MIC920 Micrel MIC920 80MHz Low-Power SC-70 Op Amp Final Information General Description Features The MIC920 is a high-speed operational amplifier with a gain-bandwidth product of 80MHz. The part is unity gain stable. It has a very low 550µA supply current, and features the SC-70 package. Supply voltage range is from ±2.5V to ±9V, allowing the MIC920 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC920 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC920 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. • • • • • • • 80MHz gain bandwidth product 115MHz –3dB bandwidth 550µA supply current SC-70 or SOT-23-5 packages 3000V/µs slew rate Drives any capacitive load Unity gain stable Applications • • • • • Video Imaging Ultrasound Portable equipment Line drivers Ordering Information Part Number Junction Temp. Range Package MIC920BM5 –40°C to +85°C SOT-23-5* MIC920BC5 –40°C to +85°C SC-70 * Contact factory for availabilty of SOT-23-5 package. Pin Configuration Functional Pinout IN– V– IN+ 3 2 1 Part Identification IN– V– IN+ 3 2 1 A37 4 5 4 5 OUT V+ OUT V+ SOT-23-5 or SC-70 SOT-23-5 or SC-70 Pin Description Pin Number Pin Name Pin Function 1 IN+ Noninverting Input 2 V– Negative Supply (Input) 3 IN– Inverting Input 4 OUT Output: Amplifier Output 5 V+ Positive Supply (Input) Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com December 2001 1 MIC920 MIC920 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VV+ – VV–) ........................................... 20V Differentail Input Voltage (VIN+ – VIN–) .......... 4V, Note 3 Input Common-Mode Range (VIN+, VIN–) .......... VV+ to VV– Lead Temperature (soldering, 5 sec.) ....................... 260°C Storage Temperature (TS) ........................................ 150°C ESD Rating, Note 4 ................................................... 1.5kV Supply Voltage (VS) ....................................... ±2.5V to ±9V Junction Temperature (TJ) ......................... –40°C to +85°C Package Thermal Resistance ............................................. SOT-23-5 .......................................................... 260°C/W SC-70-5 ............................................................. 450°C/W Electrical Characteristics (±5V) V+ = +5V, V– = –5V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted. Symbol Parameter Condition Min VOS Input Offset Voltage VOS VOS Temperature Coefficient IB Input Bias Current 0.26 0.6 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR > 72dB +3.25 V CMRR Common-Mode Rejection Ratio –2.5V < VCM < +2.5V 75 85 dB PSRR Power Supply Rejection Ratio ±3.5V < VS < ±9V 95 104 dB AVOL Large-Signal Voltage Gain RL = 2k, VOUT = ±2V 65 82 dB 85 dB 3.6 V Maximum Output Voltage Swing positive, RL = 2kΩ positive, RL = 200Ω +3.0 PM Phase Margin BW –3dB Bandwidth SR ISC IS 0.43 5 mV –3.6 +1.5 negative, RL = 200Ω, Note 5 Unity Gain-Bandwidth Product Units –3.25 negative, RL = 2kΩ GBW Max µV/°C 1 RL = 100Ω, VOUT = ±1V VOUT Typ 3.0 –2.5 CL = 1.7pF –3.0 V V –1.0 V 67 MHz 32 ° Av = 1, RL = 1kΩ, CL = 1.7pF 100 MHz Slew Rate C=1.7pF, Gain=1, VOUT=5V, peak to peak, positive SR = 1190V/µs 