HA12230NT Audio Signal Processor for Cassette Deck ADE-207-322E (Z) 6th Edition Nov. 2000 Description HA12230NT is silicon monolithic bipolar IC providing PB equalizer, REC equalizer system and each electronic control switch in one chip. Functions • PB equalizer × 2 channel • REC equalizer × 2 channel • MS use Mixing Amp. • Each electronic control switch to change tape type and mute etc. • REC mute • REC head return switch • Line Amp. • Line mute Features • REC equalizer is very small number of external parts, built-in 2 types of frequency characteristics • PB equalizer circuit built-in • REC/PB are possible with TYPE I/II • Controllable from direct micro-computer output • Available to reduce substrate-area because of high integration and small external parts HA12230NT Pin Description, Equivalent Circuit (VCC = 12 V, Ta = 25°C, No signal, The value in the table show typical value.) Pin No. Pin Name Note 17 VCC V = VCC 16 RECOUT(L) V = VCC/2 Equivalent Circuit Pin Description VCC pin REC-EQ output VCC GND 15 RECOUT(R) 10 MAOUT 1 VREF 30 REC-RETURN MS Amp. output Reference V = V’ = VCC/2 VCC REC return , 30 V V pin 3, pin 29 I GND 29 BIN(L) 3 BIN(R) 28 AIN(L) PB B deck input V = VCC/2 PB A deck input VCC PB-NF 4 AIN(R) 11 MAI V = VCC/2 MAOUT 100 k V 45 k VCC/2 Rev.6, Nov. 2000, page 2 of 32 VCC MS Amp. input HA12230NT Pin Description, Equivalent Circuit (VCC = 12 V, Ta = 25°C, No signal, The value in the table show typical value.) (cont) Pin No. Pin Name Note 23 PBOUT(L) V = VCC/2 Equivalent Circuit Pin Description VCC PB output V GND 9 PBOUT(R) 25 EQOUT(L) 7 EQOUT(R) 26 PB-EQ(L) EQ output (120 µ) V = VCC/2 EQ output (70 µ) VCC V EQOUT GND 6 PB-EQ(R) 13 RECIN(R) V = VCC/2 REC-EQ input VCC 100 k VCC/2 18 RECIN(L) 24 TAI(L) 8 TAI(R) 19 MUTE Tape input I = 20 µA VCC Mode control input I 22 k 100 k GND 20 A 120/70 21 A/B 22 B I/II Rev.6, Nov. 2000, page 3 of 32 HA12230NT Pin Description, Equivalent Circuit (VCC = 12 V, Ta = 25°C, No signal, The value in the table show typical value.) (cont) Pin No. Pin Name Note 12 IREF V = 1.2 V 2 GND 27 PB-NF(L) Equivalent Circuit Pin Description Equalizer reference current input GND pin PB-IN = Vref PB EQ feed back VCC PB-IN 330 k 180 7 5 PB-NF(R) 14 RIP PBOUT = Vref VCC V GND Rev.6, Nov. 2000, page 4 of 32 NAB output REC Return 2 Vref 1 REC Return REC Return BIN(L) GND A 3 B 4 5 + − A B − + 26 PB-NF(L) AIN(R) AIN(L) BIN(R) 6 25 EQOUT(L) 120/70 PB-EQ(L) 27 PB-NF(R) 28 TAI(L) 7 24 120/70 PB-EQ(R) 29 EQOUT(R) Mute − + 8 23 + 9 12 19 11 20 10 − 21 A/B LPF + PBOUT(R) + − Mute + − B I/II 22 A120/70 MAOUT + 30 TAI(R) MUTE MAI