MICREL MIC921

MIC921
Micrel
MIC921
45MHz Low-Power SC-70 Op Amp
Final Information
General Description
Features
The MIC921 is a high-speed operational amplifier with a gainbandwidth product of 45MHz. The part is unity gain stable. It
has a very low 300µA supply current, and features the
IttyBitty™ SC-70 and SOT-23-5 package.
Supply voltage range is from ±2.5V to ±9V, allowing the
MIC921 to be used in low-voltage circuits or applications
requiring large dynamic range.
The MIC921 is stable driving any capacitative load and
achieves excellent PSRR and CMRR, making it much easier
to use than most conventional high-speed devices. Low
supply voltage, low power consumption, and small packing
make the MIC921 ideal for portable equipment. The ability to
drive capacitative loads also makes it possible to drive long
coaxial cables.
•
•
•
•
•
•
•
•
45MHz gain bandwidth product
61MHz –3dB bandwidth
300µA supply current
SC-70 or SOT-23-5 packages
3200V/µs slew rate
Drives any capacitive load
112dB CMRR
Unity gain stable
Applications
•
•
•
•
•
Video
Imaging
Ultrasound
Portable equipment
Line drivers
Ordering Information
Part Number
Junction Temp. Range
Package
MIC921BM5
–40°C to +85°C
SOT-23-5*
MIC921BC5
–40°C to +85°C
SC-70
*Contact factory for availability of SOT-23-5 package.
Pin Configuration
Functional Pinout
IN–
V–
IN+
3
2
1
Part
Identification
IN–
V–
IN+
3
2
1
A38
4
5
4
5
OUT
V+
OUT
V+
SOT-23-5 or SC-70
SOT-23-5 or SC-70
Pin Description
Pin Number
Pin Name
Pin Function
1
IN+
Noninverting Input
2
V–
Negative Supply (Input)
3
IN–
Inverting Input
4
OUT
Output: Amplifier Output
5
V+
Positive Supply (Input)
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
December 2001
1
MIC921
MIC921
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VV+ – VV–) ........................................... 20V
Differentail Input Voltage (VIN+ – VIN–) .......... 4V, Note 3
Input Common-Mode Range (VIN+, VIN–) .......... VV+ to VV–
Lead Temperature (soldering, 5 sec.) ....................... 260°C
Storage Temperature (TS) ........................................ 150°C
ESD Rating, Note 4 ................................................... 1.5kV
Supply Voltage (VS) ....................................... ±2.5V to ±9V
Junction Temperature (TJ) ......................... –40°C to +85°C
Package Thermal Resistance
SC70-5 .............................................................. 450°C/W
SOT23-5 ............................................................ 260°C/W
Electrical Characteristics (±5V)
V+ = +5V, V– = –5V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted.
Symbol
Parameter
Condition
Min
VOS
Input Offset Voltage
VOS
VOS Temperature Coefficient
IB
Input Bias Current
0.13
0.6
µA
IOS
Input Offset Current
0.06
0.3
µA
VCM
Input Common-Mode Range
CMRR > 72dB
+3.25
V
CMRR
Common-Mode Rejection Ratio
–2.5V < VCM < +2.5V
75
87
dB
PSRR
Power Supply Rejection Ratio
±3.5V < VS < ±9V
95
105
dB
AVOL
Large-Signal Voltage Gain
RL = 2k, VOUT = ±2V
70
84
dB
85
dB
3.7
V
Maximum Output Voltage Swing
Units
0.43
5
mV
–3.25
