TA1276AN TENTATIVE TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC TA1276AN PAL / NTSC VIDEO CHROMA AND DEFLECTION IC FOR CTV (NORMAL SCAN / DOUBLE SCAN MODE) TA1276AN provides Video, Chroma and Deflection (Sync, when double scan mode) circuit for a PAL / NTSC Color TV, and suitable for a high picture quality, large screen size, wide and / or double scanning TV. These functions are integrated in a 56pin dual-in-line shrink-type plastic package. TA1276AN provides a high-performance video processor in which a YUV double scanning signal can be applied in Video, PAL / NTSC auto-detection circuit in Chroma and 50 / 60Hz auto-detection circuit in Sync. PAL demodulation circuit includes Baseband signal processing system. And this demodulation circuit does not required any adjustment. TA1276AN includes I2C bus interface, so you can adjust various functions and controls via the bus. Weight: 5.55g (Typ.) 1 2002-03-29 TA1276AN FEATURES l Video / Chroma section · Y delay line · Chroma trap · IQ demodulation for NTSC, UV demodulation for PAL l BEP (Back End Processor) section · Enable to process a YUV signal independently · Double scanning signal processing capability (Y processing section) · Black Stretcher (Controlled by I2C bus) · DC Restoration Circuit (Controlled by I2C bus) · Highbright-color Circuit · D.L. Aperture Sharpness Circuit+Super Real Transcend Circuit (LTI) · γ Correction (Enable to control Binary line, Gain / Start point) · Y noise reduction circuit · Velocity Scan Modulation output (The first order differential output and phase / amplitude adjustment) (Color difference section) · Color Detail Enhancer · Selectable relative phase and amplitude · Flesh-color restoration · Color γ circuit · Baseband tint color (Text section) · RGB primary color output · On Screen Display interface · Linear RGB interface · Fast Blanking · Drive control · AKB (only black level) or Cut-off Bus control l Deflection section · High Performance Sync. Separation Circuit · Adjustment free H and V oscillation circuit by Countdown system · Horizontal and Vertical position adjustment · Sync separation, HD output · Horizontal and Vertical pulse output in normal mode. 2 2002-03-29 TA1276AN BLOCK DIAGRAM 3 2002-03-29 TA1276AN TERMINAL FUNCTIONS PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL DC 1 fsc output Outputs oscillation waveform of VCXO. When 3.58NTSC killer-off this pin voltage sets 3.2V. When B / W or other systems killer-off, this pin voltage sets 1.4V. SCP output Outputs SCP (Sand Castle Pulse). The output signal consists of clamp pulse, horizontal blanking pulse, and vertical blanking. The minimum load resistance is 3kΩ. SECAM control The input / output pin that is used to control the SECAM demodulation IC. When current stronger than 250µA flows from this pin, that is recognized as SECAM. 4 Y1 output Outputs the Y signal that routed the fsc TRAP (TRAP can be turned on or off with Bus.) and the Y delay line circuit. 5 Outputs B-Y (U) or I signal. U / Q output It includes LPF that can remove carrier. 2 3 3.58NTSC :3.2V B / W or Others system :1.4V AC 0.6Vp-p When PAL / NTSC 4.0V When SECAM 0.75V DC 2.5V Rainbow color bar : 360mVp-p 4 2002-03-29 TA1276AN PIN No. 6 7 PIN NAME FUNCTION INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL V / I output Outputs R-Y (V) or Q signal.It includes LPF that can remove carrier. The chroma signal that routed ACC and TOF circuits (before demo input) can be monitored by pulling up this pin at 10kΩ. 1H DL control Outputs the result of whether the signal is PAL, SECAM or NTSC. Connect the output to the 1H DL IC. In the case of discrimination between white or black, the voltage just before that is retained. The voltage immediately after turning-on is not fixed. 8.4V: PAL 4.3V: SECAM 0V: NTSC Connect X’tal. In the case of series capacity, the oscillation frequency (f0) can be changed. In the case of parallel capacity, the changeable range of frequency can be changed. DC 4.0V 90mVp-p DC 8 4.43MHz X’tal 9 M PAL X’tal 10 3.58MHz X’tal 11 APC filter Connect APC filter demodulating the chroma. The oscillation frequency of VCXO varies depending on the voltage at this pin. VCC1 (5V) The VCC of the chroma and I C Bus blocks. Connect 5V (Typ.) DC 2.5V Rainbow color bar : 360mVp-p 2 12 ― 5 ― 2002-03-29 TA1276AN PIN No. PIN NAME FUNCTION 13 Chroma input The pin through which the chroma is input. Input the chroma signal that was subjected to Y / C separation. 14 Chroma GND The GND pin of the chroma processing block. 15 Y1 / SYNC input The pin through which the composite video signal or Y signal is input. Input via clamp capacitor. 16 V-Sep. Connect the filter separating the vertical synchronization. 17 HD output INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL ― ― DC6.4V (1) When BUS HD-OUT = 0 Output the HD pulse (pulse duration : 1µs) together with AFC. This pin also serves as the external input pin that accepts BPP (black peak detection stopping pulse) signal. (2) When BUS HD-OUT = 1 When AKB mode is ON, the pulse which covers AKB reference period is output. 6 2002-03-29 TA1276AN PIN No. PIN NAME FUNCTION 18 SYNC. output Output the synchronizing signal that was separated in the synchronous separation circuit. This pin is of the open collector system. Connect the pull-up resistor. 19 DEF GND The GND pin of DEF block. AFC filter Connect the filter for horizontal AFC. The frequency of the horizontal output varies depending on the voltage at this pin. 21 32fH VCO Connect the ceramic oscillator for horizontal oscillation. The oscillator to be used is CSBLA503KECZF30, made by Murata electronics. 22 DEF VCC (9V) The VCC of DEF block. Connect 9V (Typ.) to this pin. 23 Horizontal output (Mode SW) Produces the horizontal output. Connecting the DEF VCC to this pin can swich Double Scan mode. In this case, the horizontal output is not produced. 20 INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL ― ― DC ― ― HIGH: 3.2V LOW: 0.2V 7 2002-03-29 TA1276AN PIN No. 24 PIN NAME Curve correction (Ext. CP / BPP input) FUNCTION INPUT / OUTPUT SIGNAL INTERFACE CIRCUIT (1) Used to correct distortion of picture in the case of high-tension fluctuation. Input the AC component of high-tension fluctuation. To disactivate the distortion correction feature, connect a capacitor of 0.01µF between this pin and GND. (1) DC 4.5V (2) (2) Double scan mode This pin is to input external CP (Clamping Pulse) and BPP (Black Peak detection stopping Pulse). 25 FBP input The pin through which FBP is input to generate pulses for horizontal AFC2, Y smoothing, and horizontal blanking. When double SCAM mode, input H blanking pulse (5V or over). 26 Digital GND The GND pin of I L block. 27 SDA The SDA pin of I C bus. 28 SCL The SCL pin of I C bus. 2 ― 2 ― ― 2 ― 8 2002-03-29 TA1276AN PIN No. PIN NAME 29 BS/H 30 GS/H FUNCTION These pins are to be connected with a capacitor for sampling and holding a bais voltage in the AKB operation, of for clamping to set DC voltage of RGB outputs in the no-AKB mode. VP output Outputs the vertical pulse. This pin also serves as the external blanking input. When current stronger than 350 µA flows, blanking takes place due to the internal blanking and OR logic circuit. 32 YS2 Switches between the internal RGB signal and analog RGB (pin 33, 34, 35) signal. When this switch is on, the VSM output is muted. 33 Analog B input 34 Analog G input 35 Analog R input 36 YS1 31 INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL DC The pin through which the analog RGB is input. Input the RGB signal via clamp capacitor. Switches between the internal RGB signal and OSD / analog RGB (pin 37, 38, 39). When this switch is on, the VSM output is muted. 9 2002-03-29 TA1276AN PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL ― ― ― ― The pin through which the OSD signal or analog RGB is input. (1) When inputting an OSD signal, input the ODS signal with a voltage of 0~5V (4.1V or more). 37 Analog OSD B input 38 Analog OSD G input (2) When inputting an analog RGB, input the RGB signal via Analog OSD clamp capacitor. R input ACL works on this input signal only when the entire screen is YS1-HI (the entire screen : OSD). 39 The VCC pin of the text block. Connect 9V (Typ.). 40 VCC2 (9V) 41 B output 42 G output 43 R output 44 TEXT GND The GND pin of TEXT block. ABCL input Used to control the external uni-color, brightness, and dynamic ABL. Use this pin when using ABL or ACL. The sensitivity and starting point of the ABL and dynamic ABL can be set by using bus. 45 Outputs RGB. ABCL OFF : 6V or more 10 2002-03-29 TA1276AN PIN No. 46 47 48 49 50 PIN NAME FUNCTION INTERFACE CIRCUIT INPUT / OUTPUT SIGNAL ― ― VCC3 (9V) The VCC pin of picture quality and color difference blocks. Connect 9V (Typ.). YM input The half-tone switch for internal RGB signal. When the voltage at this pin is set to 7.0V or more, the RGB output voltage. VSM output Outputs the Y-signal that routed HPF after it had been subjected to DC restoration. The output is muted with the switches of pins 32 and 36. APL detection Connect the filter correcting DC restoration ratio. Opening this pin can monitor the Y-signal that was subjected to black stretching. DC Black peak hold Connect the filter controlling the black stretching gain of the black stretching circuit. The black stretching gain varies depending on the voltage at this pin. DC DC 3.5V 11 2002-03-29 TA1276AN PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT When Burst : Chroma = 1:1 360mVp-p DC : 5.0V The pin through which R-Y (V) / I and B-Y (U) / Q signals are input. Input via clamp capacitor. 51 V / I input 52 U / Q input 53 Y2 input The pin through which B-Y (V) / I and R-Y (U) / Q signals are input. Input via clamp capacitor. 54 Color limiter Color the filter detecting the color limit. 55 RS/H The same as pin 29 and 30. 56 SENSE input This pin is to sense IK voltage feed-back from a CRT Drive circuit. INPUT / OUTPUT SIGNAL DC The same as pin 29 and 30. 