MOTOROLA MRF137

Order this document
by MRF137/D
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
N–Channel Enhancement–Mode
. . . designed for wideband large–signal output and driver stages up to
400 MHz range.
• Guaranteed 28 Volt, 150 MHz Performance
Output Power = 30 Watts
Minimum Gain = 13 dB
Efficiency — 60% (Typical)
30 W, to 400 MHz
N–CHANNEL MOS
BROADBAND RF POWER
FET
• Small–Signal and Large–Signal Characterization
• Typical Performance at 400 MHz, 28 Vdc, 30 W
Output = 7.7 dB Gain
• 100% Tested For Load Mismatch At All Phase Angles
With 30:1 VSWR
• Low Noise Figure — 1.5 dB (Typ) at 1.0 A, 150 MHz
• Excellent Thermal Stability, Ideally Suited For Class A
Operation
D
• Facilitates Manual Gain Control, ALC and Modulation
Techniques
G
CASE 211–07, STYLE 2
S
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain–Source Voltage
VDSS
65
Vdc
Drain–Gate Voltage
(RGS = 1.0 MΩ)
VDGR
65
Vdc
VGS
± 40
Vdc
Drain Current — Continuous
ID
5.0
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
100
0.571
Watts
W/°C
Storage Temperature Range
Tstg
– 65 to +150
°C
TJ
200
°C
Symbol
Max
Unit
RθJC
1.75
°C/W
Gate–Source Voltage
Operating Junction Temperature
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
REV 6
RF DEVICE DATA
MOTOROLA
Motorola, Inc. 1994
MRF137
1
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Drain–Source Breakdown Voltage (VGS = 0, ID = 10 mA)
V(BR)DSS
65
—
—
Vdc
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0)
IDSS
—
—
4.0
mAdc
Gate–Source Leakage Current (VGS = 20 V, VDS = 0)
IGSS
—
—
1.0
µAdc
VGS(th)
1.0
3.0
6.0
Vdc
gfs
500
750
—
mmhos
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Ciss
—
48
—
pF
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Coss
—
54
—
pF
Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Crss
—
11
—
pF
Noise Figure
(VDS = 28 Vdc, ID = 1.0 A, f = 150 MHz)
NF
—
1.5
—
dB
Common Source Power Gain
(VDD = 28 Vdc, Pout = 30 W,
IDQ = 25 mA)
Gps
13
—
16
7.7
—
—
50
60
—
OFF CHARACTERISTICS
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 25 mA)
Forward Transconductance (VDS = 10 V, ID = 500 mA)
DYNAMIC CHARACTERISTICS
FUNCTIONAL CHARACTERISTICS
dB
f = 150 MHz (Figure 1)
f = 400 MHz (Figure 14)
Drain Efficiency (Figure 1)
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA)
η
Electrical Ruggedness (Figure 1)
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA,
VSWR 30:1 at All Phase Angles)
ψ
%
No Degradation in Output Power
RFC2
R4
C9
BIAS
ADJUST
D1
R3
C7
R2
+
–
C10
+
VDD = 28 V
C8
RFC1
C6
C5
R1
C1
RF
INPUT
L2
L1
L3
RF
OUTPUT
DUT
C2
C1 — Arco 403, 3.0– 35 pF, or equivalent
C2 — Arco 406, 15– 115 pF, or equivalent
C3 — 56 pF Mini–Unelco, or equivalent
C4 — Arco 404, 8.0– 60 pF, or equivalent
C5 — 680 pF, 100 Mils Chip
C6 — 0.01 µF, 100 V, Disc Ceramic
C7 — 100 µF, 40 V
C8 — 0.1 µF, 50 V, Disc Ceramic
C9, C10 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
C3
C4
L1 — 2 Turns, 0.29″ ID, #18 AWG Enamel, Closewound
L2 — 1–1/4 Turns, 0.2″ ID, #18 AWG Enamel, Closewound
L3 — 2 Turns, 0.2″ ID, #18 AWG Enamel, Closewound
RFC1 — 20 Turns, 0.30″ ID, #20 AWG Enamel, Closewound
RFC2 — Ferroxcube VK–200 — 19/4B
R1 — 10 kΩ, 1/2 W Thin Film
R2 — 10 kΩ, 1/4 W
R3 — 10 Turns, 10 kΩ
R4 — 1.8 kΩ, 1/2 W
Board — G10, 62 Mils
Figure 1. 150 MHz Test Circuit
MRF137
2
MOTOROLA RF DEVICE DATA
20
50
f = 100 MHz
150 MHz
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
f = 100 MHz
40
200 MHz
