FAIRCHILD NDS355

March 1996
NDS355N
N-Channel Logic Level Enhancement Mode Field Effect Transistor
General Description
Features
These N-Channel logic level enhancement mode power field
effect transistors are produced using Fairchild's proprietary,
high cell density, DMOS technology. This very high density
process is especially tailored to minimize on-state resistance.
These devices are particularly suited for low voltage
applications in notebook computers, portable phones, PCMICA
cards, and other battery powered circuits where fast switching,
and low in-line power loss are needed in a very small outline
surface mount package.
1.6A, 30V. RDS(ON) = 0.125Ω @ VGS = 4.5V.
Proprietary package design using copper lead frame for
superior thermal and electrical capabilities.
High density cell design for extremely low RDS(ON).
Exceptional on-resistance and maximum DC current
capability.
Compact industry standard SOT-23 surface mount
package.
_______________________________________________________________________________
D
S
G
Absolute Maximum Ratings
T A = 25°C unless otherwise noted
Symbol
Parameter
NDS355N
Units
VDSS
Drain-Source Voltage
30
V
VGSS
Gate-Source Voltage - Continuous
20
V
ID
Drain Current - Continuous
± 1.6
A
(Note 1a)
- Pulsed
PD
± 10
Maximum Power Dissipation
(Note 1a)
(Note 1b)
TJ,TSTG
0.5
W
0.46
Operating and Storage Temperature Range
-55 to 150
°C
THERMAL CHARACTERISTICS
RθJA
Thermal Resistance, Junction-to-Ambient
(Note 1a)
250
°C/W
RθJC
Thermal Resistance, Junction-to -Case
(Note 1)
75
°C/W
© 1997 Fairchild Semiconductor Corporation
NDS355N Rev. D1
Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
OFF CHARACTERISTICS
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = 250 µA
IDSS
Zero Gate Voltage Drain Current
VDS = 24 V, VGS = 0 V
30
V
TJ=125°C
1
µA
10
µA
IGSSF
Gate - Body Leakage, Forward
VGS = 12 V, VDS = 0 V
100
nA
IGSSR
Gate - Body Leakage, Reverse
VGS = -12 V, VDS= 0 V
-100
nA
2
V
ON CHARACTERISTICS (Note 2)
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250 µA
RDS(ON)
Static Drain-Source On-Resistance
VGS = 4.5 V, ID = 1.6 A
TJ=125°C
1
1.6
0.5
1.3
1.5
0.125
TJ=125°C
Ω
0.25
0.085
VGS = 10 V, ID = 1.9 A
ID(ON)
On-State Drain Current
VGS = 4.5 V, VDS = 5 V
gFS
Forward Transconductance
VDS = 5 V, ID = 1.6 A
6
3.5
A
S
VDS = 10 V, VGS = 0 V,
f = 1.0 MHz
245
pF
DYNAMIC CHARACTERISTICS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
SWITCHING CHARACTERISTICS
tD(on)
Turn - On Delay Time
tr
Turn - On Rise Time
tD(off)
tf
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
130
pF
20
pF
(Note 2)
VDD = 10 V, ID = 1 A,
VGS = 10 V, RGEN = 6 Ω
15
30
ns
14
30
ns
Turn - Off Delay Time
12
25
ns
Turn - Off Fall Time
4
10
ns
VDS = 10 V, ID = 1.6 A,
VGS = 5 V
3.5
5
nC
1
nC
2
nC
NDS355N Rev. D1
Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
IS
Maximum Continuous Source Current
0.6
A
ISM
Maximum Pulse Source Current (Note 2)
6
A
VSD
Drain-Source Diode Forward Voltage
1.2
V
VGS = 0 V, IS = 1.6 A
0.8
Notes:
1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by
design while RθCA is determined by the user's board design.
PD (t ) =
TJ
−TA
R θJ A(t )
=
TJ
− TA
R θJ C+RθCA(t )
= I 2D (t ) × RDS (ON )
TJ
Typical RθJA using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:
a. 250oC/W when mounted on a 0.02 in2 pad of 2oz cpper.
b. 270oC/W when mounted on a 0.001 in2 pad of 2oz cpper.