12 DC 2002-03-29 TA1276AN BUS CONTROL MAP WRITE MODE SLAVE ADDRESS : 88H (10001000) SUB ADDRESS D7 MSB 00 P-MUTE D5 D6 D4 D3 D2 D1 D0 LSB UNI-COLOR 01 BRIGHTNESS 02 PRESET MSB LSB 1000 0000 1000 0000 COLOR Y-MUTE 1000 0000 03 TINT YM-SW 1000 0000 04 SHARPNESS YNR 1000 0000 05 RGB BRIGHTNESS WPS L 1000 0000 1000 0000 06 HI BRT RGB CONTRAST 07 SUB COLOR COLOR γ CLT 1000 0000 08 SUB CONTRAST Y-γ CURVE FLESH 1000 0000 09 G (R) DRIVE DR-SW 1000 0000 0A B DRIVE CDE 1000 0000 H-BLK 1000 0000 0B HORIZONTAL POSITION HV-SepL V-OFF 0C R CUT OFF 1000 0000 0D G CUT OFF 1000 0000 0E B CUT OFF 1000 0000 0000 0000 TX-ACL 0000 0000 VSM-PB 0000 0000 DC REST. LIMIT 0000 0000 VSM-H.PB FREQ 0000 0000 B.D.L. 0000 0000 0F R-Y PHASE 10 11 12 13 14 R / B GAIN COLOR SYSTEM P / N-ID VSM PHASE BB SW VSM GAIN DC RESTORATION POINT TEST G-Y PHASE OSD-SL OS-ACL APACON PEAK f0 DC RESTORATION RATE BLACK STRETCH POINT SHR-TRACKING G / B GAIN APL VS BSP RGB-γ B.L.C. Y-γ PNT B.S.G. BS-ARE 15 DYNAMIC ABL POINT DYNAMIC ABL GAIN AKB MODE 0000 0000 16 ABL POINT ABL GAIN RGB OUT MODE 0000 0000 17 HD-OUT V-BLK VERTICAL FREQUENCY VERTICAL POSITION 0000 0000 18 Y-DL C-TRAP TOF f0 TOF-Q 0000 0000 READ MODE SLAVE ADDRESS : 89H (10001001) D7 0 PORSET 1 N-DET D6 D5 D4 COLOR SYSTEM RGBOUT Y1-IN D3 X’tal IQ-IN Y2-IN 13 D2 D1 D0 V-FREQ V-STD H-LOCK H-OUT VP-OUT IK-IN 2002-03-29 TA1276AN BUS CONTROL FEATURE WRITE MODE ITEM EXPLAIN PRESET P-MUTE Picture mute SW ; (0) : OFF, (1) : ON UNI-COLOR Uni-color adjustment ; −18dB~0dB Center BRIGHTNESS Brightness adjustment (including sub adjustment) ; −40IRE~+40IRE Center COLOR Color adjustment ; −20dB (Color mute)~+4dB 0dB Y-MUTE Y mute SW ; (0) : ON, (1) : OFF ON TINT Hue adjustment ; −32°~+32° 0° TM-SW Half-tone SW (YUV input) ; (0) : OFF, (1) : ON OFF SHARPNESS Sharpness adjustment ; −20dB~+14dB +8dB YNR Y Noise Reduction SW ; (0) : OFF, (1) : ON OFF RGB BRIGHTNESS RGB Brightness Adjustment ; −20IRE~+20IRE 0IRE WPS L White Peak Suppression Level ; (0) : 130IRE, (1) : 110IRE HI BRT High-bright color ; (0) : OFF, (1) : ON RGB CONTRAST RGB Contrast ; −18dB~0dB −18dB SUB COLOR Sub-color ; −4dB~0dB~+3dB 0dB COLOR γ Color γ correction point ; (00) : OFF, (01) : 0.2Vp-p, (10) : 0.4Vp-p, (11) : 0.6Vp-p OFF CLT Color Limiter Level ; (0) : 1.8Vp-p, (11) : 2.2Vp-p SUB CONTRAST Sub-contrast adjustment ; −3dB~+3dB 0dB Y-γ CURVE Y-γ curve switching ; (00) : OFF, (01) : −2.5dB, (10) : −5.6dB, (11) : −7dB OFF FLESH Flesh color ; (0) : OFF, (1) : ON OFF G (R) / B DRIVE R (G) / B drive gain adjustment ; −5dB~0dB~+3dB DG-SW Drive gain base axis switching ; (0) : G, (1) : R CDE Color Detail Enhancer ; (0) : ON (Foced OFF when sharpness go through), (1) : OFF ON HORIZONTAL POSITION Horizontal position adjustment ; −3µs~+3µs 0µs HV-SepL Sync separation level ; (from SYNC TIP) (0) : 35%, (1) : 40% 35% V-OFF Vertical output SW ; (0) : ON, (1) : OFF ON H-BLK Horizontal blanking SW ; (0) : ON, (1) : OFF ON R / G / B CUTOFF R / G / B cut-off adjustment ; · When AKB-OFF : RGB output2V~2.5V~3V · When AKB-ON : SENS input 1Vp-p~1.5Vp-p~2Vp-p (±5IRE) R-Y PHASE R-Y relative phase switching ; (00) : 90°, (01) : 92°, (10) : 94°, (11) : 112° 90° R / B GAIN R / B relative amplitude switching ; (00) : 0.56, (01) : 0.68, (10) : 0.79, (11) : 0.86 0.56 G / B GAIN G / B relative amplitude switching ; (00) : 0.3, (01) : 0.34, (10) : 0.4, (11) : 0.45 0.3 G-Y PHASE G-Y relative phase switching ; (00) : 236°, (01) : 240°, (10) : 244°, (11) : 253° 14 ON 130IRE OFF 1.8Vp-p 0dB (40h) G Center (80h) 236° 2002-03-29 TA1276AN ITEM EXPLAIN PRESET Color system ; System COLOR SYSTEM (000) : NTSC (001) : NTSC (010) : NTSC (011) : PAL (100) : PAL (101) : SECAM (110) : MULTI (111) : Trinorma X’tal Color difference mute 3.58 3.58 4.43 4.43 (N) M 4.43 3.58 / 4.43 3.58 / M / N Forced OFF Forced OFF Forced OFF Forced OFF Forced OFF Forced OFF Forced OFF Forced OFF Color TINI difference control input I/Q U/V U/V U/V U/V U/V U/V U/V Enable Enable Enable Enable Enable Enable Enable Enable NTSC (000) P / N ID PAL / NTSC ident sensitivity switching ; (0) : LOW (When digital comb filter used), (1) : Normal LOW BB SW Blue Back SW ; (0) : OFF, (1) : ON OFF OSD-SL OSD peak suppressing level switching ;(0) : 96IRE, (1) : 76IRE OS-ACL OSD ACL SW ; (0) : ON, (1) : OFF TX-ACL RGB ACL SW ; (0) : Gain 1 / 2, (1) : Normal VSM PHASE VSM output phase switching ; (00) : −40ns, (01) : −20ns, (10) : 0ns, (11) +20ns VSM GAIN VSM output gain switching ; (00) : 0dB, (01) : −6dB, (10) : −9dB, (11) : OFF 0dB APACON PEAK f0 Apacon peak frequency switching ; (000) : Through (Apacon off), (001) : 4.0MHz, (010) : 3.3MHz, (011) : 2.5MHz, (100) : Through (Apacon off), (101) : 13MHz, (110) : 10MHz, (111) : 8MHz (000) Through VSM PB VSM output horizontal parabolic modulation SW ; (0) : Parabolic modulation OFF, (1) : ON (Nearby sharpness −3dB) DC RESTORATION POINT DC restoration start point ; (000) : 0% ~ (111) : 42% DC RESTORATION RATE DC restoration rate ; (000) : 100%~(111) : 130% 100% DC REST. LIMIT DC restoration limit point ; (APL) (00) : 100%, (01) : 87%, (10) : 73%, (11) : 60% 100% BLACK STRETCH POINT (BSP) Black stretcher start point ; When APL 0% (000) : 22IRE~(111) : 56IRE 22IRE APL VS BSP (AVS) APL level vs. black stretcher start point ; (00) : 0dB~(11) : 1.5dB, BSP+APL×BSP×AVS 0dB Y-γ PNT Y-γ point switching ; (0) : 100IRE, (1) : 95IRE 100IRE VSM-H. PB FREQ VSM output horizontal parabolic frequency ; (00) : 15.7kHz, (01) : 24.8kHz, (10) : 31.5kHz, (11) : 33.75kHz SHR-TRACKING Sharpness tracking ; (00) : HIGH, (11) : LOW 15 96IRE ON Gain1 / 2 −40ns Parabolic modulation OFF 0% ― HIGH 2002-03-29 TA1276AN ITEM EXPLAIN PRESET TEST Test mode ; (0) : NORMAL (1) : Test mode (For factory test) Switched by sub-address 17H <during gate-pulse> D2 (0) : during V-BLK, (1) : NORMAL Y / RGB smoothing OFF, Monitor of DAC at HD output RGB-γ RGB-γ SW ; (0) : OFF, (1) : ON OFF B.L.C. Block level automatic correction (Priority over black stretcher) ; MAX 7.5IRE (0) : OFF, (1) : ON OFF B.S.G. Black stretcher gain SW ; (0) ON, (1) : OFF ON B.D.L. Black detection SW ; (0) : 3IRE, (1) : 0IRE 3IRE BS-ARE Black area reinforcement SW ; For wide TV (When using time axis compression IC) (0) : ON, (1) : OFF ON DYNAMIC ABL POINT Dynamic ABL detection voltage ; (000) : MIN~(111) : MAX MIN DYNAMIC ABL GAIN Dynamic ABL sensitivity ; (000) : MIN~(111) : MAX MIN AKB MODE AKB MODE ; Only black level (00) : AKB OFF+S / H LOW, (01) : AKB OFF+Cutoff BUS (10) : AKB ON+I-DET NORMAL, (11) : AKB ON+I-DET×3 ABL POINT ABL detect voltage ; (000) : MIN~(111) : MAX MIN ABL GAIN ABL GAIN ; (000) : MIN~(111) : MAX MIN RGB OUT MODE RGB output mode SW ; (00) : NORMAL, (01) : Only R, (10) : Only G, (11) : Only B NORMAL HD-OUT HD output SW ; (0) : HD output, (1) : AKB period pulse HD output V-BLK Vertical Blanking SW ; (0) : ON, (1) : OFF VERTICAL FREQUENCY Vertical Frequency ; (000) : AUTO (50, 60Hz), (001) : AUTO (50, 60Hz / V MASK OFF), (010) : 60Hz, (011) : 60Hz (V MASK OFF), (100) : Forced 262.5H, (101) : Forced 263H, (110) : Forced 312.5H, (111) : Forced 313H, When (100), (101), (110), (111) : AFC Free-run VERTICAL POSITION Vertical position ; (000) : 0H~(111) : 7H (1H STEP) Y-DL Y-DL SW ; (0) OFF, (1) : ON (+80ns) OFF C-TRAP Chroma Trap SW ; (0) : OFF, (1) : ON OFF TOF-f0 Selectable TOF Peak Frequency ; (000) : 0.8fsc+TOF OFF~(111) : 1.5fsc TOF OFF TOF-Q Selectable TOF Q ; (000) : 0.6~(111) : 1.2 16 NORMAL (00) AKB OFF+ S / H LOW ON (000) AUTO 0H 0.6 2002-03-29 TA1276AN DELAY TIME FROM Y1 INPUT (PIN 15) TO Y1 OUTPUT (PIN 4) COLOR TRAP Y-DL B/W ― OFF ON 295ns 375ns OFF OFF OFF ON ON 295ns (4.43) 295ns (3.58 / M / N) 375ns (4.43) 375ns (3.58 / M / N) ON OFF OFF ON ON 295ns (4.43) 310ns (3.58 / M / N) 375ns (4.43) 390ns (3.58 / M / N) ― OFF ON 495ns 575ns PAL / NTSC SECAM DELAY TIME READ MODE CHARACTERISTIC EXPLAIN PORSET Power On Reset ; (0) : RESISTER PRESET, (1) : NORMAL COLOR SYSTEM Color system ; Receiving system (Judgement of ID ON / OFF) (00) : B / W, (01) : SECAM, (10) : PAL, (11) : NTSC X’tal X’tal Mode ; (00) : ―, (01) : 4.43 (N), (10) : M, (11) : 3.58 V-FREQ Vertical frequency ; (0) : 50Hz, (1) : 60Hz V-STD Vertical Standard ident ; (0) NON-STANDARD, (1) : STANDARD H-LOCK Horizontal Lock ident ; (0) : LOCK, (1) : UN-LOCK N-DET Noise ident result ; (0) : FEW, (1) : MANY RGBOUT, Y1-IN, IQ-IN, Y2-IN, H-OUT, VP-OUT Self-ident result ; (0) : NG, (1) : OK IK IN IK input ident result ; (0) : NG, (1) : OK 17 2002-03-29 TA1276AN 2 I C BUS TRANSMISSION / RECEIVING SLAVE ADDRESS : 88H A6 A5 A4 A3 A2 A1 A0 W/R 1 0 0 0 1 0 0 0/1 Start / stop condition Bit transmission Confirmation response 18 2002-03-29 TA1276AN DATA TRANSMIT FORMAT 1 DATA TRANSMIT FORMAT 2 DATA RECEIVE FORMAT At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave. The STOP condition is generated by the master. OPTIONAL DATA TRANSMIT FORMAT : AUTOMATIC INCREMENT MODE In this transmission method, data is set on automatically incremented sub-address from the specified sub-address. Purchase of TOSHIBA I2C components conveys a license under the Phillips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C standard Specification as defined by Phillips. 19 2002-03-29 TA1276AN O Pin 23 H-out (Mode SW) You can select the Double Scan Mode (External CP (Clamping Pulse) input Mode), by connecting Pin 23 to DEF VCC. (The threshold of Pin 23 : 8.7V = DEF VCC−0.3V) When Double Scan Mode, function of Pin 24 and 25 are changed. l Normal Scan (Internal CP) Mode : Pin 23 ― H-out The function of Pin 24 is curve correction input, that of Pin 25 is FBP (Flay Back Pulse) input. The input signals of Y2, U / I and V / I inputs (Pin 53, 52 and 51), Analog OSD inputs (Pin 39, 38 and 37), Analog RGB inputs (Pin 35, 34 and 33) are clamped of the internal CP based on the Y1 / Sync input (Pin 15). l Double Scan (External CP input) Mode : Pin 23 ― H-out The function of Pin 24 is EXT / BPP (Note) input, that of Pin 25 is H / V BLK (blanking) input. The input signals of Y2, U / I and V / I inputs (Pin 53, 52 and 51), Analog OSD inputs (Pin 39, 38 and 37), Analog RGB inputs (Pin 35, 34 and 33) are clamped of the external CP based on Pin 24. In case of Double Scan Mode, bus “V-BLK” should be set (1) ; OFF. TERMINAL FUNCTIONS MODE NORMAL SCAN MODE (INTERNAL CP) DOUBLE SCAN MODE (EXTERNAL CP INPUT) Pin 23 H-out DEF VCC (9V) Pin 24 Curve correction signal input EXT CP / BPP input Pin 25 FBP input (for AFC-2 detection, H BKL) H / V BLK input (for RGB H / V BLK, AKB) Clamping by internal CP (based on Pin 15) Clamping by external CP (based on Pin 24) PIN No. Pin 53, 52, 51 Pin 39, 38, 37 Pin 35, 34, 33 Note: Pin 15 Normal scan ; Y / Sync signal input Pin 17 Normal scan ; HD pulse output (based on Pin 15) Pin 31 Normal scan ; VP output (based on Pin 15) BPP : Black Peak detection stopping Pulse MAXIMUM RATINGS (Ta = 25°C) CHARACTERISTIC SYMBOL RATING UNIT VCCmax 12 V einmax 9 Vp-p PD (Note 1) 1920 mW 1 / θja 15.4 mW / °C Operating Temperature Topr −20~65 °C Storage Temperature Tstg −55~150 °C Supply Voltage Input Terminal Voltage Power Dissipation Power Dissipation Reduction Rate Note 1: Refer to the figure below. Fig. Power