1350 V/µs Short-Circuit Output Current source 45 63 mA sink 20 45 mA Supply Current No Load 0.55 0.80 mA Input Voltage Noise f = 10kHz 11 nV/√Hz Input Current Noise f = 10kHz 0.7 pA/√Hz Electrical Characteristics V+ = +9V, V– = –9V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted Symbol Parameter VOS Input Offset Voltage VOS Input Offset Voltage Temperature Coefficient IB Input Bias Current 0.23 0.60 µA IOS Input Offset Current 0.04 0.3 µA VCM Input Common-Mode Range CMRR > 75dB +7.25 V CMRR Common-Mode Rejection Ratio –6.5V < VCM < +6.5V 60 91 dB PSRR Power Supply Rejection Ratio ±3.5V < VS < ±9V 95 104 dB MIC920 Condition Min Typ Max Units 0.3 5 mV µV/°C 1 2 –7.25 December 2001 MIC920 Micrel Symbol Parameter Condition AVOL Large-Signal Voltage Gain RL = 2k, VOUT = ±2V Min Typ 75 84 dB 93 dB 7.5 V RL = 100Ω, VOUT = ±1V VOUT Maximum Output Voltage Swing positive, RL = 2kΩ 6.5 negative, RL = 2kΩ GBW Unity Gain-Bandwidth Product PM Phase Margin BW –3dB Bandwidth SR ISC IS –7.5 CL = 1.7pF Max –6.2 Units V 80 MHz 30 ° AV = 1, RL = 1kΩ, CL = 1.7pF 115 MHz Slew Rate C=1.7pF, Gain=1, VOUT=5V, peak to peak, negative SR = 2500V/µs 3000 V/µs Short-Circuit Output Current source 50 65 mA sink 30 50 mA Supply Current No Load 0.55 0.8 mA Input Voltage Noise f = 10kHz 10 nV/√Hz Input Current Noise f = 10kHz 0.8 pA/√Hz Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to change). Note 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Note 5. Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in “Typical Characteristics.” December 2001 3 MIC920 MIC920 Micrel Test Circuits V+ 10µF V+ 0.1µF 50Ω R2 BNC 5k Input 10µF 0.1µF 10k 10k 10k 2k 3 BNC R1 5k Input 5 MIC920 BNC 4 3 1 2 50Ω 2 Output 0.1µF R6 5k R3 200k Input 50Ω All resistors: 1% metal film R5 5k 10µF V– All resistors 1% 0.1µF R4 250Ω R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7 10µF V– CMRR vs. Frequency PSRR vs. Frequency 100pF BNC 4 1 0.1µF BNC 0.1µF MIC920 R7c 2k R7b 200Ω R7a 100Ω Output 5 V+ V+ 10µF 10pF R1 20Ω 10µF 3 R3 27k S1 S2 R5 20Ω R2 4k 3 5 0.1µF MIC920 4 1 2 R4 27k 0.1µF 10pF 10µF BNC MIC920 To Dynamic Analyzer VIN 300Ω 4 1 2 0.1µF 1k 50Ω VOUT FET Probe CL 10µF V– V– Closed Loop Frequency Response Measurement Noise Measurement MIC920 0.1µF 5 4 December 2001 MIC920 Micrel Typical Characteristics Supply Current vs. Temperature 0.30 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Offset Voltage vs. Common-Mode Voltage OUTPUT CURRENT (mA) December 2001 7.40 4.44 5.92 1.48 2.96 OFFSET VOLTAGE (mV) 3.40 2.04 2.72 0.68 1.36 -0.68 0 Output Voltage vs. Output Current (Sourcing) 85°C OUTPUT CURRENT (mA) 5 85°C 25°C -80 -64 -72 -40 -48 -56 –40°C 1 25°C 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 V± = ±9V 85°C –40°C 5 0 –40°C V± = ±5V Output Voltage vs. Output Current (Sinking) OUTOUT VOLTAGE (V) 25°C 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 OUTPUT CURRENT (mA) V± = ±9V -72 -80 OUTOUT VOLTAGE (V) 0 13.5 9.0 4.5 –40°C 22.5 18.0 36.0 31.5 27.0 45.0 40.5 OUTPUT VOLTAGE (V) V± = ±5V +85°C Short-Circuit Current vs. Supply Voltage (Sinking) Output Voltage vs. Output Current (Sourcing) 