MOTOROLA MHPM7B20A60A

Order this document
by MHPM7B20A60A/D
SEMICONDUCTOR TECHNICAL DATA
Motorola Preferred Device
Integrated Power Stage for 2.0 hp Motor Drives
This module integrates a 3–phase input rectifier bridge, 3–phase output
inverter and brake transistor/diode in a single convenient package. The output
inverter utilizes advanced insulated gate bipolar transistors (IGBT) matched
with free–wheeling diodes to give optimal dynamic performance. It has been
configured for use as a three–phase motor drive module or for many other
power switching applications. The top connector pins have been designed for
easy interfacing to the user’s control board.
20 AMP, 600 VOLT
HYBRID POWER MODULE
• Short Circuit Rated 10 µs @ 25°C
• Pin-to-Baseplate Isolation Exceeds 2500 Vac (rms)
• Convenient Package Outline
• UL
Recognized and Designed to Meet VDE
• Access to Positive and Negative DC Bus
PLASTIC PACKAGE
CASE 440-01, Style 1
MAXIMUM DEVICE RATINGS (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
VRRM
600
V
IO
20
A
IFSM
240
A
INPUT RECTIFIER BRIDGE
Repetitive Peak Reverse Voltage
Average Output Rectified Current (1)
Peak Non-repetitive Surge Current
OUTPUT INVERTER
IGBT Reverse Voltage
VCES
600
V
Gate-Emitter Voltage
VGES
± 20
V
IC
20
A
IC(pk)
40
A
IF
20
A
IF(pk)
40
A
IGBT Power Dissipation
PD
78
W
Free-Wheeling Diode Power Dissipation
PD
39
W
IGBT Junction Temperature Range
TJ
– 40 to +125
°C
Free-Wheeling Diode Junction Temperature Range
TJ
– 40 to +125
°C
Continuous IGBT Collector Current
Peak IGBT Collector Current – (PW = 1.0 ms) (2)
Continuous Free-Wheeling Diode Current
Peak Free-Wheeling Diode Current – (PW = 1.0 ms) (2)
(1) 1 cycle = 50 or 60 Hz
(2) 1 ms = 1.0% duty cycle
Preferred devices are Motorola recommended choices for future use and best overall value.
 Motorola, Inc. 1995
MOTOROLA
MHPM7B20A60A
1
MAXIMUM DEVICE RATINGS (continued) (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
IGBT Reverse Voltage
VCES
600
V
Gate-Emitter Voltage
VGES
± 20
V
IC
20
A
IC(pk)
40
A
IGBT Power Dissipation
PD
78
W
Diode Reverse Voltage
VRRM
600
V
IF
20
A
IF(pk)
40
A
VISO
2500
VAC
Ambient Operating Temperature Range
TA
– 40 to + 85
°C
Operating Case Temperature Range
TC
– 40 to + 90
°C
Storage Temperature Range
Tstg
– 40 to +150
°C
–
6.0
lb–in
BRAKE CIRCUIT
Continuous IGBT Collector Current
Peak IGBT Collector Current (PW = 1.0 ms) (2)
Continuous Output Diode Current
Peak Output Diode Current (PW = 1.0 ms) (2)
TOTAL MODULE
Isolation Voltage – (47–63 Hz, 1.0 Minute Duration)
Mounting Torque
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Reverse Leakage Current (VRRM = 600 V)
IR
–
10
50
µA
Forward Voltage (IF = 20 A)
VF
–
1.1
1.5
V
RθJC
–
–
2.9
°C/W
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V)
IGES
–
–
± 20
µA
Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V)
TJ = 25°C
TJ = 125°C
ICES
–
–
–
–
200
1.0
µA
mA
INPUT RECTIFIER BRIDGE
Thermal Resistance (Each Die)
OUTPUT INVERTER
Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA)
VGE(th)
4.0
6.0
8.0
V
Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0)
V(BR)CES
600
700
–
V
Collector-Emitter Saturation Voltage (IC = 20 A, VGE = 15 V)
VCE(SAT)
–
2.5
3.5
V
Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz)
Cies
–
4400
–
pF
Input Gate Charge (VCE = 300 V, IC = 20 A, VGE = 15 V)
QT
–
145
–
nC
–
250
500
ns
Fall Time – Inductive Load
(VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω)
tfi
Turn-On Energy
(VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω)
E(on)
–
–
2.5
mJ
Turn-Off Energy
(VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω)
E(off)
–
–
2.5
mJ
Diode Forward Voltage (IF = 20 A, VGE = 0 V)
VF
–
1.3
2.0
V
Diode Reverse Recovery Time
(IF = 20 A, V = 300 V, dI/dt = 50 A/µs)
trr
–
170
200
ns
Diode Stored Charge (IF = 20 A, V = 300 V, di/dt = 50 A/µs)
Qrr
–
450
600
nC
Thermal Resistance – IGBT (Each Die)
RθJC
–
–
1.5
°C/W
Thermal Resistance – Free-Wheeling Diode (Each Die)
RθJC
–
–
2.9
°C/W
(2) 1.0 ms = 1.0% duty cycle
MHPM7B20A60A
2
MOTOROLA
ELECTRICAL CHARACTERISTICS (continued) (TJ = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V)
IGES
–
–
± 20
µA
Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V)
TJ = 25°C
TJ = 125°C
ICES
–
–
–
–
100
2.0
µA
mA
BRAKE CIRCUIT
Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA)
VGE(th)
4.0
6.0
8.0
V
Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0)
V(BR)CES
600
700
–
V
Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 20 A)
VCE(SAT)
–
2.5
3.5
V
Input Capacitance (VGE = 0 V, VCE = 25 V, f = 1.0 MHz)
Cies
–
4400
–
pF
Input Gate Charge (VCE = 300 V, IC = 20 A, VGE = 15 V)
QT
–
145
–
nC
–
250
500
ns
–
–
2.5
mJ
–
–
2.5
mJ
Fall Time – Inductive Load
(VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω)
tfi
Turn-On Energy
(VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω)
E(on)
Turn-Off Energy
(VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω)
E(off)
Diode Forward Voltage (IF = 20 A)
VF
–
1.3
2.0
V
Diode Reverse Leakage Current
IR
–
–
50
µA
Thermal Resistance – IGBT
RθJC
–
–
1.5
°C/W
Thermal Resistance – Diode
RθJC
–
–
2.9
°C/W
MOTOROLA
MHPM7B20A60A
3
Figure 1. Integrated Power Stage Schematic
MHPM7B20A60A
4
MOTOROLA
R
S
T
24
23
22
6
25
= PIN NUMBER IDENTIFICATION
N2
N1
G2
G7
8
16
G1
E1
15
Q7
21
B
9
7
P2
1
P1
4
5
NC
3
NC
NC
2
NC
Q2
Q1
10
G4
17
G3
E3
11
Q4
These pins are physical
terminations but not
connected internally.
D2
D1
Q3
D4
D3
G6
14
12
G5
E5
13
D6
D5
W
V
U
18
19
20
3–Phase
Input
Rectifier
Bridge
Brake
IGBT/
Diode
3–Phase
Output
IGBT/Diode
Bridge
DEVICE INTEGRATION
Q6
Q5
50
