Order this document by MHPM7A15A60A/D SEMICONDUCTOR TECHNICAL DATA Motorola Preferred Device Integrated Power Stage for 1.0 hp Motor Drives The MHPM7A15A60A module integrates a 3-phase input rectifier bridge, 3-phase output inverter, brake transistor/diode, current sense resistor and temperature sensor in a single convenient package.The output inverter utilizes advanced insulated gate bipolar transistors (IGBT) matched with free-wheeling diodes to give optimal dynamic performance. It has been configured for use as a three-phase motor drive module or for many other power switching applications. The top connector pins have been designed for easy interfacing to the user’s control board. 15 AMP, 600 VOLT HYBRID POWER MODULE • DC Bus Current Sense Resistor Included • Short Circuit Rated 10 µs @ 25°C • Temperature Sensor Included • Pin-to-Baseplate Isolation exceeds 2500 Vac (rms) • Convenient Package Outline • UL Recognized and Designed to Meet VDE • Access to Positive and Negative DC Bus PLASTIC PACKAGE CASE 440-01, Style 1 MAXIMUM DEVICE RATINGS (TJ = 25°C unless otherwise noted) Rating Symbol Value Unit Repetitive Peak Reverse Voltage VRRM 600 V Average Output Rectified Current IO 15 A IFSM 200 A IGBT Reverse Voltage VCES 600 V Gate-Emitter Voltage VGES ± 20 V IC 15 A IC(pk) 30 A INPUT RECTIFIER BRIDGE Peak Non-repetitive Surge Current — (1/2 Cycle) (1) OUTPUT INVERTER Continuous IGBT Collector Current Peak IGBT Collector Current — (PW = 1.0 ms) (2) Continuous Free-Wheeling Diode Current IF 15 A IF(pk) 30 A IGBT Power Dissipation PD 55 W Free-Wheeling Diode Power Dissipation PD 30 W IGBT Junction Temperature Range TJ – 40 to +125 °C Free-Wheeling Diode Junction Temperature Range TJ – 40 to +125 °C Peak Free-Wheeling Diode Current — (PW = 1.0 ms) (2) (1) 1 cycle = 50 or 60 Hz (2) 1.0 ms = 1.0% duty cycle Preferred devices are Motorola recommended choices for future use and best overall value. Motorola, Inc. 1995 MOTOROLA MHPM7A15A60A 1 MAXIMUM DEVICE RATINGS (continued) (TJ = 25°C unless otherwise noted) Rating Symbol Value Unit IGBT Reverse Voltage VCES 600 V Gate-Emitter Voltage VGES ± 20 V IC 15 A IC(pk) 30 A BRAKE CIRCUIT Continuous IGBT Collector Current Peak IGBT Collector Current (PW = 1.0 ms) (2) IGBT Power Dissipation PD 55 W Diode Reverse Voltage VRRM 600 V IF 15 A IF(pk) 30 A VISO 2500 VAC Ambient Operating Temperature Range TA – 40 to + 85 °C Operating Case Temperature Range TC – 40 to + 90 °C Storage Temperature Range Tstg – 40 to +150 °C — 6.0 lb–in Continuous Output Diode Current Peak Output Diode Current (PW = 1.0 ms) (2) TOTAL MODULE Isolation Voltage — (47–63 Hz, 1.0 Minute Duration) Mounting Torque ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IR — 10 50 µA INPUT RECTIFIER BRIDGE Reverse Leakage Current (VRRM = 600 V) Forward Voltage (IF = 15 A) VF — 1.05 1.5 V RθJC — — 2.9 °C/W Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V) IGES — — ± 20 µA Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V) TJ = 25°C TJ = 125°C ICES — — — — 200 2.0 µA mA 8.0 V Thermal Resistance (Each Die) OUTPUT INVERTER Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA) VGE(th) 4.0 6.0 Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V(BR)CES 600 700 — V Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 15 A) VCE(SAT) — 2.7 3.5 V Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz) Cies — 950 — pF Input Gate Charge (VCE = 300 V, IC = 15 A, VGE = 15 V) QT — 75 — nC — 200 350 ns Fall Time — Inductive Load (VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω) tfi Turn-On Energy (VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω) E(on) — — 1.0 mJ Turn-Off Energy (VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω) E(off) — — 1.0 mJ Diode Forward Voltage (IF = 15 A, VGE = 0 V) VF — 1.5 2.0 V Diode Reverse Recovery Time (IF = 15 A, V = 400 V, dI/dt = 50 A/µs) trr — 140 200 ns Diode Stored Charge (IF = 15 A, V = 400 V, di/dt = 50 A/µs) Qrr — — 900 nC Thermal Resistance — IGBT (Each Die) RθJC — — 1.9 °C/W Thermal Resistance — Free-Wheeling Diode (Each Die) RθJC — — 3.7 °C/W (2) 1.0 ms = 1.0% duty cycle MHPM7A15A60A 2 MOTOROLA ELECTRICAL CHARACTERISTICS (continued) (TJ = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V) IGES — — ± 20 µA Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V) (1) TJ = 25°C TJ = 125°C ICES — — — — 200 2.0 µA mA BRAKE CIRCUIT Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA) VGE(th) 4.0 6.0 8.0 V Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V(BR)CES 600 700 — V Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 15 A) (1) VCE(SAT) — 2.7 3.5 V Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz) Cies — 950 — pF Input Gate Charge (VCE = 300 V, IC = 15 A, VGE = 15 V) QT — 75 — nC — 200 350 ns — — 1.0 mJ — — 1.0 mJ Fall Time — Inductive Load (VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω) tfi Turn-On Energy (VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω) E(on) Turn-Off Energy (VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω) E(off) Diode Forward Voltage (IF = 15 A) VF — 1.5 2.0 V Diode Reverse Leakage Current IR — — 50 µA Thermal Resistance — IGBT RθJC — — 1.9 °C/W Thermal Resistance — Diode RθJC — — 3.7 °C/W Rsense — 10 — mΩ Rtol –1.0 — +1.0 % VF — 0.660 — V TCVF — –1.95 — mV/°C SENSE RESISTOR Resistance Resistance Tolerance TEMPERATURE SENSE DIODE Forward Voltage (@ IF = 1.0 mA) Forward Voltage Temperature Coefficient (@ IF = 1.0 mA) (1) 1 cycle = 50 or 60 Hz. MOTOROLA MHPM7A15A60A 3 Figure 1. Integrated Power Stage Schematic MHPM7A15A60A 4 MOTOROLA R S T 24 23 22 –I 6 25 5 = PIN NUMBER IDENTIFICATION N2 N1 G2 8 G7 Q7 21 B G1 E1 9 16 7 1 15 P2 P1 4 +I Q2 Q1 D2 D1 10 +T C –T C 3 2 G4 17 G3 E3 