STMICROELECTRONICS ST93003

ST93003
®
HIGH VOLTAGE FAST-SWITCHING
PNP POWER TRANSISTOR
■
■
■
■
MEDIUM VOLTAGE CAPABILITY
LOW SPREAD OF DYNAMIC PARAMETERS
MINIMUM LOT-TO-LOT SPREAD FOR
RELIABLE OPERATION
VERY HIGH SWITCHING SPEED
APPLICATIONS:
ELECTRONIC BALLASTS FOR
FLUORESCENT LIGHTING
■
DESCRIPTION
The device is manufactured using high voltage
Multi-Epitaxial Planar technology for high
switching speeds and medium voltage capability.
It uses a Cellular Emitter structure with planar
edge termination to enhance switching speeds
while maintaining the wide RBSOA.
The ST93003 is expressly designed for a new
solution to be used in compact fluorescent lamps,
where it is coupled with the ST83003, its
complementary NPN transistor.
3
2
1
SOT-32
INTERNAL SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
V CES
Collector-Emitter Voltage (V BE = 0)
V CEO
Collector-Emitter Voltage (I B = 0)
V EBO
Emitter-Base Voltage
(I C = 0, IB = -0.75 A,
Collector Current
IC
I CM
IB
Value
Unit
-500
V
-400
V
V (BR)EBO
V
t p < 10µs, T j < 150 o C)
Collector Peak Current (t p < 5 ms)
Base Current
-1.5
A
-3
A
-0.75
A
I BM
Base Peak Current (t p < 5 ms)
-1.5
A
P tot
Total Dissipation at T c = 25 o C
40
W
T stg
Storage Temperature
Tj
Max. Operating Junction Temperature
October 2002
-65 to 150
o
C
150
o
C
1/7
ST93003
THERMAL DATA
R thj-case
R thj-amb
Thermal Resistance Junction-case
Thermal Resistance Junction-ambient
Max
Max
o
3.12
89
o
C/W
C/W
ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified)
Symbol
I CES
Parameter
Test Conditions
Min.
Collector Cut-off
Current (V BE = 0)
V CE = -500V
V CE = -500V
Emitter Base
Breakdown Voltage
(I C = 0)
I E = -10 mA
-5
V CEO(sus) ∗ Collector-Emitter
Sustaining Voltage
(I B = 0)
I C = -10 mA
L = 25 mH
-400
V (BR)EBO
Typ.
T j = 125 o C
Max.
Unit
-1
-5
mA
mA
-10
V
V
V CE(sat) ∗
Collector-Emitter
Saturation Voltage
I C = -0.5 A
I C = -0.35 A
I B = -0.1 A
I B = -50 mA
-0.5
-0.5
V
V
V BE(sat) ∗
Base-Emitter
Saturation Voltage
I C = -0.5 A
I B = -0.1 A
-1
V
DC Current Gain
I C = -10 mA
I C = -0.35 A
I C = -1 A
V CE = -5 V
V CE = -5 V
V CE = -5 V
10
16
4
25
32
1.5
90
2.2
0.1
2.9
h FE ∗
tr
ts
tf
RESISTIVE LOAD
Rise Time
Storage Time
Fall Time
I C = -0.35 A
I B1 = -70 mA
T p ≥ 25 µs
V CC = 125 V
I B2 = 70 mA
(see Figure 2)
ts
tf
INDUCTIVE LOAD
Storage Time
Fall Time
I C = -0.5 A
V BE(off) = 5 V
V clamp = 300 V
I B1 = -0.1 A
L = 10 mH
(see Figure 1)
E sb
Avalanche Energy
L = 4 mH
I BR ≤ 2.5 A
∗ Pulsed: Pulse duration = 300µs, duty cycle = 1.5 %
2/7
C = 1.8 nF
25 o C < T C < 125 o C
400
40
12
ns
µs
µs
ns
ns
mJ
ST93003
Safe Operating Area
Derating Curve
DC Current Gain
DC Current Gain
Collector Emitter Saturation Voltage
Base Emitter Saturation Voltage
3/7
ST93003
Resistive Fall Time
Resistive Storage Time
Inductive Fall Time
Inductive Storage Time
Reverse Biased SOA
4/7
ST93003
Figure 1: Inductive Load Switching Test Circuit.
1) Fast electronic switch
2) Non-inductive Resistor
3) Fast recovery rectifier
Figure 2: Resistive Load Switching Test Circuit.
1) Fast electronic switch
2) Non-inductive Resistor
5/7
ST93003
SOT-32 (TO-126) MECHANICAL DATA
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
7.4
7.8
0.291
0.307
B
10.5
10.8
0.413
0.425
b
0.7
0.9
0.028
0.035
b1
0.40
0.65
0.015
0.025
C
2.4
2.7
0.094
0.106
c1
1.0
1.3
0.039
0.051
D
15.4
16.0
0.606
0.630
e
2.2
0.087
e3
4.4
0.173
F
G
3.8
3
0.150
3.2
H
0.118
0.126
2.54
0.100
H2
2.15
0.084
I
1.27
0.05
O
0.3
0.011
V
o
10
10o
1: Base
2: Collector
3: Emitter
0016114/B
6/7
ST93003
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
7/7