MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH DESCRIPTION The M61323SP/FP is a semiconductor integrated circuit for the RGBHV interface. The device features switching signals input from two types of image sources and outputting the signals to the CRT display,etc. Synchronous signals, meeting a frequency band of 10KHz to 200KHz, are output at TTL. The frequency band of video signals is 250MHz, acquiring high-resolution images, and are optimum as an interface IC with high-resolution CRT display and various new media. The M61323SP/FP keeps the power saving mode, and it can reduce ICC about 10mA under the condition that all Vcc are supplied. FEATURES Frequency band : RGB........................................250MHz : H,V...........................10KHz to 200KHz Input level:RGB............................................0.7Vp-p(Typ.) H,V TTL input ....................3 to 5Vo-p (bipolar) Only the G channel is provided with Sync-on video output. The TTL format is adopted for HV output. PIN CONFIGURATION(TOP VIEW) Vcc1 (R) Input1 (R) Vcc1 (G) Input1 (G) Vcc1 (B) Input1 (B) Input1 (H) Input1 (V) GND1 Input2 (R) PowerSave SW Input2(G) Input SW Input2 (B) Input2 (H) Input2 (V) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 VCC2 (R) OUTPUT (R) GND2(R) Vcc2(G) OUTPUT(G) GND2 (G) Vcc2 (B) OUTPUT(B) GND2(B) G Buffer out Sync SEP in 21 20 19 18 17 Sync SEP out Vcc3 OUTPUT(H) OUTPUT(V) GND3 APPLICATION Display monitor OUTLINE:32P4B RECOMMENDED OPERATING CONDITION Supply voltage range...................................4.75 to 5.25V Rated voltage range..................................................5.0V PIN CONFIGURATION(TOP VIEW) Vcc1 (R) Input1 (R) Vcc1 (G) Input1 (G) Vcc1 (B) Input1 (B) Input1 (H) Input1 (V) GND1 GND1 Input2 (R) PowerSave SW Input2(G) Input SW Input2 (B) Input2 (H) Input2 (V) NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 NC VCC2 (R) OUTPUT (R) GND2(R) Vcc2(G) OUTPUT(G) GND2 (G) Vcc2 (B) OUTPUT(B) GND2(B) G Buffer out Sync SEP in Sync SEP out Vcc3 Vcc3 OUTPUT(H) OUTPUT(V) GND3 OUTLINE:36P2R M I T S U B I S H I 1 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH BLOCK DIAGRAM ( M61323SP ) VCC(R) OUTPUT(G) GND OUTPUT(R) 32 VCC(G) 31 30 Vcc(R) 28 Vcc(G) R 26 27 Vcc(G) 2 1 INPUT1(R) Vcc(R) B 4 22 21 20 INPUT1(G) Sync-Sep. G 6 7 INPUT1(B) Vcc(B) 18 19 17 8 9 10 INPUT1(V) GND VCC(B) GND 12 11 INPUT2(R) INPUT1(H) V H POWER SAVE SW GND 5 Vcc(G) 23 GND Vcc Vcc(B) 3 24 OUTPUT(V) OUTPUT(H) Sync-Sep.OUT Vcc(B) G Vcc(R) 25 VCC Sync-Sep.INPUT OUTPUT (G-Buffer) OUTPUT(B) GND 29 GND VCC(B) 13 INPUT2(G) POWER SAVE SW 15 14 INPUT2(B) INPUT SW 16 INPUT2(V) INPUT2(H) BLOCK DIAGRAM ( M61323FP ) VCC(R) OUTPUT(R) 36 35 NC Vcc(R) OUTPUT(G) GND VCC(G) 33 34 1 Vcc(G) 2 3 5 INPUT1(G) 6 7 INPUT1(B) Vcc(B) 27 B Vcc(B) 4 Vcc(G) 28 26 24 25 8 GND GND 9 10 GND GND INPUT1(V) INPUT1(H) OUTPUT(V) OUTPUT(H) 23 22 Vcc Vcc Sync-Sep. G VCC Sync-Sep.OUT Vcc(B) G INPUT1(R) Vcc(R) 29 30 Vcc(G) R Vcc(R) 31 32 OUTPUT(B) GND VCC Sync-Sep.INPUT OUTPUT (G-Buffer) 20 21 H