Order this document by MRF137/D SEMICONDUCTOR TECHNICAL DATA The RF MOSFET Line N–Channel Enhancement–Mode . . . designed for wideband large–signal output and driver stages up to 400 MHz range. • Guaranteed 28 Volt, 150 MHz Performance Output Power = 30 Watts Minimum Gain = 13 dB Efficiency — 60% (Typical) 30 W, to 400 MHz N–CHANNEL MOS BROADBAND RF POWER FET • Small–Signal and Large–Signal Characterization • Typical Performance at 400 MHz, 28 Vdc, 30 W Output = 7.7 dB Gain • 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR • Low Noise Figure — 1.5 dB (Typ) at 1.0 A, 150 MHz • Excellent Thermal Stability, Ideally Suited For Class A Operation D • Facilitates Manual Gain Control, ALC and Modulation Techniques G CASE 211–07, STYLE 2 S MAXIMUM RATINGS Rating Symbol Value Unit Drain–Source Voltage VDSS 65 Vdc Drain–Gate Voltage (RGS = 1.0 MΩ) VDGR 65 Vdc VGS ± 40 Vdc Drain Current — Continuous ID 5.0 Adc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 100 0.571 Watts W/°C Storage Temperature Range Tstg – 65 to +150 °C TJ 200 °C Symbol Max Unit RθJC 1.75 °C/W Gate–Source Voltage Operating Junction Temperature THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 6 RF DEVICE DATA MOTOROLA Motorola, Inc. 1994 MRF137 1 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit Drain–Source Breakdown Voltage (VGS = 0, ID = 10 mA) V(BR)DSS 65 — — Vdc Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) IDSS — — 4.0 mAdc Gate–Source Leakage Current (VGS = 20 V, VDS = 0) IGSS — — 1.0 µAdc VGS(th) 1.0 3.0 6.0 Vdc gfs 500 750 — mmhos Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss — 48 — pF Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss — 54 — pF Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss — 11 — pF Noise Figure (VDS = 28 Vdc, ID = 1.0 A, f = 150 MHz) NF — 1.5 — dB Common Source Power Gain (VDD = 28 Vdc, Pout = 30 W, IDQ = 25 mA) Gps 13 — 16 7.7 — — 50 60 — OFF CHARACTERISTICS ON CHARACTERISTICS Gate Threshold Voltage (VDS = 10 V, ID = 25 mA) Forward Transconductance (VDS = 10 V, ID = 500 mA) DYNAMIC CHARACTERISTICS FUNCTIONAL CHARACTERISTICS dB f = 150 MHz (Figure 1) f = 400 MHz (Figure 14) Drain Efficiency (Figure 1) (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA) η Electrical Ruggedness (Figure 1) (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA, VSWR 30:1 at All Phase Angles) ψ % No Degradation in Output Power RFC2 R4 C9 BIAS ADJUST D1 R3 C7 R2 + – C10 + VDD = 28 V C8 RFC1 C6 C5 R1 C1 RF INPUT L2 L1 L3 RF OUTPUT DUT C2 C1 — Arco 403, 3.0– 35 pF, or equivalent C2 — Arco 406, 15– 115 pF, or equivalent C3 — 56 pF Mini–Unelco, or equivalent C4 — Arco 404, 8.0– 60 pF, or equivalent C5 — 680 pF, 100 Mils Chip C6 — 0.01 µF, 100 V, Disc Ceramic C7 — 100 µF, 40 V C8 — 0.1 µF, 50 V, Disc Ceramic C9, C10 — 680 pF Feedthru D1 — 1N5925A Motorola Zener C3 C4 L1 — 2 Turns, 0.29″ ID, #18 AWG Enamel, Closewound L2 — 1–1/4 Turns, 0.2″ ID, #18 AWG Enamel, Closewound L3 — 2 Turns, 0.2″ ID, #18 AWG Enamel, Closewound RFC1 — 20 Turns, 0.30″ ID, #20 AWG Enamel, Closewound RFC2 — Ferroxcube VK–200 — 19/4B R1 — 10 kΩ, 1/2 W Thin Film R2 — 10 kΩ, 1/4 W R3 — 10 Turns, 10 kΩ R4 — 1.8 kΩ, 1/2 W Board — G10, 62 Mils Figure 1. 