HITACHI HA12230

HA12230NT
Audio Signal Processor for Cassette Deck
ADE-207-322E (Z)
6th Edition
Nov. 2000
Description
HA12230NT is silicon monolithic bipolar IC providing PB equalizer, REC equalizer system and each
electronic control switch in one chip.
Functions
• PB equalizer
× 2 channel
• REC equalizer
× 2 channel
• MS use Mixing Amp.
• Each electronic control switch to change tape type and mute etc.
• REC mute
• REC head return switch
• Line Amp.
• Line mute
Features
• REC equalizer is very small number of external parts, built-in 2 types of frequency characteristics
• PB equalizer circuit built-in
• REC/PB are possible with TYPE I/II
• Controllable from direct micro-computer output
• Available to reduce substrate-area because of high integration and small external parts
HA12230NT
Pin Description, Equivalent Circuit
(VCC = 12 V, Ta = 25°C, No signal, The value in the table show typical value.)
Pin No.
Pin Name
Note
17
VCC
V = VCC
16
RECOUT(L)
V = VCC/2
Equivalent Circuit
Pin Description
VCC pin
REC-EQ output
VCC
GND
15
RECOUT(R)
10
MAOUT
1
VREF
30
REC-RETURN
MS Amp. output
Reference
V = V’ = VCC/2
VCC
REC return
,
30 V
V
pin 3, pin 29
I
GND
29
BIN(L)
3
BIN(R)
28
AIN(L)
PB B deck input
V = VCC/2
PB A deck input
VCC
PB-NF
4
AIN(R)
11
MAI
V = VCC/2
MAOUT
100 k
V
45 k
VCC/2
Rev.6, Nov. 2000, page 2 of 32
VCC
MS Amp. input
HA12230NT
Pin Description, Equivalent Circuit
(VCC = 12 V, Ta = 25°C, No signal, The value in the table show typical value.) (cont)
Pin No.
Pin Name
Note
23
PBOUT(L)
V = VCC/2
Equivalent Circuit
Pin Description
VCC
PB output
V
GND
9
PBOUT(R)
25
EQOUT(L)
7
EQOUT(R)
26
PB-EQ(L)
EQ output (120 µ)
V = VCC/2
EQ output (70 µ)
VCC
V
EQOUT
GND
6
PB-EQ(R)
13
RECIN(R)
V = VCC/2
REC-EQ input
VCC
100 k
VCC/2
18
RECIN(L)
24
TAI(L)
8
TAI(R)
19
MUTE
Tape input
I = 20 µA
VCC
Mode control input
I
22 k
100 k
GND
20
A 120/70
21
A/B
22
B I/II
Rev.6, Nov. 2000, page 3 of 32
HA12230NT
Pin Description, Equivalent Circuit
(VCC = 12 V, Ta = 25°C, No signal, The value in the table show typical value.) (cont)
Pin No.
Pin Name
Note
12
IREF
V = 1.2 V
2
GND
27
PB-NF(L)
Equivalent Circuit
Pin Description
Equalizer
reference current
input
GND pin
PB-IN = Vref
PB EQ feed back
VCC
PB-IN
330 k
180
7
5
PB-NF(R)
14
RIP
PBOUT = Vref
VCC
V
GND
Rev.6, Nov. 2000, page 4 of 32
NAB output
REC Return
2
Vref
1
REC Return
REC Return
BIN(L)
GND
A
3
B
4
5
+
−
A
B
−
+
26
PB-NF(L)
AIN(R)
AIN(L)
BIN(R)
6
25
EQOUT(L)
120/70
PB-EQ(L)
27
PB-NF(R)
28
TAI(L)
7
24
120/70
PB-EQ(R)
29
EQOUT(R)
Mute
−
+
8
23
+
9
12
19
11
20
10
−
21
A/B
LPF +
PBOUT(R)
+
−
Mute
+
−
B I/II
22
A120/70
MAOUT
+
30
TAI(R)
MUTE
MAI
RECIN(L)
RECIN(R)
+
13
18
+
IREF
VCC
+
RIP
14
REC-EQ
REC-EQ
17
+
15
16
+
PBOUT(L)
Unit R : Ω
C:F
RECOUT(R)
RECOUT(L)
HA12230NT
Block Diagram
Rev.6, Nov. 2000, page 5 of 32
HA12230NT
Parallel Data Format
Pin No.
Pin Name
Lo
Mid
Hi
19
MUTE
MUTE OFF
—
MUTE ON
20
A 120/70
*
—
*
21
A/B
B
Return SW OFF
REC Mute ON
A
Return SW ON
REC Mute ON
A
Return SW ON
REC Mute OFF
22
B I/II
REC-EQ *
TYPE I
—
REC-EQ *
TYPE II
Note: PB-EQ 120/70 logic
A/B
B
A 120/70
120
B I/II
Lo
Mid
Hi
Low
Low
120 µ
120 µ
120 µ
Low
High
70 µ
120 µ
120 µ
High
Low
120 µ
70 µ
70 µ
High
High
70 µ
70 µ
70 µ
Rev.6, Nov. 2000, page 6 of 32
HA12230NT
Functional Description
Power Supply Voltage Range
HA12230NT is designed to operate on single supply, shown by table 1.
Table 1
Operating Power Supply Voltage
Item
Power Supply Voltage Range
Single Supply
6.5 V to 15.0 V
Reference Voltage
These devices provide the reference voltage of half the supply voltage that is the signal grounds. As the
peculiarity of these devices, the capacitor for the ripple filter is very small about 1/100 compared with their
usual value. The block diagram is shown as figure 1.
17 VCC
14
2
+
1 µF
+
−
Line Amp. block
