STPS1L40 ® LOW DROP POWER SCHOTTKY RECTIFIER Table 1: Main Product Characteristics IF(AV) 1A VRRM 40 V Tj (max) 150°C VF(max) 0.42 V FEATURES AND BENEFITS ■ ■ ■ ■ ■ SMA (JEDEC DO-214AC) STPS1L40A Very small conduction losses Negligible switching losses Low forward voltage drop Surface mount miniature packages Avalanche capability specified SMB (JEDEC DO-214AA) STPS1L40U DESCRIPTION Table 2: Order Codes Part Number STPS1L40A STPS1L40U Single chip Schottky rectifiers suited to Switched Mode Power Supplies and high frequency DC to DC converters. Packaged in SMA and SMB, this device is especially intended for surface mounting and used in low voltage, high frequency inverters, free wheeling and polarity protection applications. Marking GB4 GC4 Table 3: Absolute Ratings (limiting values) Symbol Parameter VRRM Repetitive peak reverse voltage IF(RMS) RMS forward voltage Value 40 Unit V 8 A IF(AV) Average forward current TL = 130°C δ = 0.5 1 A IFSM Surge non repetitive forward current tp = 10ms sinusoidal 60 A IRRM Repetitive peak reverse current tp = 2µs F = 1kHz square 1 A IRSM Non repetitive peak reverse current tp = 100µs square 1 A PARM Repetitive peak avalanche power tp = 1µs Tj = 25°C 900 W -65 to + 150 °C 150 10000 °C V/µs Tstg Tj dV/dt Storage temperature range Maximum operating junction temperature * Critical rate of rise of reverse voltage 1 dPt ot * : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink Rth ( j – a ) dTj August 2004 REV. 5 1/7 STPS1L40 Table 4: Thermal Resistance Symbol Rth(j-l) Parameter Value 30 25 SMA SMB Junction to lead Unit °C/W Table 5: Static Electrical Characteristics Symbol Parameter Tests conditions IR * Reverse leakage current Tj = 25°C Tj = 125°C Tj = 25°C VF * Tj = 125°C Forward voltage drop Tj = 25°C Tj = 125°C Min. Typ VR = VRRM Max. Unit 35 µA 10 mA 6 0.5 IF = 1A 0.37 0.42 V 0.63 IF = 2A 0.5 0.61 * tp = 380 µs, δ < 2% Pulse test: 2 To evaluate the conduction losses use the following equation: P = 0.23 x IF(AV) + 0.19 IF (RMS) Figure 1: Average forward power dissipation versus average forward current Figure 2: Average forward current versus ambient temperature (δ = 0.5) PF(AV)(W) IF(AV)(A) 0.70 δ = 0.1 0.60 1.2 δ = 0.2 δ = 0.5 Rth(j-a)=Rth(j-I) 1.0 δ = 0.05 0.50 0.8 δ=1 Rth(j-a)=120°C/W 0.40 Rth(j-a)=100°C/W 0.6 0.30 0.4 0.20 T T 0.2 0.10 IF(AV)(A) δ=tp/T 0.00 0.0 0.2 0.4 0.6 0.8 1.0 Figure 3: Normalized avalanche derating versus pulse duration δ=tp/T tp 0.0 0 1.2 power Tamb(°C) tp 25 50 75 100 125 Figure 4: Normalized avalanche derating versus junction temperature PARM(tp) PARM(1µs) 150 power PARM(tp) PARM(25°C) 1 1.2 1 0.1 0.8 0.6 0.4 0.01 0.2 0.001 0.01 2/7 Tj(°C) tp(µs) 0.1 1 0 10 100 1000 25 50 75 100 125 150 STPS1L40 Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values) (SMA) Figure 6: Non repetitive surge peak forward current