Order this document by MHPM7B20A60A/D SEMICONDUCTOR TECHNICAL DATA Motorola Preferred Device Integrated Power Stage for 2.0 hp Motor Drives This module integrates a 3–phase input rectifier bridge, 3–phase output inverter and brake transistor/diode in a single convenient package. The output inverter utilizes advanced insulated gate bipolar transistors (IGBT) matched with free–wheeling diodes to give optimal dynamic performance. It has been configured for use as a three–phase motor drive module or for many other power switching applications. The top connector pins have been designed for easy interfacing to the user’s control board. 20 AMP, 600 VOLT HYBRID POWER MODULE • Short Circuit Rated 10 µs @ 25°C • Pin-to-Baseplate Isolation Exceeds 2500 Vac (rms) • Convenient Package Outline • UL Recognized and Designed to Meet VDE • Access to Positive and Negative DC Bus PLASTIC PACKAGE CASE 440-01, Style 1 MAXIMUM DEVICE RATINGS (TJ = 25°C unless otherwise noted) Rating Symbol Value Unit VRRM 600 V IO 20 A IFSM 240 A INPUT RECTIFIER BRIDGE Repetitive Peak Reverse Voltage Average Output Rectified Current (1) Peak Non-repetitive Surge Current OUTPUT INVERTER IGBT Reverse Voltage VCES 600 V Gate-Emitter Voltage VGES ± 20 V IC 20 A IC(pk) 40 A IF 20 A IF(pk) 40 A IGBT Power Dissipation PD 78 W Free-Wheeling Diode Power Dissipation PD 39 W IGBT Junction Temperature Range TJ – 40 to +125 °C Free-Wheeling Diode Junction Temperature Range TJ – 40 to +125 °C Continuous IGBT Collector Current Peak IGBT Collector Current – (PW = 1.0 ms) (2) Continuous Free-Wheeling Diode Current Peak Free-Wheeling Diode Current – (PW = 1.0 ms) (2) (1) 1 cycle = 50 or 60 Hz (2) 1 ms = 1.0% duty cycle Preferred devices are Motorola recommended choices for future use and best overall value. Motorola, Inc. 1995 MOTOROLA MHPM7B20A60A 1 MAXIMUM DEVICE RATINGS (continued) (TJ = 25°C unless otherwise noted) Rating Symbol Value Unit IGBT Reverse Voltage VCES 600 V Gate-Emitter Voltage VGES ± 20 V IC 20 A IC(pk) 40 A IGBT Power Dissipation PD 78 W Diode Reverse Voltage VRRM 600 V IF 20 A IF(pk) 40 A VISO 2500 VAC Ambient Operating Temperature Range TA – 40 to + 85 °C Operating Case Temperature Range TC – 40 to + 90 °C Storage Temperature Range Tstg – 40 to +150 °C – 6.0 lb–in BRAKE CIRCUIT Continuous IGBT Collector Current Peak IGBT Collector Current (PW = 1.0 ms) (2) Continuous Output Diode Current Peak Output Diode Current (PW = 1.0 ms) (2) TOTAL MODULE Isolation Voltage – (47–63 Hz, 1.0 Minute Duration) Mounting Torque ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Reverse Leakage Current (VRRM = 600 V) IR – 10 50 µA Forward Voltage (IF = 20 A) VF – 1.1 1.5 V RθJC – – 2.9 °C/W Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V) IGES – – ± 20 