dissipation reduction against higher temperature 20 2002-03-29 TA1276AN RECOMMENDED CONDITION IN USE CHARACTERISTIC Supply Voltage Y1 / Sync, Y2 Input Signal Level Chroma Input Signal Level I / Q, U / V Input Level OSD / Analog RGB Input Level DESCRIPTION MIN TYP. MAX Pin 5 4.3 5.0 5.3 Pin 22, Pin 40, Pin 46 8.7 9.0 9.3 White : 100%, including, synchronization (Synchronization : minus) 0.9 1.0 1.1 When TOF OFF (Burst level) 200 300 400 When TOF ON (Burst level) 100 200 300 B:C=1:1 ― 300 ― mVp-p When OSD input (DC coupling) 4.2 ― 5.0 V When analog RGB input (AC coupling) 0.4 0.5 0.6 Analog RGB Input Level ― 0.4 0.5 0.6 FBP Width ― 11 12 13 FBP Input Current ― ― ― 1.5 RGB Output Current ― ― 1.0 2.0 H. Output Current ― ― 3.0 10.0 Pin 18 Input Current ― ― 0.5 1.0 UNIT V Vp-p mVp-p Vp-p µs mA ELECTRICAL CHARACTERISTICS (VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25°C, unless otherwise specified) SUPPLY CURRENT SYMBOL TEST CIRCUIT MIN TYP. MAX VCC1 ICC1 ― 34.0 40.5 50.0 VCC2 ICC2 ― 33.0 40.0 49.0 VCC3 ICC3 ― 32.0 39.5 48.0 DEF VCC ICC4 ― 9.5 12.8 18.0 PIN NAME 21 UNIT mA 2002-03-29 TA1276AN TERMINAL VOLTAGE PIN No. PIN NAME SYMBOL TEST CIRCUIT MIN TYP. MAX 3 SECAM CONT. V3 ― 3.7 4.0 4.3 4 Y1 OUTPUT V4 ― 1.7 2.0 2.3 5 U / Q OUTPUT V5 ― 2.2 2.5 2.8 6 V / I OUTPUT V6 ― 2.2 2.5 2.8 8 4.43MHz X’tal V8 ― 3.7 4.0 4.3 9 M PAL X’tal V9 ― 3.7 4.0 4.3 10 3.58MHz X’tal V10 ― 3.7 4.0 4.3 13 CHROMA INPUT V13 ― 2.2 2.5 2.8 15 Y1 INPUT V15 ― 2.7 3.0 3.3 16 V SEP. V16 ― 5.7 6.1 6.5 17 SYNC. IN V17 ― 2.60 2.85 3.10 21 32fH VCO V21 ― 5.4 5.7 6.0 24 CURVE CORRECTION V24 ― 4.3 4.5 4.7 32 Ys2 V32 ― 0 0.1 0.3 33 ANALOG B INPUT V33 ― 3.5 3.8 4.1 34 ANALOG G INPUT V34 ― 3.5 3.8 4.1 35 ANALOG R INPUT V35 ― 3.5 3.8 4.1 36 Ys1 V36 ― 0 0.1 0.3 37 OSD / ANALOG B INPUT V37 ― 3.3 3.6 3.9 38 OSD / ANALOG G INPUT V38 ― 3.3 3.6 3.9 39 OSD / ANALOG R INPUT V39 ― 3.3 3.6 3.9 45 ABCL INPUT V45 ― 5.85 6.10 6.35 48 VM OUTPUT V48 ― 3.2 3.5 3.8 49 APL DET V49 ― 4.8 5.0 5.2 50 BLACK PEAK HOLD V50 ― 4.2 4.4 4.6 51 V / I INPUT V51 ― 4.8 5.0 5.2 52 U / Q INPUT V52 ― 4.8 5.0 5.2 53 Y2 INPUT V53 ― 6.1 6.3 6.5 54 COLOR LIMITER V54 ― 6.6 6.9 7.2 22 UNIT V 2002-03-29 TA1276AN AC CHARACTERISTIC VIDEO SECTION CHARACTERISTIC Y2 Input Dynamic Range Black Level Shift Black Stretching Amplifier Maximum Gain Black Stretching Start Point (1) Black Stretching Start Point (2) D.ABL Detection Voltage D.ABL Sensitivity Black Level Correction Y γ Correction Point Y γ Correction Gain Black Peak Detection Level DC Restoration Gain DC Restoration Start Point DC Restoration Limit Point Sharpness Peak Frequency SYMBOL TEST CIRCUIT TEST CONDITION MIN TYP. MAX UNIT DR53 ― ― 0.7 1.0 1.5 Vp-p VB ― −5 0 5 VB3 ― 35 42 49 1.30 1.40 1.50 17 22 27 51 56 61 ― 0 4 14 20 26 30 50 70 90 110 130 220 240 260 ― 0 0.04 0.280 0.295 0.310 6.5 7.0 7.5 95 100 105 2 5 8 −3.5 −2.5 −1.5 −5.8 −4.8 −3.8 −7.5 −6.5 −5.5 −15 0 15 0.9 1.0 1.1 1.25 1.35 1.45 −3 0 3 GBS (Note V1) ― PBST1 ― PBST2 ― PBS1 ― PBS2 ― ∆V001 ― ∆V010 ― ∆V100 ― SDAMIN ― SDAMAX ― BLC ― Pγ0 ― Pγ100 ― Gγ01 ― Gγ10 ― Gγ11 ― ∆VBP ― ADT100 ― ADT130 ― VDT0 ― (Note V2) (Note V3) (Note V4) (Note V5) (Note V6) (Note V7) ― ― (Note V8) (Note V9) (Note V10) VDT48 ― 42 47 51 PDTL60 ― 59 63 67 PDTL73 ― 71 75 79 PDTL87 ― 83 87 91 PDTL100 ― 95 99 103 FAPL01 ― 3.3 4.2 5.1 FAPL10 ― 2.6 3.3 4.0 FAPL11 ― 2.0 2.5 3.0 FAPH01 ― 11.2 14.5 17.4 FAPH10 ― 9.5 11.9 14.3 FAPH11 ― 6.5 8.1 9.7 (Note V11) ― 23 mV times IRE mV V/V IRE dB mV times % MHz 2002-03-29 TA1276AN CHARACTERISTIC Sharpness Control Range Sharpness Control Center Gain YNR Characteristic SRT Response to 2T Pulse Input VSM Peak Frequency VSM Gain VSM Parabolic Modulating Gain Threshold Voltage of VSM Muting Response Time for VSM High Speed Muting Between Y2 Input and R Output Delay Time SYMBOL TEST CIRCUIT GMAXL ― GMINL ― GMAXH ― TEST CONDITION (Note V12) MIN TYP. MAX 11 14 17 −11 −8 −5 11 14 17 GMINH ― −9 −6 −3 GCENL ― 7 10 13 GCENH ― 7 10 13 GYL ― −11 −8 −5 GYH ― −9 −6 −4 TSL1 ― 100 120 140 TSRTL ― 40 60 80 TSH1 ― 160 180 200 TSRTH ― 20 30 45 FVL ― When normal mode 7 9 11 FVH ― When double scan mode 12.5 16 19.5 GVL00 ― 11 13 15 GVL01 ― −7.5 −6 −4.5 GVL10 ― −11 −9 −8 GVL11 ― −∞ −35 −29 GVH00 ― 11 13 15 GVH01 ― −7.5 −6 −5 GVH10 ― −11 −9 −7 GVH11 ― −∞ −32 −26 ― (Note V13) (Note V14) (Note V15) GVRL ― −4 −3 −2 GVLL ― −4 −3 −2 GVRH ― −4 −3 −2 GVLH ― −4 −3 −2 VSR36 ― 0.65 0.75 0.85 TVML1 ― 0 50 100 TVML2 ― 0 50 100 TVML3 ― 0 50 100 TVML4 ― 0 50 100 TVMH1 ― 0 50 100 TVMH2 ― 0 50 100 TVMH3 ― 0 50 100 TVMH4 ― 0 50 100 TY2RD ― When through 26 36 46 TY2RL ― When normal mode 200 220 240 TY2RH ― When double scan mode 85 100 115 (Note V16) Pin 32, Pin 36 (Note V17) 24 UNIT dB ns MHz dB V ns 2002-03-29 TA1276AN CHROMA SECTION CHARACTERISTIC ACC Characteristic Sub Color Control Characteristic APC Frequency Control Sensitivity APC Pull-In / Hold Range ― F300 ― (Note C1) MIN TYP. MAX 0.300 0.355 0.410 0.300 0.355 0.410 0.290 0.343 0.400 F30 ― F10 ― 0.090 0.113 0.135 A ― 0.90 0.97 1.05 es+ ― 2.0 3.0 4.0 es− ― −6.0 −4.3 −2.0 β3 ― 0.70 1.20 1.70 β4 ― 0.70 1.20 1.70 βM ― 0.70 1.20 1.70 f3PH ― 250 500 2000 f3HH ― 250 500 2000 f3PL ― −2000 −500 −250 f3HL ― −2000 −500 −250 f4PH ― 250 500 2000 f4HH ― 250 500 2000 f4PL ― −2000 −500 −250 f4HL ― −2000 −500 −250 fMPH ― 250 500 2000 ― (Note C2) (Note C3) ― 250 500 2000 ― −2000 −500 −250 fMHL ― −2000 −500 −250 f03 ― f0 = 3.579545MHz −200 0 200 f04 ― f0 = 4.433619MHz −200 0 200 f0M ― f0 = 3.575611MHz −200 0 200 f3c ― When 3.58NTSC 0.54 0.78 0.96 f4c ― When 4.43PAL 0.52 0.72 0.90 fMc ― When M-PAL 0.54 0.78 0.96 V1a ― When 3.58NTSC 2.80 3.20 3.50 V1b ― Except for 3.58NTSC 1.15 1.55 1.75 Q Axis vBN ― 290 355 415 I Axis vRN ― 290 355 415 vRN / vBN ― 0.94 1.00 1.15 Q Axis θBN ― 29.0 33.0 37.0 I Axis θRN ― 118.0 123.0 126.0 Relative θBRN ― 87.0 90.0 93.0 B-Y vBP ― 290 355 415 R-Y vRP ― 290 355 415 vRP / vBP ― 0.94 1.00 1.10 B-Y θBP ― −5.0 0.0 3.0 R-Y θRP ― 85.0 90.0 93.0 Relative θBRP ― 87.0 90.0 93.0 fsc output DC Level IQ Color Difference Signal Output Level IQ Signal Demodulation Ratio IQ Demodulation Angle UV Color Difference Signal Output Level UV Signal Demodulation Ratio UV Demodulation Angle F600 TEST CONDITION fMPL fsc Output Amplitude UV Demodulation Angle TEST CIRCUIT fMHH 3.58MHz / 4.43MHz Free Run Frequency IQ Demodulation Angle SYMBOL When B : C = 1 : 1 signal R-Y / B-Y ― I-Q When B : C = 1 : 1 signal R-Y / B-Y ― ― 25 UNIT Vp-p times dB Hz / mV Hz Hz Vp-p V mVp-p ― ° mVp-p ― ° 2002-03-29 TA1276AN CHARACTERISTIC SYMBOL Residual Carrier Level Residual Higher Harmonics Level 3.58NTSC Color Difference Output DC Voltage 4.43NTSC 1HDL Output DC Level Sand Castle Pulse Height TEST CIRCUIT TEST CONDITION MIN TYP. MAX vBNe ― ― 1.90 4.00 vRNe ― ― 1.90 4.00 vBPe ― ― 1.90 4.00 vRPe ― ― 1.90 4.00 vBHNe ― ― 1.90 4.00 vRHNe ― ― 1.90 4.00 vBHPe ― ― 1.90 4.00 vRHPe ― ― 1.90 4.00 fsc level fsc×2 level VBN ― B-Y output 1.80 2.15 2.50 VRN ― R-Y output 1.90 2.24 2.60 VBP ― B-Y output 1.80 2.15 2.50 VRP ― R-Y output 1.90 2.25 2.60 8.00 8.30 8.60 4.00 4.30 4.60 PAL VDLP ― NTSC VDLS ― SECAM VDLN ― 0.01 0.50 0.20 CP SCH ― 7.50 7.80 8.10 HD SCM ― 3.95 4.20 4.45 VD SCL ― 2.25 2.50 2.75 SEN ― 3.70 4.00 4.30 SEP ― 3.70 4.00 4.30 SES ― 0.40 0.70 1.00 SECAM Output DC Level NTSC Ident Sensitivity PAL Ident Sensitivity TOF Characteristic Output from pin ― (Note C4) vNCL ― 3.80 5.83 7.87 vNCH ― 2.52 3.88 5.24 vNBL ― 3.73 5.74 7.75 vNBH ― 2.44 3.75 5.06 vPCL ― 4.80 6.83 8.87 vPCH ― 3.52 4.88 6.24 vPBL ― 4.73 6.74 8.75 vPBH ― 3.44 4.75 6.06 GFH3 ― 20.7 22.7 24.7 GFC3 ― 20.2 22.2 24.2 GFL3 ― 18.2 20.2 22.2 GFH4 ― 19.1 21.1 23.1 (Note C5) (Note C6) (Note C7) GFC4 ― 19.4 21.4 23.4 GFL4 ― 18.8 20.8 22.8 Through GYs ― −1.21 0.00 1.06 Normal GYd ― −1.21 0.00 1.06 Double S Y1 In~Y1 Out Frequency Bandwidth GYt ― −1.21 0.00 1.06 −4.0 −1.0 0.0 ― −25 −20 ― −25 −20 1.30 1.60 ― 1.30 1.60 ― Y1 In~Y1 Out AC Gain Trap Filter Gain Y1 Input Dynamic Range GfY1 ― 3.58 GTC3 ― 4.43 GTC4 ― 3.58NTSC VD3 ― 4.43PAL VD4 ― 20 log (output level / input level) ― ― ― 26 UNIT mVp-p V mVp-p dB Vp-p 2002-03-29 TA1276AN TEXT SECTION SYMBOL TEST CIRCUIT GR ― GG ― GB ― GG / R ― GB / R ― R GfR ― G GfG ― B GfB CHARACTERISTIC AC Gain AC Gain Axial Difference Output Bandwidth Uni-Color Control Characteristic Brightness Control Characteristic Brightness Control Sensitivity White Peak Slice Level Black Peak Slice Level R Signal-to -Noise Ratio of RGB Output Blanking Pulse Delay Time Sub-Contrast Control Range RGB Output Voltage RGB Output Voltage Triaxial Difference Cut-Off Voltage Control Range TYP. MAX 2.95 3.30 3.70 2.95 3.30 3.70 2.95 3.30 3.70 0.94 1.00 1.06 0.94 1.00 1.06 25 30 ― 25 30 ― ― 25 30 ― vuMAX ― 0.59 0.66 0.74 vuCNT ― 0.34 0.39 0.44 vuMIN ― 0.09 0.11 0.13 ∆vu ― 14 15 16 VbrMAX ― 4.1 4.4 4.7 VbrCNT ― 3.25 3.55 3.85 VbrMIN ― 2.4 2.7 3.0 Gbr ― 5.7 6.6 7.5 Vwps1 ― 2.75 2.95 3.15 Vwps2 ― 2.30 2.50 2.70 VBPS ― 2.10 2.26 2.42 N41 ― ― −58 −49 ― −58 −49 ― −58 −49 0.45 0.50 0.55 0.45 0.50 0.55 0.65 0.85 1.05 0.3 0.8 1.3 0.3 0.8 1.3 (Note T1) ― at −3dB point (Note T2) (Note T3) (Note T4) (Note T5) (Note T6) ― N42 ― B N43 ― GHT1 ― GHT2 ― VHT ― R VVR ― G VVG ― B VVB ― 0.3 0.8 1.3 R VHR ― 0.3 0.8 1.3 G VHG ― 0.3 0.8 1.3 B VHB ― 0.3 0.8 1.3 tdON ― ― 0.1 0.3 tdOFF ― ― 0.15 0.3 ∆VSU+ ― 2.0 2.5 3.0 ∆VSU− ― −3.8 −3.3 −2.8 V#41 ― 2.25 2.50 2.75 2.25 2.50 2.75 2.25 2.50 2.75 ― 0 150 0.45 0.50 0.55 0.45 0.50 0.55 Half-Tone ON Voltage H-BLK Pulse Output Level MIN G Half-Tone Gain V-BLK Pulse Output Level TEST CONDITION V#42 ― V#43 ― ∆Vout ― CUT+ ― CUT− ― (Note T7) Pin 47 ― ― (Note T8) ― (Note T9) ― (Note T10) 27 UNIT times ― MHz Vp-p dB V mV Vp-p V dB times V µs dB V mV V 2002-03-29 TA1276AN CHARACTERISTIC Drive Adjustment Control Range Output Voltage of Muting Output Voltage of Blue Back ACL Characteristic ABL Point ABL Gain RGB Output Mode ACB Pulse Phase / Amplitude SYMBOL TEST CIRCUIT DRG+ ― 2.35 2.85 3.35 DRG− ― −5.75 −5.00 −4.25 DRB+ ― 2.35 2.85 3.35 DRB− ― −5.75 −5.00 −4.25 TEST CONDITION (Note T11) MIN TYP. MAX DRR+ ― 2.35 2.85 3.35 DRR− ― −5.75 −5.00 −4.25 MURD ― 2.1 2.26 2.42 MUGD ― 2.1 2.26 2.42 BBR ― 2.1 2.26 2.42 BBG ― 2.1 2.26 2.42 BBB ― 1.15 1.30 1.45 ACL1 ― −5 −3 −1 ACL2 ― −14.5 −13 −11.5 ABLP1 ― 0.12 0.17 0.22 ABLP2 ― 0.04 0.09 0.14 ABLP3 ― −0.05 0.00 0.05 ABLP4 ― −0.15 −0.10 −0.05 ABLP5 ― −0.24 −0.19 −0.14 ABLP6 ― −0.34 −0.29 −0.24 ABLP7 ― −0.43 −0.38 −0.33 ABLP8 ― −0.50 −0.45 −0.40 ABLG1 ― −0.04 0.00 0.00 ABLG2 ― −0.09 −0.04 0.00 ABLG3 ― −0.24 −0.19 −0.14 ABLG4 ― −0.40 −0.35 −0.30 ABLG5 ― −0.56 −0.51 −0.46 ABLG6 ― −0.73 −0.68 −0.63 ABLG7 ― −0.90 −0.85 −0.80 ABLG8 ― −0.10 −0.92 −0.87 V43R ― 2.25 2.5 2.75 V42R ― 0.3 0.8 1.3 V41R ― 0.3 0.8 1.3 V43G ― 0.3 0.8 1.3 V42G ― 2.25 2.5 2.75 V41G ― 0.3 0.8 1.3 V43B ― 0.3 0.8 1.3 V42B ― 0.3 0.8 1.3 V41B ― 2.25 2.5 2.75 (Note T12) (Note T13) (Note T14) (Note T15) (Note T16) (Note T17) θACBR ― ― 1 ― θACBG ― ― 2 ― θACBB ― ― 3 ― VACBR ― 0.1 0.125 0.15 VACBG ― 0.1 0.125 0.15 VACBB ― 0.1 0.125 0.15 (Note T18) 28 UNIT dB V Vp-p dB V V H Vp-p 2002-03-29 TA1276AN CHARACTERISTIC IK Input Level RGB γ Correction Characteristic Analog RGB Gain Analog RGB Input Dynamic Range TEST CIRCUIT IKR ― TEST CONDITION Pin 56 input level MIN TYP. MAX 1.45 1.65 1.85 1.45 1.65 1.85 IKG ― IKB ― 1.45 1.65 1.85 γ1R ― 40 50 60 γ2R ― 60 70 80 ∆1R ― 0.75 1.50 2.25 ∆2R ― −0.75 0.00 0.75 ∆3R ― −4.05 −3.30 −2.55 γ1G ― 40 50 60 γ2G ― 60 70 80 ∆1G ― 0.75 1.50 2.25 ∆2G ― −0.75 0.00 0.75 ∆3G ― −4.05 −3.30 −2.55 γ1B ― 40 50 60 γ2B ― 60 70 80 ∆1B ― 0.75 1.50 2.25 ∆2B ― −0.75 0.00 0.75 ∆3B ― −4.05 −3.30 −2.55 GTXR ― 4.0 4.5 5.0 4.0 4.5 5.0 4.0 4.5 5.0 0.94 1.00 1.06 0.94 1.00 1.06 25 30 ― 25 30 ― (Note T19) (Note T20) GTXG ― GTXB ― GTXG / R ― GTXB / R ― R GfTXR ― G GfTXG ― B GfTXB ― 25 30 ― R DR35 ― 0.6 1.0 1.5 G DR34 ― 0.6 1.0 1.5 B DR33 ― 0.6 1.0 1.5 VTXWPSR ― 2.30 2.55 2.80 VTXWPSG ― 2.30 2.55 2.80 VTXWPSB ― 2.30 2.55 2.80 VBPSR ― 2.10 2.26 2.42 VBPSG ― 2.10 2.26 2.42 VBPSB ― 2.10 2.26 2.42 Analog RGB Gain Triaxial Difference Analog RGB Bandwidth SYMBOL Analog RGB White Peak Slice Level Analog RGB Black Peak Limiter Level ― at −3dB point ― (Note T21) (Note T22) 29 UNIT V IRE dB IRE dB IRE dB times ― dB Vp-p V 2002-03-29 TA1276AN CHARACTERISTIC SYMBOL TEST CIRCUIT vuTXRMAX TEST CONDITION MIN TYP. MAX ― 0.8 0.9 1.0 vuTXGMAX ― 0.8 0.9 1.0 vuTXBMAX ― 0.8 0.9 1.0 UNIT vuTXRCNT ― 0.45 0.52 0.59 vuTXGCNT ― 0.45 0.52 0.59 vuTXBCNT ― 0.45 0.52 0.59 vuTXRMIN ― 0.10 0.12 0.14 vuTXGMIN ― 0.10 0.12 0.14 vuTXBMIN ― 0.10 0.12 0.14 ∆vuTXR ― 15.5 17.0 18.5 ∆vuTXG ― 15.5 17.0 18.5 ∆vuTXB ― 15.5 17.0 18.5 VbrTXMAX ― 3.3 3.5 3.7 VbrTXCNT ― 2.85 3.05 3.25 VbrTXMIN ― 2.45 2.65 2.85 Analog RGB Brightness Control Sensitivity GbrTX ― 6.0 6.8 7.6 mV Analog RGB Mode ON Voltage VTXON ― 0.65 0.85 1.05 V TXACL1 ― −2 −1 −0.05 TXACL2 ― −6.5 −4.5 −2.5 TXACL3 ― −6.5 −4.5 −2.5 TXACL4 ― −16.5 −15.0 −13.5 GOSDR ― 4.1 4.8 5.4 GOSDG ― 4.1 4.8 5.4 RGB Contrast Control Characteristic Analog RGB Brightness Control Characteristic Text ACL Characteristic Analog OSD Gain Analog OSD Gain Triaxial Difference Analog OSD Band Width Analog OSD White Peak Slice Level (Note T23) (Note T24) (Note T25) Pin 32 (Note T26) (Note T27) GOSDB ― 4.1 4.8 5.4 GOSDG / R ― G/R 0.94 1.00 1.06 GOSDB / R ― B/R 0.94 1.00 1.06 GfOSDR ― 25 30 ― GfOSDG ― 25 30 ― GfOSDB ― 25 30 ― VOSD1R ― 1.80 2.00 2.20 VOSD1G ― 1.80 2.00 2.20 VOSD1B ― 1.80 2.00 2.20 VOSD2R ― 1.45 1.65 1.85 VOSD2G ― 1.45 1.65 1.85 VOSD2B ― 1.45 1.65 1.85 at −3dB point (Note T28) 30 Vp-p dB V dB times ― dB Vp-p 2002-03-29 TA1276AN CHARACTERISTIC Analog OSD Black Peak Limiter Level SYMBOL TEST CIRCUIT VOSD3R ― TEST CONDITION (Note T29) MIN TYP. MAX 2.10 2.26 2.42 2.10 2.26 2.42 VOSD3G ― VOSD3B ― 2.10 2.26 2.42 VOSDDCR ― 2.3 2.5 2.7 VOSDDCG ― 2.3 2.5 2.7 VOSDDCB ― 2.3 2.5 2.7 VOSDON ― 2.05 2.30 2.55 OSDACL1 ― ― 0 ― OSDACL2 ― ― 0 ― OSDACL3 ― −6.5 −4.5 −2.5 OSDACL4 ― −16.5 −15 −13.5 GCT ― ― ― −50 −45 SYMBOL TEST CIRCUIT TEST CONDITION MIN TYP. MAX vuCYMAX ― 1.5 1.8 2.13 vuCYCNT ― 0.85 1.0 1.2 vuCYMIN ― 0.24 0.29 0.355 ∆vuCY ― 14.0 15.5 17.0 vuCYMAX ― 1.18 1.4 1.68 vuCYCNT ― 0.73 0.86 1.04 vuCYMIN ― 0.076 0.090 0.108 ∆vuCY+ ― 3 4 5 ∆vuCY− ― −20 −18 −16 00 θR90 ― 88 90 92 01 θR93 ― 90 92 94 10 θR96 ― 92 94 96 Analog OSD Output DC Voltage Analog OSD Mode ON Voltage OSD ACL Characteristic Crosstalk of RGB Inputs (Note T30) Pin 36 (Note T31) UNIT V dB COLOR DIFFERENCE SECTION CHARACTERISTIC Color Difference Signal Contrast Control Characteristic Color Control Characteristic R - Y Relative Phase R - Y Relative Amplitude G - Y Relative Phase G - Y Relative Amplitude Color Difference Half-Tone Gain (Note A1) (Note A2) ― 11 θ112 ― 109 111 113 00 vR56 / vB ― 0.55 0.58 0.61 01 vR68 / vB ― 0.67 0.7 0.73 10 vR76 / vB ― 0.78 0.81 0.84 ― 11 vR84 / vB ― 0.85 0.88 0.91 00 θG236 ― 234 237 240 01 θG240 ― 238 241 244 10 θG244 ― 242 245 248 ― 11 θG253 ― 251 254 257 00 vG30 / vB ― 0.275 0.300 0.325 01 vG325 / vB ― 0.300 0.325 0.350 10 vG35 / vB ― 0.325 0.350 0.375 11 Gv375 / vB ― 0.350 0.375 0.400 0.47 0.50 0.53 0.47 0.50 0.53 0.47 0.50 0.53 R GHTRY ― G GHTGY ― B GHTBY ― ― (Note A3) 31 UNIT Vp-p dB Vp-p dB ° times ° times 2002-03-29 TA1276AN CHARACTERISTIC Color γ Characteristic Color Limiter Characteristic High Bright Color Gain Max Base Band Tint Control Characteristic Min Flesh Color Characteristic Color Difference Signal Input Dynamic Range Color Detail Emphasis Characteristic Phase Shift at IQ→UV Conversion SYMBOL TEST CIRCUIT Vγ1 ― Vγ2 ― Vγ3 ― TEST CONDITION (Note A4) MIN TYP. MAX 0.09 0.23 0.37 0.23 0.37 0.51 0.38 0.52 0.66 ∆γ ― 0.65 0.75 0.85 CLT0 ― 1.45 1.65 1.85 CLT1 ― 1.8 2.0 2.2 HBC1 ― 0.02 0.04 0.06 θTRMAX ― R 29 33 37 θTBMAX ― B 29 33 37 θTRMIN ― R −37 −33 −29 θTBMIN ― B −37 −33 −29 Fa33 ― 0.38 0.48 0.58 DRR-Y ― 0.9 1.2 1.5 DRB-Y ― 0.9 1.2 1.5 GCD0 ― 15.0 18.0 21.0 GCD1 ― ― −15.0 0.0 θI→U ― 31 33 35 θQ→V ― 31 33 35 (Note A5) (Note A6) (Note A7) ― (Note A8) ― 32 UNIT Vp-p ― Vp-p times ° ― Vp-p Vp-p ° 2002-03-29 TA1276AN DEF SECTION CHARACTERISTIC 32fH VCO Oscillation Start Voltage Horizontal Output Start Voltage Horizontal Output Duty Cycle SYMBOL TEST CIRCUIT VVCO ― VHON23 ― T23 ― Pin 23 TEST CONDITION DEF VCC Voltage MIN TYP. MAX 3.1 3.4 3.7 4.7 5.0 5.3 38.5 40.5 42.5 fH050 ― Vertical freq. ; Auto 15475 15625 15775 fH060 ― Vertical freq. ; 60Hz 15585 15734 15885 fHMIN ― 14700 15000 15300 fHMAX ― 16500 16700 16900 βH ― 180 230 280 High Level VH23 ― 2.7 3.0 3.3 Low Level VL23 ― ― 0.15 0.30 SPH1 ― 11.1 11.3 11.5 SPH2 ― 0.35 0.45 0.55 SPH3 ― 0.11 0.21 0.31 ∆H24 ― (Note D3) 2.3 2.5 2.7 ∆HSFT ― (Note D4) 5.7 6.2 6.7 Clamp Pulse Start Phase CPS ― 2.8 2.9 3.1 Clamp Pulse Width CPW ― 1.0 1.2 1.4 Threshold of External Clamp Pulse Input CPV30 ― Pin 24 3.3 3.6 3.9 Threshold of External Clamp Mode Switching CPMV23 ― Pin 23 8.5 8.7 8.9 Horizontal Output Free-Run Frequency Variable Range of Horizontal Output Frequency Horizontal Output Frequency Control Sensitivity Horizontal Output Voltage Horizontal Output Phase Curve Correction Characteristic Variable Range of Horizontal Picture Position Variable pin 20 voltage (Note D1) Pin 23 (Note D2) (Note D5) BPv17 ― Pin 17, at normal scan 0.9 1.1 1.3 ― Pin 24, at doble scan 0.9 1.1 1.3 SPC Gate Pulse Start Phase GPS ― 1.9 2.1 2.3 SPC Gate Pulse Width GPW ― 1.9 2.1 2.3 SPC Horizontal Blanking Pulse Start Phase HPS ― 4.6 4.8 5.0 HPW50 ― 9.9 10.4 10.9 HPW60 ― 10.5 11.0 11.5 SPC Horizontal Blanking Pulse Pulse Width V % Hz Hz / 0.1V V V V BPv24 Threshold of External Black Peak Hold Stopping Pulse UNIT (Note D6) (Note D7) 33 ― µs 2002-03-29 TA1276AN CHARACTERISTIC HD Output Start Phase SYMBOL TEST CIRCUIT HDS ― HD Output Pulse Width HDW ― HD Output Voltage VHD ― TEST CONDITION (Note D8) MIN TYP. MAX 0.7 0.9 1.1 0.7 0.9 1.1 4.5 4.8 5.1 UNIT µs ― Pin 25, at normal scan 3.2 3.5 3.8 ― Pin 25, at doble scan 3.2 3.5 3.8 ― Pin 25, H / V blanking 0.8 1.1 1.4 46 48 50 µs ― 23 ― H 46 48 50 µs ― 21 ― H Pin 31 input current 150 300 400 µA ― DEF VCC voltage 4.7 5.0 5.3 V fV050 ― Vertical freq. ; Auto 40 45 50 fV060 ― Vertical freq. ; 60Hz 48 53 58 VVH ― 4.7 5.0 5.3 VVL ― ― 0.0 0.3 fPL1 ― ― 224.5 ― fPH1 ― ― 353 ― fPL2 ― ― 224.5 ― fPH2 ― ― 297 ― Vertical Pull-In Range (3) f50P ― ― 288.5 ― Vertical Pull-In Range (4) f60P ― ― 288 ― VR50S1 ― 44 46 48 VG50S1 ― 44 46 48 VB50S1 ― 44 46 48 VR50S2 ― ― 19 ― VG50S2 ― ― 19 ― VB50S2 ― ― 19 ― VR60S1 ― 44 46 48 VG60S1 ― 44 46 48 VB60S1 ― 44 46 48 Threshold of AFC-2 Detection VHBLK1 Threshold of Horizontal Timing VHBLK2 Threshold of Blanking Pulse VHBLK3 Vertical Blanking Pulse Start Phase VP50S1 ― Vertical Blanking Pulse Stop Phase VP50S2 ― Vertical Blanking Pulse Start Phase VP60S1 ― Vertical Blanking Pulse Stop Phase VP60S2 ― External Blanking Threshold Current ABLK ― Vertical Output Start Voltage VON Vertical Output Free-Run Frequency Vertical Output Voltage Vertical Pull-In Range (1) Vertical Pull-In Range (2) RGB Vertical Blanking Pulse Start Phase (1) RGB Vertical Blanking Pulse Stop Phase (1) RGB Vertical Blanking Pulse Start Phase (2) RGB Vertical Blanking Pulse Stop Phase (2) (Note D9) (Note D10) Pin 31 (Note D11) (Note D12) (Note D13) VR60S2 ― ― 17 ― VG60S2 ― ― 17 ― VB60S2 ― ― 17 ― 34 V Hz V H µs H µs H 2002-03-29 C ↑ Black Stretch Amp Maximum Gain V2 ↑ OFF A C A C Use pin 53 to adjust the signal amplitude to 0.1Vp-p. 3) 35 2002-03-29 Set SW50 to A (maximum gain) and input a 500kHz sine wave to TP53. 2) Calculate the GBS using the following formula. GBS = VB÷VA Set the BUS control data to the preset value. 1) 6) As in 4), measure the DC differential VB3 of pin 49. 6) Turn the black stretch gain on (0) and measure the amplitude VB of pin 49. Set the black detect level to 3IRE (0). 5) Turn the Y mute off (1), turn the black stretch gain off (1), and measure the amplitude VA of pin 49. Increase the PS voltage from 5V and measure the DC differential VB of pin 49 where the picture period (high period) of pin 50 goes low. 4) 5) Turn the Y mute off (1), turn the black stretch gain off (1), and set the black detect level to 0IRE (1). 3) 4) Set the BUS control data to the preset value. Connect pin 53 to an external power supply (PS) and observe pin 50. Ensure the composite signal is always input to pin 15 (Y1 / sync input). 3) 2) For testing, see the picture sharpness AC characteristics testing circuit diagram. After using the preset values to transmit the BUS control data, set ACB operation switching to ACB off (01). 