RECIN(L) RECIN(R) + 13 18 + IREF VCC + RIP 14 REC-EQ REC-EQ 17 + 15 16 + PBOUT(L) Unit R : Ω C:F RECOUT(R) RECOUT(L) HA12230NT Block Diagram Rev.6, Nov. 2000, page 5 of 32 HA12230NT Parallel Data Format Pin No. Pin Name Lo Mid Hi 19 MUTE MUTE OFF — MUTE ON 20 A 120/70 * — * 21 A/B B Return SW OFF REC Mute ON A Return SW ON REC Mute ON A Return SW ON REC Mute OFF 22 B I/II REC-EQ * TYPE I — REC-EQ * TYPE II Note: PB-EQ 120/70 logic A/B B A 120/70 120 B I/II Lo Mid Hi Low Low 120 µ 120 µ 120 µ Low High 70 µ 120 µ 120 µ High Low 120 µ 70 µ 70 µ High High 70 µ 70 µ 70 µ Rev.6, Nov. 2000, page 6 of 32 HA12230NT Functional Description Power Supply Voltage Range HA12230NT is designed to operate on single supply, shown by table 1. Table 1 Operating Power Supply Voltage Item Power Supply Voltage Range Single Supply 6.5 V to 15.0 V Reference Voltage These devices provide the reference voltage of half the supply voltage that is the signal grounds. As the peculiarity of these devices, the capacitor for the ripple filter is very small about 1/100 compared with their usual value. The block diagram is shown as figure 1. 17 VCC 14 2 + 1 µF + − Line Amp. block + − MS mixing Amp. block + − Lch REC-EQ block + − Rch REC-EQ block + − PB-EQ block 1 Figure 1 The Block Diagram of Reference Supply Voltage Rev.6, Nov. 2000, page 7 of 32 HA12230NT Operating Mode Control HA12230NT provide fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 Threshold Voltage (Vth) Pin No. Lo Mid Hi Unit 19, 20, 22 0.0 to 0.5 — 2.4 to VCC V Test Condition Input Pin Measure V 21 Note: 0.0 to 0.5 1.2 to 1.8 2.4 to VCC V 1. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when each pins are open. 2. Over shoot level and under shoot level of input signal must be the standardized. (High: VCC, Low: –0.2 V) Block Diagram Figure 2 shows the block diagram. As this IC is built-in REC return switch, the configuration system can be simple system using a few external component and the REC/PB head. About these logics, please look at the Parallel Data Format. REC - EQ REC-IN(L) 18 0.47 µ 5.1 k + + REC-OUT(L) 16 2.2 µ 8.2 k 30 Return SW B head BIN(L) AIN(L) A head 29 B 28 A + − 330 k To 24 180 120/70 0.1 µ Vref 22 k 27 15 k 26 5.1 k 5.1 k 25 EQOUT(L) 0.01 µ Unit R : Ω C:F Figure 2 Block Diagram (Lch) Rev.6, Nov. 2000, page 8 of 32 HA12230NT Level Diagram The gain establishment of PB-EQ considers PB output level {(internal Line Amp. + PB Amp.) = 580 mV (Dolby Level)} like figure 3 at the target. After replace RA and RB with a half-fix volume, adjust level. Regarding REC-EQ adjust the gain in front of input to this