STMICROELECTRONICS TS615IPWT

TS615
DUAL WIDE BAND OPERATIONAL AMPLIFIER
WITH HIGH OUTPUT CURRENT
■ LOW NOISE : 2.5nV/√Hz
■ HIGH OUTPUT CURRENT : 420mA
■ VERY LOW HARMONIC AND INTERMODULATION DISTORTION
■ HIGH SLEW RATE : 410V/µs
■ -3dB BANDWIDTH : 40MHz@gain=12dB on
25Ω load single ended.
■ 21.2Vp-p DIFFERENTIAL OUTPUT SWING
on 50Ω load, 12V power supply
■ CURRENT FEEDBACK STRUCTURE
■ 5V to 12V POWER SUPPLY
■ SPECIFIED FOR 20Ω and 50Ω DIFFEREN-
P
TSSOP14 Exposed-Pad
(Plastic Micro package)
TIAL LOAD
■ POWER DOWN FUNCTION WITH A SHORT
CIRCUITED OUTPUT to keep the matching
with the line in sleep mode
DESCRIPTION
The TS615 is a dual operational amplifier featuring a high output current 410mA. These drivers
can be configured differentially for driving signals
in telecommunication systems using multiple carriers. The TS615 is ideally suited for xDSL (High
Speed Asymmetrical Digital Subscriber Line) applications. This circuit is capable of driving a 10Ω
or 25Ω load at ±2.5V, 5V, ±6V or +12V power
supply. The TS615 will be able to reach a -3dB
bandwidth of 40MHz on 25Ω load with a 12dB
gain. This device is designed for the high slew
rates to support low harmonic distortion and intermodulation. The TS615 is fitted out with Power
Down function to decrease the consumption. During this sleep state the device displays a short circuit output in order to keep the impedance matching with the line. The TS615 is housed in
TSSOP14 Exposed-Pad plastic package for a
very low thermal resistance.
APPLICATION
ORDER CODE
Part Number
Temperature Range
Package
-40, +85°C
PW
TS615IPWT
PW= Thin Shrink Small Outline Package with Exposed-Pad
(TSSOP Exposed-Pad) only available in Tape & Reel (PWT)
PIN CONNECTIONS (top view)
-VCC1 1
14 -VCC2
Output1 2
+VCC1
3
13 Output2
+ -
- +
12 +VCC2
11 Non Inverting Input2
Non Inverting Input1 4
Inverting Input1 5
10 Inverting Input2
PowerDown 6
9 NC
NC 7
8 NC
Top View
Cross Section View Showing Exposed-Pad
This pad can be connected to a (-Vcc) copper area on the PCB
■ Line driver for xDSL
■ Multiple Video Line Driver
December 2002
1/27
TS615
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
VCC
Supply voltage 1)
Vid
Differential Input Voltage 2)
Vin
3)
Value
Unit
±7
V
±2
V
±6
V
Toper
Operating Free Air Temperature Range
-40 to + 85
°C
Tstd
Storage Temperature
-65 to +150
°C
Tj
Input Voltage Range
Maximum Junction Temperature
150
°C
4
°C/W
Thermal Resistance Junction to Ambient Area
40
°C/W
Maximum Power Dissipation (@25°C)
3.1
W
CDM : Charged Device Model
1.5
kV
2
kV
200
V
1
kV
1
kV
100
V
Rthjc
Thermal Resistance Junction to Case
Rthja
Pmax.
ESD
except
pins 4, 5,
10, 11
ESD
HBM : Human Body Model
MM : Machine Model
CDM : Charged Device Model
only pins 4, HBM : Human Body Model
5, 10, 11 MM : Machine Model
4)
Output Short Circuit
1.
2.
3.
4.
All voltage values, except differential voltage are with respect to network terminal.
Differential voltage are non-inverting input terminal with respect to the inverting input terminal.
The magnitude of input and output voltage must never exceed VCC +0.3V.
An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating.
Destructive dissipation can result from short circuit on amplifiers.
OPERATING CONDITIONS
Symbol
VCC
Vicm
Parameter
Value
Unit
±2.5 to ±6
V
-VCC+1.5V to +VCC-1.5V
V
Power Supply Voltage
Common Mode Input Voltage
TYPICAL APPLICATION:
Differential Line Driver for xDSL Applications
11
12
+
+Vcc
1/2TS615
10
_
14
12.5Ω
13
-Vcc
Vi
Vo
R2
1:2
R1
25Ω
GND
R4
R3
Vi
5
4
3
_
6
Pw-Dwn
2/27
+Vcc
1/2TS615
+
1
Vo
-Vcc
2
12.5Ω
100Ω
TS615
ELECTRICAL CHARACTERISTICS
VCC = ±6Volts, Rfb=910Ω,Tamb = 25°C (unless otherwise specified)
Note: as described on page 24 (table 71), the TS615 requires a 620Ω feedback resistor for an optimised bandwidth with a gain of 12B for
a 12V power supply. Nevertheless, due to production test constraints, the TS615 is tested with the same feedback resistor for 12V and 5V
power supplies (910Ω).
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
1.25
2.1
3.5
Unit
DC PERFORMANCE
Vio
∆Vio
Input Offset Voltage
Differential Input Offset Voltage
Iib+
Positive Input Bias Current
Iib-
Negative Input Bias Current
ZIN+
ZINCIN+
CMR
SVR
Input(+) Impedance
Input(-) Impedance
Input(+) Capacitance
Common Mode Rejection Ratio
20 log (∆Vic/∆Vio)
Supply Voltage Rejection Ratio
Tamb
Tmin. < Tamb < Tmax.
Tamb = 25°C
Tamb
Tmin. < Tamb < Tmax.
Tamb
Tmin. < Tamb < Tmax.
∆Vic = ±4.5V
Tmin. < Tamb < Tmax.
∆Vcc=±2.5V to ±6V
Tmin. < Tamb < Tmax.
20 log (∆Vcc/∆Vio)
ICC
Total Supply Current per Operator
No load
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTIC
Vout = 7Vp-p, RL = 25Ω
ROL
Open Loop Transimpedance
Tmin. < Tamb. < Tmax.
Small Signal Vout<20mVp
-3dB Bandwidth
AV = 12dB, RL = 25Ω
Large Signal Vout=3Vp
Full Power Bandwidth
BW
AV = 12dB, RL = 25Ω
Small Signal Vout<20mVp
Gain Flatness @ 0.1dB
AV = 12dB, RL = 25Ω
Vout = 6Vp-p, AV = 12dB, RL
Tr
Rise Time
= 25Ω
Vout = 6Vp-p, AV = 12dB, RL
Tf
Fall Time
= 25Ω
Vout = 6Vp-p, AV = 12dB, RL
Ts
Settling Time
= 25Ω
Vout = 6Vp-p, AV = 12dB, RL
SR
Slew Rate
= 25Ω
RL=25Ω Connected to GND
VOH
High Level Output Voltage
RL=25Ω Connected to GND
VOL
Low Level Output Voltage
Vout = -4Vp
Output Sink Current
Tmin. < Tamb < Tmax.