11 10 9 8 7 6 5 4 3 2 1 0 +25°C COMMON-MODE VOLTAGE (V) 17 20 23 26 29 32 35 38 25°C 85°C 41 44 47 –40°C 50 2.0 3.4 4.8 6.2 7.6 9.0 SUPPLY VOLTAGE (V) Output Voltage vs. Output Current (Sinking) 0.5 85°C 0 -0.5 -1.0 -1.5 -2.0 25°C -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 –40°C 0 9.0 V± = ±9V COMMON-MODE VOLTAGE (V) -40 -48 -56 -64 3.4 4.8 6.2 7.6 SUPPLY VOLTAGE (V) +85°C 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 50 45 85°C –40°C +25°C OUTPUT VOLTAGE (V) –40°C 25°C 9 Offset Voltage vs. Common-Mode Voltage V± = ±5V 0 -8 84 80 76 72 68 64 60 56 52 48 44 40 2.0 SHORT-CIRCUIT CURRENT (mA) SHORT-CIRCUIT CURRENT (mA) Short-Circuit Current vs. Supply Voltage (Sourcing) 3.8 5.1 6.4 7.7 SUPPLY VOLTAGE (V) -7.40 -5.92 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 -3.40 -2.72 OFFSET VOLTAGE (mV) OFFSET VOLTAGE (mV) Offset Voltage vs. Common-Mode Voltage 2.2 2 V± = ±2.5V 1.8 1.6 –40°C 1.4 1.2 +25°C 1 0.8 0.6 0.4 0.2 +85°C 0 -900 -540 -180 180 540 900 COMMON-MODE VOLTAGE (V) –40°C 25 20 15 10 0.9 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 0.35 +25°C -24 -32 1 0.95 0.40 +85°C 40 35 30 V± = ±9V V± = ±2.5V 0.45 -2.04 -1.36 1.05 0.50 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 0.40 2.5 -8 -16 V± = ±5V V± = ±5V 0.55 -16 -24 -32 1.1 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) OFFSET VOLTAGE (mV) V± = ±2.5V 1.2 1.15 V± = ±9V -1.48 0 0.60 1.25 Supply Current vs. Supply Voltage -4.44 -2.96 Offset Voltage vs. Temperature OUTPUT CURRENT (mA) MIC920 MIC920 Micrel Bias Current vs. Temperature ±9V 0.10 5 0 -5 -10 ±9.0V ±5.0V ±2.5V -15 Av = –1 -20 R+ = R = 475Ω I -25 1E+6 10E+6 100E+6 200E+6 1M 100M 10M FREQUENCY (Hz) 0.05 0.00 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 40 30 20 40 30 20 400pF 200pF 100pF 0 1000pF 800pF -20 600pF -30 -40 V± = ±5V Av = 1 -50 1E+6 10E+6 100E+6 200E+6 100M 1M 10M FREQUENCY (Hz) 31 65 40 35 30 20 10 40 Gain Bandwidth 30 25 20 200 400 600 800 1000 CAPACITIVE LOAD (pF) V± = ±5V 80 60 40 20 0 100Ω Phase No Load Gain -20 -40 -60 -80 -100 100k 100Ω 50 45 50 40 Phase Margin 40 35 30 30 20 Gain Bandwidth 10 25 20 200 400 600 800 1000 CAPACITIVE LOAD (pF) Open-Loop Frequency Response 225 100 180 135 90 80 60 45 0 -45 -90 -135 -180 -225 1M 10M 100M CAPACITIVE LOAD (pF) 6 V± = ±5V 0 0 GAIN BANDWIDTH (dB) Phase Margin GAIN BANDWIDTH (dB) 45 PHASE MARGIN (°) GAIN BANDWIDTH (MHz) 50 60 50 100 6 6 10M 6 100M 10x10 100x10 200x10 FREQUENCY (Hz) 60 Open-Loop Frequency Response 55 70 0 0 MIC920 V± = ±9V 27 55 Gain Bandwidth and Phase Margin vs. Load 80 29 60 Gain Bandwidth 50 25 0 1 2 3 4 5 6 7 8 9 10 SUPPLY VOLTAGE (±V) 6 6 10M 6 100M 10x10 100x10 200x10 FREQUENCY (Hz) 90 33 70 PHASE MARGIN (°) -40 -50 1M 6 1x10 -30 -40 -50 1M 6 1x10 GAIN BANDWIDTH (MHz) -30 1.7pF 1000pF 471pF 200pF 70 35 75 50pF 0 -10 -20 37 Phase Margin 80 121pF Gain Bandwidth and Phase Margin vs. Load PHASE MARGIN (°) 1.7pF 1000pF 471pF 200pF -10 -20 1000pF 85 GAIN BANDWIDTH (MHz) OPEN-LOOP GAIN (dB) 50pF 100pF V± = ±5V 30 20 10 Gain Bandwidth and Phase Margin vs. Supply Voltage 121pF 10 0 200pF 800pF -20 600pF 400pF -30 V± = ±9V -40 