+
−
MS mixing Amp. block
+
−
Lch REC-EQ block
+
−
Rch REC-EQ block
+
−
PB-EQ block
1
Figure 1 The Block Diagram of Reference Supply Voltage
Rev.6, Nov. 2000, page 7 of 32
HA12230NT
Operating Mode Control
HA12230NT provide fully electronic switching circuits. And each operating mode control is controlled by
parallel data (DC voltage).
Table 2
Threshold Voltage (Vth)
Pin No.
Lo
Mid
Hi
Unit
19, 20, 22
0.0 to 0.5
—
2.4 to VCC
V
Test Condition
Input Pin
Measure
V
21
Note:
0.0 to 0.5
1.2 to 1.8
2.4 to VCC
V
1. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when
each pins are open.
2. Over shoot level and under shoot level of input signal must be the standardized.
(High: VCC, Low: –0.2 V)
Block Diagram
Figure 2 shows the block diagram.
As this IC is built-in REC return switch, the configuration system can be simple system using a few
external component and the REC/PB head.
About these logics, please look at the Parallel Data Format.
REC - EQ
REC-IN(L)
18
0.47 µ
5.1 k
+
+
REC-OUT(L)
16
2.2 µ
8.2 k
30
Return SW
B head
BIN(L)
AIN(L)
A head
29
B
28
A
+
−
330 k
To 24
180
120/70
0.1 µ
Vref
22 k
27
15 k
26
5.1 k
5.1 k
25
EQOUT(L)
0.01 µ
Unit R : Ω
C:F
Figure 2 Block Diagram (Lch)
Rev.6, Nov. 2000, page 8 of 32
HA12230NT
Level Diagram
The gain establishment of PB-EQ considers PB output level {(internal Line Amp. + PB Amp.) = 580 mV
(Dolby Level)} like figure 3 at the target.
After replace RA and RB with a half-fix volume, adjust level.
Regarding REC-EQ adjust the gain in front of input to this IC.
The level diagram of 1 kHz is shown figure 3.
Similarly to PB, it consider Dolby level as a standard. And R1 needs the value more than 5.6 kΩ.
Because mode establishment resistances are built-in, REC-EQ frequency characteristics are respectively
fixed value.
In case the change of the frequency characteristics are necessary, please inquire the responsible agent
because the adjustment of resistors is necessary.
0.6 mV PB-EQ
Line Amp.
41.2 dB
68 mV 30 mV
25.7 dB
580 mV
RA
RB
Figure 3 PB System Level Diagram
Line Mute
HA12230NT is built-in with mute circuit to Line Amp.
A mute control does with High/Low of pin 19.
Reducing pop noise is so much better 10 kΩ to 22 kΩ resistor to pin 19 in series and 1 µF to 22 µF
capacitor.
A mute is not built-in when doing a power ON/OFF.
Please correspond to it, on the side of a set system.
Test Mode
Test mode becomes if it is resistor less than 10 kΩ of pin 12.
Please use resistor of 22 kΩ on the occasion of mount.
Rev.6, Nov. 2000, page 9 of 32
HA12230NT
Music Sensor Mixing Block
• Gain with TAI to MAOUT
Case of one-side input, gain with TAI to MAOUT is attenuations 6 dB.
GV = (L ⋅ R signal addition circuit) + (MS Amp. gain) + (TAI one-side input attenuations)
= 20 + 20log 100 k + 45 k + (−6)
45 k
≈ 24.2 (dB)
For a necessary case, please in series add CR to MAI terminal for gain regulation.
+
24
23
TAI(L)
1k
PBOUT(L)
18.4 k
−
+
Mute
×1
L ⋅ R signal
addition circuit
−6dB
×1
+
−
Line Amp.
1k
8
20 dB
+
−
Mute
MS Amp.
LPF
25 kHz
+
−
10 MAOUT
100 k
45 k
18.4 k
TAI(R)
30 mVrms
9
PBOUT(R)
580 mVrms
11
MAI
+
Figure 4 Music Sensor Mixing Amp. Block Diagram
Rev.6, Nov. 2000, page 10 of 32
HA12230NT
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Rating
Unit
Maximum supply voltage
VCC max
16
V
Power dissipation
Pd
500
mW
Operating temperature
Topr
–40 to +75
°C
Storage temperature
Tstg
–55 to +125
°C
Operating voltage
Vopr
6.5 to 15
V
Note
Ta ≤ 75°C
Note: HA12230NT operates on single supply voltage.
Rev.6, Nov. 2000, page 11 of 32
Rev.6, Nov. 2000, page 12 of 32
Test Condition
THD PB
VN PB
CT R/L(1)
CT A/B
GV LA
THD LA
Vomax LA
GV MS
L-MUTE ATT
A/B
A/B
A/B
A/B
A
A
A
A
A
I
I
I
I
I
I
I
I
I
120
120
120
120
120
120
120
120
120
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
ON
1k