50
45
45
40
40
I F , FORWARD CURRENT (A)
I F , FORWARD CURRENT (A)
Typical Characteristics
35
30
25
TJ = 125°C
20
25°C
15
10
35
30
TJ = 125°C
25
20
15
10
5
5
0
0
0
0
0.2
0.4
0.6
1.4
0.8
1.2
1.0
VF, FORWARD VOLTAGE (V)
1.8
1.6
2.0
Figure 2. Input Bridge Forward Current IF versus
Forward Voltage VF
0.4
0.6
1.0
1.4
0.8
1.2
VF, FORWARD VOLTAGE (V)
1.8
1.6
2.0
50
TJ = 125°C
trr
25°C
100
TJ = 125°C
10
Irr
25°C
VGE = 18 V
TJ = 25°C
45
I C , COLLECTOR CURRENT (A)
PEAK REVERSE RECOVERY CURRENT Irr (A)
REVERSE RECOVERY TIME t rr (ns)
0.2
Figure 3. Output Inverter Forward Current IF
versus Forward Voltage VF
1000
12 V
15 V
40
35
30
25
20
9V
15
10
5
1
–di/dt = 50 A/µs
0
5
10
15
20
0
25
0
1
50
10
VGE = 18 V
12V
VCE , COLLECTOR-EMITTER VOLTAGE (V)
TJ = 125°C
15 V
40
35
30
25
20
15
9V
10
5
0
0
2
3
4
1
VCE, COLLECTOR–EMITTER VOLTAGE (V)
Figure 6. Ouput Inverter Collector Current IC
versus Collector–Emitter Voltage VCE
MOTOROLA
3
4
5
Figure 5. Output Inverter Collector Currrent IC
versus Collector–Emitter Voltage VCE
Figure 4. Output Inverter Reverse Recovery trr, Irr
versus Forward Current IF
45
2
VCE, COLLECTOR–EMITTER VOLTAGE (V)
IF, FORWARD CURRENT (A)
I C, COLLECTOR CURRENT (A)
25°C
5
IC = 10 A
TJ = 25°C
40 A
8
20 A
6
4
2
0
8
10
14
16
12
VGE, GATE–EMITTER VOLTAGE (V)
Figure 7. Inverter Collector–Emitter Voltage VCE
versus Gate–Emitter Voltage VGE
MHPM7B20A60A
5
18
450
18
400
16
400 V
350
14
400 V
300
300 V
200 V
300 V
12
10
250
200
8
200 V
6
150
TJ = 25°C
IC = 20 A
100
VCE = 300 V
VGE = 15 V
RG = 10 Ω
TJ =125°C
25°C
100
2
50
0
4
1000
V GE , GATE VOLTAGE (V)
SWITCHING ENERGY ( µ J)
VCE , COLLECTOR-EMITTER VOLTAGE (V)
Typical Characteristics
0
10
0
10
15
IC, COLLECTOR CURRENT (A)
Figure 8. Gate–to-Emitter Voltage versus
Gate Charge
Figure 9. Inverter Switching Energy E(off) versus
Collector Current IC
60
80
100
120
0
160
QG, GATE CHARGE (nC)
40
20
140
5
20
1000
10000
TJ =125°C
1000
25°C
100
10
t(off)
SWITCHING TIME (ns)
SWITCHING ENERGY ( µJ)
VCE = 300 V
VGE = 15 V
IC = 20 A
100
td
VCE = 300 V
VGE = 15 V
RG = 10 Ω
TJ = 25°C
100
1000
0
5
tf
10
15
20
25
IC, COLLECTOR CURRENT (A)
RG, GATE RESISTANCE (Ω)
Figure 11. Inverter Switching Time td, tf, t(off)
versus Collector Current IC
Figure 10. Inverter Switching Energy E(off) versus
Gate Resistance RG
1000
10000
VCE = 300 V
VGE = 15 V
IC = 20 A
TJ = 25°C
SWITCHING TIME (ns)
SWITCHING TIME (ns)
t(off)
td
tf
100
25
VCE = 300 V
VGE = 15 V
RG = 10 Ω
TJ = 125°C
0
5
10
15
IC, COLLECTOR CURRENT (A)
20
Figure 12. Inverter Switching Time td, tf, t(off)
versus Collector Current IC
MHPM7B20A60A
6
25
t(off)
td
1000
tf
100
10
100
RG, GATE RESISTANCE (Ω)
Figure 13. Inverter Switching Time td,tf, t(off)
versus Gate Resistance RG
MOTOROLA
1000
Typical Characteristics
200
VCE = 300 V
VGE = 15 V
IC = 20 A
TJ = 125°C