2) 1) SW 13 : A, SW18 : ON, SW20 : ON, SW23 : ON, SW33 : A, SW 34 : A, SW 35 : A, SW37 : A, SW 38 : A, SW39 : A, SW 46 : ON, SW51 : B, SW52 : B 1) Video block common test conditions TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 Black Detect Level Shift Video Block PARAMETER V1 NOTE TEST CONDITIONS TA1276AN V3 NOTE Black Stretch Start Point (1) PARAMETER C OFF A C Connect pin 53 to an external power supply (PS), increase the voltage from V53, and plot the resulting change in voltage S1 of pin 49. Next, turn the black stretch gain on (0), set the black stretch point 1 to the minimum (000), increase the PS voltage from V53 as in 3), and plot the resulting change in voltage S2 of pin 49. Set the black stretch point 1 to the maximum (111), increase the PS voltage from V53 as in 3), and plot the change in voltage S3 of pin 49. Use the diagram below to calculate the intersections VBST1 and VBST2 of S1, S2, and S3. Use the following formulas to calculate PBST1 and PBST2. PBST1 [(IRE)] = ((VBST1 [V]−V49 [V]÷1.4 [V])×100 [(IRE)] PBST2 [(IRE)] = ((VBST2 [V]−V49 [V]÷1.4 [V])×100 [(IRE)] 3) 4) 5) 6) 2002-03-29 Set SW50 to A (maximum gain), turn the Y mute off (1), and turn the black stretch gain off. 2) 36 Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V4 NOTE Black Stretch Start Point (2) PARAMETER C ON A A Turn the black stretch gain on (0), connect pin 49 to an external power supply (PS), and measure pin 43 (R OUT). When the black stretch start point 2 data are at the minimum (000), calculate as in the diagram the black stretch start point differential ∆V000 for when P is V49 (APL 0%) and for when P is V49+1.0 [V] (APL 100%). Next, when the black stretch start point 2 data are maximum (111), calculate differential ∆V111 in the same way. Calculate the following formulas. PBS1 = (∆V000 / V43)×100 PBS2 = (∆V111 / V43)×100 3) 4) 5) 6) 2002-03-29 Turn the black stretch gain off (1), turn the Y mute off (1), and turn the video mute off (0). Input the TG7 linearity to TP53, use pin 53 to adjust the amplitude as in the diagram, set unicolor to the center (1000000), and measure the resulting amplitude (V43) of pin 43 (R OUT). 2) 37 Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V5 NOTE D.ABL Detect Voltage PARAMETER C OFF A C Repeat 3) when the D.ABL detect voltage bus data are 000, 001, 010, and 100 respectively. Measure PS voltages V000, V001, V010, and V100 when the picture period of pin 49 changes to low. (Enlarge the range before measuring.) Next, calculate the ∆V001, ∆V010, and ∆V100 voltage differentials from V000 and V001, V010, and V100. ∆V = V000−V001 (V010, V100) 4) 5) 2002-03-29 Connect pin 45 to an external power supply (PS) and decrease the voltage from 6.5V. 3) 38 Turn the Y mute off (1), set the ABL sensitivity to the minimum (000), set the D.ABL sensitivity to the maximum (111), and turn the black stretch gain off (1). 2) *** Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN D.ABL Sensitivity Black Level Compensation V7 PARAMETER V6 NOTE ↑ C OFF ON ↑ A ↑ C Turn the black level compensation on (1), measure ∆V1 [mV], and calculate the following formula. 3 BLC = (∆V1 / 1.4×10 )×100 (IRE) 39 Turn the Y mute off (1), turn the black stretch gain off (1), and observe pin 49. 3) 2002-03-29 From the diagram, calculate the SDAMIN and SDAMAX gradients. SDAMIN, SDAMAX = ∆Y / ∆X 4) 2) With the D.ABL detect voltage at the minimum (000), plot the voltage characteristics of pin 49 in relation to the voltage of pin 45 when D.ABL sensitivity is at the minimum (000) and the maximum (111). 3) Set the BUS control data to the preset value. Turn the Y mute off (1), turn the black stretch gain off (1), and connect pin 45 to an external power supply. 2) 1) Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V8 NOTE Black Peak Detect Level PARAMETER C ON C C Connect pin 53 to an external power supply (PS). Turn the Y mute off (1), the black stretch gain off (1), and set the black detect level shift to 0IRE (1). Increase the PS from 0V and measure the voltage VBP of pin 49 where the DC level of the picture period of pin 50 shifts from high to low. Calculate ∆VBP from the following formula. ∆VBP = VBP−V49 3) 4) 5) 6) 2002-03-29 Measure the DC voltage V49 of pin 49. 2) 40 Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V9 NOTE DC Transmission Rate Compensation Gain PARAMETER C ON B C Calculate ADT100 and ADT130 from the following formula. ADT100 = (∆V2 [V]−∆V1 [V])÷0.1 [V] ADT130 = (∆V4 [V]−∆V3 [V])÷0.1 [V] 6) 2002-03-29 Next, with the DC transmission rate compensation gain at the maximum (111), measure ∆V3 and ∆V4. 5) 41 Measure the amplitude V43 of pin 43, set the PS to V53+0.7V, and adjust V43 to 0.7Vp-p using unicolor. With the DC transmission rate compensation gain at the minimum (000), measure ∆V1 and ∆V2 as in the diagram below. 3) Turn the Y mute off (1), turn the video mute off (0), and connect pin 53 to an external power supply (PS). 2) 4) Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V10 NOTE DC Transmission Compensation Start Point PARAMETER C ON B C With the DC transmission compensation rate at the minimum (000), increase PS from V53 and plot the relationship between the voltages of pins 49 and 43. Next, with the DC transmission compensation rate at the maximum (111), increase PS from V53 and plot the relationship between the voltages of pins 49 and 43. With the DC transmission compensation rate at the maximum (111), increase the PS from V53 when the DC transmission compensation start point reaches the maximum (111) and plot the relationship between the voltages of pins 49 and 43. Calculate VDT0 and VDT42 from the following formula. VDT0 = ((VSP0−V49) / 1 [V] )×100 [%] VDT42 = ((VSP42−V49) / 1 [V] )×100 [%] 3) 4) 5) 6) 2002-03-29 Measure the amplitude V43 of pin 43, set the PS to V53+0.7V, and adjust V43 to around 1.0Vp-p using unicolor. 2) 42 Repeat steps 1) and 2) of V21. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V11 NOTE DC Transmission Compensation Limit Point PARAMETER C ON B C Set the DC transmission compensation rate to the maximum (111). Increase the PS from 5V, observe pin 43, and plot the DC transmission compensation rate. Repeat 4) above but change the DC transmission compensation limit point data. Calculate PDTL60, PDTL73, PDTL87, and PDTL100 from the measured data and the following formulas. PDTL60 = ((VL60−V49) / 1.0)×100 [%] PDTL73 = ((VL73−V49) / 1.0)×100 [%] PDTL87 = ((VL87−V49) / 1.0)×100 [%] PDTL100 = ((VL100−V49) / 1.0)×100 [%] 3) 4) 5) 2002-03-29 Turn the Y mute off (1), turn the video mute off (0), and with the unicolor set at maximum (1111111), connect pin 49 to an external power supply (PS). 2) 43 Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN Picture Sharpness Control Range YNR Characteristics V13 PARAMETER V12 NOTE ↑ C ↑ OFF ↑ B ↑ A Next, set the picture sharpness to the minimum (0000000). As in 6), when the frequencies are 100kHz and 2.4MHz, measure the V100 and VL amplitudes respectively and calculate GMINL by the formula shown below. Set the aperture compensator peak frequency to 7.7M (111) and the picture sharpness to the maximum (1111111). When the frequencies are 100kHz and FAPH11, measure the V100 and VH amplitudes respectively and calculate GMAXH by the formula shown below. Next, set the picture sharpness to the minimum (0000000). When the frequencies are 100kHz and 4MHz, measure the V100 and VH amplitudes respectively and calculate GMINH by the following formula. G [dB] = 20×Log (VL (H)÷V100) Repeat steps 1) to 5) of V12. With YNR on (1) and the picture sharpness at minimum (0000000), measure the TP41e amplitudes V100 and VL when the input signal frequencies are 100kHz and 2.4MHz respectively. Next, set the aperture compensator peak frequency to 7.7M (111). When the input signal frequencies are 100kHz and 4MHz, measure the V100 and VH amplitudes respectively and calculate GYL and GYH by the following formula. GYL (H) [dB] = 20×Log (VL (H)÷V100) 7) 8) 9) 1) 2) 3) 2002-03-29 Set the picture sharpness to the maximum (1111111). When the frequencies are 100kHz and FAPL01, measure the V100 and VL amplitudes respectively and calculate GMAXL by the formula shown below. 6) 44 Turn the Y mute off (1), the video mute off (0), connect TP43 and TP41b, and observe TP41e. 5) **** Set the amplitude of pin 53 to 20mVp-p. Set the unicolor to the maximum (1111111), set SHR tracking to SRT-gain low (11), and set the aperture compensator peak frequency to 4.2M (001). 3) Input a sine wave to TP53. 2) 4) Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V14 NOTE 2T Pulse Response SRT Control PARAMETER C ON B A 2002-03-29 Calculate the following formula. TSRTL = TSL1−TSL2 TSRTH = TSH1−TSH2 7) 45 Set SHR tracking to SRT-gain high (00) and measure TSL2. Measure TSL1 as in the diagram below. 4) Next, set the aperture compensator peak frequency to 7.7M (111) and measure TSH1 and TSH2 as above. Set the sharpness control to the center (1000000), set the aperture compensator peak frequency to 4.2M (001), connect TP43 and TP41b, and observe TP41e. 3) 5) Input a 2T pulse (STD) signal to TP53, turn the Y mute off (1), turn the video mute off (0), set unicolor to maximum (1111111), and set SHR tracking to SRT-gain low (11). 2) 6) Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V15 NOTE VSM Gain PARAMETER C ON B A Turn the Y mute off (1), turn the video mute off (0), set the aperture compensator peak frequency to 4.2M (001), and set the amplitude of pin 53 to 0.1Vp-p. Measure the TP48 amplitudes VL00, VL01, VL10, and VL11 in the following cases. VSM gain 0dB (00) →VL (H) 00 −6dB (01) →VL (H) 01 −9dB (10) →VL (H) 10 OFF (11) →VL (H) 11 Input the sine wave of frequency FVH to TP53, set the aperture compensator peak frequency to 7.7M (111), and measure the TP48 amplitudes VH00, VH01, VH10, and VH11 as above. Calculate the following formulas. GVL (H) 00 = 20×Log (VL (H) 00 / 0.1) [dB] GVL (H) 01 = 20×Log (VL (H) 01 / 0.1) [dB]−20×Log (VL (H) 00 / 0.1) [dB] GVL (H) 10 = 20×Log (VL (H) 10 / 0.1) [dB]−20×Log (VL (H) 00 / 0.1) [dB] GVL (H) 11 = 20×Log (VL (H) 00 / 0.1) [dB] 3) 4) 5) 6) 2002-03-29 Input the frequency FVL sine wave to TP53. 2) 46 Set the BUS control data to the preset value. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V16 NOTE VSM Horizontal Parabola Modulation Gain PARAMETER C ON B A 47 2002-03-29 In 3) and 4) above, turn the VSM output horizontal parabola modulation off (0) and check that no parabola modulation is generated on the picture period signal. (VPOFL, VPOFH) Calculate GVRL, GVLL, GVRH, and GVLH from the following formulas. GVRL (H) = 20×Log (VRL (H) / VCL (H)) GVLL (H) = 20×Log (VLL (H) / VCL (H)) 5) 6) As in the diagram, measure the picture period amplitudes VCL, VRL, and VLL of TP48. Next, input the sine wave of frequency FVH to TP53, set the aperture compensator peak frequency to 7.7M (111), set the VSM horizontal parabola frequency to 31.5k (10), and measure the picture period amplitudes VCH, VRH, and VLH of TP48 as above. 4) Turn on the VSM output horizontal parabola modulation (1) and set the VSM gain to 0dB (00). 2) 3) Repeat steps 1) to 3) of V15. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN V17 NOTE VSM High-Speed Mute Response Time PARAMETER C ON B A 2002-03-29 Similarly, input the pulse to pin 36 and measure the response time TVMH3 (4) at the input. 