TOSHIBA TA1276AN

TA1276AN
TENTATIVE
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC
TA1276AN
PAL / NTSC VIDEO CHROMA AND DEFLECTION IC FOR CTV
(NORMAL SCAN / DOUBLE SCAN MODE)
TA1276AN provides Video, Chroma and Deflection (Sync, when
double scan mode) circuit for a PAL / NTSC Color TV, and
suitable for a high picture quality, large screen size, wide and / or
double scanning TV. These functions are integrated in a 56pin
dual-in-line shrink-type plastic package.
TA1276AN provides a high-performance video processor in which
a YUV double scanning signal can be applied in Video, PAL /
NTSC auto-detection circuit in Chroma and 50 / 60Hz
auto-detection circuit in Sync. PAL demodulation circuit includes
Baseband signal processing system. And this demodulation
circuit does not required any adjustment.
TA1276AN includes I2C bus interface, so you can adjust various
functions and controls via the bus.
Weight: 5.55g (Typ.)
1
2002-03-29
TA1276AN
FEATURES
l
Video / Chroma section
· Y delay line
· Chroma trap
· IQ demodulation for NTSC, UV demodulation for PAL
l
BEP (Back End Processor) section
· Enable to process a YUV signal independently
· Double scanning signal processing capability
(Y processing section)
· Black Stretcher (Controlled by I2C bus)
· DC Restoration Circuit (Controlled by I2C bus)
· Highbright-color Circuit
· D.L. Aperture Sharpness Circuit+Super Real Transcend Circuit (LTI)
· γ Correction (Enable to control Binary line, Gain / Start point)
· Y noise reduction circuit
· Velocity Scan Modulation output (The first order differential output and phase / amplitude adjustment)
(Color difference section)
· Color Detail Enhancer
· Selectable relative phase and amplitude
· Flesh-color restoration
· Color γ circuit
· Baseband tint color
(Text section)
· RGB primary color output
· On Screen Display interface
· Linear RGB interface
· Fast Blanking
· Drive control
· AKB (only black level) or Cut-off Bus control
l
Deflection section
· High Performance Sync. Separation Circuit
· Adjustment free H and V oscillation circuit by Countdown system
· Horizontal and Vertical position adjustment
· Sync separation, HD output
· Horizontal and Vertical pulse output in normal mode.
2
2002-03-29
TA1276AN
BLOCK DIAGRAM
3
2002-03-29
TA1276AN
TERMINAL FUNCTIONS
PIN
No.
PIN NAME
FUNCTION
INTERFACE CIRCUIT
INPUT /
OUTPUT
SIGNAL
DC
1
fsc output
Outputs oscillation waveform of
VCXO.
When 3.58NTSC killer-off this pin
voltage sets 3.2V.
When B / W or other systems
killer-off, this pin voltage sets 1.4V.
SCP output
Outputs SCP (Sand Castle Pulse).
The output signal consists of clamp
pulse, horizontal blanking pulse, and
vertical blanking.
The minimum load resistance is 3kΩ.
SECAM
control
The input / output pin that is used to
control the SECAM demodulation IC.
When current stronger than 250µA
flows from this pin, that is recognized
as SECAM.
4
Y1 output
Outputs the Y signal that routed the
fsc TRAP (TRAP can be turned on or
off with Bus.) and the Y delay line
circuit.
5
Outputs B-Y (U) or I signal.
U / Q output It includes LPF that can remove
carrier.
2
3
3.58NTSC
:3.2V
B / W or Others
system
:1.4V
AC
0.6Vp-p
When
PAL / NTSC
4.0V
When SECAM
0.75V
DC
2.5V
Rainbow
color bar
: 360mVp-p
4
2002-03-29
TA1276AN
PIN
No.
6
7
PIN NAME
FUNCTION
INTERFACE CIRCUIT
INPUT /
OUTPUT
SIGNAL
V / I output
Outputs R-Y (V) or Q signal.It
includes LPF that can remove carrier.
The chroma signal that routed ACC
and TOF circuits (before demo input)
can be monitored by pulling up this
pin at 10kΩ.
1H DL
control
Outputs the result of whether the
signal is PAL, SECAM or NTSC.
Connect the output to the 1H DL IC.
In the case of discrimination between
white or black, the voltage just before
that is retained.
The voltage immediately after
turning-on is not fixed.
8.4V: PAL
4.3V: SECAM
0V: NTSC
Connect X’tal. In the case of series
capacity, the oscillation frequency (f0)
can be changed. In the case of
parallel capacity, the changeable
range of frequency can be changed.
DC
4.0V
90mVp-p
DC
8
4.43MHz
X’tal
9
M PAL X’tal
10
3.58MHz
X’tal
11
APC filter
Connect APC filter demodulating the
chroma. The oscillation frequency of
VCXO varies depending on the
voltage at this pin.
VCC1 (5V)
The VCC of the chroma and I C Bus
blocks.
Connect 5V (Typ.)
DC
2.5V
Rainbow
color bar
: 360mVp-p
2
12
―
5
―
2002-03-29
TA1276AN
PIN
No.
PIN NAME
FUNCTION
13
Chroma
input
The pin through which the chroma is
input. Input the chroma signal that
was subjected to Y / C separation.
14
Chroma
GND
The GND pin of the chroma
processing block.
15
Y1 / SYNC
input
The pin through which the composite
video signal or Y signal is input. Input
via clamp capacitor.
16
V-Sep.
Connect the filter separating the
vertical synchronization.
17
HD output
INTERFACE CIRCUIT
INPUT /
OUTPUT
SIGNAL
―
―
DC6.4V
(1) When BUS HD-OUT = 0
Output the HD pulse (pulse
duration : 1µs) together with
AFC. This pin also serves as the
external input pin that accepts
BPP (black peak detection
stopping pulse) signal.
(2) When BUS HD-OUT = 1
When AKB mode is ON, the
pulse which covers AKB
reference period is output.
6
2002-03-29
TA1276AN
PIN
No.
PIN NAME
FUNCTION
18
SYNC.
output
Output the synchronizing signal
that was separated in the
synchronous separation circuit.
This pin is of the open collector
system. Connect the pull-up
resistor.
19
DEF GND
The GND pin of DEF block.
AFC filter
Connect the filter for horizontal
AFC.
The frequency of the horizontal
output varies depending on the
voltage at this pin.
21
32fH VCO
Connect the ceramic oscillator for
horizontal oscillation.
The oscillator to be used is
CSBLA503KECZF30, made by
Murata electronics.
22
DEF VCC
(9V)
The VCC of DEF block.
Connect 9V (Typ.) to this pin.
23
Horizontal
output
(Mode SW)
Produces the horizontal output.
Connecting the DEF VCC to this
pin can swich Double Scan mode.
In this case, the horizontal output is
not produced.
20
INTERFACE CIRCUIT
INPUT /
OUTPUT
SIGNAL
―
―
DC
―
―
HIGH: 3.2V
LOW: 0.2V
7
2002-03-29
TA1276AN
PIN
No.
24
PIN NAME
Curve
correction
(Ext. CP /
BPP input)
FUNCTION
INPUT /
OUTPUT
SIGNAL
INTERFACE CIRCUIT
(1) Used to correct distortion of
picture in the case of
high-tension fluctuation. Input
the AC component of
high-tension fluctuation.
To disactivate the distortion
correction feature, connect a
capacitor of 0.01µF between
this pin and GND.
(1) DC 4.5V
(2)
(2) Double scan mode
This pin is to input external CP
(Clamping Pulse) and BPP
(Black Peak detection stopping
Pulse).
25
FBP input
The pin through which FBP is input
to generate pulses for horizontal
AFC2, Y smoothing, and horizontal
blanking.
When double SCAM mode, input H
blanking pulse (5V or over).
26
Digital GND
The GND pin of I L block.
27
SDA
The SDA pin of I C bus.
28
SCL
The SCL pin of I C bus.
2
―
2
―
―
2
―
8
2002-03-29
TA1276AN
PIN
No.
PIN NAME
29
BS/H
30
GS/H
FUNCTION
These pins are to be connected
with a capacitor for sampling and
holding a bais voltage in the AKB
operation, of for clamping to set DC
voltage of RGB outputs in the
no-AKB mode.
VP output
Outputs the vertical pulse.
This pin also serves as the external
blanking input.
When current stronger than
350 µA flows, blanking takes place
due to the internal blanking and OR
logic circuit.
32
YS2
Switches between the internal RGB
signal and analog RGB (pin 33, 34,
35) signal.
When this switch is on, the VSM
output is muted.
33
Analog B
input
34
Analog G
input
35
Analog R
input
36
YS1
31
INTERFACE CIRCUIT
INPUT /
OUTPUT
SIGNAL
DC
The pin through which the analog
RGB is input. Input the RGB signal
via clamp capacitor.
Switches between the internal RGB
signal and OSD / analog RGB (pin
37, 38, 39). When this switch is on,
the VSM output is muted.
9
2002-03-29
TA1276AN
PIN
No.
PIN NAME
FUNCTION
INTERFACE CIRCUIT
INPUT /
OUTPUT
SIGNAL
―
―
―
―
The pin through which the OSD
signal or analog RGB is input.
(1) When inputting an OSD signal,
input the ODS signal with a
voltage of 0~5V (4.1V or
more).
37
Analog OSD
B input
38
Analog OSD
G input
(2) When inputting an analog
RGB, input the RGB signal via
Analog OSD
clamp capacitor.
R input
ACL works on this input signal
only when the entire screen is
YS1-HI (the entire screen :
OSD).
39
The VCC pin of the text block.
Connect 9V (Typ.).
40
VCC2 (9V)
41
B output
42
G output
43
R output
44
TEXT GND
The GND pin of TEXT block.
ABCL input
Used to control the external
uni-color, brightness, and dynamic
ABL.
Use this pin when using ABL or
ACL.
The sensitivity and starting point of
the ABL and dynamic ABL can be
set by using bus.
45
Outputs RGB.
ABCL OFF :
6V or more
10
2002-03-29
TA1276AN
PIN
No.
46
47
48
49
50
PIN NAME
FUNCTION
INTERFACE CIRCUIT
INPUT /
OUTPUT
SIGNAL
―
―
VCC3 (9V)
The VCC pin of picture quality and
color difference blocks.
Connect 9V (Typ.).
YM input
The half-tone switch for internal
RGB signal.
When the voltage at this pin is set to
7.0V or more, the RGB output
voltage.
VSM output
Outputs the Y-signal that routed
HPF after it had been subjected to
DC restoration.
The output is muted with the
switches of pins 32 and 36.
APL detection
Connect the filter correcting DC
restoration ratio.
Opening this pin can monitor the
Y-signal that was subjected to black
stretching.
DC
Black peak
hold
Connect the filter controlling the
black stretching gain of the black
stretching circuit.
The black stretching gain varies
depending on the voltage at this pin.
DC
DC
3.5V
11
2002-03-29
TA1276AN
PIN
No.
PIN NAME
FUNCTION
INTERFACE CIRCUIT
When Burst :
Chroma
= 1:1
360mVp-p
DC : 5.0V
The pin through which R-Y (V) / I
and B-Y (U) / Q signals are input.
Input via clamp capacitor.
51
V / I input
52
U / Q input
53
Y2 input
The pin through which B-Y (V) / I
and R-Y (U) / Q signals are input.
Input via clamp capacitor.
54
Color limiter
Color the filter detecting the color
limit.
55
RS/H
The same as pin 29 and 30.
56
SENSE
input
This pin is to sense IK voltage
feed-back from a CRT Drive circuit.
INPUT /
OUTPUT
SIGNAL
DC
The same as pin 29 and 30.
12
DC
2002-03-29
TA1276AN
BUS CONTROL MAP
WRITE MODE
SLAVE ADDRESS : 88H (10001000)
SUB
ADDRESS
D7
MSB
00
P-MUTE
D5
D6
D4
D3
D2
D1
D0
LSB
UNI-COLOR
01
BRIGHTNESS
02
PRESET
MSB
LSB
1000
0000
1000
0000
COLOR
Y-MUTE
1000
0000
03
TINT
YM-SW
1000
0000
04
SHARPNESS
YNR
1000
0000
05
RGB BRIGHTNESS
WPS L
1000
0000
1000
0000
06
HI BRT
RGB CONTRAST
07
SUB COLOR
COLOR γ
CLT
1000
0000
08
SUB CONTRAST
Y-γ CURVE
FLESH
1000
0000
09
G (R) DRIVE
DR-SW
1000
0000
0A
B DRIVE
CDE
1000
0000
H-BLK
1000
0000
0B
HORIZONTAL POSITION
HV-SepL
V-OFF
0C
R CUT OFF
1000
0000
0D
G CUT OFF
1000
0000
0E
B CUT OFF
1000
0000
0000
0000
TX-ACL
0000
0000
VSM-PB
0000
0000
DC REST. LIMIT
0000
0000
VSM-H.PB FREQ
0000
0000
B.D.L.
0000
0000
0F
R-Y PHASE
10
11
12
13
14
R / B GAIN
COLOR SYSTEM
P / N-ID
VSM PHASE
BB SW
VSM GAIN
DC RESTORATION POINT
TEST
G-Y PHASE
OSD-SL
OS-ACL
APACON PEAK f0
DC RESTORATION RATE
BLACK STRETCH POINT
SHR-TRACKING
G / B GAIN
APL VS BSP
RGB-γ
B.L.C.
Y-γ PNT
B.S.G.