µA Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V) TJ = 25°C TJ = 125°C ICES – – – – 200 1.0 µA mA INPUT RECTIFIER BRIDGE Thermal Resistance (Each Die) OUTPUT INVERTER Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA) VGE(th) 4.0 6.0 8.0 V Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V(BR)CES 600 700 – V Collector-Emitter Saturation Voltage (IC = 20 A, VGE = 15 V) VCE(SAT) – 2.5 3.5 V Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz) Cies – 4400 – pF Input Gate Charge (VCE = 300 V, IC = 20 A, VGE = 15 V) QT – 145 – nC – 250 500 ns Fall Time – Inductive Load (VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω) tfi Turn-On Energy (VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω) E(on) – – 2.5 mJ Turn-Off Energy (VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω) E(off) – – 2.5 mJ Diode Forward Voltage (IF = 20 A, VGE = 0 V) VF – 1.3 2.0 V Diode Reverse Recovery Time (IF = 20 A, V = 300 V, dI/dt = 50 A/µs) trr – 170 200 ns Diode Stored Charge (IF = 20 A, V = 300 V, di/dt = 50 A/µs) Qrr – 450 600 nC Thermal Resistance – IGBT (Each Die) RθJC – – 1.5 °C/W Thermal Resistance – Free-Wheeling Diode (Each Die) RθJC – – 2.9 °C/W (2) 1.0 ms = 1.0% duty cycle MHPM7B20A60A 2 MOTOROLA ELECTRICAL CHARACTERISTICS (continued) (TJ = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V) IGES – – ± 20 µA Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V) TJ = 25°C TJ = 125°C ICES – – – – 100 2.0 µA mA BRAKE CIRCUIT Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA) VGE(th) 4.0 6.0 8.0 V Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V(BR)CES 600 700 – V Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 20 A) VCE(SAT) – 2.5 3.5 V Input Capacitance (VGE = 0 V, VCE = 25 V, f = 1.0 MHz) Cies – 4400 – pF Input Gate Charge (VCE = 300 V, IC = 20 A, VGE = 15 V) QT – 145 – nC – 250 500 ns – – 2.5 mJ – – 2.5 mJ Fall Time – Inductive Load (VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω) tfi Turn-On Energy (VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω) E(on) Turn-Off Energy (VCE = 300 V, IC = 20 A, VGE = 15 V, RG = 150 Ω) E(off) Diode Forward Voltage (IF = 20 A) VF – 1.3 2.0 V Diode Reverse Leakage Current IR – – 50 µA Thermal Resistance – IGBT RθJC – – 1.5 °C/W Thermal Resistance – Diode RθJC – – 2.9 °C/W MOTOROLA MHPM7B20A60A 3 Figure 1. Integrated Power Stage Schematic MHPM7B20A60A 4 MOTOROLA R S T 24 23 22 6 25 = PIN NUMBER IDENTIFICATION N2 N1 G2 G7 8 16 G1 E1 15 Q7 21 B 9 7 P2 1 P1 4 5 NC 3 NC NC 2 NC Q2 Q1 10 G4 17 G3 E3 11 Q4 These pins are physical terminations but not connected internally. D2 D1 Q3 D4 D3 G6 14 12 G5 E5 13 D6 D5 W V U 18 19 20 3–Phase Input Rectifier Bridge Brake IGBT/ Diode 3–Phase Output IGBT/Diode Bridge DEVICE INTEGRATION Q6 Q5 50 50 45 45 40 40 