1k
1k
1k
1k
1k
1k
1k
2.4

6.0
6.0
30.0
30.0

30.0
120.0
THD = 1%
Rg = 820Ω, DIN-AUDIO
fin
Vin
A/B B I/II A120/70 MUTE (Hz) (mVrms)
Other


A
I
70
No signal
IQ
OFF
 


VIL


 


VIM


 


VIH


I
120
1k
∗1
REC-EQ → PB-EQ
CT PB/REC(1) A
OFF
I
120
1k
6.0
PB-EQ → REC-EQ
CT PB/REC(2) A
OFF
A/B I
120
1k
GV PB(1)
0.6
OFF
A
I
120
GV PB(2)
0.6
OFF 10k
A
II
70
GV PB(3)
0.6
OFF 10k
Vomax PB
A/B I
120
1k
THD = 1%

OFF
Symbol
Notes: 1. Large level without clipping
2. VCC = 6.5 V
PB-EQ THD
PB-EQ noise voltage
PB-EQ channel separation
PB-EQ crosstalk
Line AMP gain
Line AMP THD
Line AMP maximum output level
MS AMP gain
Line MUTE attenuation
PB-EQ maximum output level
PB-EQ gain
PB-REC crosstalk
Logical threshold
Item
Quiescent current
IC Condition


50.0
60.0
24.2

1.16
22.7
70.0
0.2
90
60.0
70.0
25.7
0.05
1.40
24.2
80.0



13
4
4/3
4
4
4/3
R

L




18
28
28/29
28
28
28/29



9
15
7
7
7
7
R

25
25
23
23
23
23
23

23







10

∗2
ReL COM mark

17
 19~22

21
 19~22
23

16

25

25

25

25 
∗2
Application Terminal
Input
Output
4/3 28/29 7
0.5
%
180 µVrms 4/3 28/29 7
4/3 28/29 9