Iout
Vout = +4Vp
Output Source Current
Tmin. < Tamb < Tmax.
58
72
6
7.8
3
3.2
82
54
1
63
61
2.5
30
mV
15
µA
5
21
8.9
25
40
µA
kΩ
Ω
pF
dB
79
78
14
mV
dB
17
mA
MΩ
MHz
26
7
MHz
10.6
ns
12.2
ns
50
ns
330
410
V/µs
4.8
5.1
-5.5
-530
-440
420
365
-350
330
-5.2
V
V
mA
3/27
TS615
Note: as described on page 24 (table 71), the TS615 requires a 620Ω feedback resistor for an optimised bandwidth with a gain of 12B for
a 12V power supply. Nevertheless, due to production test constraints, the TS615 is tested with the same feedback resistor for 12V and 5V
power supplies (910Ω).
Symbol
Parameter
NOISE AND DISTORTION
eN
Equivalent Input Noise Voltage
iNp
Equivalent Input Noise Current (+)
iNn
Equivalent Input Noise Current (-)
2nd Harmonic distortion
HD2
(differential configuration)
HD3
3rd Harmonic distortion
(differential configuration)
IM2
2nd Order Intermodulation Product
(differential configuration)
IM3
4/27
3rd Order Intermodulation Product
(differential configuration)
Test Condition
F = 100kHz
F = 100kHz
F = 100kHz
Vout = 14Vp-p, AV = 12dB
F= 110kHz, RL = 50Ω diff.
Vout = 14Vp-p, AV = 12dB
F= 110kHz, RL = 50Ω diff.
F1= 100kHz, F2 = 110kHz
Vout = 16Vp-p, AV = 12dB
RL = 50Ω diff.
F1= 370kHz, F2 = 400kHz
Vout = 16Vp-p, AV = 12dB
RL = 50Ω diff.
F1 = 100kHz, F2 = 110kHz
Vout = 16Vp-p, AV = 12dB
RL = 50Ω diff.
F1 = 370kHz, F2 = 400kHz
Vout = 16Vp-p, AV = 12dB
RL = 50Ω diff.
Min.
Typ.
Max.
Unit
2.5
15
21
nV/√Hz
pA/√Hz
pA/√Hz
-87
dBc
-83
dBc
-76
dBc
-75
-88
dBc
-87
TS615
ELECTRICAL CHARACTERISTICS
VCC = ±2.5Volts, Rfb=910Ω,Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Tamb
0.5
2.5
Tmin. < Tamb < Tmax.
1.2
Unit
DC PERFORMANCE
Vio
∆Vio
Input Offset Voltage
Differential Input Offset Voltage
Iib+
Positive Input Bias Current
Iib-
Negative Input Bias Current
Tamb = 25°C
Tamb
5
Tmin. < Tamb < Tmax.
8
Tamb
0.8
Tmin. < Tamb < Tmax.
1.24
mV
2.5
mV
30
µA
11
µA
ZIN+
Input(+) Impedance
71
ZIN-
Input(-) Impedance
62
Ω
CIN+
Input(+) Capacitance
Common Mode Rejection Ratio
1.5
pF
∆Vic = ±1V
20 log (∆Vic/∆Vio)
Tmin. < Tamb. < Tmax.
Supply Voltage Rejection Ratio
∆Vcc=±2V to ±2.5V
20 log (∆Vcc/∆Vio)
Tmin. < Tamb. < Tmax.
CMR
SVR
55
60
dB
58
63
77
dB
76
ICC
Total Supply Current per Operator
No load
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTICS
Vout = 2Vp-p, RL = 10Ω
ROL
Open Loop Transimpedance
Tmin. < Tamb. < Tmax.
kΩ
11.9
2
15
5.4
mA
MΩ
2.1
-3dB Bandwidth
Small Signal Vout<20mVp
AV = 12dB, RL = 10Ω
Full Power Bandwidth
Large Signal Vout = 1.4Vp
AV = 12dB, RL = 10Ω
20
Gain Flatness @ 0.1dB
Small Signal Vout<20mVp
AV = 12dB, RL = 10Ω
5.7
MHz
Tr
Rise Time
Vout = 2.8Vp-p, AV = 12dB
RL = 10Ω
11
ns
Tf
Fall Time
Vout = 2.8Vp-p, AV = 12dB
RL = 10Ω
11.5
ns
Ts
Settling Time
Vout = 2.2Vp-p, AV = 12dB
RL = 10Ω
39
ns
SR
Slew Rate
Vout = 2.2Vp-p, AV = 12dB
RL = 10Ω
100
130
V/µs
VOH
High Level Output Voltage
RL=10Ω Connected to GND
1.5
1.75
V
Low Level Output Voltage
RL=10Ω Connected to GND
BW
VOL
Iout
Output Sink Current
Output Source Current
Vout = -1.25Vp
20
MHz
-2.05
-350
Tmin. < Tamb < Tmax.
Vout = +1.25Vp
Tmin. < Tamb < Tmax.
30
-450
200
-1.8
V
-470
270
mA
245
5/27
TS615
Symbol
Parameter
Test Condition
NOISE AND DISTORTION
eN
Equivalent Input Noise Voltage
iNp
Equivalent Input Noise Current (+)
iNn
Equivalent Input Noise Current (-)
Min.
Typ.
HD2
2nd Harmonic distortion
(differential configuration)
F = 100kHz
F = 100kHz
F = 100kHz
Vout = 6Vp-p, AV = 12dB
F= 110kHz, RL = 20Ω diff.
HD3
3rd Harmonic distortion
(differential configuration)
Vout = 6Vp-p, AV = 12dB
F= 110kHz, RL = 20Ω diff.
-98
F1= 100kHz, F2 = 110kHz
Vout = 6Vp-p, AV = 12dB
RL = 20Ω diff.
-86
F1= 370kHz, F2 = 400kHz
Vout = 6Vp-p, AV = 12dB
RL = 20Ω diff.
-88
F1 = 100kHz, F2 = 110kHz
Vout = 6Vp-p, AV = 12dB
RL = 20Ω diff.
-90
F1 = 370kHz, F2 = 400kHz
Vout = 6Vp-p, AV = 12dB
RL = 20Ω diff.
-85
IM2
IM3
2nd Order Intermodulation Product
(differential configuration)
3rd Order Intermodulation Product
(differential configuration)
Max.
Unit
2.5
15
21
nV/√Hz
pA/√Hz
pA/√Hz
-97
dBc
dBc
dBc
dBc
POWER DOWN MODE FEATURES (The Power Down command is a MOS input featuring a high input
impedance)
VCC = ±2.5Volts, 5Volts, ±6Volts or 12Volts, Tamb = 25°C
Symbol
Parameter
Min.
Typ.
Max.