versus overload duration (maximum values) (SMB) IM(A) IM(A) 6.0 7 5.5 6 5.0 4.5 5 Ta=25°C 4.0 Ta=25°C 3.5 4 Ta=50°C 3.0 Ta=50°C 3 2.5 2.0 Ta=100°C 1.5 2 Ta=100°C IM 1.0 IM 1 t t t(s) δ=0.5 0.5 t(s) δ=0.5 0 0.0 1E-3 1E-2 1E-1 1E+0 Figure 7: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMA) 1E-3 1E-1 1E+0 Figure 8: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMB) Zth(j-c)/Rth(j-c) Zth(j-c)/Rth(j-c) 1.0 1.0 0.8 0.8 0.6 1E-2 0.6 δ = 0.5 0.4 δ = 0.5 0.4 T δ = 0.2 0.2 δ=tp/T tp(s) Single pulse 0.0 1E-2 1E-1 1E+0 1E+1 T δ = 0.2 0.2 δ = 0.1 δ = 0.1 1E+2 5E+2 Figure 9: Reverse leakage current versus reverse voltage applied (typical values) 0.0 1E-2 δ=tp/T tp(s) Single pulse tp 1E-1 1E+0 1E+1 tp 1E+2 5E+2 Figure 10: Junction capacitance versus reverse voltage applied (typical values) IR(mA) C(pF) 2E+1 1E+1 200 Tj=150°C F=1MHz Tj=25°C 100 Tj=100°C 1E+0 50 1E-1 20 1E-2 Tj=25°C VR(V) VR(V) 10 1E-3 0 5 10 15 20 25 30 35 40 1 2 5 10 20 50 3/7 STPS1L40 Figure 11: Forward voltage drop versus forward current (typical values, high level) Figure 12: Forward voltage drop versus forward current (maximum values, low level) IFM(A) IFM(A) 3.0 10.00 2.5 Tj=125°C Tj=125°C Tj=25°C 1.00 Tj=25°C 2.0 Tj=150°C 1.5 0.10 Tj=150°C 1.0 0.5 VFM(V) 0.01 VFM(V) 0.0 0 100 200 300 400 500 600 700 800 900 1000 Figure 13: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMA) 0 100 200 300 400 500 600 700 800 Figure 14: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMB) Rth(j-a)(°C/W) Rth(j-a)(°C/W) 140 120 120 100 100 80 80 60 60 40 40 20 20 S(Cu)(cm²) S(Cu)(cm²) 0 0 0 4/7 1 2 3 4 5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 STPS1L40 Figure 15: SMA Package Mechanical Data DIMENSIONS REF. E1 D E A1 A2 C L b Millimeters Inches Min. Max. Min. Max. A1 1.90 2.03 0.075 0.080 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.41 0.006 0.016 E 4.80 5.60 0.189 0.220 E1 3.95 4.60 0.156 0.181 D 2.25 2.95 0.089 0.116 L 0.75 1.60 0.030 0.063 Figure 16: SMA Foot Print Dimensions (in millimeters) 1.65 1.45 2.40 1.45 5/7 STPS1L40 Figure 17: SMB Package Mechanical Data DIMENSIONS REF. E1 D Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.41 0.006 0.016 E 5.10 5.60 0.201 0.220 E1 4.05 4.60 0.159 0.181 D 3.30 3.95 0.130 0.156 L 0.75 1.60 0.030 0.063 E A1 A2 C L b Figure 18: SMB Foot Print Dimensions (in millimeters) 2.3 1.52 6/7 2.75 1.52 STPS1L40 Table 6: Ordering Information Ordering type STPS1L40A STPS1L40U ■ ■ Marking GB4 GC4 Package SMA SMB Weight 0.068 g 0.107 g Base qty 5000 2500 Delivery mode Tape & reel Tape & reel Band indicates cathode Epoxy meets UL94, V0 Table 7: Revision History Date Jul-2003 Revision 4A Aug-2004 5 Description of Changes Last update. SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106inc.) to 2.03mm (0.080). Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 7/7