IC. The level diagram of 1 kHz is shown figure 3. Similarly to PB, it consider Dolby level as a standard. And R1 needs the value more than 5.6 kΩ. Because mode establishment resistances are built-in, REC-EQ frequency characteristics are respectively fixed value. In case the change of the frequency characteristics are necessary, please inquire the responsible agent because the adjustment of resistors is necessary. 0.6 mV PB-EQ Line Amp. 41.2 dB 68 mV 30 mV 25.7 dB 580 mV RA RB Figure 3 PB System Level Diagram Line Mute HA12230NT is built-in with mute circuit to Line Amp. A mute control does with High/Low of pin 19. Reducing pop noise is so much better 10 kΩ to 22 kΩ resistor to pin 19 in series and 1 µF to 22 µF capacitor. A mute is not built-in when doing a power ON/OFF. Please correspond to it, on the side of a set system. Test Mode Test mode becomes if it is resistor less than 10 kΩ of pin 12. Please use resistor of 22 kΩ on the occasion of mount. Rev.6, Nov. 2000, page 9 of 32 HA12230NT Music Sensor Mixing Block • Gain with TAI to MAOUT Case of one-side input, gain with TAI to MAOUT is attenuations 6 dB. GV = (L ⋅ R signal addition circuit) + (MS Amp. gain) + (TAI one-side input attenuations) = 20 + 20log 100 k + 45 k + (−6) 45 k ≈ 24.2 (dB) For a necessary case, please in series add CR to MAI terminal for gain regulation. + 24 23 TAI(L) 1k PBOUT(L) 18.4 k − + Mute ×1 L ⋅ R signal addition circuit −6dB ×1 + − Line Amp. 1k 8 20 dB + − Mute MS Amp. LPF 25 kHz + − 10 MAOUT 100 k 45 k 18.4 k TAI(R) 30 mVrms 9 PBOUT(R) 580 mVrms 11 MAI + Figure 4 Music Sensor Mixing Amp. Block Diagram Rev.6, Nov. 2000, page 10 of 32 HA12230NT Absolute Maximum Ratings (Ta = 25°C) Item Symbol Rating Unit Maximum supply voltage VCC max 16 V Power dissipation Pd 500 mW Operating temperature Topr –40 to +75 °C Storage temperature Tstg –55 to +125 °C Operating voltage Vopr 6.5 to 15 V Note Ta ≤ 75°C Note: HA12230NT operates on single supply voltage. Rev.6, Nov. 2000, page 11 of 32 Rev.6, Nov. 2000, page 12 of 32 Test Condition THD PB VN PB CT R/L(1) CT A/B GV LA THD LA Vomax LA GV MS L-MUTE ATT A/B A/B A/B A/B A A A A A I I I I I I I I I 120 120 120 120 120 120 120 120 120 OFF OFF OFF OFF OFF OFF OFF OFF ON 1k 1k 1k 1k 1k 1k 1k 1k 2.4 6.0 6.0 30.0 30.0 30.0 120.0 THD = 1% Rg = 820Ω, DIN-AUDIO fin Vin A/B B I/II A120/70 MUTE (Hz) (mVrms) Other A I 70 No signal IQ OFF VIL VIM VIH I 120 1k ∗1 REC-EQ → PB-EQ CT PB/REC(1) A OFF I 120 1k 6.0 PB-EQ → REC-EQ CT PB/REC(2) A OFF A/B I 120 1k GV PB(1) 0.6 OFF A I 120 GV PB(2) 0.6 OFF 10k A II 70 GV PB(3) 0.6 OFF 10k Vomax PB A/B I 120 1k THD = 1% OFF Symbol Notes: 1. Large level without clipping 2. VCC = 6.5 V PB-EQ THD PB-EQ noise voltage PB-EQ channel separation PB-EQ crosstalk Line AMP gain Line AMP THD Line AMP maximum output level MS AMP gain Line MUTE attenuation PB-EQ maximum output level PB-EQ gain PB-REC crosstalk Logical threshold Item Quiescent current IC Condition 50.0 60.0 24.2 1.16 22.7 70.0 0.2 90 60.0 70.0 25.7 0.05 1.40 24.2 80.0 13 4 4/3 4 4 4/3 R L 18 28 28/29 28 28 28/29 9 15 7 7 7 7 R 25 25 23 23 23 23 23 23 10 ∗2 ReL COM mark 17 19~22 21 19~22 23 16 25 25 25 25 ∗2 Application Terminal Input Output 4/3 28/29 7 0.5 % 180 µVrms 4/3 28/29 7 4/3 28/29 9 dB 4/3 28/29 9 dB 9 8 27.2 dB 24 9 8 0.30 % 24 9 Vrms 8 24 8 25.7 dB 24 9 dB 8 24 Min Typ Max Unit 15.0 22.5 33.0 mA −0.2 0.5 V 1.2 1.8 V 2.4 VCC V 50.0 60.0 dB 60.0 70.0 dB 38.2 41.2 44.2 dB 35.2 38.2 41.2 dB 31.0 34.0 37.0 dB 0.3 0.6 Vrms Specification (Ta = 25°C, VCC = 12 V, PBIN Standard Level = 0.6 mVrms at 1 kHz, LineIN Standard Level = 30 mVrms, LineOUT Standard Level = 580 mVrms) HA12230NT Electrical Characteristics R-MUTE ATT Vomax REC THD REC S/N REC REC-EQ channel separation REC-MUTE attenuation REC-EQ maximum output level REC-EQ THD REC-EQ S/N Notes: 1. Large level without clipping 2. VCC = 6.5 V REC-EQ frequency characteristics TYPE II REC-EQ frequency characteristics TYPE I Symbol GV REC-NN1 GV REC-NN2 GV REC-NN3 GV REC-NC1 GV REC-NC2 GV REC-NC3 CT R/L(2) Item MID A A A A/B A A A A A A A I I I I 120 120 120 120 OFF OFF OFF OFF 1k 1k 1k 1k ∗1 77.5 fin Vin B I/II A120/70 MUTE (Hz) (mVrms) 1k OFF 7.75 I 120 5k OFF 7.75 I 120 OFF 12.5k 7.75 I 120 1k OFF 7.75 II 120 5k OFF 7.75 II 120 OFF 12.5k 7.75 II 120 1k OFF I 120 ∗1 IC Condition Test Condition Rg = 5.1kΩ, A-WTG THD = 1% Other 66.0 0.7 56.0 Min 13.5 15.25 25.0 18.0 20.5 29.0 61.0 R 13 13 13 13 13 13 13 13 13 13 13 76.0 dB 1.0 Vrms 0.2 0.5 % 59.0 dB 18 18 18 18 L 18 18 18 18 18 18 18 15 15 15 15 R 15 15 15 15 15 15 15 16 16 16 16 ∗2 ReL COM mark 16 16 16 16 16 16 16 Application Terminal Input Output Max Unit 16.5 dB 19.25 dB 31.0 dB 21.0 dB 24.5 dB 35.0 dB dB Typ 15.0 17.25 28.0 19.5 22.5 32.0 70.0 Specification (Ta = 25°C, VCC = 12 V, EQIN Standard Level = −20 dBs = 77.5 mVrms) HA12230NT Electrical Characteristics (cont) Rev.6, Nov. 2000, page 13 of 32 Rch Lch SW4 SW2 ON REC SW3 SW1 AUDIO SG TAI PB OFF AC VM1 Rch Lch Bin 2 REC Return 1 REC Return REC Return BIN(L) 3 B + 4 B SW6 Ain 5 C3 0.01µ + − 6 25 A − + 26 120/70 C1 R1 C2 R2 22µ 820 22µ 820 + A 27 AIN(R) 28 PB-EQ(L) PB-NF(R) 29 R15 5.1k PB-EQ(R) C18 R17 C17 R16 22µ 820 22µ 820 PB-NF(L) C16 0.01µ 0.1µ PB C15 