Unit
-VCC+0.8
V
Pin (6) Threshold Voltage for Power Down Mode
Vpdw
Iccpdw
Rpdw
Cpdw
Low Level
-VCC
High Level
-VCC+2
69
80
µA
Power Down Mode Total Current Consumption@ VCC=12V
148
180
µA
Power Down Mode Output Impedance @ VCC=5V
19
23
Ω
Power Down Mode Output Impedance @ VCC=12V
15.3
19
Power Down Mode Output Capacitance
63
POWER DOWN CONTROL
CIRCUIT STATUS
Vpdw=Low Level
Active
Vpdw=High Level
Standby
6/27
+VCC
Power Down Mode Total Current Consumption@ VCC=5V
Ω
pF
TS615
Figure 1 : Load Configuration
Figure 4 : Load Configuration
Load: RL=25Ω, VCC=±6V
Load: RL=10Ω, VCC=±2.5V
+6V
+
TS615
_
50Ω
cable
49.9Ω
TS615
25Ω
33Ω
1W
-6V
+2.5V
+
50Ω
cable
10Ω
_
50Ω
49.9Ω
50Ω
11Ω
0.5W
-2.5V
Figure 2 : Closed Loop Gain vs. Frequency
Figure 5 : Closed Loop Gain vs. Frequency
AV=+1
AV=-1
2
2
20
0
-160
(Vcc=±2.5V)
-2
0
-4
phase
(Vcc=±6V)
-180
(Vcc=±2.5V)
-40
-8
(Vcc=±6V)
-10
-60
-12
-80
(Vcc=±2.5V, Rfb=1.1kΩ, Rload=10Ω)
(Vcc=±6V, Rfb=750Ω, Rload=25Ω)
-14
-200
(Vcc=±2.5V)
-6
-220
-8
(Vcc=±6V)
-240
-10
-12
-260
(Vcc=±2.5V, Rfb=1kΩ, Rin=1kΩ, Rload=10Ω)
(Vcc=±6V, Rfb=680Ω, Rin=680Ω, Rload=25Ω)
-14
-100
-16
-280
-16
-120
100
1k
10k
100k
1M
10M
-300
100M
100
1k
Frequency (Hz)
10k
100k
1M
10M
100M
Frequency (Hz)
Figure 3 : Closed Loop Gain vs. Frequency
Figure 6 : Closed Loop Gain vs. Frequency
AV=+2
AV=-2
8
40
8
(Vcc=±6V)
gain
6
20
(Vcc=±2.5V)
phase
4
-140
gain
6
-160
0
(Vcc=±2.5V)
phase
4
2
(Vcc=±6V)
-180
-40
-2
(Vcc=±6V)
-60
-4
-6
-80
-8
-100
-10
-200
(Vcc=±2.5V)
0
-220
-2
(Vcc=±6V)
Phase (°)
-20
(Vcc=±2.5V)
0
(gain (dB))
2
Phase (°)
(gain (dB))
Phase (°)
-20
-6
(gain (dB))
-4
Phase (°)
(gain (dB)
-140
gain
(Vcc=±2.5V)
phase
-2
40
(Vcc=±6V)
gain
0
-240
-4
-6
-260
(Vcc=±2.5V, Rfb=1kΩ, Rin=510Ω, Rload=10Ω)
(Vcc=±6V, Rfb=680Ω, Rin=750//620Ω, Rload=25Ω)
-8
-280
-10
-120
100
1k
10k
100k
1M
Frequency (Hz)
10M
100M
-300
100
1k
10k
100k
1M
10M
100M
Frequency (Hz)
7/27
TS615
Figure 7 : Closed Loop Gain vs. Frequency
Figure 10 : Closed Loop Gain vs. Frequency
AV=+4
AV=-4
14
14
40
-140
gain
gain
12
12
20
phase
10
(Vcc=±6V)
phase
0
(Vcc=±6V)
-180
-40
4
(Vcc=±6V)
2
-60
0
-80
(Vcc=±2.5V, Rfb=910Ω, Rg=300Ω, Rload=10Ω)
(Vcc=±6V, Rfb=620Ω, Rg=560//330Ω, Rload=25Ω)
-2
(gain (dB))
Phase (°)
-20
(Vcc=±2.5V)
6
-200
(Vcc=±2.5V)
6
-220
4
(Vcc=±6V)
2
-240
0
-260
(Vcc=±2.5V, Rfb=1kΩ, Rin=320//360Ω, Rload=10Ω)
(Vcc=±6V, Rfb=620Ω, Rin=360//270Ω, Rload=25Ω)
-2
-100
-280
-4
-4
-300
-120
100
1k
10k
100k
1M
10M
100
100M
1k
10k
100k
1M
10M
100M
Frequency (Hz)
Frequency (Hz)
Figure 8 : Closed Loop Gain vs. Frequency
Figure 11 : Closed Loop Gain vs. Frequency
AV=+8
AV=-8
20
20
40
-140
gain
gain
18
18
20
phase
-160
(Vcc=±2.5V)
(Vcc=±2.5V)
16
16
(Vcc=±6V)
phase
0
-180
(Vcc=±6V)
-40
10
(Vcc=±6V)
-60
8
6
(gain (dB))
Phase (°)
-20
(Vcc=±2.5V)
12
-220
10
(Vcc=±6V)
-240
8
6
-80
(Vcc=±2.5V, Rfb=680Ω, Rg=240//160Ω, Rload=10Ω)
(Vcc=±6V, Rfb=510Ω, Rg=270//100Ω, Rload=25Ω)
4
-200
(Vcc=±2.5V)
12
Phase (°)
14
14
(gain (dB))
Phase (°)
8
8
(gain (dB))
-160
(Vcc=±2.5V)
(Vcc=±2.5V)
10
-260
(Vcc=±2.5V, Rfb=680Ω, Rin=160//180Ω, Rload=10Ω)
(Vcc=±6V, Rfb=510Ω, Rin=150//110Ω, Rload=25Ω)
4
-100
-280
2
2
-300
-120
100
1k
10k
100k
1M
10M
100
100M
1k
10k
100k
1M
10M
100M
Frequency (Hz)
Frequency (Hz)
Figure 9 : Bandwidth vs. Temperature
Figure 12 : Positive Slew Rate
AV=+4, Rfb=620Ω, VCC=±6V, RL=25Ω
AV=+4, Rfb=910Ω
4
50
Vcc=±6V
Load=25Ω
45
2
VOUT (V)
Bw (MHz)
40
35
0
30
-2
Vcc=±2.5V
Load=10Ω
25
20
-40
-20
0
20
40
Temperature (°C)
8/27
60
80
-4
0.0
10.0n
20.0n
30.0n
Time (s)
40.0n
50.0n
TS615
Figure 16 : Positive Slew Rate
AV= - 4, Rfb=620Ω, VCC=±6V, R L=25Ω
2
4
1
2
VOUT (V)
VOUT (V)
Figure 13 : Positive Slew Rate
AV=+4, Rfb=910Ω, VCC=±2.5V, RL=10Ω
0
-2
-1
-2
0.0
0
10.0n
20.0n
30.0n
40.0n
-4
0.0
50.0n
10.0n
Figure 14 : Negative Slew Rate
2
2
1
VOUT (V)
VOUT (V)
4
0
-2
50.0n
40.0n
50.0n
-1
10.0n
20.0n
30.0n
40.0n
-2
0.0
50.0n
10.0n
20.0n
30.0n
Time (s)
Figure 15 : Negative Slew Rate
AV=+4, Rfb=910Ω, VCC=±2.5V, RL=10Ω
Figure 18 : Negative Slew Rate
AV= - 4, Rfb=620Ω, VCC=±6V, RL=25Ω
2
4
1
2
VOUT (V)