GND 19 V POWER SAVE SW 11 INPUT2(R) 12 NC 13 14 INPUT2(G) POWER SAVE SW M I T S U B I S H I 16 15 INPUT2(V) INPUT2(B) INPUT SW 18 17 INPUT2(H) 2 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH ABSOLUTE MAXIMUM RATINGS ( Ambient temperature: 25 C ) Parameter Rating Symbol Vcc Pd Topr Tstg Surge Supply voltage Power dissipation Operating temperature Storage temperature Electrostatic discharge Recommended supply voltage Recommended supply voltage range Unit 7.0 1603 (SP) , 1068 (FP) -20 to +85 (SP) , -20 to +75 (FP) -40 to +150 +200 5.0 4.75 to 5.25 Vopr Vopr' V mW C C V V V ELECTRICAL CHARACTERISTICS ( M61323SP VCC=5.0V Ta = 25 C) Test conditions Symbol Parameter Test point (S) Input Limits SW SW2 Rin1 SW4 Gin1 SW6 Bin1 SW7 Hin1 Circuit current 1 b b b b b b b b b b b a 3V b IccSTBY Circuit current 2 b b b b b b b b b b b b b Icc SW8 SW10 SW12 SW14 SW15 SW16 SW22 SW11 SW13 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Sync P.sav Switch Min. Typ. Max. 70 Unit mA 10 mA ( RGB SW ) Vdc1 Output DC voltage 1 31 28 25 b b b b b b b b b b b a 3V b 1.5 V Vdc2 Output DC voltage 2 31 28 25 b b b b b b b b b b b a 3V a 3V 1.5 V Vdc3 Output DC voltage 3 23 b b b b b b b b b b b a 3V b 0.9 V Vdc4 Output DC voltage 4 23 b b b b b b b b b b b a 3V a 3V 0.9 V VIMAX1 Maximum allowable input level 1 31 28 25 b b b b b b b b a 3V b 1.8 Vp-p VIMAX2 Maximum allowable input level 2 31 28 25 b b b b b a 3V a 3V 1.8 Vp-p GV1 Voltage gain 1 31 28 25 b b b b b a 3V b ∆GV1 Relative voltage gain 1 GV2 Voltage gain 2 ∆GV2 Relative voltage gain 2 GV3 Voltage gain 3 23 b a SG2 b b b b b b b b b a 3V GV4 Voltage gain 4 23 b b b b b b a SG2 b b b b a 3V abb bab bba SG1 SG1 SG1 b b b abb bab bba SG2 SG2 SG2 abb bab bba SG1 SG1 SG1 b b b -0.1 0.7 1.3 dB -0.4 0 0.4 dB -0.1 0.7 1.3 dB -0.4 0 0.4 dB b -0.6 0 0.6 dB a 3V -0.6 0 0.6 dB Relative to measured values above 31 28 25 b b b b b abb bab bba SG2 SG2 SG2 b b b a 3V a 3V Relative to measured values above M I T S U B I S H I 3 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH ELECTRICAL CHARACTERISTICS (cont.) Test conditions Symbol Parameter Test point (S) Fc1 Freq.characteristic1 (100MHz) 31 28 25 ∆Fc1 Relative Freq.characteristic1 (100MHz) Fc2 Freq.characteristic2 (100MHz) ∆Fc2 Relative Freq.characteristic2 (100MHz) Fc3 Freq.characteristic3 (250MHz) 31 28 25 Fc4 Freq.characteristic4 (250MHz) 31 28 25 CTI1 Crosstalk between two inputs1 (10MHz) 31 28 25 CTI2 Crosstalk between two inputs2 (10MHz) 31 28 25 CTI3 Crosstalk between two inputs3 (100MHz) 31 28 25 CTI4 Crosstalk between two inputs4 (100MHz) 31 28 25 CTC1 Crosstalk between channels1 (10MHz) 31 28 25 CTC2 Crosstalk between channels2 (10MHz) 31 28 25 CTC3 Crosstalk between channels3 (100MHz) 31 28 25 CTC4 Crosstalk between channels4 (100MHz) 31 28 25 Input SW2 Rin1 SW4 Gin1 SW6 Bin1 SW7 Hin1 abb bab bba SG4 SG4 SG4 b Limits SW SW8 SW10 SW12 SW14 SW15 SW16 SW22 SW11 SW13 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Sync P.sav Switch b b b b b b b a 3V b Relative to