BS-ARE
15
DYNAMIC ABL POINT
DYNAMIC ABL GAIN
AKB MODE
0000
0000
16
ABL POINT
ABL GAIN
RGB OUT MODE
0000
0000
17
HD-OUT
V-BLK
VERTICAL FREQUENCY
VERTICAL POSITION
0000
0000
18
Y-DL
C-TRAP
TOF f0
TOF-Q
0000
0000
READ MODE
SLAVE ADDRESS : 89H (10001001)
D7
0
PORSET
1
N-DET
D6
D5
D4
COLOR SYSTEM
RGBOUT
Y1-IN
D3
X’tal
IQ-IN
Y2-IN
13
D2
D1
D0
V-FREQ
V-STD
H-LOCK
H-OUT
VP-OUT
IK-IN
2002-03-29
TA1276AN
BUS CONTROL FEATURE
WRITE MODE
ITEM
EXPLAIN
PRESET
P-MUTE
Picture mute SW ; (0) : OFF, (1) : ON
UNI-COLOR
Uni-color adjustment ; −18dB~0dB
Center
BRIGHTNESS
Brightness adjustment (including sub adjustment) ; −40IRE~+40IRE
Center
COLOR
Color adjustment ; −20dB (Color mute)~+4dB
0dB
Y-MUTE
Y mute SW ; (0) : ON, (1) : OFF
ON
TINT
Hue adjustment ; −32°~+32°
0°
TM-SW
Half-tone SW (YUV input) ; (0) : OFF, (1) : ON
OFF
SHARPNESS
Sharpness adjustment ; −20dB~+14dB
+8dB
YNR
Y Noise Reduction SW ; (0) : OFF, (1) : ON
OFF
RGB BRIGHTNESS
RGB Brightness Adjustment ; −20IRE~+20IRE
0IRE
WPS L
White Peak Suppression Level ; (0) : 130IRE, (1) : 110IRE
HI BRT
High-bright color ; (0) : OFF, (1) : ON
RGB CONTRAST
RGB Contrast ; −18dB~0dB
−18dB
SUB COLOR
Sub-color ; −4dB~0dB~+3dB
0dB
COLOR γ
Color γ correction point ;
(00) : OFF, (01) : 0.2Vp-p, (10) : 0.4Vp-p, (11) : 0.6Vp-p
OFF
CLT
Color Limiter Level ; (0) : 1.8Vp-p, (11) : 2.2Vp-p
SUB CONTRAST
Sub-contrast adjustment ; −3dB~+3dB
0dB
Y-γ CURVE
Y-γ curve switching ;
(00) : OFF, (01) : −2.5dB, (10) : −5.6dB, (11) : −7dB
OFF
FLESH
Flesh color ; (0) : OFF, (1) : ON
OFF
G (R) / B DRIVE
R (G) / B drive gain adjustment ; −5dB~0dB~+3dB
DG-SW
Drive gain base axis switching ; (0) : G, (1) : R
CDE
Color Detail Enhancer ;
(0) : ON (Foced OFF when sharpness go through), (1) : OFF
ON
HORIZONTAL POSITION
Horizontal position adjustment ; −3µs~+3µs
0µs
HV-SepL
Sync separation level ; (from SYNC TIP) (0) : 35%, (1) : 40%
35%
V-OFF
Vertical output SW ; (0) : ON, (1) : OFF
ON
H-BLK
Horizontal blanking SW ; (0) : ON, (1) : OFF
ON
R / G / B CUTOFF
R / G / B cut-off adjustment ;
· When AKB-OFF
: RGB output2V~2.5V~3V
· When AKB-ON
: SENS input
1Vp-p~1.5Vp-p~2Vp-p (±5IRE)
R-Y PHASE
R-Y relative phase switching ;
(00) : 90°, (01) : 92°, (10) : 94°, (11) : 112°
90°
R / B GAIN
R / B relative amplitude switching ;
(00) : 0.56, (01) : 0.68, (10) : 0.79, (11) : 0.86
0.56
G / B GAIN
G / B relative amplitude switching ;
(00) : 0.3, (01) : 0.34, (10) : 0.4, (11) : 0.45
0.3
G-Y PHASE
G-Y relative phase switching ;
(00) : 236°, (01) : 240°, (10) : 244°, (11) : 253°
14
ON
130IRE
OFF
1.8Vp-p
0dB (40h)
G
Center
(80h)
236°
2002-03-29
TA1276AN
ITEM
EXPLAIN
PRESET
Color system ;
System
COLOR SYSTEM
(000) :
NTSC
(001) :
NTSC
(010) :
NTSC
(011) :
PAL
(100) :
PAL
(101) : SECAM
(110) : MULTI
(111) : Trinorma
X’tal
Color
difference
mute
3.58
3.58
4.43
4.43 (N)
M
4.43
3.58 / 4.43
3.58 / M / N
Forced OFF
Forced OFF
Forced OFF
Forced OFF
Forced OFF
Forced OFF
Forced OFF
Forced OFF
Color
TINI
difference control
input
I/Q
U/V
U/V
U/V
U/V
U/V
U/V
U/V
Enable
Enable
Enable
Enable
Enable
Enable
Enable
Enable
NTSC
(000)
P / N ID
PAL / NTSC ident sensitivity switching ;
(0) : LOW (When digital comb filter used), (1) : Normal
LOW
BB SW
Blue Back SW ; (0) : OFF, (1) : ON
OFF
OSD-SL
OSD peak suppressing level switching ;(0) : 96IRE, (1) : 76IRE
OS-ACL
OSD ACL SW ; (0) : ON, (1) : OFF
TX-ACL
RGB ACL SW ; (0) : Gain 1 / 2, (1) : Normal
VSM PHASE
VSM output phase switching ;
(00) : −40ns, (01) : −20ns, (10) : 0ns, (11) +20ns
VSM GAIN
VSM output gain switching ;
(00) : 0dB, (01) : −6dB, (10) : −9dB, (11) : OFF
0dB
APACON PEAK f0
Apacon peak frequency switching ;
(000) : Through (Apacon off), (001) : 4.0MHz,
(010) : 3.3MHz, (011) : 2.5MHz,
(100) : Through (Apacon off), (101) : 13MHz,
(110) : 10MHz, (111) : 8MHz
(000)
Through
VSM PB
VSM output horizontal parabolic modulation SW ;
(0) : Parabolic modulation OFF,
(1) : ON (Nearby sharpness −3dB)
DC RESTORATION POINT
DC restoration start point ; (000) : 0% ~ (111) : 42%
DC RESTORATION RATE
DC restoration rate ; (000) : 100%~(111) : 130%
100%
DC REST. LIMIT
DC restoration limit point ; (APL)
(00) : 100%, (01) : 87%, (10) : 73%, (11) : 60%
100%
BLACK STRETCH POINT (BSP)
Black stretcher start point ; When APL 0%
(000) : 22IRE~(111) : 56IRE
22IRE
APL VS BSP (AVS)
APL level vs. black stretcher start point ;
(00) : 0dB~(11) : 1.5dB, BSP+APL×BSP×AVS
0dB
Y-γ PNT
Y-γ point switching ; (0) : 100IRE, (1) : 95IRE
100IRE
VSM-H. PB FREQ
VSM output horizontal parabolic frequency ;
(00) : 15.7kHz, (01) : 24.8kHz, (10) : 31.5kHz, (11) : 33.75kHz
SHR-TRACKING
Sharpness tracking ; (00) : HIGH, (11) : LOW
15
96IRE
ON
Gain1 / 2
−40ns
Parabolic
modulation
OFF
0%
―
HIGH
2002-03-29
TA1276AN
ITEM
EXPLAIN
PRESET
TEST
Test mode ; (0) : NORMAL
(1) : Test mode (For factory test)
Switched by sub-address 17H
<during gate-pulse> D2 (0) : during V-BLK, (1) : NORMAL
Y / RGB smoothing OFF, Monitor of DAC at HD output
RGB-γ
RGB-γ SW ; (0) : OFF, (1) : ON
OFF
B.L.C.
Block level automatic correction (Priority over black stretcher) ;
MAX 7.5IRE (0) : OFF, (1) : ON
OFF
B.S.G.
Black stretcher gain SW ; (0) ON, (1) : OFF
ON
B.D.L.
Black detection SW ; (0) : 3IRE, (1) : 0IRE
3IRE
BS-ARE
Black area reinforcement SW ;
For wide TV (When using time axis compression IC)
(0) : ON, (1) : OFF
ON
DYNAMIC ABL POINT
Dynamic ABL detection voltage ; (000) : MIN~(111) : MAX
MIN
DYNAMIC ABL GAIN
Dynamic ABL sensitivity ; (000) : MIN~(111) : MAX
MIN
AKB MODE
AKB MODE ; Only black level
(00) : AKB OFF+S / H LOW, (01) : AKB OFF+Cutoff BUS
(10) : AKB ON+I-DET NORMAL, (11) : AKB ON+I-DET×3
ABL POINT
ABL detect voltage ; (000) : MIN~(111) : MAX
MIN
ABL GAIN
ABL GAIN ; (000) : MIN~(111) : MAX
MIN
RGB OUT MODE
RGB output mode SW ;
(00) : NORMAL, (01) : Only R, (10) : Only G, (11) : Only B
NORMAL
HD-OUT
HD output SW ; (0) : HD output, (1) : AKB period pulse
HD output
V-BLK
Vertical Blanking SW ; (0) : ON, (1) : OFF
VERTICAL FREQUENCY
Vertical Frequency ;
(000) : AUTO (50, 60Hz),
(001) : AUTO (50, 60Hz / V MASK OFF),
(010) : 60Hz,
(011) : 60Hz (V MASK OFF),
(100) : Forced 262.5H,
(101) : Forced 263H,
(110) : Forced 312.5H,
(111) : Forced 313H,
When (100), (101), (110), (111) : AFC Free-run
VERTICAL POSITION
Vertical position ; (000) : 0H~(111) : 7H (1H STEP)
Y-DL
Y-DL SW ; (0) OFF, (1) : ON (+80ns)
OFF
C-TRAP
Chroma Trap SW ; (0) : OFF, (1) : ON
OFF
TOF-f0
Selectable TOF Peak Frequency ;
(000) : 0.8fsc+TOF OFF~(111) : 1.5fsc
TOF OFF
TOF-Q
Selectable TOF Q ; (000) : 0.6~(111) : 1.2
16
NORMAL
(00)
AKB OFF+
S / H LOW
ON
(000)
AUTO
0H
0.6
2002-03-29
TA1276AN
DELAY TIME FROM Y1 INPUT (PIN 15) TO Y1 OUTPUT (PIN 4)
COLOR
TRAP
Y-DL
B/W
―
OFF
ON
295ns
375ns
OFF
OFF
OFF
ON
ON
295ns (4.43)
295ns (3.58 / M / N)
375ns (4.43)
375ns (3.58 / M / N)
ON
OFF
OFF
ON
ON
295ns (4.43)
310ns (3.58 / M / N)
375ns (4.43)
390ns (3.58 / M / N)
―
OFF
ON
495ns
575ns
PAL / NTSC
SECAM
DELAY TIME
READ MODE
CHARACTERISTIC
EXPLAIN
PORSET
Power On Reset ; (0) : RESISTER PRESET, (1) : NORMAL
COLOR SYSTEM
Color system ; Receiving system (Judgement of ID ON / OFF)
(00) : B / W, (01) : SECAM, (10) : PAL, (11) : NTSC
X’tal
X’tal Mode ; (00) : ―, (01) : 4.43 (N), (10) : M, (11) : 3.58
V-FREQ
Vertical frequency ; (0) : 50Hz, (1) : 60Hz
V-STD
Vertical Standard ident ; (0) NON-STANDARD, (1) : STANDARD
H-LOCK
Horizontal Lock ident ; (0) : LOCK, (1) : UN-LOCK
N-DET
Noise ident result ; (0) : FEW, (1) : MANY
RGBOUT, Y1-IN, IQ-IN, Y2-IN,
H-OUT, VP-OUT
Self-ident result ; (0) : NG, (1) : OK
IK IN
IK input ident result ; (0) : NG, (1) : OK
17
2002-03-29
TA1276AN
2
I C BUS TRANSMISSION / RECEIVING
SLAVE ADDRESS : 88H
A6
A5
A4
A3
A2
A1
A0
W/R
1
0
0
0
1
0
0
0/1
Start / stop condition
Bit transmission
Confirmation response
18
2002-03-29
TA1276AN
DATA TRANSMIT FORMAT 1
DATA TRANSMIT FORMAT 2
DATA RECEIVE FORMAT
At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave
receiver becomes a slave transmitter. This acknowledge is still generated by the slave.
The STOP condition is generated by the master.
OPTIONAL DATA TRANSMIT FORMAT : AUTOMATIC INCREMENT MODE
In this transmission method, data is set on automatically incremented sub-address from the specified
sub-address.
Purchase of TOSHIBA I2C components conveys a license under the Phillips I2C Patent Rights to use these
components in an I2C system, provided that the system conforms to the I2C standard Specification as defined by
Phillips.
19
2002-03-29
TA1276AN
O Pin 23 H-out (Mode SW)
You can select the Double Scan Mode (External CP (Clamping Pulse) input Mode), by connecting Pin 23 to DEF
VCC. (The threshold of Pin 23 : 8.7V = DEF VCC−0.3V)
When Double Scan Mode, function of Pin 24 and 25 are changed.
l Normal Scan (Internal CP) Mode : Pin 23 ― H-out
The function of Pin 24 is curve correction input, that of Pin 25 is FBP (Flay Back Pulse) input.
The input signals of Y2, U / I and V / I inputs (Pin 53, 52 and 51), Analog OSD inputs (Pin 39, 38 and 37),
Analog RGB inputs (Pin 35, 34 and 33) are clamped of the internal CP based on the Y1 / Sync input (Pin 15).
l
Double Scan (External CP input) Mode : Pin 23 ― H-out
The function of Pin 24 is EXT / BPP (Note) input, that of Pin 25 is H / V BLK (blanking) input.
The input signals of Y2, U / I and V / I inputs (Pin 53, 52 and 51), Analog OSD inputs (Pin 39, 38 and 37),
Analog RGB inputs (Pin 35, 34 and 33) are clamped of the external CP based on Pin 24.
In case of Double Scan Mode, bus “V-BLK” should be set (1) ; OFF.
TERMINAL FUNCTIONS
MODE
NORMAL SCAN MODE
(INTERNAL CP)
DOUBLE SCAN MODE
(EXTERNAL CP INPUT)
Pin 23
H-out
DEF VCC (9V)
Pin 24
Curve correction signal input
EXT CP / BPP input
Pin 25
FBP input (for AFC-2 detection, H BKL)
H / V BLK input (for RGB H / V BLK, AKB)
Clamping by internal CP
(based on Pin 15)
Clamping by external CP
(based on Pin 24)
PIN No.
Pin 53, 52, 51
Pin 39, 38, 37
Pin 35, 34, 33
Note:
Pin 15
Normal scan ; Y / Sync signal input
Pin 17
Normal scan ; HD pulse output (based on Pin 15)
Pin 31
Normal scan ; VP output (based on Pin 15)
BPP : Black Peak detection stopping Pulse
MAXIMUM RATINGS (Ta = 25°C)
CHARACTERISTIC
SYMBOL
RATING
UNIT
VCCmax
12
V
einmax
9
Vp-p
PD (Note 1)
1920
mW
1 / θja
15.4
mW / °C
Operating Temperature
Topr
−20~65
°C
Storage Temperature
Tstg
−55~150
°C
Supply Voltage
Input Terminal Voltage
Power Dissipation
Power Dissipation Reduction Rate
Note 1: Refer to the figure below.