VOUT (V)
40.0n
0
Time (s)
0
-1
-2
0.0
30.0n
Figure 17 : Positive Slew Rate
AV= - 4, Rfb=910Ω, VCC=±2.5V, RL=10Ω
AV=+4, Rfb=620Ω, VCC=±6V, RL=25Ω
-4
0.0
20.0n
Time (s)
Time (s)
0
-2
10.0n
20.0n
30.0n
Time (s)
40.0n
50.0n
-4
0.0
10.0n
20.0n
30.0n
40.0n
50.0n
Time (s)
9/27
TS615
Figure 19 : Negative Slew Rate
AV= - 4, Rfb=910Ω, VCC=±2.5V, RL=10Ω
Figure 22 : Input Voltage Noise Level
AV=+92, Rfb=910Ω, Input+ connected to Gnd via 10Ω
2
5.0
Input Voltage Noise (nV/√Hz)
VOUT (V)
+
0
-2
0.0
10.0n
20.0n
30.0n
40.0n
4.5
_
4.0
10Ω
Output
- 6V
Ω
910
910Ω
3.5
3.0
2.5
2.0
100
50.0n
+ 6V
1k
10k
Time (s)
100k
1M
(Frequency (Hz)
Figure 20 : Slew Rate vs. Temperature
AV=+4, Rfb=910Ω, VCC=±2.5V, RL=10Ω
Figure 23 : Transimpedance vs. Temperature
Open Loop
30
200
25
150
Vcc=±6V
20
Positive SR
50
ROL (MΩ)
Slew Rate (V/µs)
100
0
−50
Negative SR
15
10
−100
Vcc=±2.5V
−150
−200
−40
5
−20
0
20
40
60
80
0
-40
Temperature (°C)
-20
0
20
40
60
80
Temperature (°C)
Figure 21 : Slew Rate vs. Temperature
AV=+4, Rfb=910Ω, VCC=±6V, RL=25Ω
Figure 24 : Icc vs. Power Supply
Open loop, no load
16
600
14
500
12
400
10
8
Icc(+)
6
200
100
0
4
Positive&Negative SR
Rfb=620Ω
ICC (mA)
Slew Rate (V/µs)
300
Positive&Negative SR
Rfb=910Ω
−100
2
0
-2
-4
−200
-6
−300
-10
−500
−600
−40
Icc(-)
-8
−400
-12
-14
−20
0
20
40
Temperature (°C)
60
80
-16
5
6
7
8
VCC (V)
10/27
9
10
11
12
TS615
Figure 25 : Iib vs. Power Supply
Figure 28 : Iib(+) vs. Temperature
Open loop, no load
Open loop, no load
7
8
IB+
6
7
Vcc=±6V
6
5
IIB(+) (µA)
IB (µA)
5
4
3
IB -
2
4
3
2
Vcc=±2.5V
1
1
0
0
5
6
7
8
9
10
11
12
-1
-40
-20
0
Vcc (V)
20
40
60
80
Temperature (°C)
Figure 26 : Iib(-) vs. Temperature
Figure 29 : Voh & Vol vs. Power Supply
Open loop, no load
Open loop, RL=25Ω
6
5
5
VOH
4
4
3
VOH & VOL (V)
Vcc=±6V
IIB(-) (µA)
3
2
2
1
0
VOL
-1
-2
Vcc=±2.5V
-3
1
-4
-5
0
-40
-6
-20
0
20
40
60
5
80
6
7
8
Temperature (°C)
9
10
11
12
Vcc (V)
Figure 27 : Icc vs. Temperature
Figure 30 : Voh vs. Temperature
Open loop, no load
Open loop
6
14
12
10
5
Icc(+) for Vcc=±2.5V
8
6
Icc(+) for Vcc=±6V
4
2
VOH (V)
ICC (mA)
4
0
-2
-4
-6
-8
Vcc=±6vV
Load=25Ω
3
2
Icc(-) for Vcc=±6V
Icc(-) for Vcc=±2.5V
1
-10
Vcc=±2.5V
Load=10Ω
-12
-14
-40
-20
0
20
40
Temperature (°C)
60
80
0
-40
-20
0
20
40
60
80
Temperature (°C)
11/27
TS615
Figure 31 : Vol vs. Temperature
Figure 34 : CMR vs. Temperature
Open loop
Open loop, no load
0
70
Vcc=±2.5V
Load=10Ω
-1
68
66
CMR (dB)
-2
VOL (V)
Vcc=±6V
64
-3
Vcc=±6V
Load=25Ω
-4
62
60
58
56
Vcc=±2.5V
54
-5
52
-6
-40
-20
0
20
40
60
50
-40
80
-20
0
Temperature (°C)
20
40
60
80
Temperature (°C)
Figure 32 : Differential V io vs. Temperature
Figure 35 : SVR vs. Temperature
Open loop, no load
Open loop, no load
450
84
400
82
350
SVR (dB)
∆VIO (µV)
Vcc=±2.5V
300
Vcc=±6V
80
78
Vcc=±6V
250
76
200
-40
-20
0
20
40
60
80
-40
Vcc=±2.5V
-20
0
Temperature (°C)
20
40
60
80
60
80
Temperature (°C)
Figure 33 : Vio vs. Temperature
Figure 36 : Iout vs. Temperature
Open loop, no load
Open loop, VCC=±6V, RL=10Ω
300
2.0
250
Vcc=±6V
200
150
1.5
100
Isource
1.0
Iout (mA)
VIO (mV)
50
0.5
0
-50
-100
-150
-200
-250
Isink
-300
0.0
-350
Vcc=±2.5V
-0.5
-40
-20
0
20
-400
40
Temperature (°C)
12/27
60
80
-450
-40
-20
0
20
40
Temperature (°C)
TS615
Figure 37 : Iout vs. Temperature
Figure 40 : Isource vs. Output Amplitude.
Open loop, VCC=±2.5V, RL=25Ω
VCC=±2.5V, Open Loop, no Load
700
300
250
600
200
150
Isource
50
Iout (mA)
Isource (mA)
100
0
-50
-100
-150
-200
-250
500
400
300
200
Isink
-300
100
-350
-400
-450
-40
-20
0
20
40
60
0
0.0
80
0.5
1.0
Temperature (°C)
1.5
2.0
2.5
Vout (V)
Figure 38 : Maximum Output Amplitude vs. Load
Figure 41 : Isink vs. Output Amplitude
AV=+4, Rfb=620Ω, VCC=±6V
VCC=±6V, Open Loop, no Load
0
12
10
-100
Vcc=±6V
Isink (mA)
VOUT-MAX (VP-P)
-200
8
6
-300
-400
4
-500
Vcc=±2.5V
2
-600
-700
0
0
50
100
150
-6
200
-5
-4
RLOAD (Ω)
-3
-2
-1
Figure 42 : Isource vs. Output Amplitude
VCC=±2.5V, Open Loop, no Load
VCC=±6V, Open Loop, no Load
0
700
-100
600
-200
500
Isource (mA)
Isink (mA)
Figure 39 : Isink vs. Output Amplitude.