150 MHz Test Circuit MRF137 2 MOTOROLA RF DEVICE DATA 20 50 f = 100 MHz 150 MHz Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) f = 100 MHz 40 200 MHz 30 20 VDD = 28 V IDQ = 25 mA 10 0 0 0.5 1 1.5 Pin, INPUT POWER (WATTS) 200 MHz 15 10 VDD = 13.5 V IDQ = 25 mA 5 0 2 0 Figure 2. Output Power versus Input Power 1 2 Pin, INPUT POWER (WATTS) 3 4 Figure 3. Output Power versus Input Power 40 50 f = 400 MHz IDQ = 25 mA VDD = 28 V Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 150 MHz 30 20 VDD = 13.5 V 10 Pin = 1 W 40 30 0.5 W 20 0.25 W 10 IDQ = 25 mA f = 100 MHz 0 0 2 4 6 Pin, INPUT POWER (WATTS) 8 0 10 12 Figure 4. Output Power versus Input Power 50 30 Pout , OUTPUT POWER (WATTS) Pin = 1.5 W 40 0.75 W 0.5 W 20 10 40 Pin = 2 W 30 1.5 W 20 0.75 W 10 IDQ = 25 mA f = 150 MHz 0 12 28 Figure 5. Output Power versus Supply Voltage 50 Pout , OUTPUT POWER (WATTS) 20 24 16 VDD, SUPPLY VOLTAGE (VOLTS) 20 24 16 VDD, SUPPLY VOLTAGE (VOLTS) Figure 6. Output Power versus Supply Voltage MOTOROLA RF DEVICE DATA IDQ = 25 mA f = 200 MHz 28 0 12 16 20 24 VDD, SUPPLY VOLTAGE (VOLTS) 28 Figure 7. Output Power versus Supply Voltage MRF137 3 30 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 50 40 Pin = 8 W 30 5W 20 2W 10 IDQ = 25 mA f = 400 MHz 0 12 16 20 24 VDD, SUPPLY VOLTAGE (VOLTS) VDD = 28 V IDQ = 25 mA Pin = CONSTANT 25 20 TYPICAL DEVICE SHOWN, VGS(th) = 3 V 15 5 Figure 8. Output Power versus Supply Voltage VGS, GATE-SOURCE VOLTAGE (NORMALIZED) I D, DRAIN CURRENT (AMPS) TYPICAL DEVICE SHOWN, VGS(th) = 3 V 2 VDS = 10 V 1 1 2 3 4 5 6 VGS, GATE–SOURCE VOLTAGE (VOLTS) –8 –6 –4 –2 0 VGS, GATE–SOURCE VOLTAGE (VOLTS) 2 3 7 1.02 ID = 1.25 A 1A 1 750 mA 0.98 500 mA 0.96 0.94 VDS = 28 V 0.92 – 25 Figure 10. Drain Current versus Gate Voltage (Transfer Characteristics) 0 25 25 mA 200 mA 50 75 100 125 TC, CASE TEMPERATURE (°C) 150 175 Figure 11. Gate Source Voltage versus Case Temperature 200 10 180 I D, DRAIN CURRENT (AMPS) 140 120 Coss 100 80 Ciss 60 Crss 40 TC = 25°C 5 VGS = 0 V f = 1 MHz 160 C, CAPACITANCE (pF) 1 Figure 9. Output Power versus Gate Voltage 3 0 150 MHz 10 0 –9 28 400 MHz 2 1 0.5 20 0 0 4 8 12 16 20 24 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) Figure 12. Capacitance versus Drain–Source Voltage MRF137 4 28 0.1 1 2 5 10 20 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) 60 100 Figure 13. DC Safe Operating Area MOTOROLA RF DEVICE DATA RFC2 R4 BIAS ADJUST R3 C10 C11 + D1 VDD = 28 V C12 C13 – RFC1 C9 R2 C8 R1 RF INPUT Z1 Z2 Z4 Z6 RF OUTPUT Z3 C5 DUT C1 Z5 C6 C7 C3 C4 C2 C1, C2, C3, C4 — 0 – 20 pF Johanson, or equivalent C5, C8 — 270 pF, 100 Mil Chip C6, C7 — 24 pF Mini–Unelco, or equivalent C9 — 0.01 µF, 100 V, Disc Ceramic C10 — 100 µF, 40 V C11 — 0.1 µF, 50 V, Disc Ceramic C12, C13 — 680 pF Feedthru D1 — 1N5925A Motorola Zener R1, R2 — 10 kΩ, 1/4 W R3 — 10 Turns, 10 kΩ R4 — 1.8 kΩ, 1/2 W Z1 — 2.9″ x 0.166″ Microstrip Z2, Z4 — 0.35″ x 0.166″ Microstrip Z3 — 0.40″ x 0.166″ Microstrip Z5 — 1.05″ x 0.166″ Microstrip Z6 — 1.9″ x 0.166″ Microstrip RFC1 — 6 Turns, 0.300″ ID, #20 AWG Enamel, Closewound RFC2 — Ferroxcube VK–200 — 19/4B Board — Glass Teflon, 62 Mils Figure 14. 