5) 48 Similarly, input the pulse to pin 36 and measure the response time TVML3 (4) at that input. Input the sine wave of frequency FVH to TP53, set the aperture compensator peak frequency to 7.7M (111), and measure the response time TVMH1 (2) as in 2) above. 3) Input a pulse like that shown below to pin 32 and measure the response time TVML1 (2) at that input. 2) 4) Repeat steps 1) to 3) of V15, then observe pin 48. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 15 SW 49 SW 50 SW 53 TA1276AN ↑ APC Frequency Control Sensitivity APC Pull-In and Hold Range C2 C3 ↑ 80 07 ACC Characteristics Chroma Block PARAMETER C1 NOTE ↑ ↑ 00 ↑ ↑ 00 ↑ ↑ 00 ↑ ↑ OPEN ↑ ↑ OPEN 49 ↑ A B ↑ ↑ A Measure the free-run sensitivity β for the V11+∆V11 (100mV) near the fc. (3.5 NTSC = β3, 4.3 ; PAL = β4 ; M-PAL = βM) Input 3.579545MHz, 4.433619MHz, and 3.575611MHz continuous waves (200mVp-p to the chroma input pin (TP13). Switch the color system mode (10) to 3.58 NTSC (00), 4.43 PAL (60), and M-PAL (80), and measure the following for each of those cases. Vary the input signal frequency in 10Hz-steps within a range of ±3kHz. Clamp B / W→color mode (f*P*).While holding color→B / W mode (f*H*), measure the ± deviations from the frequency at each continuous wave input. 5) 1) 2) 3) 4) 2002-03-29 Vary the voltage of the external voltage source (V11) and observe the fsc output pin 1 using a frequency counter. 4) 2) Connect external voltage source (V11) to APC filter pin 11. Switch the color system mode (10) to 3.58 NTSC (00), 4.43 PAL (60), and M-PAL (80) and measure the following for each of those cases. 1) 3) Calculate A = F30 / F300. Connect SW 13 to A. 3) Measure the output amplitudes F10, F30, F300, and F600 of the UQ output pin 5 when the chroma input amplitude levels are set to 10, 30, 300, and 600mVp-p. Input 3.58-NTSC rainbow signal (C-4 signal) burst / chroma signals with the same burst / chroma amplitude to the chroma input pin (TP13). 2) 1) Chroma block common test conditions SW 13 : B, SW15 : C, SW18 : ON, SW 20 : ON, SW 23 : ON, SW 24 : ON, SW25 : ON, SW 33 : A, SW34 : A, SW 35 : A,SW37 : A, SW 38 : A, SW39 : A, SW 46 : ON TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SUBADDRESS SWITCHING MODE TEST CONDITIONS 10 17 18 SW 5 SW 6 SW 13 SW 15 TA1276AN SECAM Output DC Level Change NTSC Ident Sensitivity C5 PARAMETER C4 NOTE ↑ 80 07 00 or 30 or 60 00 C0 C0 or D0 ↑ 00 ↑ OPEN ↑ OPEN 50 B A ↑ A Measure the output DC level of the SECAM control pin 3 when the color system mode (10) is switched to 3.58 NTSC (00), 4.43 PAL (30), and SECAM (60). (3.58 NTSC mode: SEN) (4.43 PAL mode: SEP) (SECAM mode: SES) Input a 3.58-NTSC rainbow (C-4 signal) burst / chroma signal with the same burst / chroma amplitudes to the chroma input pin (TP13). Observe the BUS READ mode (5th and 6th bits of the 1st byte). Switch the Indent sensitivity (set the subaddress (10) data low (C0) and high (D0)) and perform the following measurements. Increase the input signal amplitude from 0 and measure the input signal amplitude at the switch to 3.58 NTSC mode. (LOW (C0) : vNCL, High (D0) : vNCH) Lower the input signal amplitude from 100mVp-p and measure the input signal amplitude at the deviation from 3.58 NTSC mode. (LOW (C0) : vNBL, High (D0) : vNBH) 2) 1) 2) 3) 4) 5) 2002-03-29 Connect SW 13 to A. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SUBADDRESS SWITCHING MODE TEST CONDITIONS 10 17 18 SW 5 SW 6 SW 13 SW 15 TA1276AN PAL Ident Sensitivity TOF Characteristics C7 PARAMETER C6 NOTE ↑ 80 07 00 ↑ C0 or D0 00 or 60 38 00 ↑ OPEN ↑ OPEN 51 ↑ B ↑ A When the subaddress (10) data are f0 = 3.58MHz (00) and f0 = 4.43MHz (60), and subaddress (18) data are (38), connect 1.5kΩ between the VI output pin 6 and the 5V-VCC and observe the VI output pin 6. Measure the output amplitude when f0 = 3.58MHz and calculate the gain in decibels from the input (GFC3). 2) 3) 2002-03-29 Measure the output amplitude when f0 = 4.43MHz±500kHz and calculate the gain in decibels from the input (+500kHz : GFH4, −500kHz : GFL4). Input the signal C-1 to the chroma input pin. (Signal amplitude = 50mVp-p). 1) 6) Lower the input signal amplitude from 100mVp-p and measure the input signal amplitude at the deviation from 4.43 PAL mode. (LOW (C0) : vPBL, High (D0) : vPBH) 5) Measure the output amplitude when f0 = 4.43MHz and calculate the gain in decibels from the input (GFC4). Increase the input signal amplitude from 0 and measure the input signal amplitude at the switch to 4.43 PAL mode. (LOW (C0) : vPCL, High (D0) : vPCH) 4) 5) Switch the Indent sensitivity (set the subaddress (10) data low (C0) and high (D0)) and perform the following measurements. 3) Measure the output amplitude when f0 = 3.58MHz±500kHz and calculate the gain in decibels from the input (+500kHz : GFH3, −500kHz : GFL3). Observe the BUS READ mode (5th and 6th bits of the 1st byte). 2) 4) Input a 4.43-PAL rainbow (C-4 signal) burst / chroma signal with the same burst / chroma amplitude to the chroma input pin (TP13). 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SUBADDRESS SWITCHING MODE TEST CONDITIONS 10 17 18 SW 5 SW 6 SW 13 SW 15 TA1276AN ↑ ↑ Unicolor Adjustment Characteristics Brightness Adjustment Characteristics Brightness Sensitivity White Peak Slice Level T2 T3 T4 T5 ↑ ↑ A SW 33 AC Gain Text Block PARAMETER T1 NOTE ↑ ↑ ↑ ↑ A SW 34 ↑ ↑ ↑ ↑ A ↑ ↑ ↑ ↑ A ↑ ↑ ↑ ↑ A ↑ ↑ ↑ ↑ A 52 ↑ ↑ ↑ ↑ B ↑ ↑ ↑ ↑ B ↑ ↑ ↑ ↑ A 2002-03-29 Change the subaddress (05) data to (81) and repeat steps 1) to 3) above. (Vwps2) 4) Connect an external power supply to pin 53 and increase the voltage gradually from 5.8V. 2) Measure the picture period amplitude voltage of pin 43 when pin 43°s picture period is clipped (Vwps1). Change the bus data and set the sub-contrast to maximum. 1) 3) Gbr = (VbrMAX−VbrMIN) / 256 Input signal 2 to pin 53 and adjust the picture period amplitude output of pin 43 to 1Vp-p. 1) 2) Calculate the unicolor maximum and minimum amplitude ratios using digital conversion. (∆vu) 3) Using the results obtained from T3, calculate the brightness sensitivity from the following formula. Set the unicolor data to maximum (7F), center (40), and minimum (00) and measure the pin 43 picture period amplitudes for each case. (vuMAX, vuCNT, vuMIN) 2) 1) Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53. 1) Measure the voltage of pin 43 when the brightness is changed to maximum (FF), center (80), and minimum (00). (VbrMAX, VbrCNT, VbrMIN) GR = V43 / 0.2 GG = V42 / 0.2 GB = V41 / 0.2 3) 2) Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53. Measure the picture period amplitude of pins 41, 42, 43 (V41, V42, and V43). 1) 2) Text block common test conditions SW 13 : A, SW15 : C, SW18 : ON, SW 20 : ON, SW 23 : ON, SW 24 : ON, SW 25 : ON TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN Black Peak Slice Level Half Tone Characteristics BLK Pulse Delay Time RGB Output Voltage T7 T8 T9 PARAMETER T6 NOTE ↑ ↑ ↑ A SW 33 ↑ ↑ ↑ A SW 34 ↑ ↑ ↑ A ↑ ↑ ↑ A ↑ ↑ ↑ A ↑ ↑ ↑ A 53 ↑ ↑ ↑ B ↑ ↑ ↑ B ↑ C A C GHT2 = V41C / V41A Calculate tdON, tdOFF from the signal applied to pin 25 (H.BLK input) (A below) and the output signals from pins 41, 42, and 43 (B below). (A) Signal applied to pin 25 6) 7) 1) 1) Halt the voltage applied to pin 47, set the subaddress (03) data to (81), and measure the picture period amplitude of pin 41 (V41C). 5) 2002-03-29 Measure the picture period voltages for pins 41, 42, and 43. (B) Output signals from pins 41, 42, 43 Measure the picture period amplitude of pin 41 (V41B). GHT1 = V41B / V41A 4) Measure the picture period amplitude of pin 41 (V41A). Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53. 1) Apply 1.5V from an external power supply to pin 47. Measure the voltages of pins 41, 42, and 43 when their picture periods are clipped. 3) 3) Connect an external power supply to pin 53 and decrease the voltage gradually from 5.8V. 2) Repeat step 1) of T5. 1) 2) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN ↑ Drive Adjustment Variable Range Output Voltage During Muting Output Voltage at Blue Back T11 T12 T13 ↑ ↑ A SW 33 Cutoff Voltage Variable Range PARAMETER T10 NOTE ↑ ↑ ↑ A SW 34 ↑ ↑ ↑ A ↑ ↑ ↑ A ↑ ↑ ↑ A ↑ ↑ ↑ A 54 ↑ ↑ ↑ B ↑ ↑ ↑ B ↑ C A C Set the subaddress (10) data to (08). Measure the picture period voltages of pins 43 and 42 and the picture period amplitude of pin 41. (BBR, BBG, BBB) 1) 2) 2002-03-29 Measure the picture period voltages of pins 43, 42, and 41. (MURD, MUGD, MUBD) Set the subaddress (00) data to (FF). 1) 2) In steps 1) to 3) above, set data of the LSB of subaddress (09) to 1, measure pin 43, and repeat the calculations. (DRR+, DRR−) 5) Measure the picture period amplitude of pin 42 when the drive (subaddress-09) data are changed to maximum (FE), center (80), and minimum (00). 2) In steps 1) to 3) above, change the subaddress (0A) data, measure pin 41, and repeat the calculations. (DRB+, DRB−) Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53. 1) 4) In steps 1) and 2) above, make the following changes and remeasure : Change the subaddress (0D) data and measure pin 42, Change the subaddress (0E) data and measure pin 41. 3) Calculate the maximum and minimum amplitude ratios for the drive center using decibel conversion. (DRG+, DRG−) Measure the picture period voltage of pin 43 when the cutoff (subaddress 0C) data are changed to maximum (FF), center (80), and minimum (00), and calculate the amount of change of maximum and minimum from the center. (CUT+, CUT−). 2) 3) Set the subaddress (17) data to (07). 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN ACL Characteristics ABL Point T15 PARAMETER T14 NOTE ↑ A SW 33 ↑ A SW 34 ↑ A ↑ A ↑ A ↑ A 55 ↑ B ↑ B ↑ A ACL1 = −20×ℓog (vACL2 / vACL1) ACL2 = −20×ℓog (vACL3 / vACL1) Measure the DC voltage of pin 45. (VABL1) Set the subaddress (16) data to (1C). Applying external voltage to pin 45, lower the pin voltage from 6.5V. Measure the voltage of pin 45 when the voltage of pin 43 starts to change. (VABL2) 5) 1) 2) 3) 2002-03-29 ABLP1 = VABL2−VABL1, ABLP5 = VABL6−VABL1 ABLP2 = VABL3−VABL1, ABLP6 = VABL7−VABL1 ABLP3 = VABL4−VABL1, ABLP7 = VABL8−VABL1 ABLP4 = VABL5−VABL1, ABLP8 = VABL9−VABL1 Measure the picture period amplitude of pin 43 when −1V DC is applied to pin 45 from an external power supply. (vACL3) 4) 5) Measure the picture period amplitude of pin 43 when −0.5V DC is applied to pin 45 from an external power supply. (vACL2) 3) Change the data of subaddress (16) to (3C), (5C), (7C), (9C), (BC), (DC), and (FC), and repeat step 3) for each of these data.