I F , FORWARD CURRENT (A) I F , FORWARD CURRENT (A) Typical Characteristics 35 30 25 TJ = 125°C 20 25°C 15 10 35 30 TJ = 125°C 25 20 15 10 5 5 0 0 0 0 0.2 0.4 0.6 1.4 0.8 1.2 1.0 VF, FORWARD VOLTAGE (V) 1.8 1.6 2.0 Figure 2. Input Bridge Forward Current IF versus Forward Voltage VF 0.4 0.6 1.0 1.4 0.8 1.2 VF, FORWARD VOLTAGE (V) 1.8 1.6 2.0 50 TJ = 125°C trr 25°C 100 TJ = 125°C 10 Irr 25°C VGE = 18 V TJ = 25°C 45 I C , COLLECTOR CURRENT (A) PEAK REVERSE RECOVERY CURRENT Irr (A) REVERSE RECOVERY TIME t rr (ns) 0.2 Figure 3. Output Inverter Forward Current IF versus Forward Voltage VF 1000 12 V 15 V 40 35 30 25 20 9V 15 10 5 1 –di/dt = 50 A/µs 0 5 10 15 20 0 25 0 1 50 10 VGE = 18 V 12V VCE , COLLECTOR-EMITTER VOLTAGE (V) TJ = 125°C 15 V 40 35 30 25 20 15 9V 10 5 0 0 2 3 4 1 VCE, COLLECTOR–EMITTER VOLTAGE (V) Figure 6. Ouput Inverter Collector Current IC versus Collector–Emitter Voltage VCE MOTOROLA 3 4 5 Figure 5. Output Inverter Collector Currrent IC versus Collector–Emitter Voltage VCE Figure 4. Output Inverter Reverse Recovery trr, Irr versus Forward Current IF 45 2 VCE, COLLECTOR–EMITTER VOLTAGE (V) IF, FORWARD CURRENT (A) I C, COLLECTOR CURRENT (A) 25°C 5 IC = 10 A TJ = 25°C 40 A 8 20 A 6 4 2 0 8 10 14 16 12 VGE, GATE–EMITTER VOLTAGE (V) Figure 7. Inverter Collector–Emitter Voltage VCE versus Gate–Emitter Voltage VGE MHPM7B20A60A 5 18 450 18 400 16 400 V 350 14 400 V 300 300 V 200 V 300 V 12 10 250 200 8 200 V 6 150 TJ = 25°C IC = 20 A 100 VCE = 300 V VGE = 15 V RG = 10 Ω TJ =125°C 25°C 100 2 50 0 4 1000 V GE , GATE VOLTAGE (V) SWITCHING ENERGY ( µ J) VCE , COLLECTOR-EMITTER VOLTAGE (V) Typical Characteristics 0 10 0 10 15 IC, COLLECTOR CURRENT (A) Figure 8. Gate–to-Emitter Voltage versus Gate Charge Figure 9. Inverter Switching Energy E(off) versus Collector Current IC 60 80 100 120 0 160 QG, GATE CHARGE (nC) 40 20 140 5 20 1000 10000 TJ =125°C 1000 25°C 100 10 t(off) SWITCHING TIME (ns) SWITCHING ENERGY ( µJ) VCE = 300 V VGE = 15 V IC = 20 A 100 td VCE = 300 V VGE = 15 V RG = 10 Ω TJ = 25°C 100 1000 0 5 tf 10 15 20 25 IC, COLLECTOR CURRENT (A) RG, GATE RESISTANCE (Ω) Figure 11. Inverter Switching Time td, tf, t(off) versus Collector Current IC Figure 10. Inverter Switching Energy E(off) versus Gate Resistance RG 1000 10000 VCE = 300 V VGE = 15 V IC = 20 A TJ = 25°C SWITCHING TIME (ns) SWITCHING TIME (ns) t(off) td tf 100 25 VCE = 300 V VGE = 15 V RG = 10 Ω TJ = 125°C 0 5 10 15 IC, COLLECTOR CURRENT (A) 20 Figure 12. Inverter Switching Time td, tf, t(off) versus Collector Current IC MHPM7B20A60A 6 25 t(off) td 1000 tf 100 10 100 RG, GATE RESISTANCE (Ω) Figure 13. Inverter Switching Time td,tf, t(off) versus Gate Resistance RG MOTOROLA 1000 Typical Characteristics 200 VCE = 300 V VGE = 15 V IC = 20 A TJ = 125°C