MITSUBISHI BCR8PM-20

MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM-20
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
OUTLINE DRAWING
BCR8PM-20
Dimensions
in mm
10.5 MAX
2.8
17
8.5
5.0
1.2
5.2
✽
TYPE
NAME
3.6
1.3 MAX
13.5 MIN
0.8
2.54
¡IT (RMS) ........................................................................ 8A
¡VDRM ..................................................................... 1000V
¡IFGT !, I RGT !, IRGT # ........................................... 30mA
¡Viso ........................................................................ 1500V
¡UL Recognized: File No. E80276
2.54
➀➁➂
0.5
4.5
VOLTAGE
CLASS
φ3.2 ± 0.2
2.6
✽ Measurement point of
case temperature
➁
➀
➀ T1 TERMINAL
➁ T2 TERMINAL
➂ ➂ GATE TERMINAL
TO-220F
APPLICATION
Switching mode power supply, light dimmer, electric flasher unit,
control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared
kotatsu · carpet, solenoid drivers, small motor control,
copying machine, electric tool,
other general purpose control applications
MAXIMUM RATINGS
Symbol
Voltage class
Parameter
Unit
20
VDRM
Repetitive peak off-state voltage ✽1
1000
V
VDSM
Non-repetitive peak off-state voltage ✽1
1200
V
Symbol
Conditions
Parameter
IT (RMS)
RMS on-state current
Commercial frequency, sine full wave 360° conduction, Tc =88°C
ITSM
Surge on-state current
I2t
I2t
PGM
Peak gate power dissipation
PG (AV)
Average gate power dissipation
VGM
for fusing
Ratings
Unit
8
A
60Hz sinewave 1 full cycle, peak value, non-repetitive
80
A
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
26
A2s
5
W
0.5
W
Peak gate voltage
10
V
IGM
Peak gate current
2
Tj
Junction temperature
Storage temperature
Tstg
—
Viso
Weight
Typical value
Isolation voltage
Ta=25°C, AC 1 minute, T 1 · T2 · G terminal to case
A
–40 ~ +125
°C
–40 ~ +125
°C
2.0
g
1500
V
✽1. Gate open.
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM-20
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol
Limits
Test conditions
Parameter
Min.
Typ.
Max.
Unit
IDRM
Repetitive peak off-state current
Tj=125°C, V DRM applied
—
—
2.0
mA
VTM
On-state voltage
Tc=25°C, ITM=12A, Instantaneous measurement
—
—
1.6
V
—
—
1.5
V
—
—
1.5
V
!
VFGT !
VRGT !
Gate trigger voltage ✽2
@
Tj=25°C, VD =6V, RL=6Ω, RG=330Ω
VRGT #
#
—
—
1.5
V
IFGT !
!
—
—
30
mA
—
—
30
mA
—
—
30
mA
0.2
—
—
V
—
—
3.7
°C/ W
✽3
—
—
V/µs
IRGT !
Gate trigger current ✽2
@
Tj=25°C, VD =6V, RL=6Ω, RG=330Ω
#
IRGT #
VGD
Gate non-trigger voltage
Tj=125°C, VD=1/2VDRM
R th (j-c)
Thermal resistance
Junction to case ✽4
(dv/dt) c
Critical-rate of rise of off-state
commutating voltage
✽2. Measurement using the gate trigger characteristics measurement circuit.
✽3. The critical-rate of rise of the off-state commutating voltage is shown in the table below.
✽4. The contact thermal resistance R th (c-f) in case of greasing is 0.5°C/W.
Voltage
class
(dv/dt) c
VDRM
(V)
20
Symbol
Min.
R
—
L
SUPPLY
VOLTAGE
1. Junction temperature
Tj =125°C
V/µs
1000
Commutating voltage and current waveforms
(inductive load)
Test conditions
Unit
2. Rate of decay of on-state commutating current
(di/dt)c=–4.0A/ms
3. Peak off-state voltage
VD =400V
10
TIME
MAIN CURRENT
(di/dt)c
TIME
MAIN
VOLTAGE
TIME
(dv/dt)c
VD
PERFORMANCE CURVES
RATED SURGE ON-STATE CURRENT
101
7
5
3
2
100
Tj = 125°C
Tj = 25°C
100
7
5
3
2
10–1
0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ON-STATE VOLTAGE (V)
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
MAXIMUM ON-STATE CHARACTERISTICS
102
7
5
3
2
90
80
70
60
50
40
30
20
10
0
100
2 3 4 5 7 101
2 3 4 5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM-20
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
101
7
5
3
2
PG(AV) = 0.5W
PGM = 5W
IGM = 2A
VGT = 1.5V
100
7
5
3
2
IFGT I IRGT I, IRGT III
VGD = 0.2V
10–1
7
5
101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104
GATE TRIGGER CURRENT (Tj = t°C)
GATE TRIGGER CURRENT (Tj = 25°C)
GATE VOLTAGE (V)
3
2 VGM = 10V
100 (%)
GATE CHARACTERISTICS
103
7
5
4
3
2
TYPICAL EXAMPLE
IRGT III
102
IRGT I , IFGT I
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