Fig.
Power dissipation reduction against higher temperature
20
2002-03-29
TA1276AN
RECOMMENDED CONDITION IN USE
CHARACTERISTIC
Supply Voltage
Y1 / Sync, Y2 Input Signal Level
Chroma Input Signal Level
I / Q, U / V Input Level
OSD / Analog RGB Input Level
DESCRIPTION
MIN
TYP.
MAX
Pin 5
4.3
5.0
5.3
Pin 22, Pin 40, Pin 46
8.7
9.0
9.3
White : 100%, including,
synchronization
(Synchronization : minus)
0.9
1.0
1.1
When TOF OFF (Burst level)
200
300
400
When TOF ON (Burst level)
100
200
300
B:C=1:1
―
300
―
mVp-p
When OSD input (DC coupling)
4.2
―
5.0
V
When analog RGB input (AC coupling)
0.4
0.5
0.6
Analog RGB Input Level
―
0.4
0.5
0.6
FBP Width
―
11
12
13
FBP Input Current
―
―
―
1.5
RGB Output Current
―
―
1.0
2.0
H. Output Current
―
―
3.0
10.0
Pin 18 Input Current
―
―
0.5
1.0
UNIT
V
Vp-p
mVp-p
Vp-p
µs
mA
ELECTRICAL CHARACTERISTICS
(VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25°C, unless otherwise specified)
SUPPLY CURRENT
SYMBOL
TEST
CIRCUIT
MIN
TYP.
MAX
VCC1
ICC1
―
34.0
40.5
50.0
VCC2
ICC2
―
33.0
40.0
49.0
VCC3
ICC3
―
32.0
39.5
48.0
DEF VCC
ICC4
―
9.5
12.8
18.0
PIN NAME
21
UNIT
mA
2002-03-29
TA1276AN
TERMINAL VOLTAGE
PIN No.
PIN NAME
SYMBOL
TEST
CIRCUIT
MIN
TYP.
MAX
3
SECAM CONT.
V3
―
3.7
4.0
4.3
4
Y1 OUTPUT
V4
―
1.7
2.0
2.3
5
U / Q OUTPUT
V5
―
2.2
2.5
2.8
6
V / I OUTPUT
V6
―
2.2
2.5
2.8
8
4.43MHz X’tal
V8
―
3.7
4.0
4.3
9
M PAL X’tal
V9
―
3.7
4.0
4.3
10
3.58MHz X’tal
V10
―
3.7
4.0
4.3
13
CHROMA INPUT
V13
―
2.2
2.5
2.8
15
Y1 INPUT
V15
―
2.7
3.0
3.3
16
V SEP.
V16
―
5.7
6.1
6.5
17
SYNC. IN
V17
―
2.60
2.85
3.10
21
32fH VCO
V21
―
5.4
5.7
6.0
24
CURVE CORRECTION
V24
―
4.3
4.5
4.7
32
Ys2
V32
―
0
0.1
0.3
33
ANALOG B INPUT
V33
―
3.5
3.8
4.1
34
ANALOG G INPUT
V34
―
3.5
3.8
4.1
35
ANALOG R INPUT
V35
―
3.5
3.8
4.1
36
Ys1
V36
―
0
0.1
0.3
37
OSD / ANALOG B INPUT
V37
―
3.3
3.6
3.9
38
OSD / ANALOG G INPUT
V38
―
3.3
3.6
3.9
39
OSD / ANALOG R INPUT
V39
―
3.3
3.6
3.9
45
ABCL INPUT
V45
―
5.85
6.10
6.35
48
VM OUTPUT
V48
―
3.2
3.5
3.8
49
APL DET
V49
―
4.8
5.0
5.2
50
BLACK PEAK HOLD
V50
―
4.2
4.4
4.6
51
V / I INPUT
V51
―
4.8
5.0
5.2
52
U / Q INPUT
V52
―
4.8
5.0
5.2
53
Y2 INPUT
V53
―
6.1
6.3
6.5
54
COLOR LIMITER
V54
―
6.6
6.9
7.2
22
UNIT
V
2002-03-29
TA1276AN
AC CHARACTERISTIC
VIDEO SECTION
CHARACTERISTIC
Y2 Input Dynamic Range
Black Level Shift
Black Stretching Amplifier Maximum
Gain
Black Stretching Start Point (1)
Black Stretching Start Point (2)
D.ABL Detection Voltage
D.ABL Sensitivity
Black Level Correction
Y γ Correction Point
Y γ Correction Gain
Black Peak Detection Level
DC Restoration Gain
DC Restoration Start Point
DC Restoration Limit Point
Sharpness Peak Frequency
SYMBOL
TEST
CIRCUIT
TEST CONDITION
MIN
TYP.
MAX
UNIT
DR53
―
―
0.7
1.0
1.5
Vp-p
VB
―
−5
0
5
VB3
―
35
42
49
1.30
1.40
1.50
17
22
27
51
56
61
―
0
4
14
20
26
30
50
70
90
110
130
220
240
260
―
0
0.04
0.280
0.295
0.310
6.5
7.0
7.5
95
100
105
2
5
8
−3.5
−2.5
−1.5
−5.8
−4.8
−3.8
−7.5
−6.5
−5.5
−15
0
15
0.9
1.0
1.1
1.25
1.35
1.45
−3
0
3
GBS
(Note V1)
―
PBST1
―
PBST2
―
PBS1
―
PBS2
―
∆V001
―
∆V010
―
∆V100
―
SDAMIN
―
SDAMAX
―
BLC
―
Pγ0
―
Pγ100
―
Gγ01
―
Gγ10
―
Gγ11
―
∆VBP
―
ADT100
―
ADT130
―
VDT0
―
(Note V2)
(Note V3)
(Note V4)
(Note V5)
(Note V6)
(Note V7)
―
―
(Note V8)
(Note V9)
(Note V10)
VDT48
―
42
47
51
PDTL60
―
59
63
67
PDTL73
―
71
75
79
PDTL87
―
83
87
91
PDTL100
―
95
99
103
FAPL01
―
3.3
4.2
5.1
FAPL10
―
2.6
3.3
4.0
FAPL11
―
2.0
2.5
3.0
FAPH01
―
11.2
14.5
17.4
FAPH10
―
9.5
11.9
14.3
FAPH11
―
6.5
8.1
9.7
(Note V11)
―
23
mV
times
IRE
mV
V/V
IRE
dB
mV
times
%
MHz
2002-03-29
TA1276AN
CHARACTERISTIC
Sharpness Control Range
Sharpness Control Center Gain
YNR Characteristic
SRT Response to 2T Pulse Input
VSM Peak Frequency
VSM Gain
VSM Parabolic Modulating Gain
Threshold Voltage of VSM Muting
Response Time for VSM High Speed
Muting
Between Y2 Input and R Output Delay
Time
SYMBOL
TEST
CIRCUIT
GMAXL
―
GMINL
―
GMAXH
―
TEST CONDITION
(Note V12)
MIN
TYP.
MAX
11
14
17
−11
−8
−5
11
14
17
GMINH
―
−9
−6
−3
GCENL
―
7
10
13
GCENH
―
7
10
13
GYL
―
−11
−8
−5
GYH
―
−9
−6
−4
TSL1
―
100
120
140
TSRTL
―
40
60
80
TSH1
―
160
180
200
TSRTH
―
20
30
45
FVL
―
When normal mode
7
9
11
FVH
―
When double scan mode
12.5
16
19.5
GVL00
―
11
13
15
GVL01
―
−7.5
−6
−4.5
GVL10
―
−11
−9
−8
GVL11
―
−∞
−35
−29
GVH00
―
11
13
15
GVH01
―
−7.5
−6
−5
GVH10
―
−11
−9
−7
GVH11
―
−∞
−32
−26
―
(Note V13)
(Note V14)
(Note V15)
GVRL
―
−4
−3
−2
GVLL
―
−4
−3
−2
GVRH
―
−4
−3
−2
GVLH
―
−4
−3
−2
VSR36
―
0.65
0.75
0.85
TVML1
―
0
50
100
TVML2
―
0
50
100
TVML3
―
0
50
100
TVML4
―
0
50
100
TVMH1
―
0
50
100
TVMH2
―
0
50
100
TVMH3
―
0
50
100
TVMH4
―
0
50
100
TY2RD
―
When through
26
36
46
TY2RL
―
When normal mode
200
220
240
TY2RH
―
When double scan mode
85
100
115
(Note V16)
Pin 32, Pin 36
(Note V17)
24
UNIT
dB
ns
MHz
dB
V
ns
2002-03-29
TA1276AN
CHROMA SECTION
CHARACTERISTIC
ACC Characteristic
Sub Color Control Characteristic
APC Frequency Control Sensitivity
APC Pull-In / Hold Range
―
F300
―
(Note C1)
MIN
TYP.
MAX
0.300
0.355
0.410
0.300
0.355
0.410
0.290
0.343
0.400
F30
―
F10
―
0.090
0.113
0.135
A
―
0.90
0.97
1.05
es+
―
2.0
3.0
4.0
es−
―
−6.0
−4.3
−2.0
β3
―
0.70
1.20
1.70
β4
―
0.70
1.20
1.70
βM
―
0.70
1.20
1.70
f3PH
―
250
500
2000
f3HH
―
250
500
2000
f3PL
―
−2000
−500
−250
f3HL
―
−2000
−500
−250
f4PH
―
250
500
2000
f4HH
―
250
500
2000
f4PL
―
−2000
−500
−250
f4HL
―
−2000
−500
−250
fMPH
―
250
500
2000
―
(Note C2)
(Note C3)
―
250
500
2000
―
−2000
−500
−250
fMHL
―
−2000
−500
−250
f03
―
f0 = 3.579545MHz
−200
0
200
f04
―
f0 = 4.433619MHz
−200
0
200
f0M
―
f0 = 3.575611MHz
−200
0
200
f3c
―
When 3.58NTSC
0.54
0.78
0.96
f4c
―
When 4.43PAL
0.52
0.72
0.90
fMc
―
When M-PAL
0.54
0.78
0.96
V1a
―
When 3.58NTSC
2.80
3.20
3.50
V1b
―
Except for 3.58NTSC
1.15
1.55
1.75
Q Axis
vBN
―
290
355
415
I Axis
vRN
―
290
355
415
vRN / vBN
―
0.94
1.00
1.15
Q Axis
θBN
―
29.0
33.0
37.0
I Axis
θRN
―
118.0
123.0
126.0
Relative
θBRN
―
87.0
90.0
93.0
B-Y
vBP
―
290
355
415
R-Y
vRP
―
290
355
415
vRP / vBP
―
0.94
1.00
1.10
B-Y
θBP
―
−5.0
0.0
3.0
R-Y
θRP
―
85.0
90.0
93.0
Relative
θBRP
―
87.0
90.0
93.0
fsc output DC Level
IQ Color Difference Signal
Output Level
IQ Signal Demodulation Ratio
IQ Demodulation Angle
UV Color Difference Signal
Output Level
UV Signal Demodulation Ratio
UV Demodulation Angle
F600
TEST CONDITION
fMPL
fsc Output Amplitude
UV Demodulation Angle
TEST
CIRCUIT
fMHH
3.58MHz / 4.43MHz Free Run
Frequency
IQ Demodulation Angle
SYMBOL
When B : C = 1 : 1 signal
R-Y / B-Y
―
I-Q
When B : C = 1 : 1 signal
R-Y / B-Y
―
―
25
UNIT
Vp-p
times
dB
Hz /
mV
Hz
Hz
Vp-p
V
mVp-p
―
°
mVp-p
―
°
2002-03-29
TA1276AN
CHARACTERISTIC
SYMBOL
Residual Carrier Level
Residual Higher Harmonics Level
3.58NTSC
Color Difference Output
DC Voltage
4.43NTSC
1HDL Output DC Level
Sand Castle Pulse Height
TEST
CIRCUIT
TEST CONDITION
MIN
TYP.
MAX
vBNe
―
―
1.90
4.00
vRNe
―
―
1.90
4.00
vBPe
―
―
1.90
4.00
vRPe
―
―
1.90
4.00
vBHNe
―
―
1.90
4.00
vRHNe
―
―
1.90
4.00
vBHPe
―
―
1.90
4.00
vRHPe
―
―
1.90
4.00
fsc level
fsc×2 level
VBN
―
B-Y output
1.80
2.15
2.50
VRN
―
R-Y output
1.90
2.24
2.60
VBP
―
B-Y output
1.80
2.15
2.50
VRP
―
R-Y output
1.90
2.25
2.60
8.00
8.30
8.60
4.00
4.30
4.60
PAL
VDLP
―
NTSC
VDLS
―
SECAM
VDLN
―
0.01
0.50
0.20
CP
SCH
―
7.50
7.80
8.10
HD
SCM
―
3.95
4.20
4.45
VD
SCL
―
2.25
2.50
2.75
SEN
―
3.70
4.00
4.30
SEP
―
3.70
4.00
4.30
SES
―
0.40
0.70
1.00
SECAM Output DC Level
NTSC Ident Sensitivity
PAL Ident Sensitivity
TOF Characteristic
Output from pin
―
(Note C4)
vNCL
―
3.80
5.83
7.87
vNCH
―
2.52
3.88
5.24
vNBL
―
3.73
5.74
7.75
vNBH
―
2.44
3.75
5.06
vPCL
―
4.80
6.83
8.87
vPCH
―
3.52
4.88
6.24
vPBL
―
4.73
6.74
8.75
vPBH
―
3.44
4.75
6.06
GFH3
―
20.7
22.7
24.7
GFC3
―
20.2
22.2
24.2
GFL3
―
18.2
20.2
22.2
GFH4
―
19.1
21.1
23.1
(Note C5)
(Note C6)
(Note C7)
GFC4
―
19.4
21.4
23.4
GFL4
―
18.8
20.8
22.8
Through
GYs
―
−1.21
0.00
1.06
Normal
GYd
―
−1.21
0.00
1.06
Double
S
Y1 In~Y1 Out Frequency Bandwidth
GYt
―
−1.21
0.00
1.06
−4.0
−1.0
0.0
―
−25
−20
―
−25
−20
1.30
1.60
―
1.30
1.60
―
Y1 In~Y1 Out AC Gain
Trap Filter Gain
Y1 Input Dynamic Range
GfY1
―
3.58
GTC3
―
4.43
GTC4
―
3.58NTSC
VD3
―
4.43PAL
VD4
―
20 log (output level / input
level)
―
―
―
26
UNIT
mVp-p
V
mVp-p
dB
Vp-p
2002-03-29
TA1276AN
TEXT SECTION
SYMBOL
TEST
CIRCUIT
GR
―
GG
―
GB
―
GG / R
―
GB / R
―
R
GfR
―
G
GfG
―
B
GfB
CHARACTERISTIC
AC Gain
AC Gain Axial Difference
Output Bandwidth
Uni-Color Control Characteristic
Brightness Control Characteristic
Brightness Control Sensitivity
White Peak Slice Level
Black Peak Slice Level
R
Signal-to -Noise Ratio of
RGB Output
Blanking Pulse Delay Time
Sub-Contrast Control Range
RGB Output Voltage
RGB Output Voltage Triaxial
Difference
Cut-Off Voltage Control Range
TYP.