positive, RL = 2kΩ
+3.0
negative, RL = 2kΩ
positive, RL = 200Ω
–3.7
+1.5
negative, RL = 200Ω, Note 5
GBW
Unity Gain-Bandwidth Product
PM
Phase Margin
BW
–3dB Bandwidth
AV = 1, RL = 1kΩ, CL = 1.7pF
SR
Slew Rate
C=1.7pF, Gain=1, VOUT=5V, peak to peak,
negative SR = 1300V/µs
ISC
Short-Circuit Output Current
source
sink
IS
Max
µV/°C
1
RL = 100Ω, VOUT = ±1V
VOUT
Typ
3.0
–2.5
AV = 1, CL = 1.7pF
–3.0
V
V
–1.0
V
37
MHz
46
°
53
MHz
1500
V/µs
45
57
mA
20
40
mA
Supply Current
No Load
0.30
0.50
mA
Input Voltage Noise
f = 10kHz
12
nV√Hz
Input Current Noise
f = 10kHz
0.7
pA√Hz
Electrical Characteristics
V+ = +9V, V– = –9V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
Symbol
Parameter
VOS
Input Offset Voltage
VOS
Input Offset Voltage
Temperature Coefficient
IB
Input Bias Current
0.13
0.6
µA
IOS
Input Offset Current
0.06
0.3
µA
VCM
Input Common-Mode Range
CMRR > 75dB
+7.25
V
CMRR
Common-Mode Rejection Ratio
–2.5V < VCM < +2.5V
MIC921
Condition
Min
Typ
Max
Units
0.4
5
mV
µV/°C
1
2
–7.25
75
87
dB
December 2001
MIC921
Micrel
Symbol
Parameter
Condition
Min
Typ
PSRR
Power Supply Rejection Ratio
AVOL
Large-Signal Voltage Gain
±3.5V < VS < ±9V
95
105
dB
RL = 2k, VOUT = ±3V
75
86
dB
92
dB
7.6
V
RL = 100Ω, VOUT = ±1V
VOUT
Maximum Output Voltage Swing
positive, RL = 2kΩ
+6.5
Max
–6.2
Units
negative, RL = 2kΩ
–7.6
V
AV = 1, CL = 1.7pF
45
MHz
40
°
61
MHz
3200
V/µs
GBW
Unity Gain-Bandwidth Product
PM
Phase Margin
BW
–3dB Bandwidth
AV = 1, RL = 1kΩ, CL = 1.7pF
SR
Slew Rate
C=1.7pF, Gain=1, VOUT=5V, peak to peak,
negative SR = 2500V/µs
ISC
Short-Circuit Output Current
source
40
59
mA
sink
25
45
mA
IS
Supply Current
No Load
0.36
0.6
mA
Input Voltage Noise
f = 10kHz
12
nV√Hz
Input Current Noise
f = 10kHz
0.7
pA√Hz
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to change).
Note 4.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
Note 5.
Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in “Typical Characteristics.”
December 2001
3
MIC921
MIC921
Micrel
Test Circuits
V+
10µF
V+
0.1µF
50Ω
R2
BNC
5k
Input
10µF
0.1µF
10k
10k
10k
2k
3
BNC
R1 5k
Input
5
MIC921
BNC
4
3
1
2
50Ω
2
Output
0.1µF
R6
5k
R3
200k
Input
50Ω
All resistors:
1% metal film
R5
5k
10µF
V–
All resistors 1%
0.1µF
R4
250Ω
 R2 R2 + R 5 + R4 
VOUT = VERROR 1 +
+


 R1
R7
10µF
V–
CMRR vs. Frequency
PSRR vs. Frequency
100pF
BNC
4
1
0.1µF
BNC
0.1µF
MIC921
R7c 2k
R7b 200Ω
R7a 100Ω
Output
5
V+
V+
10µF
10pF
R1
20Ω
10µF
3
R3 27k
S1
S2
R5
20Ω
R2 4k
3
5
0.1µF
MIC921
4
1
2
R4 27k
0.1µF
10pF
10µF
BNC
MIC921
To
Dynamic
Analyzer
VIN
300Ω
4
1
2
0.1µF
1k
50Ω
VOUT
FET Probe
CL
10µF
V–
V–
Closed Loop Frequency Response Measurement
Noise Measurement
MIC921
0.1µF
5
4
December 2001
MIC921
Micrel
Typical Characteristics
Supply Current
vs. Temperature
-4.5
0
-13.5
-9.0
-22.5
-18.0
-27.0
-36.0
-31.5
85°C
–40°C
3.8
5.1
6.4
7.7
SUPPLY VOLTAGE (V)
9
V± = ±9V
–40°C
7.40
4.44
5.92
+85°C
1.48
2.96
-7.40
-5.92
+25°C
+85°C
OFFSET VOLTAGE (mV)
–40°C
-3.4
-2.7
OUTPUT VOLTAGE (V)
25°C
-45.0
-40.5
OUTPUT VOLTAGE (V)
–40°C
V± = ±5V
COMMON-MODE VOLTAGE (V)
Output Voltage vs.