measured values above 31 28 25 b b b b b abb bab bba SG4 SG4 SG4 b b b a 3V a 3V Relative to measured values above abb bab bba SG5 SG5 SG5 b b b b abb bab bba SG3 SG3 SG3 b b b b b b abb bab bba SG4 SG4 SG4 b b b b b b b b abb bab bba SG3 SG3 SG3 b b b b b b b abb bab bba SG4 SG4 SG4 b b abb bab bba SG5 SG5 SG5 b b b abb bab bba SG3 SG3 SG3 b b b abb bab bba SG4 SG4 SG4 b b b abb bab bba SG3 SG3 SG3 b b b abb bab bba SG4 SG4 SG4 -1 0 1 dB -1 0 1 dB -1 0 1 dB -1 0 1 dB b b b a 3V b -3 dB b b b a 3V a 3V -3 dB b b b a 3V a 3V -60 -45 dB b b b a 3V b -60 -45 dB b b b a 3V a 3V -40 -30 dB b b b a 3V b -40 -30 dB b b b a 3V b -50 -40 dB b b b a 3V a 3V -50 -40 dB b b b a 3V b -30 -25 dB b b b a 3V a 3V -30 -25 dB 31 28 25 abb bab bba SG6 SG6 SG6 b b b b b b b b a 3V b 1.6 2.5 nsec Tf1 31 28 25 abb bab bba SG6 SG6 SG6 b b b b b b b b a 3V b 1.6 2.5 nsec Tr2 31 28 25 b b b b b abb bab bba SG6 SG6 SG6 b b b a 3V a 3V 1.6 2.5 nsec 31 28 25 b b b b b abb bab bba SG6 SG6 SG6 b b b a 3V a 3V 1.6 2.5 nsec Pulse characteristic2 Tf2 b b Max. Unit b Pulse characteristic1 b b b Typ. b Tr1 b b b b Min. M I T S U B I S H I 4 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH ELECTRICAL CHARACTERISTICS (cont.) Test conditions Symbol Parameter Test point (S) Input SW2 Rin1 SW4 Gin1 SW6 Bin1 SW7 Hin1 Limits SW SW8 SW10 SW12 SW14 SW15 SW16 SW22 SW11 SW13 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Sync P.sav Switch Min. Typ. Max. Unit ( HV SW ) Vdch1 High level output voltage 1 18 19 b b b Vdch2 High level output voltage 2 18 19 b b b Vdcl1 Low level output voltage 1 18 19 b b b Vdcl2 Low level output voltage 2 18 19 b b b VithH Input threshold voltage H 18 19 b b b VithL Input threshold voltage L 18 19 b b Tr3 Rising time 3 18 19 b Tf3 Falling time 3 18 19 HVdr Rising delay time HVDf Falling delay time a a SG8 SG8 b a 3V b 3.8 4.2 V b a 3V a 3V 3.8 4.2 V b a 3V b 0.2 0.5 V b a 3V a 3V 0.2 0.5 V b b a 3V b 1.8 2.0 2.2 V b b b a 3V b 1.0 1.4 1.6 V b b b b a 3V b 25 nsec b b b b b a 3V b 15 nsec b b b b b b a 3V b 40 60 nsec b b b b b b a 3V b 40 60 nsec b b b b b b b b b b b b a a SG8 SG8 b b b b b a a SG8 SG8 b b b b b a a SG8 SG8 b b b b b a a SG8 SG8 b 18 19 b b b a a SG8 SG8 18 19 b b b a a SG8 SG8 b b a a SG8 SG8 b b b b a a SG8 SG8 b b a a SG8 SG8 ( SYNC SEP. ) SYrv Sync on G input minimum voltage 21 b b b b b b b b b b a a SG7 3V 0.2 SYVH Sync output high level voltage 21 b b b b b b b b b b a a SG7 3V 3.8 SYVL Sync output low level voltage 21 b b b b b b b b b b a a SG7 3V 0.2 STr Sync output rising time 3 21 b b b b b b b b b b a a SG7 3V 25 nsec STf Sync output falling time 3 21 b b b b b b b b b b a a SG7 3V 15 nsec SDr Sync output rising delay time 21 b b b b b b b b b b a a SG7 3V 40 60 nsec SDf Sync output falling delay time 21 b b b b b b b b b b a a SG7 3V 40 60 nsec Vp-p 4.3 V 0.5 V ( CHANNEL SELECT SW , POWER SAVE SW ) Vthch1 Channel select SW threshold voltage 1 a a a a a SG6 SG6 SG6 SG8 SG8 b b b b b a a SG7 3V variable Vthch2 Channel select SW threshold