400 MHz Test Circuit 200 Zin 150 200 f = 100 MHz 400 400 150 ZOL* f = 100 MHz VDD = 28 V, IDQ = 25 mA, Pout = 30 W f MHz Zin{ Ohms ZOL* Ohms 100 150 200 400 2.11 – j11.07 1.77 – j7.64 1.85 – j3.75 1.74 + j3.62 8.02 – j2.89 5.75 – j3.02 3.52 – j2.67 2.88 – j1.52 ZOL* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency. Figure 15. Large–Signal Series Equivalent Input and Output Impedance, Zin, ZOL* MOTOROLA RF DEVICE DATA MRF137 5 S11 f (MHz) |S11| 2.0 5.0 S21 ± S12 φ |S21| ± φ φ |S22| 0.977 – 32 59.48 163 0.919 – 70 48.67 142 0.011 67 0.661 – 36 0.024 44 0.692 10 0.852 – 109 33.50 122 – 78 0.032 29 0.747 – 117 20 0.817 – 140 19.05 30 0.814 – 153 13.11 106 0.037 16 0.768 – 146 99 0.038 14 0.774 40 0.811 – 159 – 157 9.88 95 0.038 13 0.782 50 0.812 – 164 – 162 7.98 92 0.038 12 0.787 – 165 60 0.813 70 0.815 – 166 6.66 89 0.038 12 0.787 – 168 – 168 5.708 86 0.038 11 0.787 80 – 169 0.816 – 170 5.003 84 0.038 11 0.787 – 170 90 0.817 – 171 4.560 83 0.038 12 0.787 – 171 100 0.817 – 172 4.170 81 0.039 13 0.787 – 172 |S12| ± S22 ± φ 110 0.818 – 173 3.670 80 0.039 13 0.788 – 172 120 0.820 – 173 3.420 79 0.039 13 0.788 – 173 130 0.821 – 173 3.170 79 0.039 13 0.788 – 173 140 0.822 – 174 2.980 78 0.039 13 0.788 – 173 150 0.823 – 175 2.826 77 0.039 14 0.788 – 173 160 0.824 – 175 2.650 76 0.039 14 0.790 – 174 170 0.825 – 176 2.438 75 0.039 14 0.792 – 174 180 0.827 – 176 2.325 73 0.039 15 0.793 – 174 190 0.829 – 177 2.175 72 0.039 16 0.796 – 174 200 0.831 – 177 2.084 71 0.039 16 0.799 – 174 225 0.836 – 178 1.824 69 0.039 18 0.805 – 174 250 0.846 – 178 1.621 66 0.039 21 0.816 – 174 275 0.853 – 179 1.462 64 0.039 23 0.822 – 174 300 0.853 – 179 1.319 61 0.040 25 0.833 – 174 325 0.856 – 179 1.194 59 0.040 27 0.828 – 174 350 0.857 + 179 1.089 56 0.040 30 0.842 – 174 375 0.861 + 179 1.014 54 0.042 32 0.849 – 174 400 0.865 + 178 0.927 51 0.043 35 0.856 – 174 425 0.875 + 178 0.876 49 0.045 37 0.866 – 174 450 0.881 + 178 0.810 46 0.046 40 0.870 – 174 475 0.886 + 177 0.755 44 0.046 43 0.875 – 174 500 0.887 + 177 0.694 41 0.051 43 0.888 – 174 525 0.888 + 176 0.677 39 0.052 43 0.890 – 174 550 0.896 + 176 0.625 36 0.055 45 0.898 – 174 575 0.907 + 175 0.603 34 0.058 45 0.913 – 174 600 0.910 + 175 0.585 32 0.061 45 0.918 – 174 625 0.910 + 174 0.563 30 0.065 45 0.945 – 174 650 0.920 + 174 0.543 28 0.069 46 0.952 – 174 675 0.938 + 173 0.533 26 0.074 47 0.974 – 174 700 0.943 + 171 0.515 24 0.078 47 0.958 – 176 725 0.934 + 170 0.491 22 0.079 46 0.953 – 177 750 0.940 + 170 0.475 22 0.084 48 0.943 – 177 775 0.953 + 169 0.477 21 0.090 48 0.957 – 177 800 