Output Current (Sourcing)
Output Voltage vs.
Output Current (Sinking)
V± = ±5V
+25°C
2.2
2
1.8
1.6
1.4
1.2
+25°C
1
0.8
0.6
0.4
0.2
0
COMMON-MODE VOLTAGE (V)
Output Voltage vs.
Output Current (Sinking)
0.5
0
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0
-4.5
-5.0
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
+85°C
Offset Voltage vs.
Common-Mode Voltage
Offset Voltage vs.
Common-Mode Voltage
OFFSET VOLTAGE (mV)
OFFSET VOLTAGE (mV)
Offset Voltage vs.
Common-Mode Voltage
2.20
2.00
V± = ±2.5V
1.80
–40°C
1.60
1.40
+25°C
1.20
1.00
+85°C
0.80
0.60
0.40
0.20
0
-900 -540 -180 180 540 900
COMMON-MODE VOLTAGE (V)
SUPPLY CURRENT (mA)
0.10
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
0.9
V± = ±9V
0
-0.9
-1.8
-2.7
25°C
-3.6
-4.5 85°C
–40°C
-5.4
-6.3
-7.2
-8.1
-9.0
-50-45-40-35-30-25-20-15-10 -5 0
OUTPUT CURRENT (mA)
OUTPUT VOLTAGE (V)
0.55
0.5
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
0.15
0.42
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24
0.22
0.20
2.5
3
V± = ±9V
0.20
2.0
2.7
V± = ±5V
0.65
0.6
V± = ±2.5V
0.25
0.7
1.4
0.75
0.7
-0.7
0.0
V± = ±2.5V
V± = ±5V
0.30
-2.0
-1.4
0.85
0.8
V± = ±9V
-1.48
0
0.35
SUPPLY CURRENT (mA)
OFFSET VOLTAGE (mV)
1
0.95
0.9
Supply Current
vs. Supply Voltage
-4.44
-2.96
Offset Voltage
vs. Temperature
5.5
V± = ±5V
5.0
4.5
4.0 85°C
25°C
3.5
3.0
2.5
–40°C
2.0
1.5
1.0
0.5
0
0 8 16 24 32 40 48 56 64 72 80
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
Short Circuit Current vs.
Supply Voltage (Sinking)
7
0
–40°C
-7
25°C
-14
-21
-28
-35 85°C
-42
-49
-56
-63
-70
2.0
3.4
4.8
Short-Circuit Current vs.
Supply Voltage (Sourcing)
OUTPUT CURRENT (mA)
0.5
V± = ±9V
0 85°C
-0.5
25°C
-1.0
-1.5
–40°C
-2.0
-2.5
-3.0
-3.5
-4.0
-4.5
-5.0
0 8 16 24 32 40 48 56 64 72 80
SHORT CIRCUIT CURRENT (mA)
OUTPUT VOLTAGE (V)
Output Voltage vs.
Output Current (Sourcing)
6.2
7.6
SUPPLY VOLTAGE (V)
9.0
110
100
90
80
70
60
50
40
30
20
10
0
–40°C
25°C
85°C
2
3.4
4.8
6.2
7.6
SUPPLY VOLTAGE (±V)
9
OUTPUT CURRENT (mA)
December 2001
5
MIC921
MIC921
Micrel
Bias Current vs.
