FAIRCHILD MPSH-11

MPSH11 / MMBTH11
MPSH11
MMBTH11
C
E
C
E
TO-92
B
B
SOT-23
Mark: 3G
NPN RF Transistor
This device is designed for common-emitter low noise amplifier
and mixer applications with collector currents in the 100 µA to
10 mA range to 300 MHz, and low frequency drift commonbase VHF oscillator applications with high output levels for
driving FET mixers. Sourced from Process 47.
Absolute Maximum Ratings*
Symbol
TA = 25°C unless otherwise noted
Parameter
Value
Units
VCEO
Collector-Emitter Voltage
25
V
VCBO
Collector-Base Voltage
30
V
VEBO
Emitter-Base Voltage
3.0
V
IC
Collector Current - Continuous
50
mA
TJ, Tstg
Operating and Storage Junction Temperature Range
-55 to +150
°C
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
NOTES:
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
Thermal Characteristics
Symbol
PD
TA = 25°C unless otherwise noted
Characteristic
RθJC
Total Device Dissipation
Derate above 25°C
Thermal Resistance, Junction to Case
RθJA
Thermal Resistance, Junction to Ambient
Max
Units
MPSH11
350
2.8
125
*MMBTH11
225
1.8
357
556
mW
mW/°C
°C/W
°C/W
*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."
2002 Fairchild Semiconductor Corporation
MPSH11/MMBTH11, Rev. B
(continued)
Electrical Characteristics
Symbol
TA = 25°C unless otherwise noted
Parameter
Test Conditions
Min
Max
Units
OFF CHARACTERISTICS
V(BR)CEO
Collector-Emitter Sustaining Voltage*
IC = 1.0 mA, IB = 0
25
V
V(BR)CBO
Collector-Base Breakdown Voltage
IC = 100 µA, IE = 0
30
V
V(BR)EBO
Emitter-Base Breakdown Voltage
IE = 10 µA, IC = 0
3.0
V
ICBO
Collector Cutoff Current
VCB = 25 V, IE = 0
100
nA
IEBO
Emitter Cutoff Current
VEB = 2.0 V, IC = 0
100
nA
MPSH11 / MMBTH11
NPN RF Transistor
ON CHARACTERISTICS
hFE
DC Current Gain
IC = 4.0 mA, VCE = 10 V
VCE(sat)
Collector-Emitter Saturation Voltage
IC = 4.0 mA, IB = 0.4 mA
60
0.5
V
VBE(on)
Base-Emitter On Voltage
IC = 4.0 mA, VCE = 10 V
0.95
V
SMALL SIGNAL CHARACTERISTICS
fT
Current Gain - Bandwidth Product
Ccb
Collector-Base Capacitance
IC = 4.0 mA, VCE = 10 V,
f = 100 MHz
VCB = 10 V, IE = 0, f = 1.0 MHz
Crb
Common-Base Feedback Capacitance
VCB = 10 V, IE = 0, f = 1.0 MHz
rb묬c
Collector Base Time Constant
IC = 4.0 mA, VCB = 10 V,
f = 31.8 MHz
650
0.6
MHz
0.7
pF
0.9
pF
9.0
pS
*Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%
3
h FE - DC PULSED CURRE NT GAIN
DC Current Gain
vs Collector Current
300
VCE = 5V
250
200
150
125 °C
Collector-Emitter Saturation
Voltage vs Collector Current
0.2
β = 10
0.15
125 °C
0.1
25 캜
25 캜
100
- 40 °C
50
0
0.01
VCESAT- COLLE CTOR-EMITTER VOLTAGE (V)
Typical Characteristics
0.1
1
10
I C - COLLECTOR CURRENT (mA)
100
0.05
- 40 °C
0.1
1
10
I C - COLLECTOR CURRENT (mA)
20 30
MPSH11/MMBTH11, Rev. B
(continued)
(continued)
Base-Emitter Saturation
Voltage vs Collector Current
1
0.8
- 40 °C
V BE(O N)- BASE-E MITTER ON VOLTAGE (V)
