New Product VS-6EWL06FN-E3 Vishay Semiconductors Ultralow VF Ultrafast Rectifier, 6 A FRED Pt® FEATURES • Ultrafast recovery time, extremely low VF and soft recovery 2, 4 • 175 °C maximum operating junction temperature • For PFC DCM operation D-PAK (TO-252AA) 1 N/C • Low leakage current 3 Anode • Compliant to RoHS Directive 2002/95/EC • Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C DESCRIPTION/APPLICATIONS PRODUCT SUMMARY Package State of the art hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, hyperfast recovery time, and soft recovery. The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics. These devices are intended for use in PFC boost stage in the AC/DC section of SMPS inverters or as freewheeling diodes. Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers. D-PAK (TO-252AA) IF(AV) 6A VR 600 V VF at IF 1.25 V trr (typ.) 59 ns TJ max. 175 °C Diode variation Single die ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL TEST CONDITIONS VALUES UNITS 600 V Peak repetitive reverse voltage VRRM Average rectified forward current IF(AV) TC = 156 °C 6 Non-repetitive peak surge current IFSM TJ = 25 °C 80 IFM TC = 156 °C, f = 20 kHz, d = 50 % Peak repetitive forward current Operating junction and storage temperatures TJ, TStg A 12 - 65 to 175 °C ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise specified) PARAMETER Breakdown voltage, blocking voltage Forward voltage SYMBOL VBR, VR VF TEST CONDITIONS MIN. TYP. MAX. 600 - - IF = 6 A - 0.99 1.25 IR = 100 μA IF = 6 A, TJ = 150 °C - 0.87 1.05 VR = VR rated - - 5 TJ = 150 °C, VR = VR rated - - 125 UNITS V μA Reverse leakage current IR Junction capacitance CT VR = 600 V - 3.5 - pF Series inductance LS Measured lead to lead 5 mm from package body - 8 - nH Document Number: 93251 Revision: 31-Mar-11 For technical questions within your region, please contact one of the following: www.vishay.com [email protected], [email protected], [email protected] 1 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 New Product VS-6EWL06FN-E3 Vishay Semiconductors Ultralow VF Ultrafast Rectifier, 6 A FRED Pt® DYNAMIC RECOVERY CHARACTERISTICS (TJ = 25 °C unless otherwise specified) PARAMETER SYMBOL TEST CONDITIONS IF = 1 A, dIF/dt = 100 A/μs, VR = 30 V Reverse recovery time trr Reverse recovery charge TYP. MAX. - 59 70 IF = 1 A, dIF/dt = 50 A/μs, VR = 30 V - 75 - TJ = 25 °C - 154 - - 215 - TJ = 125 °C Peak recovery current MIN. ns - 13.3 - - 15.4 - TJ = 25 °C - 1055 - TJ = 125 °C - 1600 - MIN. TYP. MAX. UNITS TJ, TStg - 65 - 175 °C RthJC - - 3 °C/W IRRM Qrr TJ = 25 °C IF = 6A dIF/dt = 200 A/μs VR = 390 V UNITS TJ = 125 °C A nC THERMAL - MECHANICAL SPECIFICATIONS PARAMETER Maximum junction and storage temperature range Thermal resistance, junction to case per leg SYMBOL TEST CONDITIONS Approximate weight Marking device www.vishay.com 2 Case style D-PAK (TO-252AA) 0.3 g 0.01 oz. 6EWL06FN For technical questions within your region, please contact one of the following: Document Number: 93251 [email protected], [email protected], [email protected] Revision: 31-Mar-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 New Product VS-6EWL06FN-E3 Ultralow VF Ultrafast Rectifier, 6 A FRED Pt® 100 Reverse