-300
-400
400
300
-500
200
-600
100
-700
-2.5
0
Vout (V)
0
-2.0
-1.5
-1.0
Vout (V)
-0.5
0.0
0
1
2
3
4
5
6
Vout (V)
13/27
TS615
Figure 44 : Group Delay
No load, Open Loop
VCC=±6V, VCC=±2.5V
200
100
150
90
100
80
Av=4
Vcc=±6V, Rfb=620Ω, Load=25Ω
Vcc=±2.5V, Rfb=910Ω, Load=10Ω
IF Bw = 10Hz
Smoothing=19.247MHz
on 10ns/div scale
70
50
Delay (ns)
ICC pdw (µA)
Figure 43 : Icc (Power Down) vs. Temperature
Vcc=±6V
0
Vcc=±2.5V
-50
60
50
40
-100
30
-150
-200
-40
20
-20
0
20
40
Temperature (°C)
14/27
60
80
10
300k
1M
10M
Frequency (Hz)
50M
TS615
2
n
Vout = C 0 + C 1 V in + C 2 V in + …C n V in
In this expression, we recognize the second order
intermodulation IM2 by the frequencies (ω1-ω2)
and (ω1+ω2) and the third order intermodulation
IM3 by the frequencies (2ω1-ω2), (2ω1+ω2),
(−ω1+2ω2) and (ω1+2ω2).
due to a non-linearity in the input-output amplitude
transfer. In the case of the input is Vin=Asinωt, C0
is the DC component, C1(Vin) is the fundamental,
Cn is the amplitude of the harmonics of the output
signal Vout.
The measurement of the intermodulation product
of the driver is achieved by using the driver as a
mixer by a summing amplifier configuration. By
this way, the non-linearity problem of an external
mixing device is avoided.
INTERMODULATION DISTORTION PRODUCT
A non-ideal output of the amplifier can be described by the following development :
A one-frequency (one-tone) input signal contributes to a harmonic distortion. A two-tones input
signal contributes to a harmonic distortion and intermodulation product.
This intermodulation product or intermodulation
distortion study of a two-tones input signal is the
first step of the amplifier characterization of driving
capability in the case of a multi-tone signal.
Figure 45 : Non-inverting Summing Amplifier
1kΩ
49.9Ω
11
Vin1
+
+Vcc
1/2TS615
1:√2
49.9Ω
10
Rfb1
33Ω
Rg1
Vin2
Vout diff.
1:√2
+ C ( A sin ω t + B sin ω t )
2
1
2
2
… + C ( A sin ω t + B sin ω t )
n
1
2
V
in
49.9Ω
13
_
400Ω
50Ω
No rth Hills
0 315PB
In this case :
1kΩ
400Ω
50Ω
√2:1
100Ω
50Ω
33Ω
Rg2
North Hills
0315PB
Rfb2
No rth Hills
0 315PB
49.9Ω
n
= A sin ω t + B sin ω t
2
1
1kΩ
_
49.9Ω
1/2TS615
+
-Vcc
1kΩ
49.9Ω
V o ut = C 0 + C 1 ( A sin ω 1 t + B sin ω 2 t )
and :
+ C1 ( A sin ω 1 t + B sin ω 2 t )
C2 2
2
– -------  A cos 2ω 1 t + B cos 2ω 2 t

2 
+ 2 C2 AB ( cos ( ω 1 – ω 2 )t – cos ( ω 1 – ω 2 ) t )
The following graphs show the IM2 and the IM3 of
the amplifier in different configuration. The
two-tones input signal is achieved by the multisource generator Marconi 2026. Each tone has
the same amplitude. The measurement is
achieved by the spectrum analyzer HP3585A.
C
3
+  3 ------- ¥
 4
3
3
+  C A sin 3ω t + B sin 3ω t
1
2
 3
2
3C A B
3
1
+ ------------------------  sin ( 2ω 1 – ω 2 )t – --- sin ( 2ω 1 + ω )t

2
2
2 
2
3C 3 A B
1
+ ------------------------  sin ( – ω + 2ω ) t – --- sin ( ω 1 + 2ω )t
1

2
2 
2 2
… + C n ( V in )
n
 A 2 + B2
V out = C 0 + C 2  ---------------------
2


 A 3 sin ω t + B 3 sin ω t + 2A2 B sin ω t + 2AB 2 sin ω t
2
1
2
1

15/27
TS615
Figure 49 : Intermodulation vs. Load
370kHz & 400kHz, AV=+1.5, Rfb=1kΩ, RL=14Ω diff.,VCC=±2.5V
370kHz & 400kHz, AV=+1.5, Rfb=1kΩ, Vout=6.5Vpp,V CC=±2.5V
-30
-30
-40
-40
IM3
340kHz, 430kHz, 1140kHz, 1170kHz
-50
-50
IM2
30kHz
IM2
770kHz
-60
IM2 and IM3 (dBc)
IM2 and IM3 (dBc)
Figure 46 : Intermodulation vs. Output Amplitude
IM3
340kHz, 430kHz
-70
-80
-60
IM2
30kHz
IM2
770kHz
-70
-80
-90
-90
IM3
1140kHz, 1170kHz
-100
-100
0
1
2
3
4
5
6
7
-110
8
0
20
40
60
80
100
120
140
160
180
200
Differential Load (Ω)
Differential Output Voltage (Vp-p)
Figure 50 : Intermodulation vs. Output Amplitude
370kHz & 400kHz, AV=+1.5, Rfb=1kΩ, RL=28Ω diff.,VCC=±2.5V
100kHz & 110kHz, AV=+4, Rfb=620Ω, RL=200Ω diff.,VCC=±6V
-30
-30
-40
-40
-50
-50
-60
IM3
340kHz, 430kHz
-70
IM2 and IM3 (dBc)
IM2 and IM3 (dBc)
Figure 47 : Intermodulation vs. Output Amplitude
IM2
770kHz
IM2
30kHz
-80
IM3
90kHz, 120kHz
-60
IM2
210kHz
IM3
310kHz
-70
IM3
320kHz
-80
-90
-90
-100
IM3
1140kHz, 1170kHz
-100
-110
0
1
2
3
4
5
6
7
8
2
4
Differential Output Voltage (Vp-p)
6
8
10
12
14
16
18
20
22
Differential Output Voltage (Vp-p)
Figure 48 : Intermodulation vs. Gain
Figure 51 : Intermodulation vs. Output Amplitude
370kHz & 400kHz, RL=20Ω diff., Vout=6Vpp, VCC=±2.5V
100kHz & 110kHz, AV=+4, Rfb=620Ω, RL=50Ω diff., VCC=±6V
-30
-30
-40
-40
-60
IM2
30kHz
IM2
770kHz
-70
-80
-70
-80
-90
-100
-100
-110
1.5
2.0
2.5
3.0
Closed Loop Gain (Linear)
16/27
IM2
210kHz
-60
-90
-110
1.0
IM3
90kHz, 120kHz, 310kHz, 320kHz
-50
IM2 and IM3 (dBc)
IM2 and IM3 (dBc)
-50
IM3
340kHz, 430kHz, 1140kHz, 1170kHz
3.5
4.0
2
4
6
8
10
12
14
16
18
Differential Output Voltage (Vp-p)
20
22
TS615
Figure 52 : Intermodulation vs. Frequency Range
Figure 54 : Intermodulation vs. Output Amplitude
AV=+4, Rfb=620Ω, RL=50Ω diff., Vout=16Vpp, VCC=±6V