Av = 1 -50 1E+6 1E+7 1E+8 2E+8 1M 10M 100M FREQUENCY (Hz) V± = ±9V 30 20 Open-Loop Gain vs. Frequency 1.7pF 10 0 -10 Open-Loop Gain vs. Frequency 50 40 ±5.0V ±2.5V -10 -15 Av = 2 R = RI = 475Ω F -20 -25 1E+6 10E+6 100E+6 200E+6 1M 100M 10M FREQUENCY (Hz) 50 40 OPEN-LOOP GAIN (dB) 50 10 0 -10 ±9.0V 0 -5 Closed-Loop Gain vs. Frequency 50 CLOSED-LOOP GAIN (dB) CLOSED-LOOP GAIN (dB) Closed-Loop Gain vs. Frequency 10 5 PHASE MARGIN (°) 0.20 15 GAIN (dB) ±5V GAIN (dB) BIAS CURRENT (µA) 0.30 0.15 25 20 25 20 15 10 V± = ±9V 100Ω Phase 40 20 0 -20 -40 -60 -80 -100 100k No Load Gain 100Ω 225 180 135 90 45 0 -45 -90 -135 PHASE MARGIN (°) 0.35 0.25 Closed-Loop Frequency Response Closed-Loop Frequency Response -180 -225 1M 10M 100M CAPACITIVE LOAD (pF) December 2001 MIC920 Micrel Positive PSRR vs. Frequency 120 V± = ±5V 100 80 80 80 60 40 60 40 10 100 1k FREQUENCY (kHz) 0 0.1 10k 70 60 60 40 10 100 1k FREQUENCY (kHz) 10k 1200 600 400 10 0 600 400 200 400 600 800 1000 LOAD CAPACITANCE (pF) 2000 1500 1000 500 200 400 600 800 1000 LOAD CAPACITANCE (pF) December 2001 2000 1500 1000 500 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF) 2.5 60 50 40 30 20 10 0 10 200 400 600 800 1000 LOAD CAPACITANCE (pF) Current Noise Density vs. Frequency 70 NOISE VOLTAGE (nV/Hz1/2) V± = ±9V 2500 V± = ±9V 2500 Voltage Noise Density vs. Frequency Negative Slew Rate 3000 10x10 10M6 3000 800 0 0 10x10 10k 3 100x10 100k3 1x10 1M6 FREQUENCY (Hz) Positive Slew Rate 3500 V± = ±5V 200 200 30 20 100x10 100 0 1x10 1k 3 SLEW RATE (V/µs) SLEW RATE (V/µs) 800 50 40 10x10 10M6 1000 1000 70 60 Negative Slew Rate 1200 V± = ±5V 10k V± = ±9V 90 80 FREQUENCY (Hz) Positive Slew Rate 1400 10x10 10k 3 100x10 100k3 1x10 1M6 10 100 1k FREQUENCY (kHz) 100 V± = ±5V 100x10 100 0 1x10 1k 3 1 Common-Mode Rejection Ratio 30 20 10 0 1 0 0.1 10k 50 40 20 SLEW RATE (V/µs) 10 100 1k FREQUENCY (kHz) CMRR (dB) 80 CMRR (dB) PSRR (dB) V± = ±9V 90 80 0 0 1 100 100 0 0 20 Common-Mode Rejection Ratio Negative PSRR vs. Frequency 120 0 0.1 40 20 1 V± = ±9V 60 NOISE CURRENT (pA/Hz1/2) 0 0.1 PSRR (dB) 100 20 SLEW RATE (V/µs) 120 V± = ±5V 100 PSRR (dB) PSRR (dB) 120 Positive PSRR vs. Frequency Negative PSRR vs. Frequency 100 1000 10000 100000 FREQUENCY (Hz) 7 2.0 1.5 1.0 0.5 0 10 100 1000 10000 100000 FREQUENCY (Hz) MIC920 MIC920 Micrel Functional Characteristics Small Signal Response INPUT (50mV/div) VCC = ±9.0V CL = 1.7µF Av = 1.0V/V OUTPUT (50mV/div) Small Signal Response Small Signal Response INPUT (50mV/div) TIME (100ns/div) TIME (100ns/div) Small Signal Response Small Signal Response INPUT (50mV/div) TIME (100ns/div) VCC = ±5.0V CL = 1000pF Av = +1V/V OUTPUT (50mV/div) VCC = ±9.0V CL = 1000pF Av = +1V/V OUTPUT (50mV/div) INPUT (50mV/div) VCC = ±5.0V CL = 100pF Av = +1V/V OUTPUT (50mV/div) VCC = ±9.0V CL = 100pF Av = +1 TIME (100ns/div) TIME (100ns/div) MIC920 VCC = ±5.0V CL = 1.7µF Av = 1.0V/V TIME (100ns/div) OUTPUT (50mV/div) INPUT (50mV/div) OUTPUT (50mV/div) INPUT (50mV/div) Small Signal Response 8 December 2001 MIC920 Micrel Large Signal Response Large Signal Response OUTPUT (2V/div) OUTPUT (2V/div) V± = ±5V CL = 1.7pF Av = 1 