1a
1b
Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
NDS355N Rev. D1
Typical Electrical Characteristics
12
2
6.0
VGS =3.5V
5.0
4.5
R DS(on) , NORMALIZED
9
4.0
6
3.5
3
3.0
DRAIN-SOURCE ON-RESISTANCE
I D , DRAIN-SOURCE CURRENT (A)
V GS =10V
0
0
1
2
3
V DS , DRAIN-SOURCE VOLTAGE (V)
4.0
1.5
4.5
5.0
1
10
0.5
4
0
6
, DRAIN CURRENT (A)
9
12
3
V GS = 4.5V
I D = 1.6A
V
1.4
R DS(on), NORMALIZED
GS
=4.5V
1.2
1
0.8
0.6
-50
-25
0
25
50
75
100
TJ , JUNCTION TEMPERATURE (°C)
125
DRAIN-SOURCE ON-RESISTANCE
R DS(ON), NORMALIZED
D
Figure 2. On-Resistance Variation with Gate Voltage
and Drain Current
1.6
DRAIN-SOURCE ON-RESISTANCE
3
I
Figure 1. On-Region Characteristics
2.5
T J = 125°C
2
1.5
25°C
-55°C
1
0.5
150
0
Figure 3. On-Resistance Variation
with Temperature
2
4
6
8
I D , DRAIN CURRENT (A)
10
12
Figure 4. On-Resistance Variation with Drain
Current and Temperature
1.2
V DS = 10V
TJ = -55°C
25°C
125°C
Vth , NORMALIZED
8
6
4
2
0
1
2
3
4
5
VGS , GATE TO SOURCE VOLTAGE (V)
Figure 5. Transfer Characteristics
6
GATE-SOURCE THRESHOLD VOLTAGE (V)
10
I D , DRAIN CURRENT (A)
6.0
VDS = V GS
1.1
I D = 250µA
1
0.9
0.8
0.7
0.6
-50
-25
0
25
50
75
100
TJ , JUNCTION TEMPERATURE (°C)
125
150
Figure 6. Gate Threshold Variation with
Temperature
NDS355N Rev. D1
Typical Electrical Characteristics (continued)
20
10
I D = 250µA
1.1
I , REVERSE DRAIN CURRENT (A)
1.05
1
0.95
0.9
-50
-25
0
25
50
75
100
125
, JUNCTION TEMPERATURE (°C)
TJ
1
T J = 125°C
25°C
-55°C
0.1
0.01
150
0.001
0.2
175
0.4
0.6
0.8
1
1.2
1.4
VSD , BODY DIODE FORWARD VOLTAGE (V)
Figure 7. Breakdown Voltage Variation
with Temperature
Figure 8. Body Diode Forward Voltage Variation
with Current and Temperature
10
500
I
V GS , GATE-SOURCE VOLTAGE (V)
C iss
300
200
CAPACITANCE (pF)
VGS = 0V
S
BV DSS , NORMALIZED
DRAIN-SOURCE BREAKDOWN VOLTAGE (V)
1.15
C oss
100
50
30
C rss
f = 1 MHz
V GS = 0 V
D
VDS = 5V
= 1.6A
8
10
15
6
4
2
0
0.1
0.2
0.5
1
2
5
10
30
0
1
2
V DS , DRAIN TO SOURCE VOLTAGE (V)
Figure 9. Capacitance Characteristics
t d(off)
V OUT
Output, Vout
tf
10%
10%
90%
Input, Vin
S
Figure 11. Switching Test Circuit
7
90%
90%
DUT
G
6
t off
tr
RL
D
R GEN
5
t on
t d(on)
VGS
4
Figure 10. Gate Charge Characteristics
VDD
V IN
3
Q g , GATE CHARGE (nC)
Inverted
50%
50%
10%
Pulse Width
Figure 12. Switching Waveforms
NDS355N Rev. D1
Typical Electrical Characteristics (continued)
20
10
-55°C
6
I D , DRAIN CURRENT (A)
25°C
T J = 125°C
4
2
2
R
(
DS
)
ON
Lim
10
it
1m
10
1
0.5
0u
s
s
ms
10
0m
s
1
10 s
s
DC
V GS = 10V
0.1
SINGLE PULSE
T A = 25°C
VDS = 5V
g
FS
, TRANSCONDUCTANCE (SIEMENS)
8
0
0
2
4
6
8
10
12
0.01
0.1
1
ID
D , DRAIN CURRENT (A)
V
Figure 13. Transconductance Variation with Drain
Current and Temperature
DS
2
5
10
20
30
50
, DRAIN-SOURCE VOLTAGE (V)
Figure 14. Maximum Safe Operating Area
1
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
0.5
D = 0.5
0.2
0.2
0.1
0.1
0.05
0.02
0.01
0.005
R θJA (t) = r(t) * RθJA
R
= 250 °C/W
θJA
0.05
0.02
P(pk)
0.01
t1
Single Pulse
0.002
0.001
0.0001
t2
TJ - T A = P * R θJA (t)
Duty Cycle, D = t1 /t2
0.001
0.01
0.1
t1 , TIME (sec)
1
10
100
300
Figure 15. Transient Thermal Response Curve
Note : Characterization performed using the conditions described in note 1c. Transient thermal response will
change depending on the circuit board design.
NDS355N Rev. D1