MAX
2.95
3.30
3.70
2.95
3.30
3.70
2.95
3.30
3.70
0.94
1.00
1.06
0.94
1.00
1.06
25
30
―
25
30
―
―
25
30
―
vuMAX
―
0.59
0.66
0.74
vuCNT
―
0.34
0.39
0.44
vuMIN
―
0.09
0.11
0.13
∆vu
―
14
15
16
VbrMAX
―
4.1
4.4
4.7
VbrCNT
―
3.25
3.55
3.85
VbrMIN
―
2.4
2.7
3.0
Gbr
―
5.7
6.6
7.5
Vwps1
―
2.75
2.95
3.15
Vwps2
―
2.30
2.50
2.70
VBPS
―
2.10
2.26
2.42
N41
―
―
−58
−49
―
−58
−49
―
−58
−49
0.45
0.50
0.55
0.45
0.50
0.55
0.65
0.85
1.05
0.3
0.8
1.3
0.3
0.8
1.3
(Note T1)
―
at −3dB point
(Note T2)
(Note T3)
(Note T4)
(Note T5)
(Note T6)
―
N42
―
B
N43
―
GHT1
―
GHT2
―
VHT
―
R
VVR
―
G
VVG
―
B
VVB
―
0.3
0.8
1.3
R
VHR
―
0.3
0.8
1.3
G
VHG
―
0.3
0.8
1.3
B
VHB
―
0.3
0.8
1.3
tdON
―
―
0.1
0.3
tdOFF
―
―
0.15
0.3
∆VSU+
―
2.0
2.5
3.0
∆VSU−
―
−3.8
−3.3
−2.8
V#41
―
2.25
2.50
2.75
2.25
2.50
2.75
2.25
2.50
2.75
―
0
150
0.45
0.50
0.55
0.45
0.50
0.55
Half-Tone ON Voltage
H-BLK Pulse Output Level
MIN
G
Half-Tone Gain
V-BLK Pulse Output Level
TEST CONDITION
V#42
―
V#43
―
∆Vout
―
CUT+
―
CUT−
―
(Note T7)
Pin 47
―
―
(Note T8)
―
(Note T9)
―
(Note T10)
27
UNIT
times
―
MHz
Vp-p
dB
V
mV
Vp-p
V
dB
times
V
µs
dB
V
mV
V
2002-03-29
TA1276AN
CHARACTERISTIC
Drive Adjustment Control Range
Output Voltage of Muting
Output Voltage of Blue Back
ACL Characteristic
ABL Point
ABL Gain
RGB Output Mode
ACB Pulse Phase / Amplitude
SYMBOL
TEST
CIRCUIT
DRG+
―
2.35
2.85
3.35
DRG−
―
−5.75
−5.00
−4.25
DRB+
―
2.35
2.85
3.35
DRB−
―
−5.75
−5.00
−4.25
TEST CONDITION
(Note T11)
MIN
TYP.
MAX
DRR+
―
2.35
2.85
3.35
DRR−
―
−5.75
−5.00
−4.25
MURD
―
2.1
2.26
2.42
MUGD
―
2.1
2.26
2.42
BBR
―
2.1
2.26
2.42
BBG
―
2.1
2.26
2.42
BBB
―
1.15
1.30
1.45
ACL1
―
−5
−3
−1
ACL2
―
−14.5
−13
−11.5
ABLP1
―
0.12
0.17
0.22
ABLP2
―
0.04
0.09
0.14
ABLP3
―
−0.05
0.00
0.05
ABLP4
―
−0.15
−0.10
−0.05
ABLP5
―
−0.24
−0.19
−0.14
ABLP6
―
−0.34
−0.29
−0.24
ABLP7
―
−0.43
−0.38
−0.33
ABLP8
―
−0.50
−0.45
−0.40
ABLG1
―
−0.04
0.00
0.00
ABLG2
―
−0.09
−0.04
0.00
ABLG3
―
−0.24
−0.19
−0.14
ABLG4
―
−0.40
−0.35
−0.30
ABLG5
―
−0.56
−0.51
−0.46
ABLG6
―
−0.73
−0.68
−0.63
ABLG7
―
−0.90
−0.85
−0.80
ABLG8
―
−0.10
−0.92
−0.87
V43R
―
2.25
2.5
2.75
V42R
―
0.3
0.8
1.3
V41R
―
0.3
0.8
1.3
V43G
―
0.3
0.8
1.3
V42G
―
2.25
2.5
2.75
V41G
―
0.3
0.8
1.3
V43B
―
0.3
0.8
1.3
V42B
―
0.3
0.8
1.3
V41B
―
2.25
2.5
2.75
(Note T12)
(Note T13)
(Note T14)
(Note T15)
(Note T16)
(Note T17)
θACBR
―
―
1
―
θACBG
―
―
2
―
θACBB
―
―
3
―
VACBR
―
0.1
0.125
0.15
VACBG
―
0.1
0.125
0.15
VACBB
―
0.1
0.125
0.15
(Note T18)
28
UNIT
dB
V
Vp-p
dB
V
V
H
Vp-p
2002-03-29
TA1276AN
CHARACTERISTIC
IK Input Level
RGB γ Correction Characteristic
Analog RGB Gain
Analog RGB Input Dynamic
Range
TEST
CIRCUIT
IKR
―
TEST CONDITION
Pin 56 input level
MIN
TYP.
MAX
1.45
1.65
1.85
1.45
1.65
1.85
IKG
―
IKB
―
1.45
1.65
1.85
γ1R
―
40
50
60
γ2R
―
60
70
80
∆1R
―
0.75
1.50
2.25
∆2R
―
−0.75
0.00
0.75
∆3R
―
−4.05
−3.30
−2.55
γ1G
―
40
50
60
γ2G
―
60
70
80
∆1G
―
0.75
1.50
2.25
∆2G
―
−0.75
0.00
0.75
∆3G
―
−4.05
−3.30
−2.55
γ1B
―
40
50
60
γ2B
―
60
70
80
∆1B
―
0.75
1.50
2.25
∆2B
―
−0.75
0.00
0.75
∆3B
―
−4.05
−3.30
−2.55
GTXR
―
4.0
4.5
5.0
4.0
4.5
5.0
4.0
4.5
5.0
0.94
1.00
1.06
0.94
1.00
1.06
25
30
―
25
30
―
(Note T19)
(Note T20)
GTXG
―
GTXB
―
GTXG / R
―
GTXB / R
―
R
GfTXR
―
G
GfTXG
―
B
GfTXB
―
25
30
―
R
DR35
―
0.6
1.0
1.5
G
DR34
―
0.6
1.0
1.5
B
DR33
―
0.6
1.0
1.5
VTXWPSR
―
2.30
2.55
2.80
VTXWPSG
―
2.30
2.55
2.80
VTXWPSB
―
2.30
2.55
2.80
VBPSR
―
2.10
2.26
2.42
VBPSG
―
2.10
2.26
2.42
VBPSB
―
2.10
2.26
2.42
Analog RGB Gain Triaxial Difference
Analog RGB Bandwidth
SYMBOL
Analog RGB White Peak Slice Level
Analog RGB Black Peak Limiter Level
―
at −3dB point
―
(Note T21)
(Note T22)
29
UNIT
V
IRE
dB
IRE
dB
IRE
dB
times
―
dB
Vp-p
V
2002-03-29
TA1276AN
CHARACTERISTIC
SYMBOL
TEST
CIRCUIT
vuTXRMAX
TEST CONDITION
MIN
TYP.
MAX
―
0.8
0.9
1.0
vuTXGMAX
―
0.8
0.9
1.0
vuTXBMAX
―
0.8
0.9
1.0
UNIT
vuTXRCNT
―
0.45
0.52
0.59
vuTXGCNT
―
0.45
0.52
0.59
vuTXBCNT
―
0.45
0.52
0.59
vuTXRMIN
―
0.10
0.12
0.14
vuTXGMIN
―
0.10
0.12
0.14
vuTXBMIN
―
0.10
0.12
0.14
∆vuTXR
―
15.5
17.0
18.5
∆vuTXG
―
15.5
17.0
18.5
∆vuTXB
―
15.5
17.0
18.5
VbrTXMAX
―
3.3
3.5
3.7
VbrTXCNT
―
2.85
3.05
3.25
VbrTXMIN
―
2.45
2.65
2.85
Analog RGB Brightness Control
Sensitivity
GbrTX
―
6.0
6.8
7.6
mV
Analog RGB Mode ON Voltage
VTXON
―
0.65
0.85
1.05
V
TXACL1
―
−2
−1
−0.05
TXACL2
―
−6.5
−4.5
−2.5
TXACL3
―
−6.5
−4.5
−2.5
TXACL4
―
−16.5
−15.0
−13.5
GOSDR
―
4.1
4.8
5.4
GOSDG
―
4.1
4.8
5.4
RGB Contrast Control Characteristic
Analog RGB Brightness Control
Characteristic
Text ACL Characteristic
Analog OSD Gain
Analog OSD Gain Triaxial Difference
Analog OSD Band Width
Analog OSD White Peak Slice Level
(Note T23)
(Note T24)
(Note T25)
Pin 32
(Note T26)
(Note T27)
GOSDB
―
4.1
4.8
5.4
GOSDG / R
―
G/R
0.94
1.00
1.06
GOSDB / R
―
B/R
0.94
1.00
1.06
GfOSDR
―
25
30
―
GfOSDG
―
25
30
―
GfOSDB
―
25
30
―
VOSD1R
―
1.80
2.00
2.20
VOSD1G
―
1.80
2.00
2.20
VOSD1B
―
1.80
2.00
2.20
VOSD2R
―
1.45
1.65
1.85
VOSD2G
―
1.45
1.65
1.85
VOSD2B
―
1.45
1.65
1.85
at −3dB point
(Note T28)
30
Vp-p
dB
V
dB
times
―
dB
Vp-p
2002-03-29
TA1276AN
CHARACTERISTIC
Analog OSD Black Peak Limiter Level
SYMBOL
TEST
CIRCUIT
VOSD3R
―
TEST CONDITION
(Note T29)
MIN
TYP.
MAX
2.10
2.26
2.42
2.10
2.26
2.42
VOSD3G
―
VOSD3B
―
2.10
2.26
2.42
VOSDDCR
―
2.3
2.5
2.7
VOSDDCG
―
2.3
2.5
2.7
VOSDDCB
―
2.3
2.5
2.7
VOSDON
―
2.05
2.30
2.55
OSDACL1
―
―
0
―
OSDACL2
―
―
0
―
OSDACL3
―
−6.5
−4.5
−2.5
OSDACL4
―
−16.5
−15
−13.5
GCT
―
―
―
−50
−45
SYMBOL
TEST
CIRCUIT
TEST CONDITION
MIN
TYP.
MAX
vuCYMAX
―
1.5
1.8
2.13
vuCYCNT
―
0.85
1.0
1.2
vuCYMIN
―
0.24
0.29
0.355
∆vuCY
―
14.0
15.5
17.0
vuCYMAX
―
1.18
1.4
1.68
vuCYCNT
―
0.73
0.86
1.04
vuCYMIN
―
0.076
0.090
0.108
∆vuCY+
―
3
4
5
∆vuCY−
―
−20
−18
−16
00
θR90
―
88
90
92
01
θR93
―
90
92
94
10
θR96
―
92
94
96
Analog OSD Output DC Voltage
Analog OSD Mode ON Voltage
OSD ACL Characteristic
Crosstalk of RGB Inputs
(Note T30)
Pin 36
(Note T31)
UNIT
V
dB
COLOR DIFFERENCE SECTION
CHARACTERISTIC
Color Difference Signal Contrast
Control Characteristic
Color Control Characteristic
R - Y Relative Phase
R - Y Relative Amplitude
G - Y Relative Phase
G - Y Relative Amplitude
Color Difference Half-Tone
Gain
(Note A1)
(Note A2)
―
11
θ112
―
109
111
113
00
vR56 / vB
―
0.55
0.58
0.61
01
vR68 / vB
―
0.67
0.7
0.73
10
vR76 / vB
―
0.78
0.81
0.84
―
11
vR84 / vB
―
0.85
0.88
0.91
00
θG236
―
234
237
240
01
θG240
―
238
241
244
10
θG244
―
242
245
248
―
11
θG253
―
251
254
257
00
vG30 / vB
―
0.275
0.300
0.325
01
vG325 / vB
―
0.300
0.325
0.350
10
vG35 / vB
―
0.325
0.350
0.375
11
Gv375 / vB
―
0.350
0.375
0.400
0.47
0.50
0.53
0.47
0.50
0.53
0.47
0.50
0.53
R
GHTRY
―
G
GHTGY
―
B
GHTBY
―
―
(Note A3)
31
UNIT
Vp-p
dB
Vp-p
dB
°
times
°
times
2002-03-29
TA1276AN
CHARACTERISTIC
Color γ Characteristic
Color Limiter Characteristic
High Bright Color Gain
Max
Base Band Tint Control
Characteristic
Min
Flesh Color Characteristic
Color Difference Signal Input Dynamic
Range
Color Detail Emphasis Characteristic
Phase Shift at IQ→UV Conversion
SYMBOL
TEST
CIRCUIT
Vγ1
―
Vγ2
―
Vγ3
―
TEST CONDITION
(Note A4)
MIN
TYP.