Current - I R (μA) 100 Tj = 175°C 10 Tj = 150°C 1 Tj = 125°C Tj = 100°C 0.1 Tj = 75°C 0.01 Tj = 25°C 10 Tj = 175°C 0.001 0 100 200 300 400 500 600 Reverse Voltage - VR (V) Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage 100 1 Junction Capacitance - C T (pF) Instantaneous Forward Current - I F (A) Vishay Semiconductors Tj = 125°C Tj = 25°C 0.1 0.4 0.6 0.8 1.0 1.2 1.4 10 1 1.6 0 Forward Voltage Drop - VF (V) 100 200 300 400 500 600 Reverse Voltage - VR (V) Fig. 1 - Typical Forward Voltage Drop Characteristics Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage Thermal Impedance Z thJC (°C/W) 10 D = 0.5 D = 02 D = 0.1 1 D = 0.05 D = 0.02 D = 0.01 Single Pulse (Thermal Resistance) 0.1 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 t1, Rectangular Pulse Duration (Seconds) Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics Document Number: 93251 Revision: 31-Mar-11 For technical questions within your region, please contact one of the following: www.vishay.com [email protected], [email protected], [email protected] 3 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 New Product VS-6EWL06FN-E3 Ultralow VF Ultrafast Rectifier, 6 A FRED Pt® Vishay Semiconductors 350 300 170 250 160 trr ( nC ) Allowable Case Temperature (°C) 180 DC 150 Square wave (D=0.50) rated Vr applied 200 6A, Tj = 125°C 150 140 see note (1) 100 130 0 2 4 6 8 6A, Tj = 25°C 10 Average Forward Current - IF(AV)(A) 50 100 1000 di F /dt (A/μs ) Fig. 7 - Typical Reverse Recovery Time vs. dIF/dt Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current 1800 1600 8 6A, Tj = 125°C RMS Limit 7 1400 6 Qrr ( nC ) Average Power Loss ( Watts ) 9 D = 0.01 D = 0.02 D = 0.05 D = 0.1 D = 0.2 D = 0.5 5 4 3 2 1200 6A, Tj = 25°C 1000 DC 1 800 0 0 3 6 9 Average Forward Current - IF(AV)(A) 600 100 1000 di F /dt (A/μs ) Fig. 6 - Forward Power Loss Characteristics Fig. 8 - Typical Stored Charge vs. dIF/dt Note (1) Formula used: T = T - (Pd + Pd C J REV) x RthJC; Pd = Forward power loss = IF(AV) x VFM at (IF(AV)/D) (see fig. 6); PdREV = Inverse power loss = VR1 x IR (1 - D); IR at VR1 = Rated VR www.vishay.com 4 For technical questions within your region, please contact one of the following: Document Number: 93251 [email protected], [email protected], [email protected] Revision: 31-Mar-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 New Product VS-6EWL06FN-E3 Ultralow VF Ultrafast Rectifier, 6 A FRED Pt® Vishay Semiconductors VR = 200 V 0.01 Ω L = 70 μH D.U.T. dIF/dt adjust D IRFP250 G S Fig. 9 - Reverse Recovery Parameter Test Circuit (3) trr IF ta tb 0 Qrr (2) IRRM (4) 0.5 IRRM dI(rec)M/dt (5) 0.75 IRRM (1) dIF/dt (1) dIF/dt - rate of change of current through zero crossing (2) IRRM - peak reverse recovery current (3) trr - reverse recovery time measured from zero crossing point of negative going IF to point where a line passing through 0.75 IRRM and 0.50 IRRM extrapolated to zero current. (4) Qrr - area under curve defined by trr and IRRM Qrr = trr x IRRM 2 (5) dI(rec)M/dt - peak rate of change of current during tb portion of trr Fig. 10 - Reverse Recovery Waveform and Definitions Document Number: 93251 Revision: 31-Mar-11 For technical questions within your region, please