voltage 2 a a a a a SG6 SG6 SG6 SG8 SG8 b b b b b a a SG7 3V variable VthPH Power save SW threshold voltage 1 a a a a a SG6 SG6 SG6 SG8 SG8 b b b b b a SG7 VthPL Power save SW threshold voltage 2 a a a a a SG6 SG6 SG6 SG8 SG8 b b b b b a SG7 M I T S U B I S H I a a a variable b a b variable V 2.5 1.0 V V 2.0 1.0 5 15 V MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH ELECTRICAL CHARACTERISTICS TEST METHOD ( M61323SP ) Circuit current 1 No signal. Measure the total circuit current as Icc when supplying 3VDC to Pin11. Circuit current 2 No signal. Measure the total circuit current as IccSTBY when Pin11 connected to GND. Output DC voltage 1,2 Set SW13 to GND (or OPEN), measure the DC voltage of TP31(TP28,TP25) when there is no signal input. The DC voltage is as vdc1(vdc2). Output DC voltage 3,4 Measure the DC voltage TP23 same as "Output DC voltage 1,2". The DC voltage is Vdc3(Vdc4). Maximum allowable input level 1,2 Set SW13 to GND, input SG1 to Pin2 only. Gradually increasing the SG1 amplitude, read the amplitude of the input signal when the output waveform of TP31 is strained. The value is as Vimax1. In the same way, measure Vimax1 in response to inputs in Pin4 and Pin6 only. Then set SW13 to OPEN, measure Vimax2 in response to inputs in Pin10,12 and 14 only. Voltage gain 1,2 1. The conditions is as table. 2. Set SW13 to GND, input SG2(0.7Vp-p) to Pin2 only. Read the output amplitude of TP31. The value is as VOR1. 3. Voltage gain GV1 is VOR1 [Vp-p] GV1= 20 LOG 0.7 (dB) 4. In the same way, calculate GV1in response to inputs in Pin4 and Pin6 only. 5. Then set SW13 to OPEN, measure GV2 in response to inputs in Pin10,12 and 14 only. Relative voltage gain 1,2 1. Calculate relative voltage gain ∆GV1 by the following formula. ∆GV1=GV1R-GV1G, GV1G-GV1B, GV1B-GV1R 2. In the same way, calculate ∆GV2. Voltage gain 3,4 1. The conditions is as table. 2. Read the output amplitude of TP23. 3. Calculate GV3, GV14 same as "Voltage gain 1". Freq.characteristic 1,2 / Relative freq.characteristic 1,2 1. The conditions is as table. This measurement shall use active probe. 2. Set SW13 to GND, input SG4(0.7Vp-p) to Pin2 only. Measure TP31 output amplitude as VOR1. In the same way,input SG2(0.7Vp-p) to Pin2 only. Measure TP31 output amplitude as VOR2. 3. Freq.characteristic1 FC1 is VOR2 [Vp-p] FC1 = 20 LOG VOR1 [Vp-p] (dB) 4. In the same way, calculate FC1 in response to inputs in Pin4 and Pin6 only. 5. The difference between of each channel Freq.characteristic is as ∆FC1. 6. Then set SW13 to OPEN, measure FC2 and ∆FC2 in response to inputs in Pin10,12 and 14 only. Freq.characteristic 3,4 Measure the FC3, FC4 when SG5 of input signal. (For reference) M I T S U B I S H I 6 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH Crosstalk between two inputs 1,2 1. The conditions is as table. This measurement shall use active probe. 2. Set SW13 to GND, input SG3 to Pin2 only. Read the output amplitude of TP31. The value is as VOR3. 3. Then set SW13 to OPEN, read the output amplitude of TP31. The value is as VOR3'. 