0.959 + 168 0.467 17 0.093 48 0.957 – 179 Table 1. Common Source Scattering Parameters 50 Ω System VDS = 28 V, ID = 0.75 A MRF137 6 MOTOROLA RF DEVICE DATA + j50 + 90° + j25 + 60° +120° + j100 800 + j150 +150° + j10 + 30° + j250 600 400 + j500 800 400 10 0 25 50 100 150 250 500 180° 0.1 150 f = 50 MHz .08 .06 .04 0° .02 – j500 f = 50 MHz – j250 – j10 S12 – 30° –150° S11 – j150 – j100 – j25 – 60° –120° – 90° – j50 Figure 16. S11, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 0.75 A Figure 17. S12, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 0.75 A + j50 + 90° + 60° +120° + j25 + j100 f = 50 MHz + j150 +150° + 30° + j10 + j250 150 180° 10 –150° 8 6 4 2 + j500 400 800 0° S21 – 30° – 60° –120° 0 800 25 50 100 150 250 500 400 150 f = 50 MHz – j500 – j250 – j10 S22 – j150 – j100 – j25 – 90° – j50 Figure 18. S21, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 0.75 A Figure 19. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 0.75 A MOTOROLA RF DEVICE DATA MRF137 7 DESIGN CONSIDERATIONS The MRF137 is a RF power N–Channel enhancement mode field–effect transistor (FET) designed especially for VHF power amplifier applications. Motorola RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V–groove vertical power FETs. Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. DC BIAS The MRF137 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 10 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF137 was characterized at IDQ = 25 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple MRF137 8 resistive divider network. Some special applications may require a more elaborate bias system. GAIN CONTROL Power output of the MRF137 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 9.) AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s–parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs. RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF137, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Two port parameter stability analysis with the MRF137 s–parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Motorola Application Note AN215A for a discussion of two port network theory and stability. MOTOROLA RF DEVICE DATA PACKAGE DIMENSIONS A U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. M Q M 1 DIM A B C D E H J K M Q R S U 4 R 2 S B 3 D K C E MILLIMETERS MIN MAX 24.39 25.14 9.40 9.90 5.82 7.13 5.47 5.96 2.16 2.66 3.81 4.57 0.11 0.15 10.04 10.28 40 _ 50 _ 2.88 3.30 6.23 6.47 20.07 20.57 18.29 18.54 STYLE 2: PIN 1. 2. 3. 4. J H INCHES MIN MAX 0.960 0.990 0.370 0.390 0.229 0.281 0.215 0.235 0.085 0.105 0.150 0.108 0.004 0.006 0.395 0.405 40 _ 50 _ 0.113 0.130 0.245 0.255 0.790 0.810 0.720 0.730 SOURCE GATE SOURCE DRAIN SEATING PLANE CASE 211–07 ISSUE N MOTOROLA RF DEVICE DATA MRF137 9 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Literature Distribution Centers: USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. MRF137 10 ◊ *MRF137/D* MRF137/D MOTOROLA RF DEVICE DATA