ESM2030DV NPN DARLINGTON POWER MODULE ■ ■ ■ ■ ■ ■ ■ HIGH CURRENT POWER BIPOLAR MODULE VERY LOW Rth JUNCTION CASE SPECIFIED ACCIDENTAL OVERLOAD AREAS ULTRAFAST FREEWHEELING DIODE ISOLATED CASE (2500V RMS) EASY TO MOUNT LOW INTERNAL PARASITIC INDUCTANCE INDUSTRIAL APPLICATIONS: MOTOR CONTROL ■ UPS ■ DC/DC & DC/AC CONVERTERS ■ ISOTOP INTERNAL SCHEMATIC DIAGRAM ABSOLUTE MAXIMUM RATINGS Symbol VCEV Parameter Collector-Emitter Voltage (VBE = -5 V) VCEO(sus) Collector-Emitter Voltage (IB = 0) Unit 400 V 300 V 7 V IC Collector Current 67 A ICM Collector Peak Current (t p = 10 ms) 100 A A VEBO Emitter-Base Voltage (I C = 0) Value Base Current 3 I BM Base Peak Current (t p = 10 ms) 6 A Pt ot Tot al Dissipation at T c = 25 o C 150 W T stg Storage Temperature IB Tj VI SO -55 to 150 o C Max. Ope rating Junction Temperature 150 o C Insulation Withstand Voltage (AC-RMS) 2500 o C September 1997 1/8 ESM2030DV THERMAL DATA R thj-ca se R thj-ca se R t hc-h Thermal Resistance Junction-case (transistor) Thermal Resistance Junction-case (diode) Thermal Resistance Case-heatsink With Conductive Grease Applied Max Max 0.83 1.2 o Max 0.05 o o C/W C/W C/W o ELECTRICAL CHARACTERISTICS (Tcase = 25 C unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit I CER # Collecto r Cut-of f Current (RBE = 5 Ω) VCE = VCEV VCE = VCEV T j = 100 o C 1. 5 16 mA mA I CEV # Collecto r Cut-of f Current (VBE = -5V) VCE = VCEV VCE = VCEV T j = 100 o C 1 11 mA mA I EBO # Emitter Cut-off Current VEB = 5 V (I C = 0) 1 mA VCEO(SUS) * Collecto r-Emitter Sustaining Voltage hFE ∗ V CE(sat )∗ VBE( sat) ∗ diC /dt I C = 0.2 A L = 25 mH Vc lamp = 300 V DC Current Gain I C = 56 A VCE = 5 V Collecto r-Emitter Saturation Voltage IC IC IC IC IB IB IB IB = = = = 40 40 56 56 A A A A = = = = 0.4 0.4 1.6 1.6 A A A A IB = 1.6 A IB = 1.6 A 300 V 300 T j = 100 oC 1.25 1.4 1.5 1.8 T j = 100 oC 2.4 2.5 T j = 100 oC Base-Emitter Saturation Voltage I C = 56 A I C = 56 A Rate of Rise of On-state Collector VCC = 300 V RC = 0 tp = 3 µs I B1 = 0.6 A Tj = 100 o C 220 2. 2 V V V V 3 V V 1. 8 260 A/µs VCE (3 µs)•• Collecto r-Emitter Dynamic Voltage VCC = 300 V I B1 = 0.6 A R C = 7.5 Ω T j = 100 o C 3 6 V V CE (5 µs)•• Collector-Emitte r Dynamic Voltage VCC = 300 V I B1 = 0.6 A R C = 7.5 Ω T j = 100 o C 2.2 4 V 2 0.35 0.8 3 0. 6 1. 2 µs µs µs ts tf tc VCEW Storage Time Fall Time Cross-over Time I C = 40 A VBB = -5 V Vc lamp = 300 V L = 0. 06 mH VCC = 50 V RBB = 0.6 Ω I B1 = 0.4 A Tj = 100 o C Maximum Collector Emitter Voltage With ou t Snubber I CW off = 67 A VBB = -5 V L = 0. 037 mH T j = 125 o C IB1 = 1.6 A VCC = 50 V RBB = 0.6 Ω VF ∗ Diode Forward Voltage I F = 56 A I RM Reverse Recovery Current T j = 100 o C VCC = 200 V diF /dt = -220 A/µs T j = 100 o C IF = 56 A L < 0.05 µH ∗ Pulsed: Pulse duration = 300 µs, duty cycle 1.5 % # See test circuit in databook introduction To evaluate the conduction losses of the diode use the following equations: VF = 1.1 + 0.0045 IF P = 1.1 IF(AV) + 0.0045 I2F(RMS) 2/8 300 V 1.15 1. 6 V 12 17 A ESM2030DV Safe Operating Areas Thermal Impedance Derating Curve Collector-emitter Voltage Versus base-emitter Resistance Collector Emitter Saturation Voltage Base-Emitter Saturation Voltage 3/8 ESM2030DV Reverse Biased SOA Foward Biased SOA Reverse Biased AOA Forward Biased AOA Switching Times Inductive Load Switching Times Inductive Load Versus Temperature 4/8 ESM2030DV Dc Current Gain Typical VF Versus IF Peak Reverse Current Versus diF/dt Turn-on Switching Test Circuit Turn-on Switching Waveforms 5/8 ESM2030DV Turn-on Switching Test Circuit Turn-off Switching Waveforms Turn-off Switching Test Circuit of Diode Turn-off Switching Waveform of Diode 6/8 ESM2030DV ISOTOP MECHANICAL DATA mm DIM. MIN. TYP. inch MAX. MIN. TYP. MAX. A 11.8 12.2 0.466 0.480 B 8.9 9.1 0.350 0.358 C 1.95 2.05 0.076 0.080 D 0.75 0.85 0.029 0.033 E 12.6 12.8 0.496 0.503 F 25.15 25.5 0.990 1.003 G 31.5 31.7 1.240 1.248 H 4 J 4.1 4.3 0.161 0.169 K 14.9 15.1 0.586 0.594 L 30.1 30.3 1.185 1.193 M 37.8 38.2 1.488 1.503 N 4 O 7.8 0.157 0.157 8.2 0.307 0.322 A G B O F E H D N J C K L M 7/8 ESM2030DV Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all informationpreviously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics. 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - UnitedKingdom - U.S.A . .. 8/8