4. Crosstalk between two inputs 1 C.T.I.1 is C.T.I.1= 20 LOG VOR3' [Vp-p] VOR3 [Vp-p] (dB) 5. In the same way, calculate C.T.I.1 in response to inputs in Pin4 and Pin6 only. 6. Then set SW13 to OPEN, input SG2 to Pin10 only. Read the output amplitude of TP31. The value is as VOR4. 7. Set SW13 to GND, read the output amplitude of TP31. The value is as VOR4'. 8. Crosstalk between two inputs 1 C.T.I.2 is C.T.I.2= 20 LOG VOR4'[Vp-p] VOR4[Vp-p] (dB) 9. In the same way, calculate C.T.I.2 in response to inputs in Pin12 and Pin14 only. Crosstalk between two inputs 3,4 Set SG4 as the input signal, and then the same method astable, measure C.T.I.3, C.T.I.4. Crosstalk between channels 1,2 1. The conditions is as table. This measurement shall use active probe. 2. Set SW13 to GND, input SG3 (0.7Vp-p) to Pin2 only. Read the output amplitude of TP31. The value is as VOR5. 3. Next, measure TP28, TP25 in the same state, and the amplitude is as VOG5, VOB5. 4. Crosstalk between channels1 C.T.C1 is VOG5 or VOB5 VOR5 C.T.C1= 20 LOG (dB) 5. In the same way, calculate C.T.C.1 in response to inputs in Pin4 and Pin6 only. 6. Then set SW13 to OPEN, input SG3(0.7Vp-p) to Pin10 only. Read the output amplitude of TP31. The value is as VOR6. 7. Next, measure TP28, TP25 in the same state, and the amplitude is as VOG6, VOB6. 8. Crosstalk between two inputs 1 C.T.C.2 is C.T.C2= 20 LOG VOG6 or VOB6 VOR6 (dB) 9. In the same way, calculate C.T.C.2 in response to inputs in Pin9 and Pin11 only. Crosstalk between channels 3,4 Set SG4 as the input signal, and then the same method astable, measure C.T.C3, C.T.C4. Pulse characteristic 1,2 1. The conditions is as table. (SG5 amplitude 0.7Vp-p) Set SW13 to GND (or OPEN). 2. Measure rising Tri and falling Tfi for 10%~90% of the input pulse with active probe. 3. Next, measure rising Tro and falling Tfo for 10%~90% of the output pulse with active probe. 4. Pulse characteristic Tr1, Tf1(Tr2, Tf2) is 100% 90% Tr1(Tr2) = (Tro) 2 - (Tri) 2 10% (nsec) 0% Tf1(Tf2) = (Tfo) 2 - (Tfi) 2 Tr Tf (nsec) M I T S U B I S H I 7 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH <HV-SW> Hi level output voltage 1,2 / Lo level output voltage 1,2 1. The conditions is as table. Input SG8 to Pin7 (or Pin8 ). Set SW13 to GND, read the output High level and low voltage of TP19, TP18. The value is as Vdch1, Vdcl1. 2. Input SG8 to Pin15 (or Pin16 ). Set SW13 to OPEN, read the output High level and low voltage of TP19, TP18. The value is as Vdch2, Vdcl2. Input threshold voltage H / Input threshold voltage L 1. Set SW13 to GND (or OPEN). Gradually increasing the voltage of Pin7 (or Pin15 ) from 0V, measure the input voltage of Pin7 (or Pin15 ) when the TP19 voltage turned high level (3.8V or more). The value is as VithH. 2. Gradually decreasing the voltage of Pin7 (or Pin15 ) from 3V, measure the input voltage of Pin7 (or Pin15 ) when the TP19 voltage turned low level (0.5V or less). The value is as VithL. 