
SWAP
1
NOP
0
0
H
MB89150/150A Series
■ INSTRUCTION MAP
MB89150/150A Series
■ MASK OPTIONS
Part number
MB89151/1A, 2/2A,
3/3A, 4/4A, 5/5A
MB89P155
MB89PV150
Specifying procedure
Specify when
ordering masking
Set with EPROM
programmer
Setting not
possible
No.
1
Pull-up resistors
P00 to P07, P10 to P17
Selectable per pin
2
Pull-up resistors
P40 to P47, P50 to P57
Selectable per pin
Fixed to without a
(Only when segment
pull-up resistor
output is not selected.)
3
Pull-up resistors
P20 to P27
Selectable by pin
Fixed to without a
pull-up resistor
4
Power-on reset
With power-on reset
Without power-on reset
Selectable
Selectable
Selectable
Selectable
Selection of oscillation stabilization time
5
• The initial value of the oscillation
stabilization time for the main clock can
be set by selecting the values of the
WTM1 and WTM0 bits on the right.
WTM1 WTM0
0
0
1
1
0:
1:
0:
1:
Can be set per pin
WTM1WTM0
22/FCH
212/FCH
216/FCH
218/FCH
0
0
1
1
0:
1:
0:
1:
Fixed to without a
pull-up resistor
Fixed to with
power-on reset
22/FCH Fixed to oscillation
stabilization time of
212/FCH 16
2 /FCH
16
2 /FCH
18
2 /FCH
6
Main clock oscillation type
Crystal or ceramic resonator
CR
Selectable
Fixed to crystal or
ceramic only
Fixed to crystal or
ceramic
7
Reset pin output
With reset output
Without reset output
Selectable
Selectable
Fixed to with reset
output
8
Clock mode selection
Dual-clock mode
Single-clock mode
Selectable
Selectable
Fixed to dual-clock
mode
Selectable
Selection of the
number of
segments.
-101/201: 36 segments
-102/202: 32 segments
-103/203: 28 segments
-104/204: 24 segments
-105/205: 20 segments
-101: 36 segments
-102: 32 segments
-103: 28 segments
-104: 24 segments
-105: 20 segments
9
Segment output selection
36: No ports selection
32: Selection of P57 to P54
28: Selection of P57 to P50
24: Selection of P57 to P50, and P47 to P44.
20: Selection of P57 to P50, and P47 to P40.
10
Selection of a built-in booster
Without booster:
-101 to 105
With booster:
MB89151A/2A/3A/4A/5A -201 to 205
Without booster:
MB89151/2/3/4/5
With booster:
Fixed to without
booster
(-100 to 105 only)
47
MB89150/150A Series
• Versions
Version
Mass production
product
Features
One-time PROM
product
MB8915151A
152A
153A
154A
155A
MB89P155-201
-202
-203
-204
-205
MB8915151
152
153
154
155
MB89P155-101
-102
-103
-104
-105
Piggyback/evaluation
product
Number of
segment pins
Booster
—
36
32
28
24
20
Yes
36
32
28
24
20
No
MB89PV150-101
-102
-103
-104
-105
■ ORDERING INFORMATION
Part number
MB89151PF
MB89152PF
MB89153PF
MB89154PF
MB89155PF
MB89P155PF-101
MB89P155PF-102
MB89P155PF-103
MB89P155PF-104
MB89P155PF-105
MB89151APF
MB89152APF
MB89153APF
MB89154APF
MB89155APF
MB89P155PF-201
MB89P155PF-202
MB89P155PF-203
MB89P155PF-204
MB89P155PF-205
Package
Remarks
Without booster
80-pin Plastic QFP
(FPT-80P-M06)
With booster
(Continued)
48
MB89150/150A Series
(Continued)
Part number
MB89151PFM
MB89152PFM
MB89153PFM
MB89154PFM
MB89155PFM
MB89P155PFM-101
MB89P155PFM-102
MB89P155PFM-103
MB89P155PFM-104
MB89P155PFM-105
MB89151APFM
MB89152APFM
MB89153APFM
MB89154APFM
MB89155APFM
MB89P155PFM-201
MB89P155PFM-202
MB89P155PFM-203
MB89P155PFM-204
MB89P155PFM-205
MB89151PFV
MB89152PFV
MB89153PFV
MB89154PFV
MB89155PFV
MB89P155PFV-101
MB89P155PFV-102
MB89P155PFV-103
MB89P155PFV-104
MB89P155PFV-105
MB89151APFV
MB89152APFV
MB89153APFV
MB89154APFV
MB89155APFV
MB89P155PFV-201
MB89P155PFV-202
MB89P155PFV-203
MB89P155PFV-204
MB89P155PFV-205
MB89PV150CF-101
MB89PV150CF-102
MB89PV150CF-103
MB89PV150CF-104
MB89PV150CF-105
Package
Remarks
Without booster
80-pin Plastic LQFP
(FPT-80P-M11)
With booster
Without booster
80-pin Plastic LQFP
(FPT-80P-M05)
With booster
80-pin Ceramic MQFP
(MQP-80C-P01)
Without booster
49
MB89150/150A Series
■ PACKAGE DIMENSIONS
80-pin Plastic QFP
(FPT-80P-M06)
23.90±0.40(.941±.016)
20.00±0.20(.787±.008)
64
3.35(.132)MAX
0.05(.002)MIN
(STAND OFF)
41
65
40
14.00±0.20
(.551±.008)
12.00(.472)
REF
17.90±0.40
(.705±.016)
16.30±0.40
(.642±.016)
INDEX
80
25
"A"
LEAD No.