dB
4/3 28/29 9

dB
9
8
27.2 dB
24
9
8
0.30 %
24
9
 Vrms 8
24
8
25.7 dB
24 
9
dB
8
24

Min Typ Max Unit
15.0 22.5 33.0 mA
−0.2  0.5
V
1.2  1.8
V
2.4  VCC
V
50.0 60.0 
dB
60.0 70.0 
dB
38.2 41.2 44.2 dB
35.2 38.2 41.2 dB
31.0 34.0 37.0 dB
0.3 0.6  Vrms
Specification
(Ta = 25°C, VCC = 12 V, PBIN Standard Level = 0.6 mVrms at 1 kHz, LineIN Standard Level = 30 mVrms, LineOUT Standard Level = 580 mVrms)
HA12230NT
Electrical Characteristics
R-MUTE ATT
Vomax REC
THD REC
S/N REC
REC-EQ channel separation
REC-MUTE attenuation
REC-EQ maximum output level
REC-EQ THD
REC-EQ S/N
Notes: 1. Large level without clipping
2. VCC = 6.5 V
REC-EQ
frequency characteristics
TYPE II
REC-EQ
frequency characteristics
TYPE I
Symbol
GV REC-NN1
GV REC-NN2
GV REC-NN3
GV REC-NC1
GV REC-NC2
GV REC-NC3
CT R/L(2)
Item
MID
A
A
A
A/B
A
A
A
A
A
A
A
I
I
I
I
120
120
120
120
OFF
OFF
OFF
OFF
1k
1k
1k
1k
∗1

77.5

fin
Vin
B I/II A120/70 MUTE (Hz) (mVrms)
1k
OFF
7.75
I
120
5k
OFF
7.75
I
120
OFF 12.5k 7.75
I
120
1k
OFF
7.75
II
120
5k
OFF
7.75
II
120
OFF 12.5k 7.75
II
120
1k
OFF
I
120
∗1
IC Condition
Test Condition
Rg = 5.1kΩ, A-WTG
THD = 1%
Other
66.0
0.7

56.0
Min
13.5
15.25
25.0
18.0
20.5
29.0
61.0
R
13
13
13
13
13
13
13
13
13
13
13
76.0 
dB
1.0  Vrms
0.2 0.5
%
59.0 
dB
18
18
18
18
L
18
18
18
18
18
18
18
15
15
15
15
R
15
15
15
15
15
15
15
16
16
16
16