Positive SR = 1350V/µsec Negative SR = 1190V/sec V± = ±9V CL = 1.7pF Av = 1 Positive SR = 3000V/µsec Negative SR = 2500V/µsec TIME (10ns/div) TIME (10ns/div) Large Signal Reponse Large Signal Response OUTPUT (2V/div) OUTPUT (2V/div) V± = ±5V CL = 100pF Av = 1 Positive SR = 373V/µsec Negative SR = 290V/sec V± = ±9V CL = 100pF Av = 1 Positive SR = 672V/µsec Negative SR = 424V/sec TIME (50ns/div) TIME (50ns/div) Large Signal Response Large Signal Response Output (2V/div) OUTPUT (2V/div) V± = ±5V CL = 1000pF Av = 1 Positive SR = 75V/µsec Negative SR = 41V/sec V± = ±9V CL = 1000pF Av = 1 Positive SR = 97V/µsec Negative SR = 60V/sec TIME (100ns/div) December 2001 TIME (100ns/div) 9 MIC920 MIC920 Micrel Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Thermal Considerations The SC70-5 package and the SOT-23-5 package, like all small packages, have a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85°C. The part can be operated up to the absolute maximum temperature rating of 125°C, but between 85°C and 125°C performance will degrade, in particular CMRR will reduce. An MIC920 with no load, dissipates power equal to the quiescent supply current × supply voltage Applications Information The MIC920 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads. Driving High Capacitance The MIC920 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100Ω) in series with the output. Feedback Resistor Selection ( MIC920 ) PD(no load) = VV + − VV − IS Conventional op amp gain configurations and resistor selection apply, the MIC920 is NOT a current feedback device. Also, for minimum peaking, the feedback resistor should have low parasitic capacitance, usually 470Ω is ideal. To use the part as a follower, the output should be connected to input via a short wire. Layout Considerations All high speed devices require careful PCB layout. The following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. It is important to ensure adequate supply bypassing capacitors are located close to the device. When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. ( ) PD(output stage) = VV + − VOUT IOUT Total Power Dissipation = PD(no load) + PD(output stage) Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SC70-5 package has a thermal resistance of 450°C/W. Max. AllowablePowerDissipation = 10 TJ(max) − TA(max) 450°C / W December 2001 MIC920 Micrel Package Information 1.90 (0.075) REF 0.95 (0.037) REF 1.75 (0.069) 1.50 (0.059) 3.00 (0.118) 2.60 (0.102) DIMENSIONS: MM (INCH) 1.30 (0.051) 0.90 (0.035) 3.02 (0.119) 2.80 (0.110) 0.20 (0.008) 0.09 (0.004) 10° 0° 0.15 (0.006) 0.00 (0.000) 0.50 (0.020) 0.35 (0.014) 0.60 (0.024) 0.10 (0.004) SOT-23-5 (M5) 0.65 (0.0256) BSC 1.35 (0.053) 2.40 (0.094) 1.15 (0.045) 1.80 (0.071) 2.20 (0.087) 1.80 (0.071) DIMENSIONS: MM (INCH) 1.00 (0.039) 1.10 (0.043) 0.80 (0.032) 0.80 (0.032) 0.10 (0.004) 0.00 (0.000) 0.30 (0.012) 0.15 (0.006) 0.18 (0.007) 0.10 (0.004) 0.30 (0.012) 0.10 (0.004) SC-70 (C5) MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB USA http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 2001 Micrel Incorporated December 2001 11 MIC920