24 SW18 R3 5.1k R4 5.1k 120/70 EQOUT(L) R14 5.1k 7 TAI(L) Ain Mute − + 23 0.47µ TAI C13 2.2µ C14 R13 10k 0.1µ PB C4 SW19 8 H 9 EQ H PB REC SW8 H − 18 10 EQ PB REC SW10 11 R7 22k L SW14 M 19 SW15 L M 20 SW16 L M H SW9 REC 21 LPF + C6 + 2.2µ TAI +C5 R6 0.47µ 10k R5 10k + − PB DC +3.0V DC (+1.5V) SOURCE3 SOURCE2 SW17 L M 22 Mute + − R12 10k PBOUT(L) SW5 EQOUT(R) 30 + Bin B I/II EQ A/B MAI SW7 REC PBOUT(R) + Vref A120/70 MAOUT AIN(L) BIN(R) MUTE 12 IREF PB TAI(R) RECIN(L) + GND C7 0.47µ + 13 17 VCC R8 5.1k C8 1µ + RIP 14 REC-EQ REC-EQ C12 0.47µ R11 5.1k 16 C11 2.2µ R10 5.6k RECOUT(L) R9 5.6k C9 + 2.2µ 15 RECOUT(R) + + Rev.6, Nov. 2000, page 14 of 32 RECIN(R) + EQ Rch Lch Rch Lch MA SW13 Unit R : Ω C:F DC VM1 SW12 SW11 Rch Lch Noise meter Oscillo scope Distortion analyzer AC VM2 DC VCC (+12V) + C10 SOURCE1 100µ HA12230NT Test Circuit HA12230NT Characteristic Curves Quiescent Current vs. Supply Voltage 25 Quiescent Current ICC (mA) A120 A120 A70 A70 MUTE-OFF MUTE-ON MUTE-OFF MUTE-ON 20 B NORM B NORM B CROM B CROM MUTE-OFF MUTE-ON MUTE-OFF MUTE-ON 15 10 8 6 −20 10 12 Supply Voltage (V) 14 16 Crosstalk vs. Frequency (REC-EQ→PB-EQ) RECin→PBOUT VCC = 12 V Vin = 17 dB Crosstalk (dB) −40 −60 NN −80 NC −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.6, Nov. 2000, page 15 of 32 HA12230NT Crosstalk vs. Frequency (PB-EQ→REC-EQ) −20 Ain→RECOUT VCC = 12 V Vin = 6 mVrms −40 Crosstalk (dB) NC −60 NN −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k PB-EQ Gain vs. Frequency 70 PB-EQ Gain (dB) 60 50 A120µ 40 A70µ 30 Ain →EQOUT Bin VCC = 12 V 20 10 Rev.6, Nov. 2000, page 16 of 32 100 1k Frequency (Hz) 10k 100k HA12230NT PB-EQ Maximum Output Level vs. Supply Voltage (1) PB-EQ Maximum Output Level Vomax (Vrms) 5 NN Ain →EQOUT Bin T.H.D. ≈ 1% 100 Hz 1 kHz 10 kHz 4 3 2 1 6 8 10 12 Supply Voltage (V) 14 16 PB-EQ Maximum Output Level vs. Supply Voltage (2) PB-EQ Maximum Output Level Vomax (Vrms) 5 NC Ain →EQOUT Bin T.H.D. ≈ 1% 100 Hz 1 kHz 10 kHz 4 3 2 1 6 8 10 12 Supply Voltage (V) 14 16 Rev.6, Nov. 2000, page 17 of 32 HA12230NT PB-EQ Total Harmonic Distortion vs. Supply Voltage (1) PB-EQ Total Harmonic Distortion T.H.D. (%) 10 NN Ain Bin →EQOUT 100 Hz 1 kHz 10 kHz Vout = 240 mVrms 1.0 0.1 0.01 8 6 10 12 Supply Voltage (V) 14 16 PB-EQ Total Harmonic Distortion vs. Supply Voltage (2) PB-EQ Total Harmonic Distortion T.H.D. (%) 10 NC Ain Bin →EQOUT 100 Hz 1 kHz 10 kHz Vout = 240 mVrms 1.0 0.1 0.01 6 Rev.6, Nov. 2000, page 18 of 32 8 10 12 Supply Voltage (V) 14 16 HA12230NT PB-EQ Total Harmonic Distortion vs. Output Level (1) PB-EQ Total Harmonic Distortion T.H.D. (%) 100 