∗2
ReL COM mark

16

16

16

16

16

16

16
Application Terminal
Input
Output
Max Unit
16.5 dB
19.25 dB
31.0 dB
21.0 dB
24.5 dB
35.0 dB

dB
Typ
15.0
17.25
28.0
19.5
22.5
32.0
70.0
Specification
(Ta = 25°C, VCC = 12 V, EQIN Standard Level = −20 dBs = 77.5 mVrms)
HA12230NT
Electrical Characteristics (cont)
Rev.6, Nov. 2000, page 13 of 32
Rch
Lch
SW4
SW2
ON REC SW3
SW1
AUDIO SG
TAI PB
OFF
AC VM1
Rch
Lch
Bin
2
REC Return
1
REC Return
REC Return
BIN(L)
3
B
+
4
B
SW6
Ain
5
C3
0.01µ
+
−
6
25
A
−
+
26
120/70
C1 R1 C2 R2
22µ 820 22µ 820
+
A
27
AIN(R)
28
PB-EQ(L)
PB-NF(R)
29
R15
5.1k
PB-EQ(R)
C18 R17 C17 R16
22µ 820 22µ 820
PB-NF(L)
C16
0.01µ
0.1µ
PB
C15
24
SW18
R3
5.1k
R4
5.1k
120/70
EQOUT(L)
R14
5.1k
7
TAI(L)
Ain
Mute
−
+
23
0.47µ
TAI
C13
2.2µ
C14
R13
10k
0.1µ
PB
C4
SW19
8
H
9
EQ
H
PB
REC
SW8
H
−
18
10
EQ
PB
REC
SW10
11
R7
22k
L
SW14
M
19
SW15
L
M
20
SW16
L
M
H
SW9
REC
21
LPF +
C6
+
2.2µ
TAI
+C5
R6
0.47µ
10k
R5
10k
+
−
PB
DC +3.0V DC (+1.5V)
SOURCE3 SOURCE2
SW17
L
M
22
Mute
+
−
R12
10k
PBOUT(L)
SW5
EQOUT(R)
30
+
Bin
B I/II
EQ
A/B
MAI
SW7
REC
PBOUT(R)
+
Vref
A120/70
MAOUT
AIN(L)
BIN(R)
MUTE
12
IREF
PB
TAI(R)
RECIN(L)
+
GND
C7
0.47µ
+
13
17
VCC
R8
5.1k
C8
1µ
+
RIP
14
REC-EQ
REC-EQ
C12
0.47µ
R11
5.1k
16
C11
2.2µ
R10
5.6k
RECOUT(L)
R9
5.6k
C9 +
2.2µ
15
RECOUT(R)
+
+
Rev.6, Nov. 2000, page 14 of 32
RECIN(R)
+
EQ
Rch
Lch
Rch
Lch
MA SW13
Unit R : Ω
C:F
DC VM1
SW12
SW11
Rch
Lch
Noise
meter
Oscillo
scope
Distortion
analyzer
AC VM2
DC VCC
(+12V)
+ C10 SOURCE1
100µ
HA12230NT
Test Circuit
HA12230NT
Characteristic Curves
Quiescent Current vs. Supply Voltage
25
Quiescent Current ICC (mA)
A120
A120
A70
A70
MUTE-OFF
MUTE-ON
MUTE-OFF
MUTE-ON
20
B NORM
B NORM
B CROM
B CROM
MUTE-OFF
MUTE-ON
MUTE-OFF
MUTE-ON
15
10
8
6
−20
10
12
Supply Voltage (V)
14
16
Crosstalk vs. Frequency (REC-EQ→PB-EQ)
RECin→PBOUT
VCC = 12 V
Vin = 17 dB
Crosstalk (dB)
−40
−60
NN
−80
NC
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Nov. 2000, page 15 of 32
HA12230NT
Crosstalk vs. Frequency (PB-EQ→REC-EQ)
−20
Ain→RECOUT
VCC = 12 V
Vin = 6 mVrms
−40
Crosstalk (dB)
NC
−60
NN
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
PB-EQ Gain vs. Frequency
70
PB-EQ Gain (dB)
60
50
A120µ
40
A70µ
30
Ain
→EQOUT
Bin
VCC = 12 V
20
10
Rev.6, Nov. 2000, page 16 of 32
100
1k
Frequency (Hz)
10k
100k
HA12230NT
PB-EQ Maximum Output Level vs. Supply Voltage (1)
PB-EQ Maximum Output Level Vomax (Vrms)
5
NN
Ain
→EQOUT
Bin
T.H.D. ≈ 1%
100 Hz
1 kHz
10 kHz
4
3
2
1
6
8
10
12
Supply Voltage (V)
14
16
PB-EQ Maximum Output Level vs. Supply Voltage (2)
PB-EQ Maximum Output Level Vomax (Vrms)
5
NC
Ain
→EQOUT
Bin
T.H.D. ≈ 1%
100 Hz
1 kHz
10 kHz
4
3
2
1
6
8
10
12
Supply Voltage (V)
14
16
Rev.6, Nov. 2000, page 17 of 32
HA12230NT
PB-EQ Total Harmonic Distortion vs. Supply Voltage (1)
PB-EQ Total Harmonic Distortion T.H.D. (%)
10
NN
Ain
Bin
→EQOUT
100 Hz
1 kHz
10 kHz
Vout = 240 mVrms
1.0
0.1