MAX
0.09
0.23
0.37
0.23
0.37
0.51
0.38
0.52
0.66
∆γ
―
0.65
0.75
0.85
CLT0
―
1.45
1.65
1.85
CLT1
―
1.8
2.0
2.2
HBC1
―
0.02
0.04
0.06
θTRMAX
―
R
29
33
37
θTBMAX
―
B
29
33
37
θTRMIN
―
R
−37
−33
−29
θTBMIN
―
B
−37
−33
−29
Fa33
―
0.38
0.48
0.58
DRR-Y
―
0.9
1.2
1.5
DRB-Y
―
0.9
1.2
1.5
GCD0
―
15.0
18.0
21.0
GCD1
―
―
−15.0
0.0
θI→U
―
31
33
35
θQ→V
―
31
33
35
(Note A5)
(Note A6)
(Note A7)
―
(Note A8)
―
32
UNIT
Vp-p
―
Vp-p
times
°
―
Vp-p
Vp-p
°
2002-03-29
TA1276AN
DEF SECTION
CHARACTERISTIC
32fH VCO Oscillation Start Voltage
Horizontal Output Start Voltage
Horizontal Output Duty Cycle
SYMBOL
TEST
CIRCUIT
VVCO
―
VHON23
―
T23
―
Pin 23
TEST CONDITION
DEF VCC Voltage
MIN
TYP.
MAX
3.1
3.4
3.7
4.7
5.0
5.3
38.5
40.5
42.5
fH050
―
Vertical freq. ; Auto
15475
15625
15775
fH060
―
Vertical freq. ; 60Hz
15585
15734
15885
fHMIN
―
14700
15000
15300
fHMAX
―
16500
16700
16900
βH
―
180
230
280
High Level
VH23
―
2.7
3.0
3.3
Low Level
VL23
―
―
0.15
0.30
SPH1
―
11.1
11.3
11.5
SPH2
―
0.35
0.45
0.55
SPH3
―
0.11
0.21
0.31
∆H24
―
(Note D3)
2.3
2.5
2.7
∆HSFT
―
(Note D4)
5.7
6.2
6.7
Clamp Pulse Start Phase
CPS
―
2.8
2.9
3.1
Clamp Pulse Width
CPW
―
1.0
1.2
1.4
Threshold of External Clamp Pulse
Input
CPV30
―
Pin 24
3.3
3.6
3.9
Threshold of External Clamp Mode
Switching
CPMV23
―
Pin 23
8.5
8.7
8.9
Horizontal Output Free-Run
Frequency
Variable Range of Horizontal Output
Frequency
Horizontal Output Frequency Control
Sensitivity
Horizontal Output
Voltage
Horizontal Output Phase
Curve Correction Characteristic
Variable Range of Horizontal Picture
Position
Variable pin 20 voltage
(Note D1)
Pin 23
(Note D2)
(Note D5)
BPv17
―
Pin 17, at normal scan
0.9
1.1
1.3
―
Pin 24, at doble scan
0.9
1.1
1.3
SPC Gate Pulse Start Phase
GPS
―
1.9
2.1
2.3
SPC Gate Pulse Width
GPW
―
1.9
2.1
2.3
SPC Horizontal Blanking Pulse Start
Phase
HPS
―
4.6
4.8
5.0
HPW50
―
9.9
10.4
10.9
HPW60
―
10.5
11.0
11.5
SPC Horizontal Blanking Pulse Pulse
Width
V
%
Hz
Hz /
0.1V
V
V
V
BPv24
Threshold of External Black Peak
Hold Stopping Pulse
UNIT
(Note D6)
(Note D7)
33
―
µs
2002-03-29
TA1276AN
CHARACTERISTIC
HD Output Start Phase
SYMBOL
TEST
CIRCUIT
HDS
―
HD Output Pulse Width
HDW
―
HD Output Voltage
VHD
―
TEST CONDITION
(Note D8)
MIN
TYP.
MAX
0.7
0.9
1.1
0.7
0.9
1.1
4.5
4.8
5.1
UNIT
µs
―
Pin 25, at
normal scan
3.2
3.5
3.8
―
Pin 25, at
doble scan
3.2
3.5
3.8
―
Pin 25,
H / V blanking
0.8
1.1
1.4
46
48
50
µs
―
23
―
H
46
48
50
µs
―
21
―
H
Pin 31 input current
150
300
400
µA
―
DEF VCC voltage
4.7
5.0
5.3
V
fV050
―
Vertical freq. ; Auto
40
45
50
fV060
―
Vertical freq. ; 60Hz
48
53
58
VVH
―
4.7
5.0
5.3
VVL
―
―
0.0
0.3
fPL1
―
―
224.5
―
fPH1
―
―
353
―
fPL2
―
―
224.5
―
fPH2
―
―
297
―
Vertical Pull-In Range (3)
f50P
―
―
288.5
―
Vertical Pull-In Range (4)
f60P
―
―
288
―
VR50S1
―
44
46
48
VG50S1
―
44
46
48
VB50S1
―
44
46
48
VR50S2
―
―
19
―
VG50S2
―
―
19
―
VB50S2
―
―
19
―
VR60S1
―
44
46
48
VG60S1
―
44
46
48
VB60S1
―
44
46
48
Threshold of AFC-2 Detection
VHBLK1
Threshold of Horizontal Timing
VHBLK2
Threshold of Blanking Pulse
VHBLK3
Vertical Blanking Pulse Start Phase
VP50S1
―
Vertical Blanking Pulse Stop Phase
VP50S2
―
Vertical Blanking Pulse Start Phase
VP60S1
―
Vertical Blanking Pulse Stop Phase
VP60S2
―
External Blanking Threshold Current
ABLK
―
Vertical Output Start Voltage
VON
Vertical Output
Free-Run Frequency
Vertical Output Voltage
Vertical Pull-In Range (1)
Vertical Pull-In Range (2)
RGB Vertical Blanking Pulse Start
Phase (1)
RGB Vertical Blanking Pulse Stop
Phase (1)
RGB Vertical Blanking Pulse Start
Phase (2)
RGB Vertical Blanking Pulse Stop
Phase (2)
(Note D9)
(Note D10)
Pin 31
(Note D11)
(Note D12)
(Note D13)
VR60S2
―
―
17
―
VG60S2
―
―
17
―
VB60S2
―
―
17
―
34
V
Hz
V
H
µs
H
µs
H
2002-03-29
C
↑
Black Stretch Amp Maximum
Gain
V2
↑
OFF
A
C
A
C
Use pin 53 to adjust the signal amplitude to 0.1Vp-p.
3)
35
2002-03-29
Set SW50 to A (maximum gain) and input a 500kHz sine wave to TP53.
2)
Calculate the GBS using the following formula.
GBS = VB÷VA
Set the BUS control data to the preset value.
1)
6)
As in 4), measure the DC differential VB3 of pin 49.
6)
Turn the black stretch gain on (0) and measure the amplitude VB of pin 49.
Set the black detect level to 3IRE (0).
5)
Turn the Y mute off (1), turn the black stretch gain off (1), and measure the amplitude VA of pin 49.
Increase the PS voltage from 5V and measure the DC differential VB of pin 49 where the picture period (high period)
of pin 50 goes low.
4)
5)
Turn the Y mute off (1), turn the black stretch gain off (1), and set the black detect level to 0IRE (1).
3)
4)
Set the BUS control data to the preset value.
Connect pin 53 to an external power supply (PS) and observe pin 50.
Ensure the composite signal is always input to pin 15 (Y1 / sync input).
3)
2)
For testing, see the picture sharpness AC characteristics testing circuit diagram. After using the preset values to
transmit the BUS control data, set ACB operation switching to ACB off (01).
2)
1)
SW 13 : A, SW18 : ON, SW20 : ON, SW23 : ON, SW33 : A, SW 34 : A, SW 35 : A, SW37 : A, SW 38 : A, SW39 : A, SW 46 :
ON, SW51 : B, SW52 : B
1)
Video block common test conditions
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
Black Detect Level Shift
Video Block
PARAMETER
V1
NOTE
TEST CONDITIONS
TA1276AN
V3
NOTE
Black Stretch Start Point (1)
PARAMETER
C
OFF
A
C
Connect pin 53 to an external power supply (PS), increase the voltage from V53, and plot the resulting change in
voltage S1 of pin 49.
Next, turn the black stretch gain on (0), set the black stretch point 1 to the minimum (000), increase the PS voltage
from V53 as in 3), and plot the resulting change in voltage S2 of pin 49.
Set the black stretch point 1 to the maximum (111), increase the PS voltage from V53 as in 3), and plot the change in
voltage S3 of pin 49.
Use the diagram below to calculate the intersections VBST1 and VBST2 of S1, S2, and S3. Use the following formulas
to calculate PBST1 and PBST2.
PBST1 [(IRE)] = ((VBST1 [V]−V49 [V]÷1.4 [V])×100 [(IRE)]
PBST2 [(IRE)] = ((VBST2 [V]−V49 [V]÷1.4 [V])×100 [(IRE)]
3)
4)
5)
6)
2002-03-29
Set SW50 to A (maximum gain), turn the Y mute off (1), and turn the black stretch gain off.
2)
36
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V4
NOTE
Black Stretch Start Point (2)
PARAMETER
C
ON
A
A
Turn the black stretch gain on (0), connect pin 49 to an external power supply (PS), and measure pin 43 (R OUT).
When the black stretch start point 2 data are at the minimum (000), calculate as in the diagram the black stretch start
point differential ∆V000 for when P is V49 (APL 0%) and for when P is V49+1.0 [V] (APL 100%).
Next, when the black stretch start point 2 data are maximum (111), calculate differential ∆V111 in the same way.
Calculate the following formulas.
PBS1 = (∆V000 / V43)×100
PBS2 = (∆V111 / V43)×100
3)
4)
5)
6)
2002-03-29
Turn the black stretch gain off (1), turn the Y mute off (1), and turn the video mute off (0).
Input the TG7 linearity to TP53, use pin 53 to adjust the amplitude as in the diagram, set unicolor to the center
(1000000), and measure the resulting amplitude (V43) of pin 43 (R OUT).
2)
37
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V5
NOTE
D.ABL Detect Voltage
PARAMETER
C
OFF
A
C
Repeat 3) when the D.ABL detect voltage bus data are 000, 001, 010, and 100 respectively. Measure PS voltages
V000, V001, V010, and V100 when the picture period of pin 49 changes to low. (Enlarge the range before measuring.)
Next, calculate the ∆V001, ∆V010, and ∆V100 voltage differentials from V000 and V001, V010, and V100.
∆V
= V000−V001 (V010, V100)
4)
5)
2002-03-29
Connect pin 45 to an external power supply (PS) and decrease the voltage from 6.5V.
3)
38
Turn the Y mute off (1), set the ABL sensitivity to the minimum (000), set the D.ABL sensitivity to the maximum (111),
and turn the black stretch gain off (1).
2)
***
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
D.ABL Sensitivity
Black Level Compensation
V7
PARAMETER
V6
NOTE
↑
C
OFF
ON
↑
A
↑
C
Turn the black level compensation
on (1), measure ∆V1 [mV], and calculate the following formula.
3
BLC = (∆V1 / 1.4×10 )×100 (IRE)
39
Turn the Y mute off (1), turn the black stretch gain off (1), and observe pin 49.
3)
2002-03-29
From the diagram, calculate the SDAMIN and SDAMAX gradients.
SDAMIN, SDAMAX = ∆Y / ∆X
4)
2)
With the D.ABL detect voltage at the minimum (000), plot the voltage characteristics of pin 49 in relation to the voltage
of pin 45 when D.ABL sensitivity is at the minimum (000) and the maximum (111).
3)
Set the BUS control data to the preset value.
Turn the Y mute off (1), turn the black stretch gain off (1), and connect pin 45 to an external power supply.
2)
1)
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V8
NOTE
Black Peak Detect Level
PARAMETER
C
ON
C
C
Connect pin 53 to an external power supply (PS).
Turn the Y mute off (1), the black stretch gain off (1), and set the black detect level shift to 0IRE (1).
Increase the PS from 0V and measure the voltage VBP of pin 49 where the DC level of the picture period of pin 50
shifts from high to low.
Calculate ∆VBP from the following formula.
∆VBP = VBP−V49
3)
4)
5)
6)
2002-03-29
Measure the DC voltage V49 of pin 49.
2)
40
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V9
NOTE
DC Transmission Rate
Compensation Gain
PARAMETER
C
ON
B
C
Calculate ADT100 and ADT130 from the following formula.
ADT100 = (∆V2 [V]−∆V1 [V])÷0.1 [V]
ADT130 = (∆V4 [V]−∆V3 [V])÷0.1 [V]
6)
2002-03-29
Next, with the DC transmission rate compensation gain at the maximum (111), measure ∆V3 and ∆V4.
5)
41
Measure the amplitude V43 of pin 43, set the PS to V53+0.7V, and adjust V43 to 0.7Vp-p using unicolor.
With the DC transmission rate compensation gain at the minimum (000), measure ∆V1 and ∆V2 as in the diagram
below.
3)
Turn the Y mute off (1), turn the video mute off (0), and connect pin 53 to an external power supply (PS).
2)
4)
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V10
NOTE
DC Transmission
Compensation Start Point
PARAMETER
C
ON
B
C
With the DC transmission compensation rate at the minimum (000), increase PS from V53 and plot the relationship
between the voltages of pins 49 and 43.
Next, with the DC transmission compensation rate at the maximum (111), increase PS from V53 and plot the
relationship between the voltages of pins 49 and 43.
With the DC transmission compensation rate at the maximum (111), increase the PS from V53 when the DC
transmission compensation start point reaches the maximum (111) and plot the relationship between the voltages of
pins 49 and 43.
Calculate VDT0 and VDT42 from the following formula.
VDT0 = ((VSP0−V49) / 1 [V] )×100 [%]
VDT42 = ((VSP42−V49) / 1 [V] )×100 [%]
3)
4)
5)
6)
2002-03-29
Measure the amplitude V43 of pin 43, set the PS to V53+0.7V, and adjust V43 to around 1.0Vp-p using unicolor.
2)
42
Repeat steps 1) and 2) of V21.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V11
NOTE
DC Transmission
Compensation Limit Point
PARAMETER
C
ON
B
C
Set the DC transmission compensation rate to the maximum (111).
Increase the PS from 5V, observe pin 43, and plot the DC transmission compensation rate.
Repeat 4) above but change the DC transmission compensation limit point data. Calculate PDTL60, PDTL73, PDTL87,
and PDTL100 from the measured data and the following formulas.
PDTL60 = ((VL60−V49) / 1.0)×100 [%]
PDTL73 = ((VL73−V49) / 1.0)×100 [%]
PDTL87 = ((VL87−V49) / 1.0)×100 [%]
PDTL100 = ((VL100−V49) / 1.0)×100 [%]
3)
4)
5)
2002-03-29
Turn the Y mute off (1), turn the video mute off (0), and with the unicolor set at maximum (1111111), connect pin 49 to
an external power supply (PS).