(VABL3, VABL4, VABL5, VABL6, VABL7, VABL8, VABL9) Measure the picture period amplitude of pin 43 (vACL1). 2) 4) Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN ABL Gain RGB Output Mode T17 PARAMETER T16 NOTE ↑ A SW 33 ↑ A SW 34 ↑ A ↑ A ↑ A ↑ A 56 ↑ B ↑ B ↑ C Adjust the brightness so that the picture period voltage of pin 43 is set to 2.5V. Set the subaddress (16) data to (01). Measure the picture period voltages of pins 43, 42, and 41. (V43R, V42R, V41R) Change the subaddress (16) data to (02) and repeat step 3). (V43G, V42G, V41G) Change the subaddress (16) data to (03) and repeat step 3). (V43B, V42B, V41B) 1) 2) 3) 4) 5) 2002-03-29 ABLG1 = VABL11−VABL10, ABLG5 = VABL15−VABL10 ABLG2 = VABL12−VABL10, ABLG6 = VABL16−VABL10 ABLG3 = VABL13−VABL10, ABLG7 = VABL17−VABL10 ABLG4 = VABL14−VABL10, ABLG8 = VABL18−VABL10 4) 6) Measure the voltage of pin 43. (VABL10) Apply 4.5V from an external power supply to pin 45. 3) Change the data of subaddress (16) to (00), (04), (08), (0C), (10), (14), (18), and (1C), and repeat step 3) for each of these data.(VABL11, VABL12, VABL13, VABL14, VABL15, VABL16, VABL17, VABL18) Set the subaddress (16) data to (00). Set the brightness to the maximum. 2) 5) Apply 6.5V from an external power supply to pin 45. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN T18 NOTE ACB Insertion Pulse Phase and Amplitude PARAMETER A SW 33 A SW 34 A A A A 57 B B A or C Measure the voltages of pins 29, 30, and 55. From an external power supply, apply the measured voltages to these pins. Set subaddress (15) data to (D2). From pins 43, 42, and 41, calculate the phase of the ACB insertion pulse in accordance with Fig.1 below. 3) 4) 5) 6) Set SW53 to C. 2) 2002-03-29 Measure the ACB insertion pulse amplitude (the level from the picture period amplitude at no input) of pins 43, 42, and 41. (Note) After the completion of V.BLK, the video period following the falling edge of the FBP input is regarded as 1H and the periods at each completion of H.BLK are counted as 2H, 3H, 4H···. Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53 and adjust the drive adjustment data so that the picture period amplitudes of pins 41 and 42 are equal to that of pin 43. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN T19 NOTE RGB γ Characteristics PARAMETER A SW 33 A SW 34 A A A A 58 B B A Adjust the drive adjustment data so that the picture period amplitudes of pins 41 and 42 are equal to that of pin 43. Set the subaddress (14) data to (10). From pins 43, 42, and 41, calculate the RGB γ start point and its gradient (decibel conversion) in relation to the off point in accordance with Fig.1. 2) 3) 4) 2002-03-29 Input a ramp waveform to pin 53 and adjust the input amplitude so that the picture period amplitude of pin 43 is 2.3Vp-p. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN A ↑ Analog RGB White Peak Slice Level Analog RGB Black Peak Limiter Level T21 T22 ↑ A A or B A or B SW 34 SW 33 Analog RGB Gain PARAMETER T20 NOTE ↑ A A or B ↑ ↑ A ↑ ↑ A ↑ ↑ A 59 ↑ ↑ B ↑ ↑ B ↑ ↑ A 2002-03-29 As in steps 3) and 4) above, input to pin 34 and measure pin 42, then input to pin 33 and measure pin 41. 5) Set the RGB contrast data to the maximum (7F). 3) Connect an external power supply to pin 35, decrease the voltage gradually from 4.5V, and measure the voltage when pin 43 is clipped. Apply 5V from an external power supply to pin 32. 4) Repeat step 1) of T20. 1) 2) Set the RGB contrast data to the maximum (7F). 3) As in steps 3) and 4) above, input to pin 34 and measure pin 42, then input to pin 33 and measure pin 41. Apply 5V from an external power supply to pin 32. 2) 5) Repeat step 1) of T20. 1) Connect an external power supply to pin 35, increase the voltage gradually from 3.0V, and measure the picture period amplitude voltage when pin 43 is clipped. GTXR = V43R / 0.2 GTXG = V42G / 0.2 GTXB = V41B / 0.2 6) 4) As in steps 2) and 3) above, input to pin 34 and measure pin 42, then input to pin 33 and measure pin 41. (V42G, V41B) 5) Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 35. 3) Measure the picture period amplitude of pin 43. (V43R) Apply 5V from an external power supply to pin 32. 2) 4) Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53 and adjust the drive adjustment data so that the picture period amplitudes of pins 41 and 42 are equal to that of pin 43. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN A or B ↑ Analog RGB Brightness Adjustment Characteristics Analog RGB Brightness Sensitivity T24 T25 ↑ A or B A or B A or B SW 34 SW 33 RGB Contrast Adjustment Characteristics PARAMETER T23 NOTE ↑ A or B A or B ↑ ↑ A ↑ ↑ A ↑ ↑ A 60 ↑ ↑ B ↑ ↑ B ↑ ↑ A GbrTX = (VbrTXMAX−VbrTXMIN) / 128 2) 2002-03-29 Using the results obtained from T24, calculate the RGB brightness sensitivity for pins 43, 42, and 41. Apply 5V from an external power supply to pin 32. 3) 1) Input signal 2 to pins 33, 34, and 35. 2) Measure the picture period voltage of pins 43, 42, and 41 when the RGB brightness change to the maximum (7F), the center (40), and the minimum (00). (VbrTXMAX, VbrTXCNT, VbrTXMIN) Repeat step 1) of T20. 1) 5) As in steps 3), 4) and 5) above, input to pin 34 and measure pin 42, then input to pin 33 and measure pin 41. 6) Adjust the signal 2 amplitude A so that the picture period amplitude of pin 43 is 0.5Vp-p. Calculate the maximum and minimum amplitude ratios using decibel conversion. (DRG+, DRG−) 5) 4) Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 35. Measure the picture period amplitude of pin 43 when the RGB contrast data change to the maximum (7F), the center (40), and the minimum (00). (vuTXRMAX, vuTXRCNT, vuTXRMIN) 3) Apply 5V from an external power supply to pin 32. 2) 4) Repeat step 1) of T20. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN Text ACL Characteristics Analog OSD Gain T27 PARAMETER T26 NOTE ↑ A SW 33 ↑ A SW 34 A B A A or B A A or B A or B A 61 ↑ B ↑ B ↑ A Apply 5V from an external power supply to pin 36. Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 39. 2) 3) 2002-03-29 GOSDR = V43R / 0.2 GOSDG = V42G / 0.2 GOSDB = V41B / 0.2 Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53 and adjust the drive adjustment data so that the picture period amplitudes of pins 41 and 42 are equal to that of pin 43. 1) 6) Set the subaddress (10) data to (01) and repeat the calculations in steps 5) and 6). (TXACL3, TXACL4) 8) As in steps 3) and 4) above, input to pin 38 and measure pin 42, then input to pin 37 and measure pin 41. (V42G, V41B) TXACL1 = −20×ℓog (vTXACL2 / vTXACL1) TXACL2 = −20×ℓog (vTXACL3 / vTXACL1) 7) 5) Measure the picture period amplitude of pin 43 when −1V DC is applied to pin 45 from an external source. (vTXACL3) 6) Measure the picture period amplitude of pin 43. (V43R) Measure the picture period amplitude of pin 43 when −0.5V DC is applied to pin 45 from an external source. (vTXACL2) 5) 4) Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 35. Measure the picture period amplitude of pin 43. (vTXACL1) 3) Apply 5V from an external power supply to pin 32. 2) 4) Repeat step 1) of T20. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN A ↑ ↑ Analog OSD White Peak Slice Level Analog OSD Black Peak limiter Level Analog OSD Output DC Voltage T28 T29 T30 SW 33 PARAMETER NOTE ↑ ↑ A SW 34 ↑ ↑ A ↑ ↑ A ↑ ↑ A ↑ ↑ A 62 ↑ ↑ B ↑ ↑ B ↑ ↑ A Measure the picture period voltages of pins 43, 42, and 41. (VOSDDCR, VOSDDCG, VOSDDCB) 3) 2002-03-29 Apply 5V from an external power supply to pin 36. 2) Apply 5V from an external power supply to pin 36. 2) Repeat step 1) of T27. Repeat step 1) of T27. 1) 1) Set the subaddress (10) data to (04) and repeat the measurements in steps 3) and 4). (VOSD2R, VOSD2G, VOSD2B) 5) As in step 3) above, input to pin 38 and measure pin 42. Input to pin 37 and measure pin 41. As in step 3) above, input to pin 38 and measure pin 42. Input to pin 37 and measure pin 41. 4) 4) Apply external voltage to pin 39, increase the voltage gradually from 0.0V, and measure the picture period amplitude voltage when pin 43 is clipped. (VOSD1R) 3) Apply external voltage to pin 39, decrease the voltage gradually from 4.5V, and measure the voltage when pin 43 is clipped. Apply 5V from an external power supply to pin 36. 2) 3) Repeat step 1) of T27. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN T31 NOTE OSD ACL Characteristics PARAMETER A SW 33 A SW 34 A A A B 63 B B A Apply 5V from an external power supply to pin 36. Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 39. Measure the picture period amplitude of pin 43. (vOSDACL1) Measure the picture period amplitude of pin 43 when −0.5V DC is applied to pin 45 from an external source. (vOSDACL2) Measure the picture period amplitude of pin 43 when −1V DC is applied to pin 45 from an external source. (vOSDACL3) OSDACL1 = −20×ℓog (vOSDACL2 / vOSDACL1) OSDACL2 = −20×ℓog (vOSDACL3 / vOSDACL1) Change the subaddress (10) data to (00) and repeat the measurements in steps 1) to 7).(OSDACL3, OSDACL4) 2) 3) 4) 5) 6) 7) 8) 2002-03-29 Repeat step 1) of T27. Set the subaddress (10) data to (02). 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN A ↑ Color Adjustment Characteristics A2 SW 33 Color Difference Contrast Adjustment Characteristics Color Difference Block PARAMETER A1 NOTE ↑ A SW 34 ↑ A ↑ A ↑ A ↑ A 64 ↑ A or B ↑ A or B ↑ C Repeat steps 3), 4), and 5) above, inputting the picture period amplitude 0.2Vp-p to pin 52 and measuring pin 41. Measure the voltage of pin 51. Set the brightness to maximum, set the subaddress (0F) data to (30), and set the subaddress (10) data to (20). Input signal 3 (f0 = 100kHz, picture period amplitude = 0.115Vp-p) to pin 51. Measure the picture period amplitude of pin 43 when the color data are changed to the maximum (7F), the center (40), and the minimum (01). (vcCYMAX, vcCYCNT, vcCYMIN) Calculate the color maximum and minimum amplitude ratios for the center using decibel conversion. (∆vcCY+, ∆vcCY−) Repeat steps 2) to 4) above, inputting the picture period amplitude 0.1Vp-p to pin 52 and measuring pin 41. 6) 1) 2) 3) 4) 5) 2002-03-29 Calculate the unicolor maximum and minimum amplitude ratios using decibel conversion. (∆vuCY) 5) Input signal 3 (f0 = 100kHz, picture period amplitude = 0.23Vp-p) to pin 51. 3) Measure the picture period amplitude of pin 43 when the unicolor data change to the maximum (7F), the center (40), and the minimum (00). (vuCYMAX, vuCYCNT, vuCYMIN) Set the brightness to maximum, set the subaddress (0F) data to (30), and set the subaddress (10) data to (20). 