3. In the same way, measure the input voltage of Pin8 (or Pin16 ) as VithH, VithL. 100% Rising time / Falling time 80% 1. The conditions is as table. This measurement shall use active probe. 2. Measure rising Tri and falling Tfi for 20%~80% of the 20% output pulse as Tr3, Tf3 (Tr4, Tf4 ) . 0% Rising delay time / Falling delay time Tr' Tf' Set SW13 to GND (or OPEN), input SG8 to Pin7 (or Pin15 ). Measure the rising delay time HVdr and the falling delay time HVdf. SG8 50% In the same way, measure HVdr and HVdf when input SG8 to Pin8 (or Pin16 ). HVDr HVDf 50% Waveform output <Sync-Separation> Sync input minimum voltage Gradually decreasing the amplitude of SG7 in Pin22, measure the amplitude of SG7 when the Sync-Sep output signal turn off . The value is as SYrv. Sync output High level voltage / Sync output Low level voltage Input SG7 to Pin22, read the output High level and low voltage of TP21. The value is as SYVH, SYVL. Sync output rising time / Sync output falling time 100% 1. The conditions is as table. (SG7 amplitude 0.3Vp-p) 90% This measurement shall use active probe. 2. Measure rising Tri and falling Tfi for 10%~90% 10% of the input pulse as STr, STf . 0% Sync output rising delay time STr STf SG7 Sync output falling delay time Input SG7 to Pin22. Measure the rising delay time Sdr 50% and the falling delay time Sdf. SDf SDr 50% Waveform output <Others> Channel select SW threshold 1,2 1. Gradually increasing the voltage of Pin13 from 0V, is selected. The value is as Vthch1. 2.Gradually decreasing the voltage of Pin13 from 5V, is selected. The value is as Vthch2. Power save SW threshold 1,2 1. Gradually increasing the voltage of Pin11 from 0V, mode . The value is as VthPL. 2.Gradually decreasing the voltage of Pin13 from 5V, mode . The value is as VthPH. measure the maximum voltage of Pin13 when the channel 1 measure the minimum voltage of Pin13 when the channel 2 measure the maximum voltage of Pin11 when the Power save measure the minimum voltage of Pin11 when the Power save M I T S U B I S H I 8 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH INPUT SIGNAL SG1 Sine wave(f=60KHz, 0.7Vp-p(Amplitude variable)) 0.7Vp-p (variable) SG2 Sine wave(f=1MHz, 0.7Vp-p(Amplitude variable)) Sine wave(f=10MHz, 0.7Vp-p(Amplitude variable)) SG3 Sine wave(f=100MHz, 0.7Vp-p(Amplitude variable)) SG4 SG5 Sine wave(f=250MHz, 0.7Vp-p(Amplitude variable)) SG6 0.7Vpp SG7 DUTY 80% fH=60kHz 0.7Vp-p Sync (fH=60KHz) Amplitude variable (Typ. =0.3Vp-p) 4.5us SG8 TTL 5V DUTY=50% fH=60kHz 0V THERMAL DERATING CURVE ( SP ) ( FP ) 1750 1750 1603 1500 1500 1250 1250 1000 1068 1000 833 750 750 640 500 500 250 250 0 -25 0 0 25 50 75 85 100 125 Ambient temperature Ta ( C ) 150 -25 0 25 50 75 100 125 Ambient temperature Ta ( C ) M I T S U B I S H I 9 15 150 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH TEST CIRCUIT ( M61323SP ) 1u 0.01u A 47u a b SW B VccB 5V M I T S U B I S H I 10 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH APPLICATION EXAMPLE ( M61323SP ) M I T S U B I S H I 11 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH DESCRIPTION OF PIN ( M61323SP ) DC Pin No. Description 1 3 5 20 Vcc(R) Vcc(G) Vcc(B) Vcc(H,V,Sync-Sep.) 5.0 26 29 32 Vcc(ROUT) Vcc(GOUT) Vcc(BOUT) 5.0 2 4 6 10 12 14 Input1(R) Input1(G) Input1(B) Input2(R) Input2(G) Input2(B) Voltage[V] Notes Peripheral circuits at pins 3V Input signal with low impedance. 