contact one of the following: www.vishay.com [email protected], [email protected], [email protected] 5 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 New Product VS-6EWL06FN-E3 Ultralow VF Ultrafast Rectifier, 6 A FRED Pt® Vishay Semiconductors ORDERING INFORMATION TABLE Device code VS- 6 E W L 06 FN -E3 1 2 3 4 5 6 7 8 1 - Vishay Semiconductors product 2 - Current rating (6 = 6 A) 3 - Circuit configuration: E = Single diode 4 - Package identifier: 5 - L = Low VF, fast recovery 6 - Voltage rating (06 = 600 V) 7 - FN = TO-252AA 8 - Environmental digit: W = D-PAK -E3 = RoHS compliant and terminations lead (Pb)-free ORDERING INFORMATION (Example) PREFERRED P/N QUANTITY PER T/R MINIMUM ORDER QUANTITY PACKAGING DESCRIPTION VS-6EWL06FN-E3 75 3000 Antistatic plastic tube LINKS TO RELATED DOCUMENTS Dimensions www.vishay.com/doc?95016 Part marking information www.vishay.com/doc?95176 SPICE model www.vishay.com/doc?95218 www.vishay.com 6 For technical questions within your region, please contact one of the following: Document Number: 93251 [email protected], [email protected], [email protected] Revision: 31-Mar-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Outline Dimensions Vishay High Power Products D-PAK (TO-252AA) DIMENSIONS in millimeters and inches (5) A E b3 Pad layout C A (3) 0.010 M C A B c2 A L3 (3) Ø1 4 Ø2 4 B Seating plane H D (5) 1 2 0.245 MIN. (6.23) D1 L4 3 3 (2) L5 2 b 1 A c b2 0.06 MIN. (1.524) 0.010 M C A B 2x e 0.093 (2.38) 0.085 (2.18) (L1) Detail “C” Rotated 90 °CW Scale: 20:1 H (7) Lead tip C Gauge plane L2 MILLIMETERS MIN. 0.488 (12.40) 0.409 (10.40) 0.089 MIN. (2.28) Detail “C” SYMBOL 0.265 MIN. (6.74) E1 INCHES MAX. MIN. MAX. C Seating plane C Ø L NOTES A1 SYMBOL MILLIMETERS MIN. MAX. MAX. A 2.18 2.39 0.086 0.094 e A1 - 0.13 - 0.005 H 9.40 10.41 0.370 0.410 b 0.64 0.89 0.025 0.035 L 1.40 1.78 0.055 0.070 b2 0.76 1.14 0.030 0.045 L1 3 2.29 BSC INCHES MIN. 2.74 BSC L2 0.51 BSC NOTES 0.090 BSC 0.108 REF. b3 4.95 5.46 0.195 0.215 c 0.46 0.61 0.018 0.024 L3 0.89 1.27 0.035 0.020 BSC 0.050 c2 0.46 0.89 0.018 0.035 L4 - 1.02 - 0.040 D 5.97 6.22 0.235 0.245 5 L5 1.14 1.52 0.045 0.060 D1 5.21 - 0.205 - 3 Ø 0° 10° 0° 10° E 6.35 6.73 0.250 0.265 5 Ø1 0° 15° 0° 15° E1 4.32 - 0.170 - 3 Ø2 25° 35° 25° 35° 3 2 Notes (1) Dimensioning and tolerancing as per ASME Y14.5M-1994 (2) Lead dimension uncontrolled in L5 (3) Dimension D1, E1, L3 and b3 establish a minimum mounting surface for thermal pad (4) Section C - C dimension apply to the flat section of the lead between 0.13 and 0.25 mm (0.005 and 0.10") from the lead tip (5) Dimension D, and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body (6) Dimension b1 and c1 applied to base metal only (7) Datum A and B to be determined at datum plane H (8) Outline conforms to JEDEC outline TO-252AA Document Number: 95016 Revision: 04-Nov-08 For technical questions concerning discrete products, contact: [email protected] For technical questions concerning module products, contact: [email protected] www.vishay.com 1 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Material Category Policy Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Revision: 12-Mar-12 1 Document Number: 91000