2)
43
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
Picture Sharpness Control
Range
YNR Characteristics
V13
PARAMETER
V12
NOTE
↑
C
↑
OFF
↑
B
↑
A
Next, set the picture sharpness to the minimum (0000000). As in 6), when the frequencies are 100kHz and 2.4MHz,
measure the V100 and VL amplitudes respectively and calculate GMINL by the formula shown below.
Set the aperture compensator peak frequency to 7.7M (111) and the picture sharpness to the maximum (1111111).
When the frequencies are 100kHz and FAPH11, measure the V100 and VH amplitudes respectively and calculate
GMAXH by the formula shown below.
Next, set the picture sharpness to the minimum (0000000). When the frequencies are 100kHz and 4MHz, measure
the V100 and VH amplitudes respectively and calculate GMINH by the following formula.
G
[dB] = 20×Log (VL (H)÷V100)
Repeat steps 1) to 5) of V12.
With YNR on (1) and the picture sharpness at minimum (0000000), measure the TP41e amplitudes V100 and VL
when the input signal frequencies are 100kHz and 2.4MHz respectively.
Next, set the aperture compensator peak frequency to 7.7M (111). When the input signal frequencies are 100kHz and
4MHz, measure the V100 and VH amplitudes respectively and calculate GYL and GYH by the following formula.
GYL (H) [dB] = 20×Log (VL (H)÷V100)
7)
8)
9)
1)
2)
3)
2002-03-29
Set the picture sharpness to the maximum (1111111). When the frequencies are 100kHz and FAPL01, measure the
V100 and VL amplitudes respectively and calculate GMAXL by the formula shown below.
6)
44
Turn the Y mute off (1), the video mute off (0), connect TP43 and TP41b, and observe TP41e.
5)
****
Set the amplitude of pin 53 to 20mVp-p.
Set the unicolor to the maximum (1111111), set SHR tracking to SRT-gain low (11), and set the aperture
compensator peak frequency to 4.2M (001).
3)
Input a sine wave to TP53.
2)
4)
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V14
NOTE
2T Pulse Response SRT
Control
PARAMETER
C
ON
B
A
2002-03-29
Calculate the following formula.
TSRTL = TSL1−TSL2
TSRTH = TSH1−TSH2
7)
45
Set SHR tracking to SRT-gain high (00) and measure TSL2.
Measure TSL1 as in the diagram below.
4)
Next, set the aperture compensator peak frequency to 7.7M (111) and measure TSH1 and TSH2 as above.
Set the sharpness control to the center (1000000), set the aperture compensator peak frequency to 4.2M (001),
connect TP43 and TP41b, and observe TP41e.
3)
5)
Input a 2T pulse (STD) signal to TP53, turn the Y mute off (1), turn the video mute off (0), set unicolor to maximum
(1111111), and set SHR tracking to SRT-gain low (11).
2)
6)
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V15
NOTE
VSM Gain
PARAMETER
C
ON
B
A
Turn the Y mute off (1), turn the video mute off (0), set the aperture compensator peak frequency to 4.2M (001), and
set the amplitude of pin 53 to 0.1Vp-p.
Measure the TP48 amplitudes VL00, VL01, VL10, and VL11 in the following cases.
VSM gain
0dB (00) →VL (H) 00
−6dB (01) →VL (H) 01
−9dB (10) →VL (H) 10
OFF (11) →VL (H) 11
Input the sine wave of frequency FVH to TP53, set the aperture compensator peak frequency to 7.7M (111), and
measure the TP48 amplitudes VH00, VH01, VH10, and VH11 as above.
Calculate the following formulas.
GVL (H) 00 = 20×Log (VL (H) 00 / 0.1) [dB]
GVL (H) 01 = 20×Log (VL (H) 01 / 0.1) [dB]−20×Log (VL (H) 00 / 0.1) [dB]
GVL (H) 10 = 20×Log (VL (H) 10 / 0.1) [dB]−20×Log (VL (H) 00 / 0.1) [dB]
GVL (H) 11 = 20×Log (VL (H) 00 / 0.1) [dB]
3)
4)
5)
6)
2002-03-29
Input the frequency FVL sine wave to TP53.
2)
46
Set the BUS control data to the preset value.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V16
NOTE
VSM Horizontal Parabola
Modulation Gain
PARAMETER
C
ON
B
A
47
2002-03-29
In 3) and 4) above, turn the VSM output horizontal parabola modulation off (0) and check that no parabola modulation
is generated on the picture period signal. (VPOFL, VPOFH)
Calculate GVRL, GVLL, GVRH, and GVLH from the following formulas.
GVRL (H) = 20×Log (VRL (H) / VCL (H))
GVLL (H) = 20×Log (VLL (H) / VCL (H))
5)
6)
As in the diagram, measure the picture period amplitudes VCL, VRL, and VLL of TP48.
Next, input the sine wave of frequency FVH to TP53, set the aperture compensator peak frequency to 7.7M (111), set
the VSM horizontal parabola frequency to 31.5k (10), and measure the picture period amplitudes VCH, VRH, and VLH
of TP48 as above.
4)
Turn on the VSM output horizontal parabola modulation (1) and set the VSM gain to 0dB (00).
2)
3)
Repeat steps 1) to 3) of V15.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
V17
NOTE
VSM High-Speed Mute
Response Time
PARAMETER
C
ON
B
A
2002-03-29
Similarly, input the pulse to pin 36 and measure the response time TVMH3 (4) at the input.
5)
48
Similarly, input the pulse to pin 36 and measure the response time TVML3 (4) at that input.
Input the sine wave of frequency FVH to TP53, set the aperture compensator peak frequency to 7.7M (111), and
measure the response time TVMH1 (2) as in 2) above.
3)
Input a pulse like that shown below to pin 32 and measure the response time TVML1 (2) at that input.
2)
4)
Repeat steps 1) to 3) of V15, then observe pin 48.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 15 SW 49 SW 50 SW 53
TA1276AN
↑
APC Frequency Control
Sensitivity
APC Pull-In and Hold Range
C2
C3
↑
80
07
ACC Characteristics
Chroma Block
PARAMETER
C1
NOTE
↑
↑
00
↑
↑
00
↑
↑
00
↑
↑
OPEN
↑
↑
OPEN
49
↑
A
B
↑
↑
A
Measure the free-run sensitivity β for the V11+∆V11 (100mV) near the fc.
(3.5 NTSC = β3, 4.3 ; PAL = β4 ; M-PAL = βM)
Input 3.579545MHz, 4.433619MHz, and 3.575611MHz continuous waves
(200mVp-p to the chroma input pin (TP13).
Switch the color system mode (10) to 3.58 NTSC (00), 4.43 PAL (60), and M-PAL
(80), and measure the following for each of those cases.
Vary the input signal frequency in 10Hz-steps within a range of ±3kHz.
Clamp B / W→color mode (f*P*).While holding color→B / W mode (f*H*),
measure the ± deviations from the frequency at each continuous wave input.
5)
1)
2)
3)
4)
2002-03-29
Vary the voltage of the external voltage source (V11) and observe the fsc output
pin 1 using a frequency counter.
4)
2)
Connect external voltage source (V11) to APC filter pin 11.
Switch the color system mode (10) to 3.58 NTSC (00), 4.43 PAL (60), and M-PAL
(80) and measure the following for each of those cases.
1)
3)
Calculate A = F30 / F300.
Connect SW 13 to A.
3)
Measure the output amplitudes F10, F30, F300, and F600 of the UQ output pin 5
when the chroma input amplitude levels are set to 10, 30, 300, and 600mVp-p.
Input 3.58-NTSC rainbow signal (C-4 signal) burst / chroma signals with the same
burst / chroma amplitude to the chroma input pin (TP13).
2)
1)
Chroma block common test conditions
SW 13 : B, SW15 : C, SW18 : ON, SW 20 : ON, SW 23 : ON, SW 24 : ON, SW25 : ON,
SW 33 : A, SW34 : A, SW 35 : A,SW37 : A, SW 38 : A, SW39 : A, SW 46 : ON
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SUBADDRESS
SWITCHING MODE
TEST CONDITIONS
10
17
18
SW 5
SW 6
SW 13 SW 15
TA1276AN
SECAM Output DC Level
Change
NTSC Ident Sensitivity
C5
PARAMETER
C4
NOTE
↑
80
07
00
or
30
or
60
00
C0
C0
or
D0
↑
00
↑
OPEN
↑
OPEN
50
B
A
↑
A
Measure the output DC level of the SECAM control pin 3 when the color system
mode (10) is switched to 3.58 NTSC (00), 4.43 PAL (30), and SECAM (60).
(3.58 NTSC mode: SEN)
(4.43 PAL mode: SEP)
(SECAM mode: SES)
Input a 3.58-NTSC rainbow (C-4 signal) burst / chroma signal with the same burst
/ chroma amplitudes to the chroma input pin (TP13).
Observe the BUS READ mode (5th and 6th bits of the 1st byte).
Switch the Indent sensitivity (set the subaddress (10) data low (C0) and high
(D0)) and perform the following measurements.
Increase the input signal amplitude from 0 and measure the input signal
amplitude at the switch to 3.58 NTSC mode.
(LOW (C0) : vNCL, High (D0) : vNCH)
Lower the input signal amplitude from 100mVp-p and measure the input signal
amplitude at the deviation from 3.58 NTSC mode.
(LOW (C0) : vNBL, High (D0) : vNBH)
2)
1)
2)
3)
4)
5)
2002-03-29
Connect SW 13 to A.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SUBADDRESS
SWITCHING MODE
TEST CONDITIONS
10
17
18
SW 5
SW 6
SW 13 SW 15
TA1276AN
PAL Ident Sensitivity
TOF Characteristics
C7
PARAMETER
C6
NOTE
↑
80
07
00
↑
C0
or
D0
00
or
60
38
00
↑
OPEN
↑
OPEN
51
↑
B
↑
A
When the subaddress (10) data are f0 = 3.58MHz (00) and f0 = 4.43MHz (60),
and subaddress (18) data are (38), connect 1.5kΩ between the VI output pin 6
and the 5V-VCC and observe the VI output pin 6.
Measure the output amplitude when f0 = 3.58MHz and calculate the gain in
decibels from the input (GFC3).
2)
3)
2002-03-29
Measure the output amplitude when f0 = 4.43MHz±500kHz and calculate the gain
in decibels from the input
(+500kHz : GFH4, −500kHz : GFL4).
Input the signal C-1 to the chroma input pin.
(Signal amplitude = 50mVp-p).
1)
6)
Lower the input signal amplitude from 100mVp-p and measure the input signal
amplitude at the deviation from 4.43 PAL mode.
(LOW (C0) : vPBL, High (D0) : vPBH)
5)
Measure the output amplitude when f0 = 4.43MHz and calculate the gain in
decibels from the input (GFC4).
Increase the input signal amplitude from 0 and measure the input signal
amplitude at the switch to 4.43 PAL mode.
(LOW (C0) : vPCL, High (D0) : vPCH)
4)
5)
Switch the Indent sensitivity (set the subaddress (10) data low (C0) and high
(D0)) and perform the following measurements.
3)
Measure the output amplitude when f0 = 3.58MHz±500kHz and calculate the gain
in decibels from the input
(+500kHz : GFH3, −500kHz : GFL3).
Observe the BUS READ mode (5th and 6th bits of the 1st byte).
2)
4)
Input a 4.43-PAL rainbow (C-4 signal) burst / chroma signal with the same burst /
chroma amplitude to the chroma input pin (TP13).
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SUBADDRESS
SWITCHING MODE
TEST CONDITIONS
10
17
18
SW 5
SW 6
SW 13 SW 15
TA1276AN
↑
↑
Unicolor Adjustment
Characteristics
Brightness Adjustment
Characteristics
Brightness Sensitivity
White Peak Slice Level
T2
T3
T4
T5
↑
↑
A
SW 33
AC Gain
Text Block
PARAMETER
T1
NOTE
↑
↑
↑
↑
A
SW 34
↑
↑
↑
↑
A
↑
↑
↑
↑
A
↑
↑
↑
↑
A
↑
↑
↑
↑
A
52
↑
↑
↑
↑
B
↑
↑
↑
↑
B
↑
↑
↑
↑
A
2002-03-29
Change the subaddress (05) data to (81) and repeat steps 1) to 3)
above. (Vwps2)
4)
Connect an external power supply to pin 53 and increase the voltage
gradually from 5.8V.
2)
Measure the picture period amplitude voltage of pin 43 when pin 43°s
picture period is clipped (Vwps1).
Change the bus data and set the sub-contrast to maximum.
1)
3)
Gbr = (VbrMAX−VbrMIN) / 256
Input signal 2 to pin 53 and adjust the picture period amplitude output of
pin 43 to 1Vp-p.
1)
2)
Calculate the unicolor maximum and minimum amplitude ratios using
digital conversion. (∆vu)
3)
Using the results obtained from T3, calculate the brightness sensitivity
from the following formula.
Set the unicolor data to maximum (7F), center (40), and minimum (00)
and measure the pin 43 picture period amplitudes for each case.
(vuMAX, vuCNT, vuMIN)
2)
1)
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53.
1)
Measure the voltage of pin 43 when the brightness is changed to
maximum (FF), center (80), and minimum (00). (VbrMAX, VbrCNT,
VbrMIN)
GR = V43 / 0.2
GG = V42 / 0.2
GB = V41 / 0.2
3)
2)
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53.
Measure the picture period amplitude of pins 41, 42, 43 (V41, V42, and
V43).
1)
2)
Text block common test conditions
SW 13 : A, SW15 : C, SW18 : ON, SW 20 : ON,
SW 23 : ON, SW 24 : ON, SW 25 : ON
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
Black Peak Slice Level
Half Tone Characteristics
BLK Pulse Delay Time
RGB Output Voltage
T7
T8
T9
PARAMETER
T6
NOTE
↑
↑
↑
A
SW 33
↑
↑
↑
A
SW 34
↑
↑
↑
A
↑
↑
↑
A
↑
↑
↑
A
↑
↑
↑
A
53
↑
↑
↑
B
↑
↑
↑
B
↑
C
A
C
GHT2 = V41C / V41A
Calculate tdON, tdOFF from the signal applied to pin 25 (H.BLK input) (A
below) and the output signals from pins 41, 42, and 43 (B below).
(A) Signal applied to pin 25
6)
7)
1)
1)
Halt the voltage applied to pin 47, set the subaddress (03) data to (81),
and measure the picture period amplitude of pin 41 (V41C).
