SEMTECH SK10EP111

SEMTECH
Today's Results ...Tomorrow's Vision
Low-Voltage 1:10 Differential
ECL/PECL/HSTL Clock Driver
SK10EP111
Preliminary Information
October 4, 1999
This document contains information on a new product. The
parametric information, although not fully characterized, is the result
of testing initial devices.
Low-Voltage 1:10
Differential ECL/PECL/HSTL
Clock Driver
Features
100 ps Part-to-Part Skew
35 ps Output-to-Output Skew
Differential Design
VBB Output
Low Voltage VEE Range of –2.375 to –3.8V for ECL
Low Voltage VCC Range of +2.375 to +3.8V for PECL and HSTL
75 KΩ Input Pulldown Resistors
ECL/PECL Outputs
32 Lead
LQFP Package
Logic Symbol
10
CLK0
Description
0
CLK0*
Q0:9
CLK1
CLK1*
The SK10EP111 is a low skew 1-to-10 diffferential driver, designed
with clock distribution in mind. It accepts two clock sources into an
input multiplexer. The ECL/PECL input signals can be either
differential or single-ended if the VBB output is used. HSTL inputs
can be used when the EP111 is operating under PECL conditions.
The selected signal is fanned out to 10 identical differential outputs.
The SK10EP111, as with most other ECL devices, can be operated
from a positive VCC supply in PECL mode. This allows the EP111
to be used for high performance clock distribution in +3.3V or +2.5V
systems. Designers can take advantage of the EP111’s performance
to distribute low skew clocks across the backplane or the board. In
a PECL environment, series or Thevenin line terminations are
typically used as they require no additional power supplies.
VBB
CLK_SEL
Q4*
Q5
23
22
21
20 19
18
Q6*
Q4
24
Q6
Q3*
Q5*
Q3
Pinout
17
VCC0
25
16
VCC0
Q2*
26
15
Q7
Q2
27
14
Q7*
Q1*
28
13
Q8
Q1
29
12
Q8*
Q0*
30
11
Q9
Q0
31
10
Q9*
VCC0
32
SK10EP111
5
6
7
8
CLK1
CLK1*
VEE
4
VBB
3
CLK0
2
VCC
9
1
CLK_SEL
The SK10EP111 is specifically designed, modeled, and produced
with low skew as the key goal. Optimal design and layout serve to
minimize gate-to-gate skew within a device, and characterization is
used to determine process control limits that ensure consistent tpd
distributions from lot to lot. The net result is a dependable,
guaranteed low skew device.
To ensure that the tight skew specification is met, it is necessary
that both sides of the differential output are terminated into 50Ω,
even if only one side is being used. In most applications, all ten
differential pairs will be used and therefore terminated. In the case
where fewer than ten pairs are used, it is necessary to terminate at
least the output pairs on the same package side as the pair(s) being
used on that side in order to maintain minimum skew. Failure to do
this will result in small degradations of propagation delay (on the
order of 10–20 ps) of the output(s) being used which, while not
being catastrophic to most designs, will mean a loss of skew margin.
Q0*:9*
1
CLK0*
•
•
•
•
•
•
•
•
VCC0
Pin Names
Pin
CLK0, CLK0*
CLK1, CKL1*
Q0:9, Q0*:9*
CLK_SEL
VBB
Function
Differential ECL/PECL Input Pair
Differential HSTL Input Pair
Differential PECL Outputs
Active Clock Select Input
VBB Output
Function
CLK_SEL
Active Input
0
1
CLK0, CLK0*
CLK1, CLK1*
Low-Voltage 1:10 Differential
ECL/PECL/HSTL Clock Driver
SEMTECH
Today's Results ...Tomorrow's Vision
SK10EP111
ECL DC Characteristics
-40oC
Symbol
Characteristic
VOH
Output HIGH Voltage
VOL
Min
Typ
0oC
Max
Min
-1135
-890
Output LOW Voltage
-1950
VIH
Input HIGH Voltage
VIL
Typ
25oC
Max
Min
-1080
-840
-1650
-1950
-1230
-890
Input LOW Voltage
-1950
VBB
Output Reference Voltage
VEE
Power Supply Voltage
IIH
Input HIGH Current
Max
Min
Max
Unit
-1020
-810
-910
-720
mV
-1630
-1950
-1630
-1950
-1595
mV
-1170
-840
-1130
-810
-1060
-720
mV
-1500
-1950
-1480
-1950
-1480
-1950
-1445
mV
-1.43
-1.30
-1.38
-1.27
-1.35
-1.25
-1.31
-1.19
V
-2.375
-3.8
-2.375
-3.8
-2.375
-3.8
-2.375
-3.8
V
150
µA
IEE
Power Supply Current
VEE = -2.375 to -3.8V
108
mA
VCMR
Common Mode Range
VCC 0.3
V
VPP