370kHz & 400kHz, AV=+4, Rfb=620Ω, RL=50Ω diff., VCC=±6V
-30
-60
Quadratic Summation of all IM2 and IM3 components
generated by each two-tones signal
-65
IM3
1140kHz, 1170kHz
-50
f1=100kHz
f2=110kHz
-75
f1=1MHz
f2=1.1MHz
f1=400kHz
f2=430kHz
f1=200kHz
f2=230kHz
-80
IM2 and IM3 (dBc)
-70
(dB)
IM2
30kHz
-40
-85
-60
IM3
340kHz, 430kHz
-70
-80
-90
-90
-95
-100
-100
100k
IM2
770kHz
-110
200k
300k
400k
500k
600k
700k
800k
900k
1M
1.1M
1M
0
2
4
6
8
10
12
14
16
18
20
22
Differential Output Voltage (Vp-p)
Frequency (Hz)
Figure 53 : Intermodulation vs. Output Amplitude
370kHz & 400kHz, AV=+4, Rfb=620Ω, RL=200Ω diff.,VCC=±6V
-30
-40
IM2 and IM3 (dBc)
-50
IM2
770kHz
IM2
30kHz
-60
IM3
1140kHz, 1170kHz
-70
IM3
340kHz, 430kHz
-80
-90
-100
-110
0
2
4
6
8
10
12
14
16
18
20
22
Differential Output Voltage (Vp-p)
17/27
TS615
PRINTED CIRCUIT BOARD LAYOUT
CONSIDERATIONS
Figure 55 : Exposed-Pad Package
1
The implementation of a proper ground plane in
both sides of the PCB is mandatory to provide low
inductance and low resistance common return.
Most important for controlling the gain flatness
and the bandwidth are stray capacitances at the
output and inverting input. For minimizing the coupling, the space between signal lines and ground
plane will be increased. Connections of the feedback components must be as short as possible in
order to decrease the associated inductance
which affect high frequency gain errors. It is very
important to choose external components as small
as possible such as surface mounted devices,
SMD, in order to minimize the size of all the DC
and AC connections.
THERMAL INFORMATION
The TS615 is housed in an Exposed-Pad plastic
package. As described on the figure 56, this package uses a lead frame upon which the dice is
mounted. This lead frame is exposed as a thermal
pad on the underside of the package. The thermal
contact is direct with the dice. This thermal path
provide an excellent thermal performance.
The thermal pad is electrically isolated from all
pins in the package. It should be soldered to a
copper area of the PCB underneath the package.
Through these thermal paths within this copper area, heat can be conducted away from the package. In this case, the copper area should be connected to (-VCC).
18/27
DICE
In this range of frequency, printed circuit board
parasites can affect the closed-loop performance.
Side View
Bottom View
DICE
Cross Section View
Figure 56 : Evaluation Board
TS615
Figure 57 : Schematic Diagram
J106
R107
1/2TS615
J110
R111
R112
R103
R118
2
_
R114
R111
R114
J110
5
R120
R116
R102
2
_
5
R118
+
R102
+
1/2 TS615
4
R107
J106
4
R120
R106
R116
R101
Non-Inverting Amplifier
J105
J108
R109
Inverting Amplifier
R115
10
R115
_
R119
R117
11
J111
_
10
R109
J108
1/2TS615
R104
13
R121
R104
1/2TS615
+
R119
13
+
11
J111
R121
R108
R117
J107
R110
R113
R105
R113
J109
Differential Amplifier
4
R107
+
R118
2
Non-Inverting Summing Amplifier
R107
_
1/2TS615
R119
4
+
1/2TS615
13
R118
2
_
5
J111
R114
J110
+
R111
R121
R117
11
R106
R102
R115
10
J105
J106
R120
R112
R101
R111
R114
J110
R120
R116
R102
1/2TS615
_
5
R116
J106
Power down
J112
Differential Amplifier
4
R107
J106
100nF
+
1/2TS615
5
4
J102
GND
5
J103
-Vcc
C106
R114
R111
2
-Vcc
+Vcc
C107
R112
-Vcc
Exposed-Pad
100uF
C104
C103
100nF
100nF
-Vcc
R115
10
100nF
11
12
1/2TS615
3
11
+
14
C108
-Vcc
+
R119
13
J111
13
R110
J109
R113
2
_
R105
J104
_
1/2TS615
+Vcc
R121
_
1
10
J110
6
+
1/2 TS615
1
R118
2
_
3
J101
+Vcc
R120
R122
+Vcc
R117
100uF
C101
C102
100nF
C105
-Vcc
+Vcc
R116
Power Supply
R102
R105
R113
R110
J109
100nF
-Vcc
19/27
TS615
Figure 58 : Component Locations - Top Side
Figure 60 : Top Side Board Layout
Figure 59 : Component Locations - Bottom Side
Figure 61 : Bottom Side Board Layout
20/27
TS615
NOISE MEASUREMENT
2
2
2
2
2
2
2
= eN × g + iNn × R2 + iNp × R3 × g
R2 2
R2 2
… +  ------- × 4kTR1 + 4kTR2 +  1 + ------- × 4kTR3, ( eq2 )

 R1
R 1
eNo
Figure 62 : Noise Model
The input noise of the instrumentation must be extracted from the measured noise value. The real
output noise value of the driver is:
+
iN+
R3
output
TS615
HP3577
Input noise:
8nV/√Hz
_
N3
eN
iN-
The input noise is called the Equivalent Input
Noise as it is not directly measured but it is evaluated from the measurement of the output divided
by the closed loop gain (eNo/g).
After simplification of the fourth and the fifth term
of (eq2) we obtain:
R1
N1
eNo
eN : input voltage noise of the amplifier
iNn : negative input current noise of the amplifier
iNp : positive input current noise of the amplifier
The closed loop gain is :
R fb
A V = g = 1 + ---------R
g
4 kTR2
R2
V1 = eN ×  1 + -------
R1
R2
V3 = iNp × R3 ×  1 + -------
R1
R2
V4 = – ------- × 4kTR1
R1
R2
V6 =  1 + ------- 4kTR3
R1
Assuming the thermal noise of a resistance R as:
4kTR ∆F
with ∆F the specified bandwidth.
