MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR8PM-20 MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE OUTLINE DRAWING BCR8PM-20 Dimensions in mm 10.5 MAX 2.8 17 8.5 5.0 1.2 5.2 ✽ TYPE NAME 3.6 1.3 MAX 13.5 MIN 0.8 2.54 ¡IT (RMS) ........................................................................ 8A ¡VDRM ..................................................................... 1000V ¡IFGT !, I RGT !, IRGT # ........................................... 30mA ¡Viso ........................................................................ 1500V ¡UL Recognized: File No. E80276 2.54 ➀➁➂ 0.5 4.5 VOLTAGE CLASS φ3.2 ± 0.2 2.6 ✽ Measurement point of case temperature ➁ ➀ ➀ T1 TERMINAL ➁ T2 TERMINAL ➂ ➂ GATE TERMINAL TO-220F APPLICATION Switching mode power supply, light dimmer, electric flasher unit, control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared kotatsu · carpet, solenoid drivers, small motor control, copying machine, electric tool, other general purpose control applications MAXIMUM RATINGS Symbol Voltage class Parameter Unit 20 VDRM Repetitive peak off-state voltage ✽1 1000 V VDSM Non-repetitive peak off-state voltage ✽1 1200 V Symbol Conditions Parameter IT (RMS) RMS on-state current Commercial frequency, sine full wave 360° conduction, Tc =88°C ITSM Surge on-state current I2t I2t PGM Peak gate power dissipation PG (AV) Average gate power dissipation VGM for fusing Ratings Unit 8 A 60Hz sinewave 1 full cycle, peak value, non-repetitive 80 A Value corresponding to 1 cycle of half wave 60Hz, surge on-state current 26 A2s 5 W 0.5 W Peak gate voltage 10 V IGM Peak gate current 2 Tj Junction temperature Storage temperature Tstg — Viso Weight Typical value Isolation voltage Ta=25°C, AC 1 minute, T 1 · T2 · G terminal to case A –40 ~ +125 °C –40 ~ +125 °C 2.0 g 1500 V ✽1. Gate open. Feb.1999 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR8PM-20 MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE ELECTRICAL CHARACTERISTICS Symbol Limits Test conditions Parameter Min. Typ. Max. Unit IDRM Repetitive peak off-state current Tj=125°C, V DRM applied — — 2.0 mA VTM On-state voltage Tc=25°C, ITM=12A, Instantaneous measurement — — 1.6 V — — 1.5 V — — 1.5 V ! VFGT ! VRGT ! Gate trigger voltage ✽2 @ Tj=25°C, VD =6V, RL=6Ω, RG=330Ω VRGT # # — — 1.5 V IFGT ! ! — — 30 mA — — 30 mA — — 30 mA 0.2 — — V — — 3.7 °C/ W ✽3 — — V/µs IRGT ! Gate trigger current ✽2 @ Tj=25°C, VD =6V, RL=6Ω, RG=330Ω # IRGT # VGD Gate non-trigger voltage Tj=125°C, VD=1/2VDRM R th (j-c) Thermal resistance Junction to case ✽4 (dv/dt) c Critical-rate of rise of off-state commutating voltage ✽2. Measurement using the gate trigger characteristics measurement circuit. ✽3. The critical-rate of rise of the off-state commutating voltage is shown in the table below. ✽4. The contact thermal resistance R th (c-f) in case of greasing is 0.5°C/W. Voltage class (dv/dt) c VDRM (V) 20 Symbol Min. R — L SUPPLY VOLTAGE 1. Junction temperature Tj =125°C V/µs 1000 Commutating voltage and current waveforms (inductive load) Test conditions Unit 2. Rate of decay of on-state commutating current (di/dt)c=–4.0A/ms 3. Peak off-state voltage VD =400V 10 TIME MAIN CURRENT (di/dt)c TIME MAIN VOLTAGE TIME (dv/dt)c VD PERFORMANCE CURVES RATED SURGE ON-STATE CURRENT 101 7 5 3 2 100 Tj = 125°C Tj = 25°C 100 7 5 3 2 10–1 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V) SURGE ON-STATE CURRENT (A) ON-STATE CURRENT (A) MAXIMUM ON-STATE CHARACTERISTICS 102 7 5 3 2 90 80 70 60 50 40 30 20 10 0 100 2 3 4 5 7 101 2 3 4 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) Feb.1999 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR8PM-20 MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 101 7 5 3 2 PG(AV) = 0.5W PGM = 5W IGM = 2A VGT = 1.5V 100 7 5 3 2 IFGT I IRGT I, IRGT III VGD = 0.2V 10–1 7 5 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C) GATE