GATE CURRENT (mA)
JUNCTION TEMPERATURE (°C)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO CASE)
103
7
5
4
3
2
TYPICAL EXAMPLE
102
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
TRANSIENT THERMAL IMPEDANCE (°C/W)
GATE TRIGGER VOLTAGE (Tj = t°C)
GATE TRIGGER VOLTAGE (Tj = 25°C)
100 (%)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
102 2 3 5 7 103 2 3 5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
JUNCTION TEMPERATURE (°C)
103
7
5
3
2
NO FINS
102
7
5
3
2
101
7
5
3
2
100
7
5
3
2
10–1
101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105
CONDUCTION TIME
(CYCLES AT 60Hz)
MAXIMUM ON-STATE POWER
DISSIPATION
ON-STATE POWER DISSIPATION (W)
TRANSIENT THERMAL IMPEDANCE (°C/W)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO AMBIENT)
16
14
12 360°
CONDUCTION
10 RESISTIVE,
INDUCTIVE
8 LOADS
6
4
2
0
0
2
4
6
8
10
12
14
16
RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM-20
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
CASE TEMPERATURE (°C)
160
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
140
120
100
80
60
360°
40 CONDUCTION
RESISTIVE,
20 INDUCTIVE
LOADS
0
0
2
4
6
8
10
12
14
AMBIENT TEMPERATURE (°C)
ALLOWABLE CASE TEMPERATURE
VS. RMS ON-STATE CURRENT
16
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
160
ALL FINS ARE BLACK PAINTED
ALUMINUM AND GREASED
140
120
120 120 t2.3
100 100 t2.3
100
60 60 t2.3
80
60
40
RESISTIVE,
20 INDUCTIVE
LOADS
0
0
2
4
6
RMS ON-STATE CURRENT (A)
60
40
20
HOLDING CURRENT (Tj = t°C)
HOLDING CURRENT (Tj = 25°C)
100 (%)
0
103
7
5
4
3
2
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
REPETITIVE PEAK OFF-STATE
CURRENT VS. JUNCTION
TEMPERATURE
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
80
105
7 TYPICAL EXAMPLE
5
3
2
104
7
5
3
2
103
7
5
3
2
102
–60 –40 –20 0 20 40 60 80 100 120 140
RMS ON-STATE CURRENT (A)
JUNCTION TEMPERATURE (°C)
HOLDING CURRENT VS.
JUNCTION TEMPERATURE
LACHING CURRENT VS.
JUNCTION TEMPERATURE
TYPICAL EXAMPLE
LACHING CURRENT (mA)
AMBIENT TEMPERATURE (°C)
RMS ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
160
NATURAL CONVECTION
NO FINS
140
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
120
RESISTIVE, INDUCTIVE LOADS
100
NATURAL
CONVECTION
CURVES APPLY
REGARDLESS
OF CONDUCTION
ANGLE
8 10 12 14 16
102
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
JUNCTION TEMPERATURE (°C)
103
7
5
3
2
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
DISTRIBUTION
102
7
5
3
2
101
7
5
3
2
T2+, G–
TYPICAL
EXAMPLE
T2+, G+  TYPICAL

T2– , G–  EXAMPLE
100
–40
0
40
80
120
160
JUNCTION TEMPERATURE (°C)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM-20
MEDIUM POWER USE
160
TYPICAL EXAMPLE
140
BREAKOVER VOLTAGE VS.
RATE OF RISE OF
OFF-STATE VOLTAGE
160
TYPICAL EXAMPLE
Tj = 125°C
120
100
80
60
40
20
0
–60 –40 –20 0 20 40 60 80 100120 140
BREAKOVER VOLTAGE (dv/dt = xV/µs )
BREAKOVER VOLTAGE (dv/dt = 1V/µs )
140
120
100
80
60
III QUADRANT
40
I QUADRANT
20
0
101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
COMMUTATION CHARACTERISTICS
GATE TRIGGER CURRENT VS.
GATE CURRENT PULSE WIDTH
VOLTAGE WAVEFORM
3 TYPICAL
2 EXAMPLE
102 Tj = 125°C
7 IT = 4A
5 τ = 500µs
3 VD = 200V
2 f = 3Hz
t
(dv/dt)C
VD
CURRENT WAVEFORM
(di/dt)C
IT
τ
t
101
7
I QUADRANT
5
3 MINIMUM
2 CHARAC100 TERISTICS III QUADRANT
7 VALUE
5
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103
RATE OF DECAY OF ON-STATE
COMMUTATING CURRENT (A /ms)
100 (%)
JUNCTION TEMPERATURE (°C)
GATE TRIGGER CURRENT (tw)
GATE TRIGGER CURRENT (DC)
CRITICAL RATE OF RISE OF OFF-STATE
COMMUTATING VOLTAGE (V/µs)
BREAKOVER VOLTAGE (Tj = t°C)
BREAKOVER VOLTAGE (Tj = 25°C)
100 (%)
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
100 (%)
INSULATED TYPE, PLANAR PASSIVATION TYPE
103
7
5
4
3
2
TYPICAL EXAMPLE
IFGT I
IRGT I
IRGT III
102
7
5
4
3
2
101 0
10
2 3 4 5 7 101
2 3 4 5 7 102
GATE CURRENT PULSE WIDTH (µs)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS
6Ω
6Ω
A
6V
V
A
6V
RG
TEST PROCEDURE 1
V
RG
TEST PROCEDURE 2
6Ω
A
6V
V
RG
TEST PROCEDURE 3
Feb.1999