On 1Hz bandwidth the thermal noise is reduced to
4kTR
k is the Boltzmann’s constant equals
1,374.10-23J/°K. T is the temperature (°K).
to
The output noise eNo is calculated using the Superposition Theorem. But it is not the sum of all
noise sources. The output noise is the square root
of the sum of the square of each noise source.
eNo =
2
2
2
2
2
2
2
2
2
2
2
= eN × g + iNn × R2 + iNp × R3 × g
R2 2
… + g × 4kTR2 +  1 + ------- × 4kTR3, ( eq4 )
R1
Measurement of eN:
We assume a short-circuit on the non-inverting input (R3=0). (eq4) comes:
2
2
2
2
eN × g + iNn × R2 + g × 4kTR2, ( eq5 )
In order to easily extract the value of eN, the resistance R2 will be chosen as low as possible. In the
other hand, the gain must be large enough.
R1=10Ω, R2=910Ω, R3=0, Gain=92
Equivalent Input Noise: 2.57nV/√Hz
Input Voltage Noise: eN=2.5nV/√Hz
V2 = iNn × R 2
2
2
eNo =
The six noise sources are :
V5 =
2
2
( Measured ) – ( instrumentation ) , ( eq3 )
eNo =
R2
N2
2
2
V1 + V2 + V3 + V4 + V5 + V6 ,( eq1 )
Measurement of iNn:
R3=0 and the output noise equation is still the
(eq5). This time the gain must be decreased to decrease the thermal noise contribution.
R1=100Ω, R2=910Ω, R3=0, Gain=10.1
Equivalent Input Noise: 3.40nV/√Hz
Negative Input Current Noise: iNn =21pA/√Hz
Measurement of iNp:
To extract iNp from (eq3), a resistance R3 is connected to the non-inverting input. The value of R3
must be chosen in order to keep its thermal noise
contribution as low as possible against the iNp
contribution.
R1=100Ω, R2=910Ω, R3=100Ω, Gain=10.1
Equivalent Input Noise: 3.93nV/√Hz
Positive Input Current Noise: iNp=15pA/√Hz
Conditions: frequency=100kHz, VCC=±2.5V
Instrumentation: Spectrum Analyzer HP3585A
(input noise of the HP3585A: 8nV/√Hz)
21/27
TS615
POWER SUPPLY BYPASSING
A proper power supply bypassing comes very important for optimizing the performance in high frequency range. Bypass capacitors should be
placed as close as possible to the IC pins to improve high frequency bypassing. A capacitor
greater than 1µF is necessary to minimize the distortion. For a better quality bypassing a capacitor
of 10nF is added following the same condition of
implementation. These bypass capacitors must be
incorporated for the negative and the positive supply.
Figure 63 : Circuit for Power Supply Bypassing
+VCC
10µF
+
10nF
+
TS615
-
10nF
10µF
+
-VCC
SINGLE POWER SUPPLY
The following figure show the case of a 5V single
power supply configuration
Figure 64 : Circuit for +5V single supply
+5V
+
+5V
Rin
1kΩ
The amplifier must be biased with a mid supply
(nominally +VCC/2), in order to maintain the DC
component of the signal at this value. Several options are possible to provide this bias supply (such
as a virtual ground using an operational amplifier),
or a two-resistance divider which is the cheapest
solution. A high resistance value is required to limit the current consumption. On the other hand, the
current must be high enough to bias the non-inverting input of the amplifier. If we consider this
bias current (30µA max.) as the 1% of the current
through the resistance divider to keep a stable mid
supply, two resistances of 2.2kΩ can be used in
the case of a 12V power supply and two resistances of 820Ω can be used in the case of a 5V power
supply.
The input provides a high pass filter with a break
frequency below 10Hz which is necessary to remove the original 0 volt DC component of the input
signal, and to fix it at +VCC/2.
CHANNEL SEPARATION - CROSSTALK
The following figure show the crosstalk from an
amplifier to a second amplifier. This phenomenon,
accented in high frequencies, is unavoidable and
intrinsic of the circuit.
Nevertheless, the PCB layout has also an effect
on the crosstalk level. Capacitive coupling between signal wires, distance between critical signal nodes, power supply bypassing, are the most
significant points.
Figure 65 : Crosstalk vs. Frequency
10µF
IN
necessary to assume a positive output dynamic
range between 0V and +VCC supply rails. Considering the values of VOH and VOL, the amplifier will
provide an output dynamic from +0.5V to 10.6V on
25Ω load for a 12V supplying, from 0.45V to 3.8V
on 10Ω load for a 5V supplying.
100µF
OUT
½ TS615
_
AV=+4, Rfb=620Ω, VCC=±6V, Vout=2Vp
Rs
-50
Rload
R1
820Ω
RG
+ 1µF 10nF
+
Rfb
910Ω
CG
CrossTalk (dB)
R2
820Ω
-60
-70
-80
-90
-100
-110
The TS615 operates from 12V down to 5V power
supplies. This is achieved with a dual power supply of ±6V and ±2.5V or a single power supply of
12V and 5V referenced to the ground. In the case
of this asymmetrical supplying, a new biasing is
22/27
-120
-130
10k
100k
Frequency (Hz)
1M
10M
TS615
Figure 68 : Standby Mode. Time On>Off
POWER DOWN MODE BEHAVIOUR
Figure 66 : Equivalent Schematic
0
Vcc +
Enabled Output
+
5
_
.. .
A1
Vout
-2
(Volts)
..
3
4
-1
POWER
DOWN
pin6
2 Ouput 1
-3
Rpdw
-4
Vcc Vcc -
-5
14
10
-Vcc
.. .
+
_
A2
..
Vpdw
-6
0
Rpdw
10
20
30
40
50
Time (µs)
13 Ouput 2
POWER
DOWN
pin6
12
Vcc +
Please note that the short circuited output in power down mode is referenced to (-VCC). No problem
appears when used in differential mode. Nevertheless, when used in single ended on a load referenced to GND, the (-VCC) level contributes to a
current consumption through the load. As described on the Figure 68, the interest of featuring
an output short circuit in power down mode is to
keep the best impedance matching between the
system and the twisted pair telephone line when
the modem is in sleep mode. By this way, the modem can be waked-up with a signal from the line
without any damage of this signal. This concept is
particularly intended for the ADSL over voice modems, where the modem in sleep mode, must be
waked-up by the phone call.
Figure 69 : Standby Mode. Time Off>On
1
Vout
0
Disabled Output
−1
(Volts)
11
Disabled Output
-Vcc
1
Enabled Output
−2
−3
−4
Vpdw
−5
−6
0
1
2
3
4
5
Time (µs)
Figure 70 : Standby Mode. Input/Output Isolation
vs. Frequency
AV=+4, Rfb=620Ω, VCC=±6V, Vout=3Vp
Figure 67 : Matching in Sleep Mode
0
-10
Consumption=80µA
-20
Matching
25Ω
5Ω max.