t(off) td VCE = 300 V VGE = 15 V RG = 10 Ω 175 150 SWITCHING TIME (ns) SWITCHING TIME (ns) 10000 1000 tf 125 TJ =125°C 100 75 25°C 50 25 100 10 0 1000 100 RG, GATE RESISTANCE (Ω) 5 0 Figure 14. Inverter Switching Time td, tf, t(off) versus Gate Resistance RG 20 25 Figure 15. Inverter Switching Time tr versus Collector Current IC 10000 VCE = 300 V VGE = 15 V IC = 20 A Cies 25°C CAPACITANCE (pF) SWITCHING TIME (ns) 10000 10 15 IC, COLLECTOR CURRENT (A) 1000 TJ =125°C 100 1000 Coes 100 Cres 10 10 100 RG, GATE RESISTANCE (Ω) 10 0 1000 Figure 16. Inverter Switching Time tr versus Gate Resistance RG 180 200 1.0 r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) I C, COLLECTOR CURRENT (A) 40 60 80 100 120 140 160 VCE, COLLECTOR–EMITTER VOLTAGE (V) Figure 17. Output Inverter Capacitance versus Collector Voltage VCE 100 10 1.0 0.1 20 +VGE = 15 V –VGE = 0 V RG = 150 Ω TJ = 25°C 0 400 200 600 800 VCE, COLLECTOR–EMITTER VOLTAGE (V) Figure 18. Output Inverter Reversed Biased Safe Operating Area MOTOROLA 1000 DIODE IGBT 0.1 0.01 0.001 1 100 10 t, TIME (ms) Figure 19. Transient Thermal Resistance MHPM7B20A60A 7 1000 PACKAGE DIMENSIONS E C AB AC AE V K AA 9 PL AF 3 PL AD DETAIL Z A Q G 1 W 2 PL AH N 2 PL 17 T 2 PL L S M 25 Y 18 X AG P 4 PL 4 PL U J H 25 PL 7 PL D F DETAIL Z STYLE 1: PIN 1. 2. 3. 4. 5. P1 T– T+ I+ I– R PIN 6. 7. 8. 9. 10. N2 P2 K1 G1 K3 PIN 11. 12. 13. 14. 15. G3 K5 G5 G6 G7 PIN 16. 17. 18. 19. 20. G2 G4 W V U PIN 21. 22. 23. 24. 25. B T S R N1 B NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. LEAD LOCATION DIMENSIONS (ie: M, B. AA...) ARE TO THE CENTER OF THE LEAD. DIM A B C D E F G H J K L M N P Q R S T U V W X Y AA AB AC AD AE AF AG AH MILLIMETERS MIN MAX 97.54 98.55 52.45 53.47 14.60 15.88 0.43 0.84 10.80 12.06 0.94 1.35 1.60 2.21 8.58 9.19 0.30 0.71 18.80 20.57 19.30 20.32 38.99 40.26 9.78 11.05 82.55 83.57 4.01 4.62 26.42 27.43 12.06 12.95 4.32 5.33 86.36 87.38 14.22 15.24 7.62 8.13 6.55 7.16 2.49 3.10 2.24 2.84 7.32 7.92 4.78 5.38 8.58 9.19 6.05 6.65 4.78 5.38 69.34 70.36 ––– 5.08 INCHES MIN MAX 3.840 3.880 2.065 2.105 0.575 0.625 0.017 0.033 0.425 0.475 0.037 0.053 0.063 0.087 0.338 0.362 0.012 0.028 0.74 0.81 0.760 0.800 1.535 1.585 0.385 0.435 3.250 3.290 0.158 0.182 1.040 1.080 0.475 0.515 0.170 0.210 3.400 3.440 0.560 0.600 0.300 0.320 0.258 0.282 0.098 0.122 0.088 0.112 0.288 0.312 0.188 0.212 0.338 0.362 0.238 0.262 0.188 0.212 2.730 2.770 ––– 0.200 CASE 440-01 ISSUE O MHPM7B20A60A 8 MOTOROLA Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. MOTOROLA MHPM7B20A60A 9 How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 MFAX: [email protected] –TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 MHPM7B20A60A 10 ◊ CODELINE TO BE PLACED HERE *MHPM7B20A60A/D* MHPM7B20A60A/D MOTOROLA