0.01
8
6
10
12
Supply Voltage (V)
14
16
PB-EQ Total Harmonic Distortion vs. Supply Voltage (2)
PB-EQ Total Harmonic Distortion T.H.D. (%)
10
NC
Ain
Bin
→EQOUT
100 Hz
1 kHz
10 kHz
Vout = 240 mVrms
1.0
0.1
0.01
6
Rev.6, Nov. 2000, page 18 of 32
8
10
12
Supply Voltage (V)
14
16
HA12230NT
PB-EQ Total Harmonic Distortion vs. Output Level (1)
PB-EQ Total Harmonic Distortion T.H.D. (%)
100
VCC = 12 V
Ain A120µ
→EQOUT
Bin BNormal
Vout = 60 mVrms = 0 dB
10
100 Hz
1 kHz
5 kHz
7 kHz
10 kHz
1
0.1
0.01
−5
0
5
10
15
20
25
Output Level Vout (dB)
30
35
40
35
40
PB-EQ Total Harmonic Distortion vs. Output Level (2)
PB-EQ Total Harmonic Distortion T.H.D. (%)
100
VCC = 12 V
Ain A70µ
→EQOUT
Bin BCrom
Vout = 60 mVrms = 0 dB
10
100 Hz
1 kHz
5 kHz
7 kHz
10 kHz
1
0.1
0.01
−5
0
5
10
15
20
25
Output Level Vout (dB)
30
Rev.6, Nov. 2000, page 19 of 32
HA12230NT
PB-EQ Noise Level vs. Supply Voltage
PB-EQ Noise Level (µVrms)
150
Ain mode
EQOUT
Bin mode
A120µ or B NORM
A70µ or B CROM
A120µ or B NORM
A70µ or B CROM
Din-Audio filter
100
Rch
Lch
50
0
8
6
−20
10
12
Supply Voltage (V)
14
16
PB-EQ Channel Separation vs. Frequency (L→R)
PB-EQ Channel Separation (dB)
Ain
→PBOUT
Bin
VCC = 12 V
−40
−60
NC
−80
NN
−100
−120
10
Rev.6, Nov. 2000, page 20 of 32
100
1k
Frequency (Hz)
10k
100k
HA12230NT
PB-EQ Channel Separation vs. Frequency (R→L)
−20
PB-EQ Channel Separation (dB)
Ain
→PBOUT
Bin
VCC = 12 V
−40
−60
NC
−80
NN
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
PB-EQ Crosstalk vs. Frequency (A→B)
−20
VCC = 12 V
PBOUT
PB-EQ Crosstalk (dB)
−40
−60
NN, NC
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Nov. 2000, page 21 of 32
HA12230NT
Line Amp. Gain vs. Frequency
40
Line Amp. Gain (dB)
TAI→PBOUT
VCC = 6, 12, 16 V
Vin = 30 mVrms
30
20
10
10
100
1k
Frequency (Hz)
10k
100k
Line Amp. Total Harmonic Distortion vs. Supply Voltage
Line Amp. Total Harmonic Distortion T.H.D. (%)
1.0
TAI→PBOUT
Vin = 30 mVrms
100 Hz
1 kHz
10 kHz
0.1
0.01
0.001
6
Rev.6, Nov. 2000, page 22 of 32
8
10
12
Supply Voltage (V)
14
16
HA12230NT
Line Amp. Total Harmonic Distortion vs. Output Level
10
TAI→PBOUT
VCC = 12 V
Vout = 580 mVrms = 0 dB
100 Hz
1 kHz
10 kHz
1
0.1
0.01
−25
−20
−15
−10
−5
0
5
Output Level Vout (dB)
10
15
20
Line Amp. Maximum Output Level vs. Supply Voltage
Line Amp. Maximum Output Level Vomax (Vrms)
Line Amp. Total Harmonic Distortion T.H.D. (%)
100
TAI→PBOUT
T.H.D. ≈ 1%
100 Hz
1 kHz
10 kHz
5
4
3
2
1
6
8
10
12
Supply Voltage (V)
14
16
Rev.6, Nov. 2000, page 23 of 32
HA12230NT
MS Amp. Gain vs. Frequency
50
TAI→MAOUT
Vin = 30 mVrms
VCC = 6, 12, 16 V
MS Amp. Gain (dB)
40
30
6V
20
16V
10
0
10
100
Line Mute Attenuation (dB)
10k
100k
Line Mute Attenuation vs. Frequency
−50
−60
1k
Frequency (Hz)
TAI→PBOUT
Vin = 120 mVrms
VCC = 6, 12, 16 V
6V
−70
−80
16V
−90
−100
−110
−120
−130
10
Rev.6, Nov. 2000, page 24 of 32
100
1k
Frequency (Hz)
10k
100k
HA12230NT