5)
2002-03-29
Measure the picture period voltages for pins 41, 42, and 43.
(B) Output signals from pins
41, 42, 43
Measure the picture period amplitude of pin 41 (V41B).
GHT1 = V41B / V41A
4)
Measure the picture period amplitude of pin 41 (V41A).
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53.
1)
Apply 1.5V from an external power supply to pin 47.
Measure the voltages of pins 41, 42, and 43 when their picture periods
are clipped.
3)
3)
Connect an external power supply to pin 53 and decrease the voltage
gradually from 5.8V.
2)
Repeat step 1) of T5.
1)
2)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
↑
Drive Adjustment Variable
Range
Output Voltage During Muting
Output Voltage at Blue Back
T11
T12
T13
↑
↑
A
SW 33
Cutoff Voltage Variable
Range
PARAMETER
T10
NOTE
↑
↑
↑
A
SW 34
↑
↑
↑
A
↑
↑
↑
A
↑
↑
↑
A
↑
↑
↑
A
54
↑
↑
↑
B
↑
↑
↑
B
↑
C
A
C
Set the subaddress (10) data to (08).
Measure the picture period voltages of pins 43 and 42 and the picture
period amplitude of pin 41.
(BBR, BBG, BBB)
1)
2)
2002-03-29
Measure the picture period voltages of pins 43, 42, and 41. (MURD,
MUGD, MUBD)
Set the subaddress (00) data to (FF).
1)
2)
In steps 1) to 3) above, set data of the LSB of subaddress (09) to 1,
measure pin 43, and repeat the calculations. (DRR+, DRR−)
5)
Measure the picture period amplitude of pin 42 when the drive
(subaddress-09) data are changed to maximum (FE), center (80), and
minimum (00).
2)
In steps 1) to 3) above, change the subaddress (0A) data, measure pin
41, and repeat the calculations. (DRB+, DRB−)
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53.
1)
4)
In steps 1) and 2) above, make the following changes and remeasure :
Change the subaddress (0D) data and measure pin 42,
Change the subaddress (0E) data and measure pin 41.
3)
Calculate the maximum and minimum amplitude ratios for the drive
center using decibel conversion. (DRG+, DRG−)
Measure the picture period voltage of pin 43 when the cutoff (subaddress
0C) data are changed to maximum (FF), center (80), and minimum (00),
and calculate the amount of change of maximum and minimum from the
center. (CUT+, CUT−).
2)
3)
Set the subaddress (17) data to (07).
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
ACL Characteristics
ABL Point
T15
PARAMETER
T14
NOTE
↑
A
SW 33
↑
A
SW 34
↑
A
↑
A
↑
A
↑
A
55
↑
B
↑
B
↑
A
ACL1 = −20×ℓog (vACL2 / vACL1)
ACL2 = −20×ℓog (vACL3 / vACL1)
Measure the DC voltage of pin 45. (VABL1)
Set the subaddress (16) data to (1C).
Applying external voltage to pin 45, lower the pin voltage from 6.5V.
Measure the voltage of pin 45 when the voltage of pin 43 starts to
change. (VABL2)
5)
1)
2)
3)
2002-03-29
ABLP1 = VABL2−VABL1, ABLP5 = VABL6−VABL1
ABLP2 = VABL3−VABL1, ABLP6 = VABL7−VABL1
ABLP3 = VABL4−VABL1, ABLP7 = VABL8−VABL1
ABLP4 = VABL5−VABL1, ABLP8 = VABL9−VABL1
Measure the picture period amplitude of pin 43 when −1V DC is applied
to pin 45 from an external power supply. (vACL3)
4)
5)
Measure the picture period amplitude of pin 43 when −0.5V DC is
applied to pin 45 from an external power supply. (vACL2)
3)
Change the data of subaddress (16) to (3C), (5C), (7C), (9C), (BC),
(DC), and (FC), and repeat step 3) for each of these data.(VABL3,
VABL4, VABL5, VABL6, VABL7, VABL8, VABL9)
Measure the picture period amplitude of pin 43 (vACL1).
2)
4)
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin
53.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
ABL Gain
RGB Output Mode
T17
PARAMETER
T16
NOTE
↑
A
SW 33
↑
A
SW 34
↑
A
↑
A
↑
A
↑
A
56
↑
B
↑
B
↑
C
Adjust the brightness so that the picture period voltage of pin 43 is set to
2.5V.
Set the subaddress (16) data to (01).
Measure the picture period voltages of pins 43, 42, and 41.
(V43R, V42R, V41R)
Change the subaddress (16) data to (02) and repeat step 3).
(V43G, V42G, V41G)
Change the subaddress (16) data to (03) and repeat step 3).
(V43B, V42B, V41B)
1)
2)
3)
4)
5)
2002-03-29
ABLG1 = VABL11−VABL10, ABLG5 = VABL15−VABL10
ABLG2 = VABL12−VABL10, ABLG6 = VABL16−VABL10
ABLG3 = VABL13−VABL10, ABLG7 = VABL17−VABL10
ABLG4 = VABL14−VABL10, ABLG8 = VABL18−VABL10
4)
6)
Measure the voltage of pin 43. (VABL10)
Apply 4.5V from an external power supply to pin 45.
3)
Change the data of subaddress (16) to (00), (04), (08), (0C), (10), (14),
(18), and (1C), and repeat step 3) for each of these data.(VABL11,
VABL12, VABL13, VABL14, VABL15, VABL16, VABL17, VABL18)
Set the subaddress (16) data to (00). Set the brightness to the maximum.
2)
5)
Apply 6.5V from an external power supply to pin 45.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
T18
NOTE
ACB Insertion Pulse Phase
and Amplitude
PARAMETER
A
SW 33
A
SW 34
A
A
A
A
57
B
B
A
or
C
Measure the voltages of pins 29, 30, and 55. From an external power
supply, apply the measured voltages to these pins.
Set subaddress (15) data to (D2).
From pins 43, 42, and 41, calculate the phase of the ACB insertion pulse
in accordance with Fig.1 below.
3)
4)
5)
6)
Set SW53 to C.
2)
2002-03-29
Measure the ACB insertion pulse amplitude (the level from the picture
period amplitude at no input) of pins 43, 42, and 41.
(Note) After the completion of V.BLK, the video period following the
falling edge of the FBP input is regarded as 1H and the periods at
each completion of H.BLK are counted as 2H, 3H, 4H···.
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53
and adjust the drive adjustment data so that the picture period
amplitudes of pins 41 and 42 are equal to that of pin 43.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
T19
NOTE
RGB γ Characteristics
PARAMETER
A
SW 33
A
SW 34
A
A
A
A
58
B
B
A
Adjust the drive adjustment data so that the picture period amplitudes of
pins 41 and 42 are equal to that of pin 43.
Set the subaddress (14) data to (10).
From pins 43, 42, and 41, calculate the RGB γ start point and its gradient
(decibel conversion) in relation to the off point in accordance with Fig.1.
2)
3)
4)
2002-03-29
Input a ramp waveform to pin 53 and adjust the input amplitude so that
the picture period amplitude of pin 43 is 2.3Vp-p.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
A
↑
Analog RGB White Peak Slice
Level
Analog RGB Black Peak
Limiter Level
T21
T22
↑
A
A
or
B
A
or
B
SW 34
SW 33
Analog RGB Gain
PARAMETER
T20
NOTE
↑
A
A
or
B
↑
↑
A
↑
↑
A
↑
↑
A
59
↑
↑
B
↑
↑
B
↑
↑
A
2002-03-29
As in steps 3) and 4) above, input to pin 34 and measure pin 42, then
input to pin 33 and measure pin 41.
5)
Set the RGB contrast data to the maximum (7F).
3)
Connect an external power supply to pin 35, decrease the voltage
gradually from 4.5V, and measure the voltage when pin 43 is clipped.
Apply 5V from an external power supply to pin 32.
4)
Repeat step 1) of T20.
1)
2)
Set the RGB contrast data to the maximum (7F).
3)
As in steps 3) and 4) above, input to pin 34 and measure pin 42, then
input to pin 33 and measure pin 41.
Apply 5V from an external power supply to pin 32.
2)
5)
Repeat step 1) of T20.
1)
Connect an external power supply to pin 35, increase the voltage
gradually from 3.0V, and measure the picture period amplitude voltage
when pin 43 is clipped.
GTXR = V43R / 0.2
GTXG = V42G / 0.2
GTXB = V41B / 0.2
6)
4)
As in steps 2) and 3) above, input to pin 34 and measure pin 42, then
input to pin 33 and measure pin 41. (V42G, V41B)
5)
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 35.
3)
Measure the picture period amplitude of pin 43. (V43R)
Apply 5V from an external power supply to pin 32.
2)
4)
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53
and adjust the drive adjustment data so that the picture period
amplitudes of pins 41 and 42 are equal to that of pin 43.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
A
or
B
↑
Analog RGB
Brightness Adjustment
Characteristics
Analog RGB Brightness
Sensitivity
T24
T25
↑
A
or
B
A
or
B
A
or
B
SW 34
SW 33
RGB Contrast Adjustment
Characteristics
PARAMETER
T23
NOTE
↑
A
or
B
A
or
B
↑
↑
A
↑
↑
A
↑
↑
A
60
↑
↑
B
↑
↑
B
↑
↑
A
GbrTX = (VbrTXMAX−VbrTXMIN) / 128
2)
2002-03-29
Using the results obtained from T24, calculate the RGB brightness
sensitivity for pins 43, 42, and 41.
Apply 5V from an external power supply to pin 32.
3)
1)
Input signal 2 to pins 33, 34, and 35.
2)
Measure the picture period voltage of pins 43, 42, and 41 when the RGB
brightness change to the maximum (7F), the center (40), and the
minimum (00).
(VbrTXMAX, VbrTXCNT, VbrTXMIN)
Repeat step 1) of T20.
1)
5)
As in steps 3), 4) and 5) above, input to pin 34 and measure pin 42, then
input to pin 33 and measure pin 41.
6)
Adjust the signal 2 amplitude A so that the picture period amplitude of pin
43 is 0.5Vp-p.
Calculate the maximum and minimum amplitude ratios using decibel
conversion. (DRG+, DRG−)
5)
4)
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 35.
Measure the picture period amplitude of pin 43 when the RGB contrast
data change to the maximum (7F), the center (40), and the minimum
(00).
(vuTXRMAX, vuTXRCNT, vuTXRMIN)
3)
Apply 5V from an external power supply to pin 32.
2)
4)
Repeat step 1) of T20.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
Text ACL Characteristics
Analog OSD Gain
T27
PARAMETER
T26
NOTE
↑
A
SW 33
↑
A
SW 34
A
B
A
A
or
B
A
A
or
B
A
or
B
A
61
↑
B
↑
B
↑
A
Apply 5V from an external power supply to pin 36.
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 39.
2)
3)
2002-03-29
GOSDR = V43R / 0.2
GOSDG = V42G / 0.2
GOSDB = V41B / 0.2
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 53
and adjust the drive adjustment data so that the picture period
amplitudes of pins 41 and 42 are equal to that of pin 43.
1)
6)
Set the subaddress (10) data to (01) and repeat the calculations in steps
5) and 6). (TXACL3, TXACL4)
8)
As in steps 3) and 4) above, input to pin 38 and measure pin 42, then
input to pin 37 and measure pin 41. (V42G, V41B)
TXACL1 = −20×ℓog (vTXACL2 / vTXACL1)
TXACL2 = −20×ℓog (vTXACL3 / vTXACL1)
7)
5)
Measure the picture period amplitude of pin 43 when −1V DC is applied
to pin 45 from an external source. (vTXACL3)
6)
Measure the picture period amplitude of pin 43. (V43R)
Measure the picture period amplitude of pin 43 when −0.5V DC is applied
to pin 45 from an external source. (vTXACL2)
5)
4)
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 35.
Measure the picture period amplitude of pin 43. (vTXACL1)
3)
Apply 5V from an external power supply to pin 32.
2)
4)
Repeat step 1) of T20.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
A
↑
↑
Analog OSD White Peak Slice
Level
Analog OSD Black Peak
limiter Level
Analog OSD Output DC
Voltage
T28
T29
T30
SW 33
PARAMETER
NOTE
↑
↑
A
SW 34
↑
↑
A
↑
↑
A
↑
↑
A
↑
↑
A
62
↑
↑
B
↑
↑
B
↑
↑
A
Measure the picture period voltages of pins 43, 42, and 41.
(VOSDDCR, VOSDDCG, VOSDDCB)
3)
2002-03-29
Apply 5V from an external power supply to pin 36.
2)
Apply 5V from an external power supply to pin 36.
2)
Repeat step 1) of T27.
Repeat step 1) of T27.
1)
1)
Set the subaddress (10) data to (04) and repeat the measurements in
steps 3) and 4).
(VOSD2R, VOSD2G, VOSD2B)
5)
As in step 3) above, input to pin 38 and measure pin 42. Input to pin 37
and measure pin 41.
As in step 3) above, input to pin 38 and measure pin 42. Input to pin 37
and measure pin 41.
4)
4)
Apply external voltage to pin 39, increase the voltage gradually from
0.0V, and measure the picture period amplitude voltage when pin 43 is
clipped. (VOSD1R)
3)
Apply external voltage to pin 39, decrease the voltage gradually from
4.5V, and measure the voltage when pin 43 is clipped.
Apply 5V from an external power supply to pin 36.
2)
3)
Repeat step 1) of T27.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
T31
NOTE
OSD ACL Characteristics
PARAMETER
A
SW 33
A
SW 34
A
A
A
B
63
B
B
A
Apply 5V from an external power supply to pin 36.
Input signal 1 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 39.
Measure the picture period amplitude of pin 43. (vOSDACL1)
Measure the picture period amplitude of pin 43 when −0.5V DC is applied
to pin 45 from an external source. (vOSDACL2)
Measure the picture period amplitude of pin 43 when −1V DC is applied
to pin 45 from an external source. (vOSDACL3)
OSDACL1 = −20×ℓog (vOSDACL2 / vOSDACL1)
OSDACL2 = −20×ℓog (vOSDACL3 / vOSDACL1)
Change the subaddress (10) data to (00) and repeat the measurements
in steps 1) to 7).(OSDACL3, OSDACL4)
2)
3)
4)
5)
6)
7)
8)
2002-03-29
Repeat step 1) of T27.
Set the subaddress (10) data to (02).