2) 4) Change the G and B drive data to the value resulting from the adjustment in step 1) of T20. 1) Color difference block common test conditions SW 13 : A, SW15 : C, SW18 : ON, SW 20 : ON, SW 23 : ON, SW 24 : ON, SW 25 : ON TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN A3 NOTE Color Difference Half Tone Characteristics PARAMETER A SW 33 A SW 34 A A A A 65 A or B A or B C Repeat steps 1) to 5) above with pin 42. GHTGY = vHTBGY / vHTAGY Repeat steps 1) to 5) above, inputting signal to pin 52 and measuring pin 41. GHTBY = vHTBBY / vHTABY 7) 8) 2002-03-29 GHTRY = vHTBRY / vHTARY Apply 1.5V from an external power supply to pin 47. 4) 6) Measure the picture period amplitude of the waveform output from pin 43. (vHTARY) 3) Measure the picture period amplitude of the waveform output from pin 43. (vHTBRY) Input signal 3 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 51. 2) 5) Set the subaddress (10) data to (20). 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN Color γ Characteristics Color Limiter Characteristics A5 PARAMETER A4 NOTE ↑ A SW 33 ↑ A SW 34 ↑ A ↑ A ↑ A ↑ A 66 ↑ B A B ↑ C Measure the voltage of pin 51. Set the subaddress (10) data to (20). 1) 2) 2002-03-29 Measure the picture period amplitude of the pin 43 output signal when the subaddress (07) data are (80) and (81). (CLT0, CLT1) Calculate the γON gradient ∆, using Vγ, which represents the point at which the γ characteristics become effective, and the gradient of the linear section with γOFF as (1). 4) 4) When the subaddress (07) data are: (80)−γOFF (82)−γ1ON (84)−γ2ON (86)−γ3ON measure the changes in the amplitude level of the pin 43 output signal at an increase the amplitude A of signal 2 and plot the characteristics. 3) Input signal 2 (picture period amplitude = 0.4Vp-p) to pin 52. Input signal 2 to pin 51. 2) 3) Set the subaddress (10) data to (20). 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN High-Brightness Color Gain Flesh Color Characteristics A7 PARAMETER A6 NOTE ↑ A SW 33 ↑ A SW 34 ↑ A ↑ A ↑ A ↑ A 67 A B ↑ A ↑ C Input signal 2 (picture period amplitude = 0.2Vp-p) to pin 52. Adjust the color control so that the picture period amplitude output from pin 41 is 1.2Vp-p. Measure the picture period amplitude of the pin 41 output signal when the subaddress (06) data are (FF). (V41) HBC1 = (1.2−V41) / 1.2 Input IQ demodulated flesh-bar signals (15°-step rainbow signals in the range −30° to +240°) to pin 52 (Q signal) and pin 51 (I signal) as 0.2Vp-p. Set the brightness to maximum. Set subaddress (10) data to (00). Measure the signals output from pins 41 and 43 and switch to subaddress (10) data to (06). Measure the output signals and calculate the variation characteristics of the color vector phase. Draw the vector variation characteristics curve showing the on state from the off state and calculate the gradient in the vicinity of the I axis as Fa33. Subaddress (08) Data (80) off Data (81) on 2) 3) 4) 5) 1) 2) 3) 4) 2002-03-29 Set subaddress (10) data to (20). 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN A8 NOTE Color Detail Emphasis PARAMETER A SW 33 A SW 34 A A A A 68 A B A Set the subaddress (10) data to (20). Set the subaddress (11) data to (02). Read the 4MHz amplitude output to pin 43. (VCDE0) Input signal 2 (picture period amplitude = 0.3Vp-p) to pin 51. Set the subaddress (02) data to (81). Read the 4MHz amplitude output to pin 43. (VCDE1) (mVp-p) Set the subaddress (0A) data to (81) and read the amplitude of frequency Fp output to pin 43. (VCDE2) (mVp-p) 3) 4) 5) 6) 7) 8) 9) 2002-03-29 Set the subaddress (02) data to (01). 2) 10) GCD0 = 20×ℓog (|VCDE1−VCDE0| / 20) GCD1 = 20×ℓog (|VCDE2−VCDE0| / 20) Connect SG to Y-IN and input a 4MHz frequency sine wave at 20mVp-p. 1) TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53 TA1276AN ↑ C ↑ ON OFF ↑ A ↑ ON 69 2002-03-29 Measure the phase difference SPH1 of the pin 23 (H.out) waveform in relation to the pin 17 (HD.out) waveform when a 50Hz composite video signal is applied to TP15. Measure the phase difference SPH2 of the pin 20 waveform in relation to the center of the input signal’s horizontal sync signal Also, apply a 60Hz composite video signal to pin 15 and measure SPH3. Horizontal Sync Phase ON D2 B Calculate the pin 23 (H.out) frequency variation rate when the voltage on pin 20 is varied by ±0.05V with a horizontal oscillation frequency of 15.734kHz. D Horizontal Oscillation Control Sensitivity D1 SW 16 TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 17 SW 18 SW 20 SW 23 SW 25 DEF Block common test conditions SW 13 : A, SW33 : A, SW 34 : A, SW35 : A, SW 37 : A, SW38 : A, SW 39 : A, SW48 : ON, SW49 : ON, SW51 : B, SW 52 : B, SW 56 : ON, BUS Data = power on reset PARAMETER DEF Block NOTE TA1276AN D ↑ Horizontal Screen Phase Adjustment Range D4 SW 16 Range of Curve Correction PARAMETER D3 NOTE ↑ C ↑ ON ↑ ON ↑ A ↑ ON 70 2002-03-29 Under the same conditions as those for D3, measure phase variation of the pin 23 (H.out) waveform when subaddress (0B) data D7 to D3 are varied by (00000) to (11111). Vary the voltage by 1.5V to 3.5V, apply a 50Hz composite video signal to pin TP15, and measure the phase variation of the pin 23 (H.out) waveform. TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 17 SW 18 SW 20 SW 23 SW 25 TA1276AN D6 D5 NOTE Pulse Width of Gate Pulse Gate Pulse Start Phase Pulse Width of Clamp Pulse Clamp Pulse Start Phase PARAMETER ↑ D SW 16 ↑ C SW 17 ↑ ON ↑ ON ↑ A ↑ ON ― OPEN 71 2002-03-29 Apply a 50Hz composite video signal to TP15, then measure the phase difference CPS and the pulse width CPW of the pin 2 (SCP) waveform in relation to the pin 17 (HD.out) waveform. Apply a 50Hz composite video signal to TP15, then measure the phase difference CPS and the pulse width CPW of the pin 35 (R in) waveform in relation to the pin 17 (HD.out) waveform. TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 18 SW 20 SW 23 SW 25 SW 35 TA1276AN D8 D7 NOTE HD Output Amplitude HD Output Pulse Width HD Output Start Phase Pulse Width of Horizontal Blanking Pulse Horizontal Blanking Pulse Start Phase PARAMETER ↑ D SW 16 ↑ C ↑ ON ↑ ON ↑ A ↑ ON 72 2002-03-29 Apply a 50Hz composite video signal to TP15, then measure the phase difference HPS and the pulse width HPW / VHD of the pin 17 (HD out) waveform in relation to the pin 20 (AFC1 filter) waveform. Under the same conditions as those for D6, measure the phase difference HPS and HPW50 of the horizontal blanking pulse. Also measure HPW60 at 60Hz. TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 17 SW 18 SW 20 SW 23 SW 25 TA1276AN D11 D10 D9 NOTE ↑ ON ↑ A ↑ ON Apply the same conditions as those for D9 except change the input signal to a 60Hz composite video signal and measure the phase difference VP60S and pulse width VP60W . Vertical pull-In range (4) Vertical pull-In range (3) ↑ ↑ ↑ ↑ ↑ ↑ 73 2002-03-29 Input a 60Hz composite video signal to pin TP15, vary the vertical frequency of this signal in 0.5H-steps, and measure the number of Hs when D2 of the 1st byte changes from 1 to 0 in bus read mode when. Also check that D1 of the 1st byte is 0 when 1V = 262.5H, D1 is 1 in bus read mode, and 1V<261.5 or 1V>263.5H. Input a 50Hz composite video signal to pin TP15, vary the vertical frequency of this signal in 0.5H-steps, and measure the number of Hs when D2 of the 1st byte changes from 0 to 1 in bus read mode.Also check that D1 of the 1st byte is 0 when 1V = 312.5H, when D1 is 1 in bus read mode, and 1V<311.5 or 1V>313.5H. Set D5 to D3 of subaddress (17) to (001), vary the vertical frequency of a 60Hz composite video signal input to pin TP15 in 0.5H-steps, and measure the vertical pull-in range. ↑ ON Vertical Pull-In Range (2) ↑ C Apply a 50Hz composite video signal to TP15, then measure the phase difference VP50S1 and the pulse width VP50S2 of the pin 2 (SCP) waveform in relation to the pin 17 (sync input) waveform. Input a 50Hz composite video signal to pin TP15, vary the vertical frequency of this signal in 0.5H-steps, and measure the vertical pull-in range. ↑ D SW 16 TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE TEST CONDITIONS SW 17 SW 18 SW 20 SW 23 SW 25 Vertical Pull-In Range (1) Vertical Blanking Pulse End Phase (2) Vertical Blanking Pulse Start Phase (2) Vertical Blanking Pulse End Phase (1) Vertical Blanking Pulse Start Phase (1) PARAMETER TA1276AN D13 D12 NOTE RGB Output Vertical Blanking Pulse End Phase (2) RGB Output Vertical Blanking Pulse Start Phase (2) RGB Output Vertical Blanking Pulse End Phase (1) RGB Output Vertical Blanking Pulse Start Phase (1) PARAMETER ↑ D SW 16 ↑ C SW 17 ↑ ON ↑ ON ↑ A ↑ ON 74 ↑ A ↑ Gro-un d 2002-03-29 Apply the same conditions as those for D12 except change the input signal to a 60Hz composite video signal and measure the phase difference VP60S1 and pulse width VP60S2. Apply a 50Hz composite video signal to TP15, then measure the phase difference VR50S1 and the pulse width VR50S2 of the pin 43 (R.out) waveform in relation to the pin 15 (sync input) waveform. Similarly, measure pins 42 and 41. TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C) SWITCHING MODE SW 33 SW 34 #32 TEST CONDITIONS SW 35 #36 SW 18 SW 20 SW 23 SW 25 SW 37 #47 SW 38 SW 39 TA1276AN TA1276AN CHROMA TEST SIGNALS TEXT / COLOR DIFFERENCE TEST SIGNALS 1) Input signal C-1 1) Video signal 2) Input signal C-2 2) Input signal 1 3) Input signal C-3 3) Input signal 2 4) Input signal C-4 4) Input signal 3 75 2002-03-29 76 2002-03-29 VERTICAL OUTPUT PULSE WIDTH / VERTICAL OUTPUT PULSE PHASE VARIATION / VERTICAL OUTPUT PULSE PHASE RANGE TA1276AN 77 RGB VERTICAL BLANKING PULSE START PHASE / END PHASE 2002-03-29 TA1276AN TEST CIRCUIT 78 2002-03-29 TA1276AN APPLICATION CIRCUIT 1-NORMAL SCAN (3.58NTSC) 79 2002-03-29 TA1276AN 80 APPLICATION CIRCUIT 2-NORMAL SCAN (4.43PAL / 4.43NTSC / 3.58NTSC) 2002-03-29 TA1276AN 81 APPLICATION CIRCUIT 3-NORMAL SCAN (4.43PAL / 4.43NTSC / 3.58NTSC / SECAM) 2002-03-29 TA1276AN 82 APPLICATION CIRCUIT 4-NORMAL SCAN (3.58NTSC / M-PAL / N-PAL) 2002-03-29 TA1276AN APPLICATION CIRCUIT 5-DOUBLE SCAN (3.58NTSC) 83 2002-03-29 TA1276AN TA1276AN AKB APPLICATION CIRCUIT 84 2002-03-29 TA1276AN PACKAGE DIMENSIONS Weight: 5.55g (Typ.) 85 2002-03-29 TA1276AN RESTRICTIONS ON PRODUCT USE 000707EBA · TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. · The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. · The products described in this document are subject to the foreign exchange and foreign trade laws. · The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. · The information contained herein is subject to change without notice. 86 2002-03-29