V BESAT - BASE-EMITTER VOLTAG E (V)
Typical Characteristics
Base-Emitter ON Voltage vs
Collector Current
1
- 40 °C
0.8
25 캜
0.6
125 °C
β = 10
0.4
0.2
0.1
IC
1
10
20 30
- COLLE CTOR CURRENT ( mA)
25 캜
0.6
125 °C
0.4
0.2
0.01
P D - POWER DISSIPATION (mW)
I CBO - COLLECTOR CURRENT (nA)
10
VCB = 30V
1
0.1
25
50
75
100
125
T A - AMBIENT TE MPE RATURE (°C)
TO-92
250
200
100
50
0
0
25
50
75
100
125
150
Contours of Constant Gain
Bandwidth Product (f T )
f = 1.0 MHz
1.8
1.2
C CB
0.6
1
10
REVERSE BIAS VOLTAGE (V)
SOT-23
150
TEMPERATURE ( °C)
2.4
0
0.1
100
300
150
50
V CE- COLLECTOR VOLTAGE (V)
C ibo
0.1
1
10
I C - COLLECTOR CURRENT (mA)
350
Capacitance vs
Reverse Bias Voltage
3
V CE = 5.0V
Power Dissipation vs
Ambient Temperature
Collector Cut-Off Current
vs Ambient Temperature
CAPACITANCE (pF)
MPSH11 / MMBTH11
NPN RF Transistor
50
10
1000 MHz
900 MHz
800 MHz
700 MHz
600 MHz
1
500 MHz
300 MHz
200 MHz
100 MHz
400 MHz
T A = 25ºC
0.1
0.1
1
10
I C - COLLECTOR CURRENT (mA)
100
MPSH11/MMBTH11, Rev. B
(continued)
Common Emitter Y Parameters
Input Admittance vs
Collector Current
14
V CE = 15V
f = 45 MHz
12
10
8
g ie
6
b ie
4
2
0
0
4
8
12
16
I C - COLLECTOR CURRENT (mA)
20
Y ie - INPUT ADMITTANCE (mmhos)
Y ie - INPUT ADMITTANCE (mmhos)
Input Admittance vs
Collector Current
24
V CE = 10V
f = 200 MHz
20
g ie
16
12
b ie
8
4
0
0
2
4
6
8
I C - COLLECTOR CURRENT (mA)
20
16
12
g ie
0
b ie
0
4
8
12
16
VCE - COLLECTOR VOLTAGE
20
Forward Transfer Admittance
vs Collector Current
500
V CE = 15V
f = 45 MHz
200
100
g fe
-b fe
10
1
0
4
8
12
16
20
I C - COLLECTOR CURRENT (mA)
24
Y ie - INPUT ADMITTANCE (mmhos)
I C = 7.0 mA
24 f = 200 MHz
20
V CE = 15V
I C = 7.0 mA
16
3
g ie
12
Y fe -FORWARD TRANS ADMITTANCE (mmhos)
Y ie - INPUT ADMITTANCE (mmhos)
Y fe -FORWARD TRANS ADMITTANCE (mmhos)
28
4
10
Input Admittance vs
Frequency
Input Admittance vs
Collector Voltage
8
MPSH11 / MMBTH11
NPN RF Transistor
8
b ie
4
0
50
100
200
500
f - FREQUENCY (MHz)
1000
Forward Transfer Admittance
vs Collector Current
120
V CE = 10V
f = 200 MHz
100
-b fe
80
60
40
g fe
20
0
0
2
4
6
8
I C- COLLECTOR CURRENT (mA)
10
MPSH11/MMBTH11, Rev. B
(continued)
I C = 7.0 mA
f = 45 MHz
120
g fe
100
80
-b fe
60
40
20
0
0
4
8
12
16
V CE - COLLECTOR VOLTAGE (V)
20
0.28
V CE = 15V
f = 45 MHz
0.24
-b re
0.2
0.16
0.12
0.08
0.04
0
-g re
0
4
8
12
16
I C - COLLECTOR CURRENT (mA)
20
Reverse Transfer Admittance
vs Collector Voltage
0.4
I C = 7.0 mA
f = 45 MHz
0.36
0.32
0.28
0.24
-b re
0.2
0.16
0.12
0.08
0.04
0
-g re
0
2
4
6
8 10 12 14 16
V CE - COLLECTOR VOLTAGE (V)
18
20
Forward Transfer Admittance
vs Frequency
140
V CE = 15V
I C = 7.0 mA
120
100
80
60
-b fe
40
g fe
20
0
50
Y re -REVERSE TRANS ADMITTANCE (mmhos)
140
Y re -REVERSE TRANS ADMITTANCE (mmhos)
Forward Transfer Admittance
vs Collector Voltage
Y fe -FORWARD TRANS ADMITTANCE (mmhos)
(continued)