Temperature
Closed-Loop Gain
vs. Frequency
50
40
0.04
100pF
-10
-20
200pF
400pF
600pF
800pF
1000pF
-30
-40
0.02
0.00
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
-50
100k
Open-Loop Gain
vs. Frequency
50
40
100pF
1.7pF
200pF
Open-Loop
Frequency Response
10
1000pF
400pF
-180
-225
35
30
Phase Margin
25
30
20
20
10
700
800
500
600
0
100
200
300
400
Gain Bandwidth
5
10
0
900
1000
15
0
40
NOISE VOLTAGE (nV/Hz1/2)
50
35
10
60
50
30
25
40
Phase Margin
20
30
15
20
10
Gain Bandwidth
5
10
0
CAPACITIVE LOAD (pF)
Current Noise Density
vs. Frequency
2.5
60
50
40
30
20
10
0
10
V± = ±5V
35
0
2
4
6
8
SUPPLY VOLTAGE (V)
70
60
PHASE MARGIN (°)
V± = ±9V
Gain Bandwidth and Phase
Margin vs. Load
Voltage Noise Density
vs. Frequency
Gain Bandwidth and Phase
Margin vs. Load
40
Gain Bandwidth
25
20
0
-225
1M
10M
100M
FREQUENCY (Hz)
40
40
FREQUENCY (Hz)
45
-135
-180
-100
100k
Phase Margin
45
30
-45
-90
Gain
0
100
200
-80
-100
1000pF
100M
10M
1M
FREQUENCY (Hz)
GAIN BANDWIDTH (MHz)
-90
-135
45
0
(100Ω)
-20
-40
NOISE CURRENT (pA/Hz1/2)
Gain
GAIN BANDWIDTH (MHz)
0
-45
(100Ω)
PHASE (°)
90
45
(no load)
(no load)
20
0
-60
-80
600pF
50
180
135
(100Ω)
-40
-60
200pF
135
90
(100Ω)
Gain Bandwidth and Phase
Margin vs. Supply Voltage
225
Phase
40
20
0
-20
1.7pF
-50
100k
100M
10M
1M
FREQUENCY (Hz)
V± = ±9V
80
60
100pF
0
-10
Open-Loop
Frequency Response
100
50pF
225
180
Phase
60
40
-30
-40
600pF
100M
10M
1M
FREQUENCY (Hz)
100
V± = ±5V
80
V± = ±9V
-20
400pF
-50
100k
GAIN (dB)
-50
100k
GAIN (dB)
50pF
-30
-40
GAIN BANDWIDTH (MHz)
-30
-40
20
GAIN (dB)
GAIN (dB)
30
20
-10
-20
200pF
400pF
600pF
800pF
1000pF
Open-Loop Gain
vs. Frequency
40
30
1.7pF
100pF
0
-10
-20
100M
10M
1M
FREQUENCY (Hz)
50
V± = ±5V
10
0
50pF
10
PHASE (°)
0.06
1.7pF
PHASE MARGIN (°)
V± = ±9V
0.08
20
50pF
10
0
900
1000
V± = ±5V
0.10
V± = ±9V
40
30
GAIN (dB)
0.14
0.12
50
V± = ±5V
30
20
GAIN (dB)
BIAS CURRENT (µA)
0.16
300
400
500
600
700
800
0.18
Closed-Loop Gain
vs. Frequency
100
1000 10000 100000
FREQUENCY (Hz)
2.0
1.5
1.0
0.5
0
10
100
1000 10000 100000
FREQUENCY (Hz)
CAPACITIVE LOAD (pF)
MIC921
6
December 2001
MIC921
Micrel
Positive Slew Rate
vs. Supply Voltage
Negative Slew Rate
vs. Supply Voltage
100
0
2
3
4
5
6
7
8
600
400
800
600
400
200
0
9
200
0
POSITIVE VOLTAGE (±V)
1
2
3
4
5
6
7
8
0
9
POSITIVE VOLTAGE (±V)
1000
200
800
1000
800
900
300
1000
600
700
400
V± = ±5V
1200
1200
400
500
500
1400
200
300
600
1400
0
100
700
Negative Slew Rate
1600
SLEW RATE (V/µs)
NEGATIVE SLEW RATE (V/µs)
POSITIVE SLEW RATE (V/µs)
800
LOAD CAPACITANCE (pF)
400
1000
1500
1000
0
1000
800
900
500
600
700
300
400
0
900
1000
100
200
0
700
800
0
500
600
0
300
400
500
0
500
100
200
200
LOAD CAPACITANCE (pF)
LOAD CAPACITANCE (pF)
LOAD CAPACITANCE (pF)
Positive Power Supply
Rejection Ratio