VCC = 12 V Ain A120µ →EQOUT Bin BNormal Vout = 60 mVrms = 0 dB 10 100 Hz 1 kHz 5 kHz 7 kHz 10 kHz 1 0.1 0.01 −5 0 5 10 15 20 25 Output Level Vout (dB) 30 35 40 35 40 PB-EQ Total Harmonic Distortion vs. Output Level (2) PB-EQ Total Harmonic Distortion T.H.D. (%) 100 VCC = 12 V Ain A70µ →EQOUT Bin BCrom Vout = 60 mVrms = 0 dB 10 100 Hz 1 kHz 5 kHz 7 kHz 10 kHz 1 0.1 0.01 −5 0 5 10 15 20 25 Output Level Vout (dB) 30 Rev.6, Nov. 2000, page 19 of 32 HA12230NT PB-EQ Noise Level vs. Supply Voltage PB-EQ Noise Level (µVrms) 150 Ain mode EQOUT Bin mode A120µ or B NORM A70µ or B CROM A120µ or B NORM A70µ or B CROM Din-Audio filter 100 Rch Lch 50 0 8 6 −20 10 12 Supply Voltage (V) 14 16 PB-EQ Channel Separation vs. Frequency (L→R) PB-EQ Channel Separation (dB) Ain →PBOUT Bin VCC = 12 V −40 −60 NC −80 NN −100 −120 10 Rev.6, Nov. 2000, page 20 of 32 100 1k Frequency (Hz) 10k 100k HA12230NT PB-EQ Channel Separation vs. Frequency (R→L) −20 PB-EQ Channel Separation (dB) Ain →PBOUT Bin VCC = 12 V −40 −60 NC −80 NN −100 −120 10 100 1k Frequency (Hz) 10k 100k PB-EQ Crosstalk vs. Frequency (A→B) −20 VCC = 12 V PBOUT PB-EQ Crosstalk (dB) −40 −60 NN, NC −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.6, Nov. 2000, page 21 of 32 HA12230NT Line Amp. Gain vs. Frequency 40 Line Amp. Gain (dB) TAI→PBOUT VCC = 6, 12, 16 V Vin = 30 mVrms 30 20 10 10 100 1k Frequency (Hz) 10k 100k Line Amp. Total Harmonic Distortion vs. Supply Voltage Line Amp. Total Harmonic Distortion T.H.D. (%) 1.0 TAI→PBOUT Vin = 30 mVrms 100 Hz 1 kHz 10 kHz 0.1 0.01 0.001 6 Rev.6, Nov. 2000, page 22 of 32 8 10 12 Supply Voltage (V) 14 16 HA12230NT Line Amp. Total Harmonic Distortion vs. Output Level 10 TAI→PBOUT VCC = 12 V Vout = 580 mVrms = 0 dB 100 Hz 1 kHz 10 kHz 1 0.1 0.01 −25 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 20 Line Amp. Maximum Output Level vs. Supply Voltage Line Amp. Maximum Output Level Vomax (Vrms) Line Amp. Total Harmonic Distortion T.H.D. (%) 100 TAI→PBOUT T.H.D. ≈ 1% 100 Hz 1 kHz 10 kHz 5 4 3 2 1 6 8 10 12 Supply Voltage (V) 14 16 Rev.6, Nov. 2000, page 23 of 32 HA12230NT MS Amp. Gain vs. Frequency 50 TAI→MAOUT Vin = 30 mVrms VCC = 6, 12, 16 V MS Amp. Gain (dB) 40 30 6V 20 16V 10 0 10 100 Line Mute Attenuation (dB) 10k 100k Line Mute Attenuation vs. Frequency −50 −60 1k Frequency (Hz) TAI→PBOUT Vin = 120 mVrms VCC = 6, 12, 16 V 6V −70 −80 16V −90 −100 −110 −120 −130 10 Rev.6, Nov. 2000, page 24 of 32 100 1k Frequency (Hz) 10k 100k HA12230NT REC-EQ Gain vs. Frequency 50 RECin→RECOUT Vin = 7.75 mVrms VCC = 12 V REC-EQ Gain (dB) 40 30 NC 20 NN 10 0 10 REC-EQ Channel Separation (dB) −20 −40 100 1k Frequency (Hz) 10k 100k REC-EQ Channel Separation vs. Frequency (1) RECin→RECOUT Vin = 17 dB, NN L→R R→L −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.6, Nov. 2000, page 25 of 32 HA12230NT REC-EQ Channel Separation vs. Frequency (2) REC-EQ Channel Separation (dB) −20 −40 RECin→RECOUT Vin = 12 dB, NC L→R R→L −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k REC-MUTE Attenuation vs. Frequency −20 Rin→RECOUT Vin = 17 dB VCC = 12 V REC-MUTE Attenuation (dB) −40 −60 NN −80 NC −100 −120 10 Rev.6, Nov. 2000, page 26 of 32 100 1k Frequency (Hz) 10k 100k HA12230NT REC-EQ Maximum Output Level vs. Supply Voltage (1) REC-EQ Maximum Output Level Vomax (Vrms) 4 Rin→RECOUT, NN T.H.D. ≈ 1% 100 Hz Lch 1 kHz 10 kHz 100 Hz Rch 1 kHz 10 kHz 3 2 1 0 6 8 10 12 Supply Voltage (V) 14 16 REC-EQ Maximum Output Level vs. Supply Voltage (2) REC-EQ Maximum Output Level Vomax (Vrms) 4 3 2 Rin→RECOUT, NC T.H.D. ≈ 1% 100 Hz Lch 1 kHz 10 kHz 100 Hz Rch 1 kHz 10 kHz 1 0 6 8 10 12 Supply Voltage (V) 14 16 Rev.6, Nov. 2000, page 27 of 32 HA12230NT REC-EQ Total Harmonic Distortion vs. Supply Voltage (1) REC-EQ Total Harmonic Distortion T.H.D. (%) 10 RECin→RECOUT, NN 100 Hz 1 kHz 10 kHz 1.0 0.1 0.01 6 8 10 12 Supply Voltage (V) 14 16 REC-EQ Total Harmonic Distortion vs. Supply Voltage (2) REC-EQ Total Harmonic Distortion T.H.D. (%) 10 RECin→RECOUT, NC 100 Hz 1 kHz 10 kHz 1.0 0.1 0.01 6 Rev.6, Nov. 2000, page 28 of 32 8 10 12 Supply Voltage (V) 14 16 HA12230NT REC-EQ Total Harmonic Distortion vs. Output Level (1) REC-EQ Total Harmonic Distortion T.H.D. (%) 100 RECin→RECOUT, NN Vout = 775 mVrms = 0 dB VCC = 12 V 100 Hz 1 kHz 10 kHz 10 1 0.1 −25 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 20 15 20 REC-EQ Total Harmonic Distortion vs. Output Level (2) REC-EQ Total Harmonic Distortion T.H.D. (%) 100 RECin→RECOUT, NC Vout = 775 mVrms = 0 dB VCC = 12 V 100 Hz 1 kHz 10 kHz 10 1 0.1 −25 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 Rev.6, Nov. 2000, page 29 of 32 HA12230NT REC-EQ Signal to Noise Ratio vs. Supply Voltage REC-EQ Signal to Noise Ratio S/N (dB) 70 65 60 55 NN mode NC mode NN mode NC mode Lch Rch RECOUT 50 6 Rev.6, Nov. 2000, page 30 of 32 8 10 12 Supply Voltage (V) 14 16 HA12230NT Package Dimensions Unit: mm 27.10 28.10 Max 8.8 1.0 15 0.48 ± 0.10 0.51 Min 1.78 ± 0.25 10.16 5.06 Max 1.5 Max 2.54 Min 1 10.0 Max 16 30 + 0.10 0.25 – 0.05 1˚ – 13˚ Hitachi Code JEDEC EIAJ Mass(reference value) DP-30S — Conforms 1.98 g Rev.6, Nov. 2000, page 31 of 32 HA12230NT Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 Rev.6, Nov. 2000, page 32 of 32