Minimum Input Swing
150
80
VEE +
1.7
150
108
VCC 0.3
500
Typ
85oC
80
VEE +
1.7
150
108
VCC 0.3
500
Typ
80
VEE +
1.7
108
VCC 0.3
500
80
VEE +
1.7
500
mV
HSTL DC Characteristics
-40oC
Symbol
Characteristic
Min
VCMR
Common Mode Range
VEE +
0.9
VPP
Minimum Input Swing
500
Typ
0oC
Max
Min
VCC 1.1
VEE +
0.9
500
Typ
25oC
Max
Min
VCC 1.1
VEE +
0.9
500
Typ
85oC
Max
Min
VCC 1.1
VEE +
0.9
500
Typ
Max
Unit
VCC 1.1
V
mV
Low-Voltage 1:10 Differential
ECL/PECL/HSTL Clock Driver
SEMTECH
Today's Results ...Tomorrow's Vision
SK10EP111
PECL DC Characteristics
-40oC
Symbol
Characteristic
VOH
Output HIGH Voltage (Note 1)
VOL
Min
Typ
0oC
Max
Min
2165
3210
Output LOW Voltage (Note 1)
1350
VIH
Input HIGH Voltage (Note 1)
VIL
25oC
Typ
Max
Min
2220
242 0
1650
1350
2670
2410
Input LOW Voltage (Note 1)
1350
VBB
Output Reference Voltage (Note 1)
VEE
Power Supply Voltage
IIH
Input HIGH Current
Max
Min
Max
Unit
2280
2490
2390
2580
mV
167 0
1350
1670
1350
1705
mV
2130
246 0
2170
2410
2240
2580
mV
1800
1350
1820
1350
1820
1350
1855
mV
1.87
2.00
1.92
2.03
1.95
2.05
1.99
2.11
V
2.375
3.8
2.375
3.8
2.375
3.8
2.375
3.8
V
150
µA
I EE
Power Supply Current
VCC = +2.375 to +3.8V
108
mA
VCMR
Common Mode Range
VCC 0.3
V
VPP
Minimum Input Swing
150
80
VEE +
1.7
150
108
VCC 0.3
500
Typ
85oC
80
150
108
VEE +
1.7
Typ
80
VCC 0.3
VEE +
1.7
500
108
VCC 0.3
500
80
VEE +
1.7
500
mV
Note 1: These values are for VCC = 3.3V. Level Specifications will vary 1:1 withVCC.
AC Characteristics (VEE = –2.375V to –3.8V; VCC = VCC0 = GND)
-40oC
0oC
25oC
85oC
Symbol
Characteristic
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
tPLH
ECL/PECL Prop
Delay to Output
310
390
380
420
450
440
350
405
415
440
475
460
375
430
445
460
510
490
480
460
575
490
680
520
ps
ps
tPHL
HSTL Prop
Delay to Output
340
550
415
580
485
600
380
585
450
620
510
640
410
610
480
640
545
670
520
640
615
670
720
700
ps
ps
Within-Device Skew
15
30
15
30
15
30
15
30
ps
Part-to-Part Skew
100
145
100
130
100
135
100
150
ps
fmax
Max Input Frequency
1500
tr , tf
Output Rise/Fall Time
tskew
200
1500
600
200
1500
600
200
1500
600
200
MHz
600
ps
Low-Voltage 1:10 Differential
ECL/PECL/HSTL Clock Driver
SEMTECH
Today's Results ...Tomorrow's Vision
SK10EP111
Package Information
NOTES:
1.
Dimensioning and tolerancing per ANSI
Y14.5M, 1982.
2.
Controlling Dimension: Millimeter
3.
Datum Plane –AB– is located at bottom
of lead and is coincident with the lead
where the lead exits the plastic body at
the bottom of the parting line.
4.
Datums –T–, –U–, and –Z– to be
determined at Datum Plane –AB–.
5.
Dimensions S and V to be determined at
Seating Plane –AC–.
6.
Dimensions A and B do not include mold
protrusion. Allowable protrusion is 0.250
(0.010) per side. Dimensions A and B
do not include mold mismatch and are
determined at Datum Plane –AB–.
7.
Dimension D does not include Dambar
protrusion. Dambar protrusion shall not
cause the D dimension to exceed
0.520 (0.020).
8.
Minimum solder plate thickness shall be
0.0075 (0.0003).
9.
Exact shape of each corner may vary
from depiction.
4X
A, B
0.20 (0.008)
A1,
B1
32
AB
T–U
Z
25
1
24
–T, U, Z –
S, V
8
17
9
S1,V1
16
SEE DETAIL "Y"
SEE DETAIL "AD"
G
–AB–
–AC–
0.10 (0.004) AC
MILLIMETERS
8x M
C
˚
DIM
MIN
MAX
INCHES
MIN
MAX
R
E
A
7.000 BSC
0.276 BSC
A1
3.500 BSC
0.138 BSC
B
7.000 BSC
0.276 BSC
B1
W
H
K
Q
˚
0.250 (0.010)
GAUGE PLANE
X
DETAIL AD
,,,,,,
,,,,,,
Base Metal
N
–T–, –Ü–, –Z–
D
F
AE
P
3.500 BSC
0.138 BSC
C
1.400
1.600
0.055
D
0.300
0.450
0.012
0.018
E
1.350
1.450
0.053
0.057
F
0.300
0.400
0.012
0.016
G
0.800 BSC
0.063
0.031 BSC
H
0.050
0.150
0.002
0.006
J
0.090
0.200
0.004
0.008
K
0.500
0.700
0.020
0.028
M
N
12o REF
0.090
0.160
12o REF
0.004
0.006
P
0.400 BSC
0.016 BSC
Q
1o
5o
1o
5o
R
0.150
0.250
0.006
0.010
S
9.000 BSC
0.354 BSC
S1
4.500 BSC
0.177 BSC
V
9.000 BSC
0.354 BSC
V1
4.500 BSC
0.177 BSC
W
0.200 REF
0.008 REF
X
1.000 REF
0.039 REF
N
AE
DETAIL Y
0.20 (0.008) M AC T–U Z
SECTION AE