Negative Power Supply
Rejection Ratio
Positive Power Supply
Rejection Ratio
120
120
V± = ±5V
120
V± = ±5V
100
100
80
80
80
60
40
20
60
40
20
10k
100k
1k
FREQUENCY (Hz)
0
100
1M
Negative Power Supply
Rejection Ratio
120
80
70
60
CMRR (dB)
90
80
60
40
20
10k
100k
1k
FREQUENCY (Hz)
December 2001
1M
60
40
0
100
1M
Common-Mode Rejection Ratio
100
0
100
10k
100k
1k
FREQUENCY (Hz)
100
V± = ±9V
V± = ±9V
20
90
80
50
40
10
0
100
10
0
100
7
V± = ±9V
50
40
30
20
10M
1M
70
60
30
20
1k
10k 100k 1M
FREQUENCY (Hz)
10k
100k
1k
FREQUENCY (Hz)
Common-Mode Rejection Ratio
100
V± = ±5V
CMRR (dB)
0
100
PSRR (dB)
100
PSRR (dB)
PSRR (dB)
1500
2000
1000
600
2000
800
900
800
2500
500
600
700
1000
V± = ±9V
2500
SLEW RATE (V/µs)
SLEW RATE (V/µs)
3000
1200
PSRR (dB)
Negative Slew Rate
3000
V± = ±9V
300
400
1400
SLEW RATE (V/µs)
Positive Slew Rate
3500
V± = ±5V
100
200
Positive Slew Rate
1600
1k
10k 100k 1M
FREQUENCY (Hz)
10M
MIC921
MIC921
Micrel
Functional Characteristics
Small Signal Reponse
Small Signal Reponse
OUTPUT
(50mV/div)
OUTPUT
(50mV/div)
INPUT
(50mV/div)
V± = ±9V
Av = 1
CL = 1.7pF
INPUT
(50mV/div)
V± = ±5V
Av = 1
CL = 1.7pF
TIME (100ns/div)
TIME (100ns/div)
Small Signal Reponse
Small Signal Reponse
OUTPUT
(50mV/div)
OUTPUT
(50mV/div)
INPUT
(50mV/div)
V± = ±9V
Av = 1
CL = 100pF
INPUT
(50mV/div)
V± = ±5V
Av = 1
CL = 100pF
TIME (500ns/div)
TIME (500ns/div)
Small Signal Reponse
Small Signal Reponse
OUTPUT
(50mV/div)
OUTPUT
(50mV/div)
INPUT
(50mV/div)
V± = ±9V
Av = 1
CL = 1000pF
INPUT
(50mV/div)
V± = ±5V
Av = 1
CL = 1000pF
TIME (1µs/div)
MIC921
TIME (1µs/div)
8
December 2001
MIC921
Micrel
Large Signal Response
Large Signal Response
OUTPUT
(2V/div)
V± = ±9V
Av = 1
CL = 1.7pF
OUTPUT
(2V/div)
V± = ±5V
Av = 1
CL = 1.7pF
Positive Slew Rate = 3230V/µs
Negative Slew Rate = 2950V/µs
Positive Slew Rate = 1520V/µs
Negative Slew Rate = 1312V/µs
TIME (25ns/div)
TIME (25ns/div)
Large Signal Response
Large Signal Response
OUTPUT
(2V/div)
V± = ±9V
Av = 1
CL = 100pF
OUTPUT
(2V/div)
V± = ±5V
Av = 1
CL = 100pF
Positive Slew Rate = 349V/µs
Negative Slew Rate = 181V/µs
Positive Slew Rate = 615V/µs
Negative Slew Rate = 447V/µs
TIME (50ns/div)
TIME (25ns/div)
Large Signal Response
Large Signal Response
OUTPUT
(2V/div)
V± = ±9V
Av = 1
CL = 1000pF
OUTPUT
(2V/div)
V± = ±5V
Av = 1
CL = 1000pF
Positive Slew Rate = 63V/µs
Negative Slew Rate = 44V/µs
Positive Slew Rate = 85V/µs
Negative Slew Rate = 57V/µs
TIME (250ns/div)
December 2001
TIME (250ns/div)
9
MIC921
MIC921
Micrel
Power Supply Bypassing
Regular supply bypassing techniques are recommended. A
10µF capacitor in parallel with a 0.1µF capacitor on both the
positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to
the op amp as possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal.