11 Q8 TEMP SENSE Q4 Q3 D4 D3 G6 14 12 G5 E5 13 D6 D5 W V U 18 19 20 3–Phase Input Rectifier Bridge Brake IGBT/ Diode 3–Phase Output IGBT/Diode Bridge, with Current and Temperature Sense DEVICE INTEGRATION Q6 Q5 VGE 90% IC L VCE IC RG VCE 90% VCE 10% 10% td(off) tf toff Figure 2. Inductive Switching Time Test Circuit and Timing Chart Typical Characteristics 125°C 1.0 25°C r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) I F, FORWARD CURRENT (A) 50 40 30 20 10 0 0 0.2 0.4 0.6 1.0 1.4 0.8 1.2 VF, FORWARD VOLTAGE (V) 1.6 1.8 Figure 3. Input Bridge Forward Current versus Forward Voltage MOTOROLA 2.0 D = 0.5 0.2 P(pk) 0.1 0.01 0.01 SINGLE PULSE 0.1 t1 RθJC(t) = r(t)(RθJC) t2 RθJC = 3.2°C/W D Curves apply for power pulse train shown read time at t1 TJ(pk)–TC = P(pk) RθJC(t) 1.0 10 t, TIME (ms) 100 Figure 4. Input Rectifier Bridge Thermal Response MHPM7A15A60A 5 1000 Typical Characteristics 50 50 125°C 12 V 20 V I C, COLLECTOR CURRENT (A) I F, FORWARD CURRENT (A) 25°C 40 30 20 10 10 V 15 V 40 30 20 8V 10 7V 0 1 2 3 4 0 0 5 4 8 6 VCE, COLLECTOR–EMITTER VOLTAGE (V) VF, FORWARD VOLTAGE (V) Figure 6. Output Inverter Collector-Current versus Collector-Emitter Voltage 20 5A 10 A VCE, COLLECTOR-EMITTER VOLTAGE (V) VCE , COLLECTOR-EMITTER VOLTAGE (V) Figure 5. Output Inverter Diode Forward Currrent versus Forward Voltage 20 A 16 12 8 4 0 0 4 12 8 16 VGE, GATE-EMITTER VOLTAGE (V) 450 400 300 SWITCHING ENERGY ( µJ) SWITCHING ENERGY ( µJ) 125°C 25°C 1 10 IC, COLLECTOR CURRENT (A) 100 Figure 9. Inverter Switching Energy E(off) versus Collector Current IC MHPM7A15A60A 6 12 250 10 200 8 150 6 100 4 50 2 0 10 20 30 40 50 60 70 QG, GATE CHARGE (nC) 80 90 0 100 1000 100 1 14 300 V 100 V 200 V Figure 8. Gate–to–Emitter Voltage versus Gate Charge VCE = 300 V VGE = 15 V RG = 150 Ω 10 16 350 0 20 18 TJ = 25°C IC = 15 A Figure 7. Output Inverter Collector-Emitter Voltage versus Gate-Emitter Voltage 1000 10 VCE = 300 V VGE = 15 V IC = 15 A 100 25°C 10 10 100 RG, GATE RESISTANCE (Ω) 1000 Figure 10. Inverter Switching Energy E(off) versus Gate Resistance RG MOTOROLA V GE , GATE VOLTAGE (V) 0 Typical Characteristics 1000 VCE = 300 V VGE = 15 V RG = 150 Ω TJ = 25°C SWITCHING TIME (ns) SWITCHING TIME (ns) 1000 100 10 VCE = 300 V VGE = 15 V RG = 150 Ω TJ = 125°C 100 10 tf @ 125 td @ 125 t(off) @ 125 tf td t(off) 1 1 10 IC, COLLECTOR CURRENT (A) 1 100 1 1000 VCE = 300 V VGE = 15 V RG = 150 Ω SWITCHING TIME (ns) SWITCHING TIME (ns) 1000 100 VCE = 300 V VGE = 15 V IC = 15 A TJ = 25°C 100 10 1 100 RG, GATE RESISTANCE (Ω) 1000 1 10 IC, COLLECTOR CURRENT (A) 10000 VCE = 300 V VGE = 15 V IC = 15 A TJ = 25°C Cies 1000 100 10 Coes 100 Cres 10 1 10 100 RG, GATE RESISTANCE (Ω) Figure 15. Inverter Switching Time tr versus Gate Resistance RG MOTOROLA 100 Figure 14. Inverter Switching Time tr versus Collector Current IC CAPACITANCE (pF) SWITCHING