STTH30R06CW ® TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER MAIN PRODUCT CHARACTERISTICS IF(AV) 2 x 15 A VRRM 600 V IRM (typ.) 8A Tj (max) 175 °C VF (max) 1.8 V trr (max) 50 ns A2 A1 FEATURES AND BENEFITS ■ ■ ■ ■ K TO-247 STTH30R06CW Ultrafast switching Low reverse recovery current Reduces switching losses Low thermal resistance DESCRIPTION The STTH30R06CW, which is using ST Turbo 2 600V technology, is specially suited as boost diode in continuous mode power factor corrections and hard switching conditions. The device is also intended for use as a free wheeling diode in power supplies and other power switching applications. ABSOLUTE RATINGS (limiting values) Symbol Parameter Value Unit VRRM Repetitive peak reverse voltage 600 V IF(RMS) RMS forward current 30 A 15 30 A 120 A - 65 + 175 °C 175 °C IF(AV) Average forward current Per diode Per device IFSM Surge non repetitive forward current tp = 10 ms Tstg Storage temperature range Tj Maximum operating junction temperature July 2001 - Ed: 1A Sinusoidal 1/5 STTH30R06CW THERMAL RESISTANCES Symbol Rth (j-c) Parameter Junction to case Rth (c) Value Unit Per diode 1.5 °C/W Total 1.0 Coupling 0.5 STATIC ELECTRICAL CHARACTERISTICS (per diode) Symbol IR VF Parameter Tests conditions Reverse leakage current VR = 600V Forward voltage drop IF = 15 A Min. Typ. Tj = 25°C Tj = 125°C 70 Max. Unit 60 µA 800 Tj = 25°C 2.9 Tj = 125°C 1.4 V 1.8 To evaluate the maximum conduction losses use the following equation : P = 1.16 x IF(AV) + 0.043 IF2(RMS) DYNAMIC ELECTRICAL CHARACTERISTICS Symbol trr Tests conditions IF = 0.5 A Irr = 0.25 A IR = 1A Min. Typ. Tj = 25°C IF = 1 A dIF/dt = - 50 A/µs VR = 30V IRM S factor VR = 400 V IF = 15A dIF/dt = - 200A/µs VFP 2/5 Unit 30 ns 50 Tj = 125°C 7.5 9.0 220 IF = 15 A dIF/dt = 120 A/µs VFR = 1.1 x VFmax A 0.15 Qrr tfr Max. Tj = 25°C nC 200 ns 6 V STTH30R06CW Fig. 1: Conduction losses versus average current (per leg). Fig. 2: Forward voltage drop versus forward current (per leg). P(W) IFM(A) 120 40 δ = 0.5 δ = 0.2 δ = 0.1 δ = 0.05 110 35 Tj=125°C (Maximum values) 100 δ=1 30 90 80 25 Tj=125°C (Typical values) 70 60 20 50 15 Tj=25°C (Maxumim values) 40 10 30 T 20 5 IF(av)(A) δ=tp/T 0 0 2 4 6 8 10 12 14 16 10 tp VFM(V) 0 18 0 20 Fig. 3: Relative variation of thermal impedance junction to case versus pulse duration. 1 2 3 4 5 6 Fig. 4: Peak reverse recovery current versus dIF/dt (90% confidence, per leg). IRM(A) Zth(j-c)/Rth(j-c) 30 1.0 VR=400V Tj=125°C 0.9 IF=2 x IF(av) 25 0.8 IF=IF(av) 0.7 20 δ = 0.5 0.6 IF=0.5 x IF(av) 15 0.5 0.4 δ = 0.2 0.3 δ = 0.1 IF=0.25 x IF(av) 10 T 0.2 5 Single pulse 0.1 tp(s) 0.0 1.E-03 δ=tp/T 1.E-02 dIF/dt(A/µs) tp 1.E-01 0 0 1.E+00 Fig. 5: Reverse recovery time versus dIF/dt (90% confidence, per leg). 200 400 600 800 1000 Fig. 6: Reverse recovery charges versus dIF/dt (90% confidence, per leg). trr(ns) Qrr(nC) 100 800 VR=400V Tj=125°C 90 VR=400V Tj=125°C 700 80 IF=2 x IF(av) 600 70 IF=0.5 x IF(av) 500 60 IF=IF(av) IF=IF(av) IF=2 x IF(av) 50 400 40 300 IF=0.5 x IF(av) 30 200 20 10 100 dIF/dt(A/µs) 0 dIF/dt(A/µs) 0 0 200 400 600 800 1000 0 200 400 600 800 1000 3/5 STTH30R06CW Fig. 7: Softness factor versus dIF/dt (typical values, per leg). Fig. 8: Relative variation of dynamic parameters versus junction temperature. S factor 0.35 2.50 IF=IF(av) VR=400V Tj=125°C IF=IF(av) VR=400V Tj=125°C 2.25 S factor 2.00 0.30 1.75 1.50 0.25 1.25 1.00 0.20 0.75 IRM 0.50 0.15 0.25 dIF/dt(A/µs) 0.10 Reference: Tj=125°C 25 0 200 400 Tj(°C) Qrr 0.00 600 800 50 75 100 125 1000 Fig. 9: Transient peak forward voltage versus dIF/dt (90% confidence, per leg). Fig. 10: Forward recovery time versus dIF/dt (90% confidence, per leg). tfr(ns) VFP(V) 260 12 IF=IF(av) Tj=125°C 11 IF=IF(av) VFR=1.1 x VF max. Tj=125°C 240 10 220 9 200 180 8 160 7 140 6 120 5 100 4 80 3 60 2 40 1 dIF/dt(A/µs) 20 dIF/dt(A/µs) 0 0 0 100 200 300 400 500 Fig. 11: Junction capacitance versus reverse voltage applied (typical values, per leg). C(pF) 1000 F=1MHz Vosc=30mV Tj=25°C 100 VR(V) 10 1 4/5 10 100 1000 0 100 200 300 400 500 STTH30R06CW PACKAGE MECHANICAL DATA TO-247 DIMENSIONS REF. V Inches Min. Typ. Max. Min. Typ. Max. Dia. V A H L5 L L2 L4 F2 F1 L1 F3 V2 F4 D L3 F(x3) M G = ■ Millimeters E = A 4.85 5.15 0.191 0.203 D 2.20 2.60 0.086 0.102 E 0.40 0.80 0.015 0.031 F 1.00 1.40 0.039 0.055 F1 3.00 0.118 F2 2.00 0.078 F3 2.00 2.40 0.078 0.094 F4 3.00 3.40 0.118 0.133 G 10.90 0.429 H 15.45 15.75 0.608 0.620 L 19.85 20.15 0.781 0.793 L1 3.70 4.30 0.145 0.169 L2 18.50 0.728 L3 14.20 14.80 0.559 0.582 L4 34.60 1.362 L5 5.50 0.216 M 2.00 3.00 0.078 0.118 V 5° 5° V2 60° 60° Dia. 3.55 3.65 0.139 0.143 Ordering code Marking Package Weight Base qty Delivery mode STTH30R06CW STTH30R06CW TO-247 4.36 g 30 Tube Epoxy meets UL 94,V0 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 5/5