1
24
0.35±0.10
(.014±.004)
0.80(.0315)TYP
0.16(.006)
0.15±0.05(.006±.002)
M
Details of "A" part
Details of "B" part
0.25(.010)
"B"
0.10(.004)
0.30(.012)
0.18(.007)MAX
18.40(.724)REF
22.30±0.40(.878±.016)
C
0 10°
0.80±0.20
(.031±.008)
0.58(.023)MAX
1994 FUJITSU LIMITED F80010S-3C-2
Dimensions in mm (inches)
80-pin Plastic LQFP
(FPT-80P-M11)
+0.20
16.00±0.20(.630±.008)SQ
14.00±0.10(.551±.004)SQ
60
1.50 −0.10
+.008
.059 −.004
41
61
(Mounting height)
40
12.35
(.486)
REF
15.00
(.591)
NOM
1 PIN INDEX
80
LEAD No.
21
1
0.65(.0256)TYP
0.30±0.10
(.012±.004)
0.13(.005)
0.10(.004)
C
50
1995 FUJITSU LIMITED F80016S-1C-3
Details of "A" part
"A"
20
M
0.127
.005
0.10±0.10
(STAND OFF)
(.004±.004)
+0.05
−0.02
+.002
−.001
0
10˚
0.50±0.20
(.020±.008)
Dimensions in mm (inches)
MB89150/150A Series
80-pin Plastic LQFP
(FPT-80P-M05)
+0.20
14.00±0.20(.551±.008)SQ
1.50 −0.10
+.008
.059 −.004
12.00±0.10(.472±.004)SQ
60
(Mounting height)
41
61
40
9.50
(.374)
REF
13.00
(.512)
NOM
INDEX
80
21
LEAD No.
20
1
Details of "A" part
"A"
+0.08
0.18 −0.03
+.003
.007 −.001
0.50±0.08
(.0197±.0031)
+0.05
0.127 −0.02
+.002
.005 −.001
0.10±0.10
(STAND OFF)
(.004±.004)
0.50±0.20(.020±.008)
0.10(.004)
0
C
Dimensions in mm (inches)
1995 FUJITSU LIMITED F80008S-2C-5
80-pin Ceramic MQFP
(MQP-80C-P01)
10˚
18.70(.736)TYP
12.00(.472)TYP
INDEX AREA
16.30±0.33
(.642±.013)
15.58±0.20
(.613±.008)
1.50(.059)TYP
1.00(.040)TYP
4.50(.177)
TYP
1.27±0.13
(.050±.005)
22.30±0.33
(.878±.013)
24.70(.972)
TYP
0.30(.012)
TYP
0.80±0.25
(.0315±.010)
0.80±0.25
(.0315±.010)
+0.40
1.20 –0.20
+.016
.047 –.008
INDEX AREA
18.12±0.20
12.02(.473)
(.713±.008)
TYP
10.16(.400)
14.22(.560)
TYP
TYP
18.40(.724)
REF
INDEX
1.27±0.13
(.050±.005)
6.00(.236)
TYP
0.30(.012)TYP
7.62(.300)TYP
9.48(.373)TYP
11.68(.460)TYP
0.40±0.10
(.016±.004)
1.50(.059)
TYP
1.00(.040)
TYP
0.40±0.10
(.016±.004)
+0.40
1.20 –0.20
+.016
.047 –.008
0.15±0.05 8.70(.343)
(.006±.002) MAX
C
1994 FUJITSU LIMITED M80001SC-4-2
Dimensions in mm (inches)
51
MB89150/150A Series
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
F9804
 FUJITSU LIMITED Printed in Japan
52
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document presented
as examples of semiconductor device applications, and are not
intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the
use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and measurement
equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have inherently a certain rate of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required
for export of those products from Japan.