30
20
VDD = 28 V
IDQ = 25 mA
10
0
0
0.5
1
1.5
Pin, INPUT POWER (WATTS)
200 MHz
15
10
VDD = 13.5 V
IDQ = 25 mA
5
0
2
0
Figure 2. Output Power versus Input Power
1
2
Pin, INPUT POWER (WATTS)
3
4
Figure 3. Output Power versus Input Power
40
50
f = 400 MHz
IDQ = 25 mA
VDD = 28 V
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
150 MHz
30
20
VDD = 13.5 V
10
Pin = 1 W
40
30
0.5 W
20
0.25 W
10
IDQ = 25 mA
f = 100 MHz
0
0
2
4
6
Pin, INPUT POWER (WATTS)
8
0
10
12
Figure 4. Output Power versus Input Power
50
30
Pout , OUTPUT POWER (WATTS)
Pin = 1.5 W
40
0.75 W
0.5 W
20
10
40
Pin = 2 W
30
1.5 W
20
0.75 W
10
IDQ = 25 mA
f = 150 MHz
0
12
28
Figure 5. Output Power versus Supply Voltage
50
Pout , OUTPUT POWER (WATTS)
20
24
16
VDD, SUPPLY VOLTAGE (VOLTS)
20
24
16
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 6. Output Power versus Supply Voltage
MOTOROLA RF DEVICE DATA
IDQ = 25 mA
f = 200 MHz
28
0
12
16
20
24
VDD, SUPPLY VOLTAGE (VOLTS)
28
Figure 7. Output Power versus Supply Voltage
MRF137
3
30
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
50
40
Pin = 8 W
30
5W
20
2W
10
IDQ = 25 mA
f = 400 MHz
0
12
16
20
24
VDD, SUPPLY VOLTAGE (VOLTS)
VDD = 28 V
IDQ = 25 mA
Pin = CONSTANT
25
20
TYPICAL DEVICE SHOWN,
VGS(th) = 3 V
15
5
Figure 8. Output Power versus Supply Voltage
VGS, GATE-SOURCE VOLTAGE (NORMALIZED)
I D, DRAIN CURRENT (AMPS)
TYPICAL DEVICE SHOWN,
VGS(th) = 3 V
2
VDS = 10 V
1
1
2
3
4
5
6
VGS, GATE–SOURCE VOLTAGE (VOLTS)
–8
–6
–4
–2
0
VGS, GATE–SOURCE VOLTAGE (VOLTS)
2
3
7
1.02
ID = 1.25 A
1A
1
750 mA
0.98
500 mA
0.96
0.94
VDS = 28 V
0.92
– 25
Figure 10. Drain Current versus Gate Voltage
(Transfer Characteristics)
0
25
25 mA
200 mA
50
75
100
125
TC, CASE TEMPERATURE (°C)
150
175
Figure 11. Gate Source Voltage versus
Case Temperature
200
10
180
I D, DRAIN CURRENT (AMPS)
140
120
Coss
100
80
Ciss
60
Crss
40
TC = 25°C
5
VGS = 0 V
f = 1 MHz
160
C, CAPACITANCE (pF)
1
Figure 9. Output Power versus Gate Voltage
3
0
150 MHz
10
0
–9
28
400 MHz
2
1
0.5
20
0
0
4
8
12
16
20
24
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
Figure 12. Capacitance versus
Drain–Source Voltage
MRF137
4
28
0.1
1
2
5
10
20
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
60
100
Figure 13. DC Safe Operating Area
MOTOROLA RF DEVICE DATA
RFC2
R4
BIAS
ADJUST
R3
C10
C11
+
D1
VDD = 28 V
C12
C13
–
RFC1
C9
R2
C8
R1
RF
INPUT
Z1
Z2
Z4
Z6
RF
OUTPUT
Z3
C5
DUT
C1
Z5
C6
C7
C3
C4
C2
C1, C2, C3, C4 — 0 – 20 pF Johanson, or equivalent
C5, C8 — 270 pF, 100 Mil Chip
C6, C7 — 24 pF Mini–Unelco, or equivalent
C9 — 0.01 µF, 100 V, Disc Ceramic
C10 — 100 µF, 40 V
C11 — 0.1 µF, 50 V, Disc Ceramic
C12, C13 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
R1, R2 — 10 kΩ, 1/4 W
R3 — 10 Turns, 10 kΩ
R4 — 1.8 kΩ, 1/2 W
Z1 — 2.9″ x 0.166″ Microstrip
Z2, Z4 — 0.35″ x 0.166″ Microstrip
Z3 — 0.40″ x 0.166″ Microstrip
Z5 — 1.05″ x 0.166″ Microstrip
Z6 — 1.9″ x 0.166″ Microstrip
RFC1 — 6 Turns, 0.300″ ID, #20 AWG Enamel, Closewound
RFC2 — Ferroxcube VK–200 — 19/4B
Board — Glass Teflon, 62 Mils
Figure 14. 400 MHz Test Circuit
200
Zin
150
200
f = 100 MHz
400
400
150
ZOL*
f = 100 MHz
VDD = 28 V, IDQ = 25 mA,
Pout = 30 W
f
MHz
Zin{
Ohms
ZOL*
Ohms
100
150
200
400
2.11 – j11.07
1.77 – j7.64
1.85 – j3.75
1.74 + j3.62
8.02 – j2.89
5.75 – j3.02
3.52 – j2.67
2.88 – j1.52
ZOL* = Conjugate of the optimum load impedance
into which the device output operates at a given output power, voltage and frequency.