t(off)
td
VCE = 300 V
VGE = 15 V
RG = 10 Ω
175
150
SWITCHING TIME (ns)
SWITCHING TIME (ns)
10000
1000
tf
125
TJ =125°C
100
75
25°C
50
25
100
10
0
1000
100
RG, GATE RESISTANCE (Ω)
5
0
Figure 14. Inverter Switching Time td, tf, t(off)
versus Gate Resistance RG
20
25
Figure 15. Inverter Switching Time tr
versus Collector Current IC
10000
VCE = 300 V
VGE = 15 V
IC = 20 A
Cies
25°C
CAPACITANCE (pF)
SWITCHING TIME (ns)
10000
10
15
IC, COLLECTOR CURRENT (A)
1000
TJ =125°C
100
1000
Coes
100
Cres
10
10
100
RG, GATE RESISTANCE (Ω)
10
0
1000
Figure 16. Inverter Switching Time tr
versus Gate Resistance RG
180
200
1.0
r(t), EFFECTIVE TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
I C, COLLECTOR CURRENT (A)
40
60
80
100 120 140 160
VCE, COLLECTOR–EMITTER VOLTAGE (V)
Figure 17. Output Inverter Capacitance versus
Collector Voltage VCE
100
10
1.0
0.1
20
+VGE = 15 V
–VGE = 0 V
RG = 150 Ω
TJ = 25°C
0
400
200
600
800
VCE, COLLECTOR–EMITTER VOLTAGE (V)
Figure 18. Output Inverter Reversed Biased
Safe Operating Area
MOTOROLA
1000
DIODE
IGBT
0.1
0.01
0.001
1
100
10
t, TIME (ms)
Figure 19. Transient Thermal Resistance
MHPM7B20A60A
7
1000
PACKAGE DIMENSIONS
E
C
AB
AC
AE
V
K
AA
9 PL
AF
3 PL
AD
DETAIL Z
A
Q
G
1
W
2 PL
AH
N
2 PL
17
T
2 PL
L
S
M
25
Y
18
X
AG
P
4 PL
4 PL
U
J
H
25 PL
7 PL
D
F
DETAIL Z
STYLE 1:
PIN 1.
2.
3.
4.
5.
P1
T–
T+
I+
I–
R
PIN 6.
7.
8.
9.
10.
N2
P2
K1
G1
K3
PIN 11.
12.
13.
14.
15.
G3
K5
G5
G6
G7
PIN 16.
17.
18.
19.
20.
G2
G4
W
V
U
PIN 21.
22.
23.
24.
25.
B
T
S
R
N1
B
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. LEAD LOCATION DIMENSIONS (ie: M, B. AA...)
ARE TO THE CENTER OF THE LEAD.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
Y
AA
AB
AC
AD
AE
AF
AG
AH
MILLIMETERS
MIN
MAX
97.54
98.55
52.45
53.47
14.60
15.88
0.43
0.84
10.80
12.06
0.94
1.35
1.60
2.21
8.58
9.19
0.30
0.71
18.80
20.57
19.30
20.32
38.99
40.26
9.78
11.05
82.55
83.57
4.01
4.62
26.42
27.43
12.06
12.95
4.32
5.33
86.36
87.38
14.22
15.24
7.62
8.13
6.55
7.16
2.49
3.10
2.24
2.84
7.32
7.92
4.78
5.38
8.58
9.19
6.05
6.65
4.78
5.38
69.34
70.36
–––
5.08
INCHES
MIN
MAX
3.840
3.880
2.065
2.105
0.575
0.625
0.017
0.033
0.425
0.475
0.037
0.053
0.063
0.087
0.338
0.362
0.012
0.028
0.74
0.81
0.760
0.800
1.535
1.585
0.385
0.435
3.250
3.290
0.158
0.182
1.040
1.080
0.475
0.515
0.170
0.210
3.400
3.440
0.560
0.600
0.300
0.320
0.258
0.282
0.098
0.122
0.088
0.112
0.288
0.312
0.188
0.212
0.338
0.362
0.238
0.262
0.188
0.212
2.730
2.770
–––
0.200
CASE 440-01
ISSUE O
MHPM7B20A60A
8
MOTOROLA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MOTOROLA
MHPM7B20A60A
9
How to reach us:
USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] –TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MHPM7B20A60A
10
◊
CODELINE TO BE PLACED HERE
*MHPM7B20A60A/D*
MHPM7B20A60A/D
MOTOROLA