643 2.3 2.2mA 500 7 8 15 16 Input1(H) Input1(V) Input2(H) Input2(V) Input pulse between 3V and 5V. 7K 3 to 5V 0 to 0.8V SW 9 17 24 27 30 GND(V-SW) GND (H,V,Sync-Sep.) GND(B-out) GND(G-out) GND(R-out) GND M I T S U B I S H I 12 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH DISCRIPTION OF PIN ( M61323SP cont.) Pin No. DC Description Voltage[V] Peripheral circuits at pins 2.0V Notes 11 PwrSave-SW 2.5 Do not apply more 5V DC voltage. 13 CONT-SW 2.4 Do not apply more 5V DC voltage. 2.4V 18 19 Vout Hout M I T S U B I S H I 13 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH DISCRIPTION OF PIN ( M61323SP cont.) DC Pin No. Description 21 Sync sep OUT Voltage[V] Notes Peripheral circuits at pins 10K Connect a capacitance 10K 22 between the pin and GND Sync sep IN when not use SYNC-SEP. 2K CLUMPref 23 Vth G Buffer OUT 2K 32,29,26PIN 25 28 31 Video OUT (B) Video OUT (G) Video OUT (R) 50 1.5 31,28,25PIN 30,27,24PIN M I T S U B I S H I 14 15 MITSUBISHI ICs <Monitor> M61323SP/FP WIDE FREQUENCY BAND ANALOG SWITCH NOTE HOW TO USE THIS IC ( M61323SP ) 1. R,G,B input signal is 0.7Vp-p of standard video signal. 2. H,V input is 5.0V TTL type. 5V I<5mA 50 3. Input signal with sufficient low impedance to input terminal. R 4. The terminal of R,G,B output pin are shown as Fig.1. When resistance is connected between the pin31(28,25) and GND, Icc will be increase. 5. Switch(Pin13) can be changed by supplying some voltage as Fig.2. 0 to 0.5V:INPUT1 2.5 to 5V:INPUT2 Do not apply Vcc or more DC voltage. 6. Power save mode is provided for saving Icc less than about 10mA as Fig.3. 0 to 0.5V:Power save mode (H.V-SW,Sync-Sep.,G-Buffer) 2.5 to 5V:Normal mode Do not apply 5V or more DC voltage. 7. When not use the Sync-separation circuit built in this IC, capacitance of several tens of pF is required between the pin22 and GND. Fig.1 13 Fig.2 11 Fig.3 CAUTIONS FOR MANUFACTURING BOARDS Built-in wide band preamplifier may cause oscillation due to the wiring shape on the board. Be careful for the following points. Vcc shall use a stable power supply. (Individual Vcc should use an independent power supply.) GND should be as wide as possible. Basically,solid earth should be used. Make the load capacitance of output pins as small as possible. Also ground the hold capacitance to stable GND ,wicth is as near to the pin as possible. Insertion of a resistance of several tens of ohms between the output pin and the circuit at the next stage makes oscillation harder. When inserting an output pull-down resistance, make wire between the output pin and the resistance as short as possible. M I T S U B I S H I 15 15 This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.