Figure 15. Large–Signal Series Equivalent Input and Output Impedance, Zin, ZOL*
MOTOROLA RF DEVICE DATA
MRF137
5
S11
f
(MHz)
|S11|
2.0
5.0
S21
±
S12
φ
|S21|
±
φ
φ
|S22|
0.977
– 32
59.48
163
0.919
– 70
48.67
142
0.011
67
0.661
– 36
0.024
44
0.692
10
0.852
– 109
33.50
122
– 78
0.032
29
0.747
– 117
20
0.817
– 140
19.05
30
0.814
– 153
13.11
106
0.037
16
0.768
– 146
99
0.038
14
0.774
40
0.811
– 159
– 157
9.88
95
0.038
13
0.782
50
0.812
– 164
– 162
7.98
92
0.038
12
0.787
– 165
60
0.813
70
0.815
– 166
6.66
89
0.038
12
0.787
– 168
– 168
5.708
86
0.038
11
0.787
80
– 169
0.816
– 170
5.003
84
0.038
11
0.787
– 170
90
0.817
– 171
4.560
83
0.038
12
0.787
– 171
100
0.817
– 172
4.170
81
0.039
13
0.787
– 172
|S12|
±
S22
±
φ
110
0.818
– 173
3.670
80
0.039
13
0.788
– 172
120
0.820
– 173
3.420
79
0.039
13
0.788
– 173
130
0.821
– 173
3.170
79
0.039
13
0.788
– 173
140
0.822
– 174
2.980
78
0.039
13
0.788
– 173
150
0.823
– 175
2.826
77
0.039
14
0.788
– 173
160
0.824
– 175
2.650
76
0.039
14
0.790
– 174
170
0.825
– 176
2.438
75
0.039
14
0.792
– 174
180
0.827
– 176
2.325
73
0.039
15
0.793
– 174
190
0.829
– 177
2.175
72
0.039
16
0.796
– 174
200
0.831
– 177
2.084
71
0.039
16
0.799
– 174
225
0.836
– 178
1.824
69
0.039
18
0.805
– 174
250
0.846
– 178
1.621
66
0.039
21
0.816
– 174
275
0.853
– 179
1.462
64
0.039
23
0.822
– 174
300
0.853
– 179
1.319
61
0.040
25
0.833
– 174
325
0.856
– 179
1.194
59
0.040
27
0.828
– 174
350
0.857
+ 179
1.089
56
0.040
30
0.842
– 174
375
0.861
+ 179
1.014
54
0.042
32
0.849
– 174
400
0.865
+ 178
0.927
51
0.043
35
0.856
– 174
425
0.875
+ 178
0.876
49
0.045
37
0.866
– 174
450
0.881
+ 178
0.810
46
0.046
40
0.870
– 174
475
0.886
+ 177
0.755
44
0.046
43
0.875
– 174
500
0.887
+ 177
0.694
41
0.051
43
0.888
– 174
525
0.888
+ 176
0.677
39
0.052
43
0.890
– 174
550
0.896
+ 176
0.625
36
0.055
45
0.898
– 174
575
0.907
+ 175
0.603
34
0.058
45
0.913
– 174
600
0.910
+ 175
0.585
32
0.061
45
0.918
– 174
625
0.910
+ 174
0.563
30
0.065
45
0.945
– 174
650
0.920
+ 174
0.543
28
0.069
46
0.952
– 174
675
0.938
+ 173
0.533
26
0.074
47
0.974
– 174
700
0.943
+ 171
0.515
24
0.078
47
0.958
– 176
725
0.934
+ 170
0.491
22
0.079
46
0.953
– 177
750
0.940
+ 170
0.475
22
0.084
48
0.943
– 177
775
0.953
+ 169
0.477
21
0.090
48
0.957
– 177
800
0.959
+ 168
0.467
17
0.093
48
0.957
– 179
Table 1. Common Source Scattering Parameters
50 Ω System
VDS = 28 V, ID = 0.75 A
MRF137
6
MOTOROLA RF DEVICE DATA
+ j50
+ 90°
+ j25
+ 60°
+120°
+ j100
800
+ j150
+150°
+ j10
+ 30°
+ j250
600
400
+ j500
800
400
10
0
25
50
100 150
250 500
180° 0.1
150
f = 50 MHz
.08
.06
.04
0°
.02
– j500
f = 50 MHz
– j250
– j10
S12
– 30°
–150°
S11
– j150
– j100
– j25
– 60°
–120°
– 90°
– j50
Figure 16. S11, Input Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.75 A
Figure 17. S12, Reverse Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.75 A
+ j50
+ 90°
+ 60°
+120°
+ j25
+ j100
f = 50 MHz
+ j150
+150°
+ 30°
+ j10
+ j250
150
180° 10
–150°
8
6
4
2
+ j500
400
800
0°
S21
– 30°
– 60°
–120°
0
800
25
50
100 150
250 500
400 150
f = 50 MHz
– j500
– j250
– j10
S22
– j150
– j100
– j25
– 90°
– j50
Figure 18. S21, Forward Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.75 A
Figure 19. S22, Output Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.75 A
MOTOROLA RF DEVICE DATA
MRF137
7
DESIGN CONSIDERATIONS
The MRF137 is a RF power N–Channel enhancement
