STMICROELECTRONICS ESM2030DV

ESM2030DV
NPN DARLINGTON POWER MODULE
■
■
■
■
■
■
■
HIGH CURRENT POWER BIPOLAR MODULE
VERY LOW Rth JUNCTION CASE
SPECIFIED ACCIDENTAL OVERLOAD
AREAS
ULTRAFAST FREEWHEELING DIODE
ISOLATED CASE (2500V RMS)
EASY TO MOUNT
LOW INTERNAL PARASITIC INDUCTANCE
INDUSTRIAL APPLICATIONS:
MOTOR CONTROL
■ UPS
■ DC/DC & DC/AC CONVERTERS
■
ISOTOP
INTERNAL SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
Symbol
VCEV
Parameter
Collector-Emitter Voltage (VBE = -5 V)
VCEO(sus) Collector-Emitter Voltage (IB = 0)
Unit
400
V
300
V
7
V
IC
Collector Current
67
A
ICM
Collector Peak Current (t p = 10 ms)
100
A
A
VEBO
Emitter-Base Voltage (I C = 0)
Value
Base Current
3
I BM
Base Peak Current (t p = 10 ms)
6
A
Pt ot
Tot al Dissipation at T c = 25 o C
150
W
T stg
Storage Temperature
IB
Tj
VI SO
-55 to 150
o
C
Max. Ope rating Junction Temperature
150
o
C
Insulation Withstand Voltage (AC-RMS)
2500
o
C
September 1997
1/8
ESM2030DV
THERMAL DATA
R thj-ca se
R thj-ca se
R t hc-h
Thermal Resistance Junction-case (transistor)
Thermal Resistance Junction-case (diode)
Thermal Resistance Case-heatsink With Conductive
Grease Applied
Max
Max
0.83
1.2
o
Max
0.05
o
o
C/W
C/W
C/W
o
ELECTRICAL CHARACTERISTICS (Tcase = 25 C unless otherwise specified)
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
I CER #
Collecto r Cut-of f
Current (RBE = 5 Ω)
VCE = VCEV
VCE = VCEV
T j = 100 o C
1. 5
16
mA
mA
I CEV #
Collecto r Cut-of f
Current (VBE = -5V)
VCE = VCEV
VCE = VCEV
T j = 100 o C
1
11
mA
mA
I EBO #
Emitter Cut-off Current VEB = 5 V
(I C = 0)
1
mA
VCEO(SUS) * Collecto r-Emitter
Sustaining Voltage
hFE ∗
V CE(sat )∗
VBE( sat) ∗
diC /dt
I C = 0.2 A
L = 25 mH
Vc lamp = 300 V
DC Current Gain
I C = 56 A
VCE = 5 V
Collecto r-Emitter
Saturation Voltage
IC
IC
IC
IC
IB
IB
IB
IB
=
=
=
=
40
40
56
56
A
A
A
A
=
=
=
=
0.4
0.4
1.6
1.6
A
A
A
A
IB = 1.6 A
IB = 1.6 A
300
V
300
T j = 100 oC
1.25
1.4
1.5
1.8
T j = 100 oC
2.4
2.5
T j = 100 oC
Base-Emitter
Saturation Voltage
I C = 56 A
I C = 56 A
Rate of Rise of
On-state Collector
VCC = 300 V RC = 0
tp = 3 µs
I B1 = 0.6 A Tj = 100 o C
220
2. 2
V
V
V
V
3
V
V
1. 8
260
A/µs
VCE (3 µs)•• Collecto r-Emitter
Dynamic Voltage
VCC = 300 V
I B1 = 0.6 A
R C = 7.5 Ω
T j = 100 o C
3
6
V
V CE (5 µs)•• Collector-Emitte r
Dynamic Voltage
VCC = 300 V
I B1 = 0.6 A
R C = 7.5 Ω
T j = 100 o C
2.2
4
V
2
0.35
0.8
3
0. 6
1. 2
µs
µs
µs
ts
tf
tc
VCEW
Storage Time
Fall Time
Cross-over Time
I C = 40 A
VBB = -5 V
Vc lamp = 300 V
L = 0. 06 mH
VCC = 50 V
RBB = 0.6 Ω
I B1 = 0.4 A
Tj = 100 o C
Maximum Collector
Emitter Voltage
With ou t Snubber
I CW off = 67 A
VBB = -5 V
L = 0. 037 mH
T j = 125 o C
IB1 = 1.6 A
VCC = 50 V
RBB = 0.6 Ω
VF ∗
Diode Forward Voltage I F = 56 A
I RM
Reverse Recovery
Current
T j = 100 o C
VCC = 200 V
diF /dt = -220 A/µs
T j = 100 o C
IF = 56 A
L < 0.05 µH
∗ Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %
# See test circuit in databook introduction
To evaluate the conduction losses of the diode use the following equations:
VF = 1.1 + 0.0045 IF
P = 1.1 IF(AV) + 0.0045 I2F(RMS)
2/8
300
V
1.15
1. 6
V
12
17
A
ESM2030DV
Safe Operating Areas
Thermal Impedance
Derating Curve
Collector-emitter Voltage Versus
base-emitter Resistance
Collector Emitter Saturation Voltage
Base-Emitter Saturation Voltage
3/8
ESM2030DV
Reverse Biased SOA
Foward Biased SOA
Reverse Biased AOA
Forward Biased AOA
Switching Times Inductive Load
Switching Times Inductive Load Versus
Temperature
4/8
ESM2030DV
Dc Current Gain
Typical VF Versus IF
Peak Reverse Current Versus diF/dt
Turn-on Switching Test Circuit
Turn-on Switching Waveforms
5/8
ESM2030DV
Turn-on Switching Test Circuit
Turn-off Switching Waveforms
Turn-off Switching Test Circuit of Diode
Turn-off Switching Waveform of Diode
6/8
ESM2030DV
ISOTOP MECHANICAL DATA
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
11.8
12.2
0.466
0.480
B
8.9
9.1
0.350
0.358
C
1.95
2.05
0.076
0.080
D
0.75
0.85
0.029
0.033
E
12.6
12.8
0.496
0.503
F
25.15
25.5
0.990
1.003
G
31.5
31.7
1.240
1.248
H
4
J
4.1
4.3
0.161
0.169
K
14.9
15.1
0.586
0.594
L
30.1
30.3
1.185
1.193
M
37.8
38.2
1.488
1.503
N
4
O
7.8
0.157
0.157
8.2
0.307
0.322
A
G
B
O
F
E
H
D
N
J
C
K
L
M
7/8
ESM2030DV
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all informationpreviously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectonics.
 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - UnitedKingdom - U.S.A
. ..
8/8