12.5Ω
POWER DOWN
Line (100Ω)
Isolation (dB)
1:2
TS615
-30
Transformer
12.5Ω
-40
-50
-60
-70
-80
-90
-100
-110
The system can be waked-up
from the line
-120
-130
10k
100k
1M
10M
Frequency (Hz)
23/27
TS615
CHOICE OF THE FEEDBACK CIRCUIT
ACTIVE FILTERING
Table 71 : Closed-Loop Gain - Feedback Components
Figure 73 : Low-Pass Active Filtering. Sallen-Key
VCC (V)
±6
±2.5
Gain
Rfb (Ω)
+1
+2
+4
+8
-1
-2
-4
-8
+1
+2
+4
+8
-1
-2
-4
-8
750
680
620
510
680
680
620
510
1.1k
1k
910
680
1k
1k
910
680
C1
R1
R2
+
IN
OUT
C2
TS615
_
25Ω
RG
INVERTING AMPLIFIER BIASING
In this case a resistance is necessary to achieve a
good input biasing, as R on (fig.30).
This resistance is calculated by assuming the negative and positive input bias current. The aim is to
make the compensation of the offset bias current
which could affect the input offset voltage and the
output DC component. Assuming Ib-, Ib+, Rin, Rfb
and a zero volt output, the resistance R comes: R
= Rin // R fb .
Figure 72 : Compensation of the Input Bias
Current
Rfb
910Ω
The resistors Rfb and R G give directly the gain of
the filter as a classical non-inverting amplification
configuration :
R fb
A V = g = 1 + ---------Rg
Assuming the following expression as the response of the system:
Vout
jω
g
T jω = ------------------- = --------------------------------------------Vinjω
2
jω ( jω )
1 + 2ζ ------- + -------------2
ωc
ω
c
Rfb
Ib-
Rin
_
the cutoff frequency is not gain dependent and it
comes:
Vcc+
Output
TS615
+
Vcc-
Ib+
R
Load
1
ω c = -------------------------------------R1R2C 1C2
the damping factor comes:
1
ζ = --- ω c ( C1 R 1 + C1 R 2 + C2 R 1 – C1 R 1 g )
2
The higher the gain the more sensitive the damping factor is. When the gain is higher than 1 it is
preferable to use some very stable resistors and
capacitors values.
In the case of R1=R2:
Rfb
2C – C ---------2
1R
g
ζ = -----------------------------------2 C 1 C2
24/27
TS615
INCREASING THE LINE LEVEL BY USING AN
ACTIVE IMPEDANCE MATCHING
With a passive matching, the output signal amplitude of the driver must be twice the amplitude on
the load. To go beyond this limitation an active
matching impedance can be used. With this technique, it is possible to keep a good impedance
matching with an amplitude on the load higher
than the half of the output driver amplitude. This
concept is shown in figure 74 for a differential line.
Figure 74 : TS615 as a differential line driver with
an active impedance matching
1µ
+
_
Vcc+
1k
Vo°
1:n
Vo
R3
1/2 R1
RL
Vcc/2
1/2 R1
10µ
Vi
1k
Hybrid
&
Transformer
100Ω
R5
100n
GND
+
2R2 R2
1 + ----------- + -------Vo ( noload )
R1 R3
G = --------------------------------- = -----------------------------------Vi
R2
1 – -------R3
The gain, for the loaded system will be (eq1):
GND
R2
Vi
10n
Rs1
As Vo° equals Vo without load, the gain in this
case becomes :
2 R2 R2
1 + ----------- + -------Vo ( with load )
1
R1 R3
GL = -------------------------------------- = --- ------------------------------------ ,( eq1 )
Vi
2
R2
1 – -------R3
100n
Vcc+
2Vi ( Vi – Vo° )
( Vi + Vo )
---------, --------------------------- and -----------------------R1
R2
R3
_
Vo
Vo°
R4
Vcc+
As shown in figure76, this system is an ideal generator with a synthesized impedance as the internal impedance of the system. From this, the output voltage becomes:
Rs2
Vo = ( ViG ) – ( RoIout ) ,( eq2 )
GND
100n
with Ro the synthesized impedance and Iout the
output current. On the other hand Vo can be expressed as:
Component Calculation
Let us consider the equivalent circuit for a single
ended configuration, Figure75.
Figure 75 : Single ended equivalent circuit
+
2R2 R2
Vi  1 + ----------- + --------

R1 R3 Rs1Iout
Vo = ------------------------------------------------ – ----------------------- ,( eq3 )
R2
R2
1 – -------1 – -------R3
R3
By identification of both equations (eq2) and
(eq3), the synthesized impedance is, with
Rs1=Rs2=Rs:
Rs1
Vi
_
Rs
Ro = ----------------- ,( eq4 )
R2
1 – -------R3
Vo°
Vo
R2
Figure 76 : Equivalent schematic. Ro is the
synthesized impedance
-1
R3
1/2R1
1/2RL
Ro
Vi.Gi
Iout
1/2RL
Let us consider the unloaded system. Assuming
the currents through R1, R2 and R3
as respectively:
25/27
TS615
Unlike the level Vo° required for a passive impedance, Vo° will be smaller than 2Vo in our case. Let
us write Vo°=kVo with k the matching factor varying between 1 and 2. Assuming that the current
through R3 is negligible, it comes the following resistance divider:
kV oRL
Ro = -----------------------------RL + 2R s1
By fixing an arbitrary value of R2, (eq6) gives:
R2
R3 = --------------------2Rs
1 – ----------RL
Finally, the values of R2 and R3 allow us to extract
R1 from (eq1), and it comes:
2R2
R1 = ----------------------------------------------------------- ,( eq7 )
R2
R2

2 1 – -------- GL – 1 – -------
R3
R3
After choosing the k factor, Rs will equal to
1/2RL(k-1).
A good impedance matching assumes:
1
R o = --- RL ,( eq5 )
2
with GL the required gain.
Figure 77 : Components Calculation for
Impedance Matching Implementation
GL (gain for the
loaded system)
From (eq4) and (eq5) it becomes:
R2
2Rs
-------- = 1 – ----------- ,( eq6 )
R3
RL
26/27
R1
GL is fixed for the application requirements
GL=Vo/Vi=0.5(1+2R2/R1+R2/R3)/(1-R2/R3)
2R2/[2(1-R2/R3)GL-1-R2/R3]
R2 (=R4)
Abritrary fixed
R3 (=R5)
Rs
R2/(1-Rs/0.5RL)
0.5RL(k-1)
Load viewed by
each driver
kRL/2
TS615
PACKAGE MECHANICAL DATA
14 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP Exposed-Pad)
c
k
E1
L1
C
SEATING
PLANE
L
0,25 mm
GAUGE PLANE
E
A
E2
A2
9
1
14
aaa
C
D
D1
8
b
e
A1
PIN 1 IDENTIFICATION
Millimeters
Inches
Dimensions
Min.
A
A1
A2
b
c
D
D1
E
E1
E2
e
L
L1
k
aaa
0.800
0.190
0.090
4.900
6.200
4.300
0.450
0d
Typ.
1.000
5.000
3.000
6.400
4.400
3.000
0.650
0.600
1.000
Max.
Min.
1.200
0.150
1.050
0.300
0.200
5.100
0.031
0.007
0.004
0.193
6.600
4.500
0.244
0.169
0.750
0.018
8d
0.100
0d
Typ.
0.039
0.197
1.18
0.252
0.173
1.18
0.026
0.024
0.039
Max.
0.047
0.006
0.041
0.012
0.008
0.201
0.260
0.177
0.030
8d
0.004
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com
27/27