mode field–effect transistor (FET) designed especially for
VHF power amplifier applications. Motorola RF MOS FETs
feature a vertical structure with a planar design, thus avoiding
the processing difficulties associated with V–groove vertical
power FETs.
Motorola Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high gain,
low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can
be varied over a wide range with a low power dc control signal,
thus facilitating manual gain control, ALC and modulation.
DC BIAS
The MRF137 is an enhancement mode FET and, therefore,
does not conduct when drain voltage is applied. Drain current
flows when a positive voltage is applied to the gate. See Figure
10 for a typical plot of drain current versus gate voltage. RF
power FETs require forward bias for optimum performance.
The value of quiescent drain current (IDQ) is not critical for
many applications. The MRF137 was characterized at IDQ =
25 mA, which is the suggested minimum value of IDQ. For
special applications such as linear amplification, IDQ may
have to be selected to optimize the critical parameters.
The gate is a dc open circuit and draws no current.
Therefore, the gate bias circuit may generally be just a simple
MRF137
8
resistive divider network. Some special applications may
require a more elaborate bias system.
GAIN CONTROL
Power output of the MRF137 may be controlled from its
rated value down to zero (negative gain) by varying the dc gate
voltage. This feature facilitates the design of manual gain
control, AGC/ALC and modulation systems. (See Figure 9.)
AMPLIFIER DESIGN
Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See Motorola
Application Note AN721, Impedance Matching Networks
Applied to RF Power Transistors. The higher input impedance
of RF MOS FETs helps ease the task of broadband network
design. Both small signal scattering parameters and large signal impedances are provided. While the s–parameters will not
produce an exact design solution for high power operation,
they do yield a good first approximation. This is an additional
advantage of RF MOS power FETs.
RF power FETs are triode devices and, therefore, not
unilateral. This, coupled with the very high gain of the
MRF137, yields a device capable of self oscillation. Stability
may be achieved by techniques such as drain loading, input
shunt resistive loading, or output to input feedback. Two port
parameter stability analysis with the MRF137 s–parameters
provides a useful tool for selection of loading or feedback
circuitry to assure stable operation. See Motorola Application
Note AN215A for a discussion of two port network theory and
stability.
MOTOROLA RF DEVICE DATA
PACKAGE DIMENSIONS
A
U
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
M
Q
M
1
DIM
A
B
C
D
E
H
J
K
M
Q
R
S
U
4
R
2
S
B
3
D
K
C
E
MILLIMETERS
MIN
MAX
24.39
25.14
9.40
9.90
5.82
7.13
5.47
5.96
2.16
2.66
3.81
4.57
0.11
0.15
10.04
10.28
40 _
50 _
2.88
3.30
6.23
6.47
20.07
20.57
18.29
18.54
STYLE 2:
PIN 1.
2.
3.
4.
J
H
INCHES
MIN
MAX
0.960
0.990
0.370
0.390
0.229
0.281
0.215
0.235
0.085
0.105
0.150
0.108
0.004
0.006
0.395
0.405
40 _
50 _
0.113
0.130
0.245
0.255
0.790
0.810
0.720
0.730
SOURCE
GATE
SOURCE
DRAIN
SEATING
PLANE
CASE 211–07
ISSUE N
MOTOROLA RF DEVICE DATA
MRF137
9
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
MRF137
10
◊
*MRF137/D*
MRF137/D
MOTOROLA RF DEVICE
DATA