Reverse Transfer Admittance
vs Collector Current
Y re -REVERSE TRANS ADMITTANCE (mmhos)
Y re -REVERSE TRANS ADMITTANCE (mmhos)
Y fe -FORWARD TRANS ADMITTANCE (mmhos)
Common Emitter Y Parameters
100
200
500
f - FREQUENCY (MHz)
1000
Reverse Transfer Admittance
vs Collector Current
0.6
V CE = 10V
f = 200 MHz
0.5
-b re
0.4
0.3
0.2
0.1
-g re
0
0
2
4
6
8
I C- COLLECTOR CURRENT (mA)
10
Reverse Transfer Admittance
vs Frequency
1.4
1.2
V CE = 15V
I C = 7.0 mA
1
0.8
-b re
0.6
0.4
0.2
0
50
-g re
100
200
500
f - FREQUENCY (MHz)
1000
MPSH11/MMBTH11, Rev. B
MPSH11 / MMBTH11
NPN RF Transistor
(continued)
1000
b oe
goe
100
10
V CE = 15V
f = 45 MHz
1
0
4
8
12
16
20
I C - COLLECTOR CURRENT (mA)
24
Output Admittance vs
Collector Voltage
10000
I C = 7.0 mA
f = 45 MHz
1000
b oe
goe
100
10
0
4
8
12
16
20
VCE - COLLECTOR VOLTAGE (V)
24
Yoe - OUTPUT ADMITTANCE (mmhos)
Output Admittance vs
Collector Current
Yoe - OUTPUT ADMITTANCE (mmhos)
(continued)
Output Admittance vs
Collector Current
5
V CE = 10V
f = 200 MHz
2
35
0.5
goe
0.2
0.1
0
PG
15
10
NF
5
0
0
10
Output Admittance
vs Frequency
10000
V CE = 15V
I C = 7.0 mA
b oe
1000
3
goe
100
10
50
100
200
500
f - FREQUENCY (MHz)
1000
28
25
20
2
4
6
8
I C - COLLECTOR CURRENT (mA)
Conversion Gain
vs Collector Current
V CC = 12V
f = 200 MHz
FIG. 2
30
b oe
1
Power Gain and Noise Figure
vs Collector Current
C GE- CONVERSION GAIN (dB)
POWER GAIN AND NOISE FIGURE (dB)
Yoe - OUTPUT ADMITTANCE (mmhos)
Yoe - OUTPUT ADMITTANCE (mmhos)
Common Emitter Y Parameters
2
4
6
8
I C - COLLECTOR CURRENT (mA)
10
MPSH11 / MMBTH11
NPN RF Transistor
26
24
f IF = 45 MHz
f O = 200 MHz
f LO = 245 MHz
V CE = 15V
FIG. 1
22
20
18
0
1
2
3
4
I C - COLLECTOR CURRENT (mA)
5
MPSH11/MMBTH11, Rev. B
(continued)
Test Circuits
VCC = 12 V
270 Ω
1000 pF
1000 pF
200 mHz Output into
50Ω
L2
RL
RS
100 pF
200 mHz
Input
0.8-10 pF
L1
1000 pF
Ω
2.2 KΩ
1000 pF
390 Ω
L1 - Ohmite Z-235 RFC
L2 - L6 turns No. 14 wire, 1 inch L x 1/4 inch ID tapped 1
1/2 turns from cold side
VBB
FIGURE 1: Unneutralized 200 MHz PG and NF Test Circuit
MPSH11/MMBTH11, Rev. B
MPSH11 / MMBTH11
NPN RF Transistor
(continued)
Test Circuits
(continued)
T1
50 Ω
Output
4.0-30 pF
0.002 µF
2KΩ
Ω
50 Ω
Input
MPSH11 / MMBTH11
NPN RF Transistor
Ω
2.2 KΩ
1/2 W
1000 pF
1000 pF
1000 pF
390 Ω
1/2 W
270 Ω
1/2 W
R.F. Beads
VCC = 12 V
T1 - Q3 Toroid 4:1 ratio
8 turns Pri. 2 turns Sec.
}
No. 22 wire
VAGC
FIGURE 2: 45 MHz Power Gain Circuit
200 mHz Output into
50Ω
T1
300 pF
RFin
1.1 pF
2.0 pF
LOin
20pF
45 mHz Output
into 50Ω
3
L1
245 mHz
Input into
50Ω
1000 pF
1000 pF
Ω
47 KΩ
VBB
VCE
VCE = 15 V
L1 - Ohmite RFC Z235
T1 - Primary 5 turns No. 34 wire 1/4 inch
diameter. Secondary runs No. 34 wire close
wound over a Q100 core (10.7 mHz). When
terminated on secondary side with 50Ω primary
measures 1.5 K, -25 pF.
FIGURE 3: 200 MHz Conversion Gain Test Circuit
MPSH11/MMBTH11, Rev. B