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
A
↑
Color Adjustment
Characteristics
A2
SW 33
Color Difference Contrast
Adjustment Characteristics
Color Difference Block
PARAMETER
A1
NOTE
↑
A
SW 34
↑
A
↑
A
↑
A
↑
A
64
↑
A
or
B
↑
A
or
B
↑
C
Repeat steps 3), 4), and 5) above, inputting the picture period amplitude
0.2Vp-p to pin 52 and measuring pin 41.
Measure the voltage of pin 51.
Set the brightness to maximum, set the subaddress (0F) data to (30),
and set the subaddress (10) data to (20).
Input signal 3 (f0 = 100kHz, picture period amplitude = 0.115Vp-p) to pin
51.
Measure the picture period amplitude of pin 43 when the color data are
changed to the maximum (7F), the center (40), and the minimum (01).
(vcCYMAX, vcCYCNT, vcCYMIN)
Calculate the color maximum and minimum amplitude ratios for the
center using decibel conversion.
(∆vcCY+, ∆vcCY−)
Repeat steps 2) to 4) above, inputting the picture period amplitude
0.1Vp-p to pin 52 and measuring pin 41.
6)
1)
2)
3)
4)
5)
2002-03-29
Calculate the unicolor maximum and minimum amplitude ratios using
decibel conversion. (∆vuCY)
5)
Input signal 3 (f0 = 100kHz, picture period amplitude = 0.23Vp-p) to pin
51.
3)
Measure the picture period amplitude of pin 43 when the unicolor data
change to the maximum (7F), the center (40), and the minimum (00).
(vuCYMAX, vuCYCNT, vuCYMIN)
Set the brightness to maximum, set the subaddress (0F) data to (30),
and set the subaddress (10) data to (20).
2)
4)
Change the G and B drive data to the value resulting from the adjustment
in step 1) of T20.
1)
Color difference block common test conditions
SW 13 : A, SW15 : C, SW18 : ON, SW 20 : ON,
SW 23 : ON, SW 24 : ON, SW 25 : ON
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
A3
NOTE
Color Difference Half Tone
Characteristics
PARAMETER
A
SW 33
A
SW 34
A
A
A
A
65
A
or
B
A
or
B
C
Repeat steps 1) to 5) above with pin 42.
GHTGY = vHTBGY / vHTAGY
Repeat steps 1) to 5) above, inputting signal to pin 52 and measuring pin
41.
GHTBY = vHTBBY / vHTABY
7)
8)
2002-03-29
GHTRY = vHTBRY / vHTARY
Apply 1.5V from an external power supply to pin 47.
4)
6)
Measure the picture period amplitude of the waveform output from pin
43. (vHTARY)
3)
Measure the picture period amplitude of the waveform output from pin
43. (vHTBRY)
Input signal 3 (f0 = 100kHz, picture period amplitude = 0.2Vp-p) to pin 51.
2)
5)
Set the subaddress (10) data to (20).
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
Color γ Characteristics
Color Limiter Characteristics
A5
PARAMETER
A4
NOTE
↑
A
SW 33
↑
A
SW 34
↑
A
↑
A
↑
A
↑
A
66
↑
B
A
B
↑
C
Measure the voltage of pin 51.
Set the subaddress (10) data to (20).
1)
2)
2002-03-29
Measure the picture period amplitude of the pin 43 output signal when
the subaddress (07) data are (80) and (81). (CLT0, CLT1)
Calculate the γON gradient ∆, using Vγ, which represents the point at
which the γ characteristics become effective, and the gradient of the
linear section with γOFF as (1).
4)
4)
When the subaddress (07) data are:
(80)−γOFF
(82)−γ1ON
(84)−γ2ON
(86)−γ3ON
measure the changes in the amplitude level of the pin 43 output signal at
an increase the amplitude A of signal 2 and plot the characteristics.
3)
Input signal 2 (picture period amplitude = 0.4Vp-p) to pin 52.
Input signal 2 to pin 51.
2)
3)
Set the subaddress (10) data to (20).
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
High-Brightness Color Gain
Flesh Color Characteristics
A7
PARAMETER
A6
NOTE
↑
A
SW 33
↑
A
SW 34
↑
A
↑
A
↑
A
↑
A
67
A
B
↑
A
↑
C
Input signal 2 (picture period amplitude = 0.2Vp-p) to pin 52.
Adjust the color control so that the picture period amplitude output from
pin 41 is 1.2Vp-p.
Measure the picture period amplitude of the pin 41 output signal when
the subaddress (06) data are (FF). (V41)
HBC1 = (1.2−V41) / 1.2
Input IQ demodulated flesh-bar signals (15°-step rainbow signals in the
range −30° to +240°) to pin 52 (Q signal) and pin 51 (I signal) as 0.2Vp-p.
Set the brightness to maximum.
Set subaddress (10) data to (00).
Measure the signals output from pins 41 and 43 and switch to
subaddress (10) data to (06). Measure the output signals and calculate
the variation characteristics of the color vector phase.
Draw the vector variation characteristics curve showing the on state from
the off state and calculate the gradient in the vicinity of the I axis as
Fa33.
Subaddress (08)
Data (80) off
Data (81) on
2)
3)
4)
5)
1)
2)
3)
4)
2002-03-29
Set subaddress (10) data to (20).
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
A8
NOTE
Color Detail Emphasis
PARAMETER
A
SW 33
A
SW 34
A
A
A
A
68
A
B
A
Set the subaddress (10) data to (20).
Set the subaddress (11) data to (02).
Read the 4MHz amplitude output to pin 43.
(VCDE0)
Input signal 2 (picture period amplitude = 0.3Vp-p) to pin 51.
Set the subaddress (02) data to (81).
Read the 4MHz amplitude output to pin 43.
(VCDE1) (mVp-p)
Set the subaddress (0A) data to (81) and read the amplitude of frequency
Fp output to pin 43.
(VCDE2) (mVp-p)
3)
4)
5)
6)
7)
8)
9)
2002-03-29
Set the subaddress (02) data to (01).
2)
10) GCD0 = 20×ℓog (|VCDE1−VCDE0| / 20)
GCD1 = 20×ℓog (|VCDE2−VCDE0| / 20)
Connect SG to Y-IN and input a 4MHz frequency sine wave at 20mVp-p.
1)
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 35 SW 37 SW 38 SW 39 SW 51 SW 52 SW 53
TA1276AN
↑
C
↑
ON
OFF
↑
A
↑
ON
69
2002-03-29
Measure the phase difference SPH1 of the pin 23 (H.out)
waveform in relation to the pin 17 (HD.out) waveform when a
50Hz composite video signal is applied to TP15. Measure the
phase difference SPH2 of the pin 20 waveform in relation to
the center of the input signal’s horizontal sync signal Also,
apply a 60Hz composite video signal to pin 15 and measure
SPH3.
Horizontal Sync Phase
ON
D2
B
Calculate the pin 23 (H.out) frequency variation rate when the voltage on pin 20 is varied by ±0.05V with
a horizontal oscillation frequency of 15.734kHz.
D
Horizontal Oscillation Control
Sensitivity
D1
SW 16
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 17 SW 18 SW 20 SW 23 SW 25
DEF Block common test conditions
SW 13 : A, SW33 : A, SW 34 : A, SW35 : A, SW 37 : A, SW38 : A,
SW 39 : A, SW48 : ON, SW49 : ON, SW51 : B, SW 52 : B,
SW 56 : ON, BUS Data = power on reset
PARAMETER
DEF Block
NOTE
TA1276AN
D
↑
Horizontal Screen Phase
Adjustment Range
D4
SW 16
Range of Curve Correction
PARAMETER
D3
NOTE
↑
C
↑
ON
↑
ON
↑
A
↑
ON
70
2002-03-29
Under the same conditions as those for D3, measure phase variation of the pin 23 (H.out) waveform
when subaddress (0B) data D7 to D3 are varied by (00000) to (11111).
Vary the voltage by 1.5V to 3.5V, apply a 50Hz composite
video signal to pin TP15, and measure the phase variation of
the pin 23 (H.out) waveform.
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 17 SW 18 SW 20 SW 23 SW 25
TA1276AN
D6
D5
NOTE
Pulse Width of Gate
Pulse
Gate Pulse Start Phase
Pulse Width of Clamp
Pulse
Clamp Pulse Start
Phase
PARAMETER
↑
D
SW 16
↑
C
SW 17
↑
ON
↑
ON
↑
A
↑
ON
―
OPEN
71
2002-03-29
Apply a 50Hz composite video signal to TP15, then measure the
phase difference CPS and the pulse width CPW of the pin 2 (SCP)
waveform in relation to the pin 17 (HD.out) waveform.
Apply a 50Hz composite video signal to TP15, then measure the
phase difference CPS and the pulse width CPW of the pin 35 (R
in) waveform in relation to the pin 17 (HD.out) waveform.
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 18 SW 20 SW 23 SW 25 SW 35
TA1276AN
D8
D7
NOTE
HD Output Amplitude
HD Output Pulse Width
HD Output Start Phase
Pulse Width of Horizontal
Blanking Pulse
Horizontal Blanking Pulse
Start Phase
PARAMETER
↑
D
SW 16
↑
C
↑
ON
↑
ON
↑
A
↑
ON
72
2002-03-29
Apply a 50Hz composite video signal to TP15, then measure the
phase difference HPS and the pulse width HPW / VHD of the pin
17 (HD out) waveform in relation to the pin 20 (AFC1 filter)
waveform.
Under the same conditions as those for D6, measure the phase difference HPS and HPW50 of the
horizontal blanking pulse.
Also measure HPW60 at 60Hz.
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 17 SW 18 SW 20 SW 23 SW 25
TA1276AN
D11
D10
D9
NOTE
↑
ON
↑
A
↑
ON
Apply the same conditions as those for D9 except change the input signal to a 60Hz composite video
signal and measure the phase difference VP60S and pulse width VP60W .
Vertical pull-In range (4)
Vertical pull-In range (3)
↑
↑
↑
↑
↑
↑
73
2002-03-29
Input a 60Hz composite video signal to pin TP15, vary the vertical frequency of this signal in 0.5H-steps,
and measure the number of Hs when D2 of the 1st byte changes from 1 to 0 in bus read mode when.
Also check that D1 of the 1st byte is 0 when 1V = 262.5H, D1 is 1 in bus read mode, and 1V<261.5 or
1V>263.5H.
Input a 50Hz composite video signal to pin TP15, vary the vertical frequency of this signal in 0.5H-steps,
and measure the number of Hs when D2 of the 1st byte changes from 0 to 1 in bus read mode.Also
check that D1 of the 1st byte is 0 when 1V = 312.5H, when D1 is 1 in bus read mode, and 1V<311.5 or
1V>313.5H.
Set D5 to D3 of subaddress (17) to (001), vary the vertical frequency of a 60Hz composite video signal
input to pin TP15 in 0.5H-steps, and measure the vertical pull-in range.
↑
ON
Vertical Pull-In Range (2)
↑
C
Apply a 50Hz composite video signal to TP15, then measure
the phase difference VP50S1 and the pulse width VP50S2 of
the pin 2 (SCP) waveform in relation to the pin 17 (sync input)
waveform.
Input a 50Hz composite video signal to pin TP15, vary the vertical frequency of this signal in 0.5H-steps,
and measure the vertical pull-in range.
↑
D
SW 16
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
TEST CONDITIONS
SW 17 SW 18 SW 20 SW 23 SW 25
Vertical Pull-In Range (1)
Vertical Blanking Pulse End
Phase (2)
Vertical Blanking Pulse Start
Phase (2)
Vertical Blanking Pulse End
Phase (1)
Vertical Blanking Pulse Start
Phase (1)
PARAMETER
TA1276AN
D13
D12
NOTE
RGB Output
Vertical Blanking Pulse End
Phase (2)
RGB Output
Vertical Blanking Pulse Start
Phase (2)
RGB Output
Vertical Blanking Pulse End
Phase (1)
RGB Output
Vertical Blanking Pulse Start
Phase (1)
PARAMETER
↑
D
SW 16
↑
C
SW 17
↑
ON
↑
ON
↑
A
↑
ON
74
↑
A
↑
Gro-un
d
2002-03-29
Apply the same conditions as those for D12 except change the input signal to a 60Hz
composite video signal and measure the phase difference VP60S1 and pulse width
VP60S2.
Apply a 50Hz composite video signal to TP15,
then measure the phase difference VR50S1 and
the pulse width VR50S2 of the pin 43 (R.out)
waveform in relation to the pin 15 (sync input)
waveform.
Similarly, measure pins 42 and 41.
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25±3°C)
SWITCHING MODE
SW 33
SW 34
#32
TEST CONDITIONS
SW 35
#36
SW 18 SW 20 SW 23 SW 25
SW 37
#47
SW 38
SW 39
TA1276AN
TA1276AN
CHROMA TEST SIGNALS
TEXT / COLOR DIFFERENCE TEST
SIGNALS
1)
Input signal C-1
1)
Video signal
2)
Input signal C-2
2)
Input signal 1
3)
Input signal C-3
3)
Input signal 2
4)
Input signal C-4
4)
Input signal 3
75
2002-03-29
76
2002-03-29
VERTICAL OUTPUT PULSE WIDTH / VERTICAL OUTPUT PULSE PHASE VARIATION / VERTICAL OUTPUT PULSE PHASE RANGE
TA1276AN
77
RGB VERTICAL BLANKING PULSE START PHASE / END PHASE
2002-03-29
TA1276AN
TEST CIRCUIT
78
2002-03-29
TA1276AN
APPLICATION CIRCUIT 1-NORMAL SCAN (3.58NTSC)
79
2002-03-29
TA1276AN
80
APPLICATION CIRCUIT 2-NORMAL SCAN (4.43PAL / 4.43NTSC / 3.58NTSC)
2002-03-29
TA1276AN
81
APPLICATION CIRCUIT 3-NORMAL SCAN (4.43PAL / 4.43NTSC / 3.58NTSC / SECAM)
2002-03-29
TA1276AN
82
APPLICATION CIRCUIT 4-NORMAL SCAN (3.58NTSC / M-PAL / N-PAL)
2002-03-29
TA1276AN
APPLICATION CIRCUIT 5-DOUBLE SCAN (3.58NTSC)
83
2002-03-29
TA1276AN
TA1276AN
AKB APPLICATION CIRCUIT
84
2002-03-29
TA1276AN
PACKAGE DIMENSIONS
Weight: 5.55g (Typ.)
85
2002-03-29
TA1276AN
RESTRICTIONS ON PRODUCT USE
000707EBA
· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
· The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
· The products described in this document are subject to the foreign exchange and foreign trade laws.
· The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
· The information contained herein is subject to change without notice.
86
2002-03-29