REC-EQ Gain vs. Frequency
50
RECin→RECOUT
Vin = 7.75 mVrms
VCC = 12 V
REC-EQ Gain (dB)
40
30
NC
20
NN
10
0
10
REC-EQ Channel Separation (dB)
−20
−40
100
1k
Frequency (Hz)
10k
100k
REC-EQ Channel Separation vs. Frequency (1)
RECin→RECOUT
Vin = 17 dB, NN
L→R
R→L
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Nov. 2000, page 25 of 32
HA12230NT
REC-EQ Channel Separation vs. Frequency (2)
REC-EQ Channel Separation (dB)
−20
−40
RECin→RECOUT
Vin = 12 dB, NC
L→R
R→L
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
REC-MUTE Attenuation vs. Frequency
−20
Rin→RECOUT
Vin = 17 dB
VCC = 12 V
REC-MUTE Attenuation (dB)
−40
−60
NN
−80
NC
−100
−120
10
Rev.6, Nov. 2000, page 26 of 32
100
1k
Frequency (Hz)
10k
100k
HA12230NT
REC-EQ Maximum Output Level vs. Supply Voltage (1)
REC-EQ Maximum Output Level Vomax (Vrms)
4
Rin→RECOUT, NN
T.H.D. ≈ 1%
100 Hz
Lch
1 kHz
10 kHz
100 Hz
Rch
1 kHz
10 kHz
3
2
1
0
6
8
10
12
Supply Voltage (V)
14
16
REC-EQ Maximum Output Level vs. Supply Voltage (2)
REC-EQ Maximum Output Level Vomax (Vrms)
4
3
2
Rin→RECOUT, NC
T.H.D. ≈ 1%
100 Hz
Lch
1 kHz
10 kHz
100 Hz
Rch
1 kHz
10 kHz
1
0
6
8
10
12
Supply Voltage (V)
14
16
Rev.6, Nov. 2000, page 27 of 32
HA12230NT
REC-EQ Total Harmonic Distortion vs. Supply Voltage (1)
REC-EQ Total Harmonic Distortion T.H.D. (%)
10
RECin→RECOUT, NN
100 Hz
1 kHz
10 kHz
1.0
0.1
0.01
6
8
10
12
Supply Voltage (V)
14
16
REC-EQ Total Harmonic Distortion vs. Supply Voltage (2)
REC-EQ Total Harmonic Distortion T.H.D. (%)
10
RECin→RECOUT, NC
100 Hz
1 kHz
10 kHz
1.0
0.1
0.01
6
Rev.6, Nov. 2000, page 28 of 32
8
10
12
Supply Voltage (V)
14
16
HA12230NT
REC-EQ Total Harmonic Distortion vs. Output Level (1)
REC-EQ Total Harmonic Distortion T.H.D. (%)
100
RECin→RECOUT, NN
Vout = 775 mVrms = 0 dB
VCC = 12 V
100 Hz
1 kHz
10 kHz
10
1
0.1
−25
−20
−15
−10
−5
0
5
Output Level Vout (dB)
10
15
20
15
20
REC-EQ Total Harmonic Distortion vs. Output Level (2)
REC-EQ Total Harmonic Distortion T.H.D. (%)
100
RECin→RECOUT, NC
Vout = 775 mVrms = 0 dB
VCC = 12 V
100 Hz
1 kHz
10 kHz
10
1
0.1
−25
−20
−15
−10
−5
0
5
Output Level Vout (dB)
10
Rev.6, Nov. 2000, page 29 of 32
HA12230NT
REC-EQ Signal to Noise Ratio vs. Supply Voltage
REC-EQ Signal to Noise Ratio S/N (dB)
70
65
60
55
NN mode
NC mode
NN mode
NC mode
Lch
Rch
RECOUT
50
6
Rev.6, Nov. 2000, page 30 of 32
8
10
12
Supply Voltage (V)
14
16
HA12230NT
Package Dimensions
Unit: mm
27.10
28.10 Max
8.8
1.0
15
0.48 ± 0.10
0.51 Min
1.78 ± 0.25
10.16
5.06 Max
1.5 Max
2.54 Min
1
10.0 Max
16
30
+ 0.10
0.25 – 0.05
1˚ – 13˚
Hitachi Code
JEDEC
EIAJ
Mass(reference value)
DP-30S
—
Conforms
1.98 g
Rev.6, Nov. 2000, page 31 of 32
HA12230NT
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http://semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia
: http://sicapac.hitachi-asia.com
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.6, Nov. 2000, page 32 of 32