TIME (ns) 125°C 25°C tf td t(off) Figure 13. Inverter Switching Time tf, td, t(off) versus Gate Resistance RG 1000 100 Figure 12. Inverter Switching Time tf, td, t(off) versus Collector Current IC Figure 11. Inverter Switching Time tf, td, t(off) versus Collector Current IC 10 10 10 IC, COLLECTOR CURRENT (A) 1000 1 1 10 100 VCE (V) Figure 16. Inverter Capacitance versus VCE MHPM7A15A60A 7 1000 Typical Characteristics 1.0 r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1.0 D = 0.5 0.2 P(pk) 0.1 0.01 0.01 SINGLE PULSE 0.1 t1 RθJC(t) = r(t)(RθJC) t2 RθJC = 2.2°C/W D Curves apply for power pulse train shown read time at t1 TJ(pk)–TC = P(pk) RθJC(t) 1.0 10 t, TIME (ms) 100 Figure 17. Ouput Inverter IGBT Thermal Response 1000 D = 0.5 0.2 P(pk) 0.1 0.01 0.01 t1 RθJC(t) = r(t)(RθJC) t2 RθJC = 3.4°C/W D Curves apply for power pulse train shown read time at t1 TJ(pk)–TC = P(pk) RθJC(t) SINGLE PULSE 0.1 1.0 10 t, TIME (ms) 100 Figure 18. Output Diode Thermal Response I C , COLLECTOR CURRENT (A) 40 35 30 25 20 15 10 L = 200 µH 5 VGE = 15 V RG = 150 Ω 0 0 100 200 300 400 500 600 VCE, COLLECTOR-EMITTER VOLTAGE (V) 700 800 Figure 19. Output Inverter Reverse Bias Safe Operating Area (RBSOA) MHPM7A15A60A 8 MOTOROLA 1000 PACKAGE DIMENSIONS E C AB AC AE V K AA 9 PL AF 3 PL AD DETAIL Z A Q G 1 W 2 PL AH N 2 PL 17 T 2 PL L S M 25 Y 18 X AG P 4 PL 4 PL U J H 25 PL 7 PL D F DETAIL Z STYLE 1: PIN 1. 2. 3. 4. 5. P1 T– T+ I+ I– R PIN 6. 7. 8. 9. 10. N2 P2 K1 G1 K3 PIN 11. 12. 13. 14. 15. G3 K5 G5 G6 G7 PIN 16. 17. 18. 19. 20. G2 G4 W V U PIN 21. 22. 23. 24. 25. B T S R N1 B NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. LEAD LOCATION DIMENSIONS (ie: M, B. AA...) ARE TO THE CENTER OF THE LEAD. DIM A B C D E F G H J K L M N P Q R S T U V W X Y AA AB AC AD AE AF AG AH MILLIMETERS MIN MAX 97.54 98.55 52.45 53.47 14.60 15.88 0.43 0.84 10.80 12.06 0.94 1.35 1.60 2.21 8.58 9.19 0.30 0.71 18.80 20.57 19.30 20.32 38.99 40.26 9.78 11.05 82.55 83.57 4.01 4.62 26.42 27.43 12.06 12.95 4.32 5.33 86.36 87.38 14.22 15.24 7.62 8.13 6.55 7.16 2.49 3.10 2.24 2.84 7.32 7.92 4.78 5.38 8.58 9.19 6.05 6.65 4.78 5.38 69.34 70.36 ––– 5.08 INCHES MIN MAX 3.840 3.880 2.065 2.105 0.575 0.625 0.017 0.033 0.425 0.475 0.037 0.053 0.063 0.087 0.338 0.362 0.012 0.028 0.74 0.81 0.760 0.800 1.535 1.585 0.385 0.435 3.250 3.290 0.158 0.182 1.040 1.080 0.475 0.515 0.170 0.210 3.400 3.440 0.560 0.600 0.300 0.320 0.258 0.282 0.098 0.122 0.088 0.112 0.288 0.312 0.188 0.212 0.338 0.362 0.238 0.262 0.188 0.212 2.730 2.770 ––– 0.200 CASE 440-01 ISSUE O MOTOROLA MHPM7A15A60A 9 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 MFAX: [email protected] – TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 MHPM7A15A60A 10 ◊ 2PHX34106L–0 *MHPM7A15A60A/D* PRINTED IN USA 3/95 IMPERIAL LITHO 12250 4,500 HYBRID POWER MODULE MHPM7A15A60A/D MOTOROLA