VOLTAGE (V) 3 2 VGM = 10V 100 (%) GATE CHARACTERISTICS 103 7 5 4 3 2 TYPICAL EXAMPLE IRGT III 102 IRGT I , IFGT I 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 GATE CURRENT (mA) JUNCTION TEMPERATURE (°C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 103 7 5 4 3 2 TYPICAL EXAMPLE 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 TRANSIENT THERMAL IMPEDANCE (°C/W) GATE TRIGGER VOLTAGE (Tj = t°C) GATE TRIGGER VOLTAGE (Tj = 25°C) 100 (%) GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 102 2 3 5 7 103 2 3 5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) JUNCTION TEMPERATURE (°C) 103 7 5 3 2 NO FINS 102 7 5 3 2 101 7 5 3 2 100 7 5 3 2 10–1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 CONDUCTION TIME (CYCLES AT 60Hz) MAXIMUM ON-STATE POWER DISSIPATION ON-STATE POWER DISSIPATION (W) TRANSIENT THERMAL IMPEDANCE (°C/W) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO AMBIENT) 16 14 12 360° CONDUCTION 10 RESISTIVE, INDUCTIVE 8 LOADS 6 4 2 0 0 2 4 6 8 10 12 14 16 RMS ON-STATE CURRENT (A) Feb.1999 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR8PM-20 MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE CASE TEMPERATURE (°C) 160 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 140 120 100 80 60 360° 40 CONDUCTION RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6 8 10 12 14 AMBIENT TEMPERATURE (°C) ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 16 ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 120 120 120 t2.3 100 100 t2.3 100 60 60 t2.3 80 60 40 RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6 RMS ON-STATE CURRENT (A) 60 40 20 HOLDING CURRENT (Tj = t°C) HOLDING CURRENT (Tj = 25°C) 100 (%) 0 103 7 5 4 3 2 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 100 (%) REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C) 80 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 RMS ON-STATE CURRENT (A) JUNCTION TEMPERATURE (°C) HOLDING CURRENT VS. JUNCTION TEMPERATURE LACHING CURRENT VS. JUNCTION TEMPERATURE TYPICAL EXAMPLE LACHING CURRENT (mA) AMBIENT TEMPERATURE (°C) RMS ON-STATE CURRENT (A) ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 RESISTIVE, INDUCTIVE LOADS 100 NATURAL CONVECTION CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 8 10 12 14 16 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) 103 7 5 3 2 ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, DISTRIBUTION 102 7 5 3 2 101 7 5 3 2 T2+, G– TYPICAL EXAMPLE T2+, G+ TYPICAL T2– , G– EXAMPLE 100 –40 0 40 80 120 160 JUNCTION TEMPERATURE (°C) Feb.1999 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR8PM-20 MEDIUM POWER USE 160 TYPICAL EXAMPLE 140 BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 TYPICAL EXAMPLE Tj = 125°C 120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs ) 140 120 100 80 60 III QUADRANT 40 I QUADRANT 20 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) COMMUTATION CHARACTERISTICS GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH VOLTAGE WAVEFORM 3 TYPICAL 2 EXAMPLE 102 Tj = 125°C 7 IT = 4A 5 τ = 500µs 3 VD = 200V 2 f = 3Hz t (dv/dt)C VD CURRENT WAVEFORM (di/dt)C IT τ t 101 7 I QUADRANT 5 3 MINIMUM 2 CHARAC100 TERISTICS III QUADRANT 7 VALUE 5 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A /ms) 100 (%) JUNCTION TEMPERATURE (°C) GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC) CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs) BREAKOVER VOLTAGE (Tj = t°C) BREAKOVER VOLTAGE (Tj = 25°C) 100 (%) BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 100 (%) INSULATED TYPE, PLANAR PASSIVATION TYPE 103 7 5 4 3 2 TYPICAL EXAMPLE IFGT I IRGT I IRGT III 102 7 5 4 3 2 101 0 10 2 3 4 5 7 101 2 3 4 5 7 102 GATE CURRENT PULSE WIDTH (µs) GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω A 6V V A 6V RG TEST PROCEDURE 1 V RG TEST PROCEDURE 2 6Ω A 6V V RG TEST PROCEDURE 3 Feb.1999