Thermal Considerations
The SC70-5 package, like all small packages, has a high
thermal resistance. It is important to ensure the IC does not
exceed the maximum operating junction (die) temperature of
85°C. The part can be operated up to the absolute maximum
temperature rating of 125°C, but between 85°C and 125°C
performance will degrade, in particular CMRR will reduce.
An MIC921 with no load, dissipates power equal to the
quiescent supply current * supply voltage
Applications Information
The MIC921 is a high-speed, voltage-feedback operational
amplifier featuring very low supply current and excellent
stability. This device is unity gain stable, capable of driving
high capacitance loads.
Driving High Capacitance
The MIC921 is stable when driving high capacitance, making
it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive
limited capacitance.
Note: increasing load capacitance does reduce
the speed of the device. In applications where
the load capacitance reduces the speed of the
op amp to an unacceptable level, the effect of
the load capacitance can be reduced by adding
a small resistor (<100Ω) in series with the
output.
Feedback Resistor Selection
(
MIC921
)
PD(no load) = VV + − VV − IS
Conventional op amp gain configurations and resistor selection apply, the MIC921 is NOT a current feedback device.
Also, for minimum peaking, the feedback resistor should
have low parasitic capacitance, usually 470Ω is ideal. To use
the part as a follower, the output should be connected to input
via a short wire.
Layout Considerations
All high speed devices require careful PCB layout. The
following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance;
avoid large copper traces to the inputs. Keep the output signal
away from the inputs and use a ground plane.
It is important to ensure adequate supply bypassing capacitors are located close to the device.
When a load is added, the additional power is dissipated in
the output stage of the op amp. The power dissipated in the
device is a function of supply voltage, output voltage and
output current.
(
)
PD(output stage) = VV + − VOUT IOUT
Total Power Dissipation = PD(no load) + PD(output stage)
Ensure the total power dissipated in the device is no greater
than the thermal capacity of the package. The SC70-5
package has a thermal resistance of 450°C/W.
Max. AllowablePowerDissipation =
10
TJ(max) − TA(max)
450°C / W
December 2001
MIC921
Micrel
Package Information
1.90 (0.075) REF
0.95 (0.037) REF
1.75 (0.069)
1.50 (0.059)
3.00 (0.118)
2.60 (0.102)
DIMENSIONS:
MM (INCH)
1.30 (0.051)
0.90 (0.035)
3.02 (0.119)
2.80 (0.110)
0.20 (0.008)
0.09 (0.004)
10°
0°
0.15 (0.006)
0.00 (0.000)
0.50 (0.020)
0.35 (0.014)
0.60 (0.024)
0.10 (0.004)
SOT-23-5 (M5)
0.65 (0.0256) BSC
1.35 (0.053) 2.40 (0.094)
1.15 (0.045) 1.80 (0.071)
2.20 (0.087)
1.80 (0.071)
DIMENSIONS:
MM (INCH)
1.00 (0.039) 1.10 (0.043)
0.80 (0.032) 0.80 (0.032)
0.10 (0.004)
0.00 (0.000)
0.30 (0.012)
0.15 (0.006)
0.18 (0.007)
0.10 (0.004)
0.30 (0.012)
0.10 (0.004)
SC-70 (C5)
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2001 Micrel Incorporated
December 2001
11
MIC921