TOSHIBA TA1310ANG

TA1310ANG
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC
TA1310ANG
NTSC VIDEO, CHROMA, DEFLECTION, AND DISTORTION COMPENSATION IC
(WITH YUV INTERFACE AND ACB)
TA1310ANG is Video Chroma and deflection signal. Processing IC
for NTSC. On a 56-pin shrink DIP package. TA1310ANG has
deflection distortion compensation.
TA1310ANG uses an I2C Bus controls for controllings and
settings.
FEATURES
Video Signal Processing
Built-in Y delay line
Black stretch
Weight: 5.55 g (Typ.)
DC restoration ratio compensation
Aperture controlled sharpness
Output for velocity scan modulation (VSM)
White peak suppression (WPS)
Chroma Signal Processing
Built-in chroma BPF / TOF
R-Y and B-Y outputs
Color / BW situation output by read bus
Sync Signal Processing
Counts down 32 fH
Dual AFC
Vertical AGC
HD and VD outputs
Vertical frequency fixed mode
Horizontal and Vertical position alignment
DC outputs for vertical centering
Text Signal Processing
Analog RGB inputs
Digital RGB inputs
Halftone switch (YM)
Cutoff and drive alignment
YUV inputs
ACB
1
2005-09-20
TA1310ANG
Deflection Correction Function
Horizontal and Vertical amplitude adjustment
Vertical linearity correction
Vertical S correction
Vertical EHT correction
E / W parabola correction
E / W corner correction
E / W trapezium correction
2
2005-09-20
TA1310ANG
BLOCK DIAGRAM
3
2005-09-20
TA1310ANG
PIN FUNCTION
PIN
No.
SYMBOL
1
VSM OUT
2
GND I
FUNCTION
INTERFACE
VSM means Verocity
Scanning Modulation.
The terminal for GND of
―
Video / Y / TEXT circuits.
3
RIN
4
GIN
5
BIN
I / O SIGNAL
The terminals for Analog RGB
signal input.
Input signals clamped by
coupling capacitors.
(*) : Even when not in use,
connect to GND with a
coupling capacitor.
6
YS / YM IN
The terminal for switching of
Analog RGB Mode and Half
tone.
7
OSD R IN
8
OSD G IN
The terminals for Analog OSD
RGB signal input.
9
OSD B IN
Input signals clamped by
coupling capacitors.
(*) : Even when not in use,
connect to GND with a
coupling capacitor.
4
2005-09-20
TA1310ANG
PIN
No.
SYMBOL
FUNCTION
10
OSD Ys IN
The terminal for switching of
internal RGB signals and
Analog OSD RGB signals (Pin
7, 8, 9).
11
ABL IN
INTERFACE
The terminal for the external
unicolor and brightness
control.
I / O SIGNAL
OPEN 6.0 V
ABL Gain and ABL start point
can be set by using BUS.
12
VK OUT
The terminal outputs signal in
order to input in H-correction
(Pin 42).
The signal corresponds to
RGB signal.
13
R OUT
14
G OUT
15
B OUT
16
VCC (9 V)
The terminals for RGB signal
output.
The terminal for VCC supply
9 V.
―
The terminals is connected to
9 V (typ.).
17
R Filter
18
G Filter
19
B Filter
Control the RGB output cutoff
voltage, holding the standard
pulse period comparator
output to one vertical period.
At ACB ON, the filters operate
so that the IK IN (pin 20)
voltage equals the value
determined by the bus (when
RBG cutoff : center, 1 Vp-p.)
The filters must be low
leakage current filters.
5
2005-09-20
TA1310ANG
PIN
No.
SYMBOL
20
IK IN
21
V Centering
22
EW FB
23
EW OUT
24
V OUT
The terminal for output of
Vertical drive signal.
25
V NFB
The terminal for input of
Vertical negative feedback.
FUNCTION
INTERFACE
I / O SIGNAL
Terminal for detection of IK
feedback signal. Leakage
canceller incorporated.
The terminal for the DAC
output that controlled by BUS
(V-center).
The terminal for E / W
feedback.
The terminal for output of E /
W drive signal.
If input voltage is less than 2
V, V-Guard function works
and blanks RGB signal
output.
6
2005-09-20
TA1310ANG
PIN
No.
SYMBOL
FUNCTION
26
V AGC Filter
The terminal to be connected
a capacitor for Automatic gain
control of Vertical RAMP
signal.
27
V RAMP
The terminal to be connected
a capacitor to generate
Vertical RAMP signal.
28
EHT V
The terminal for the Vertical
EHT input.
29
SCL
The terminal for input of I C
BUS clock.
30
SDA
The terminal for input / output
2
of I C BUS data.
INTERFACE
I / O SIGNAL
2
7
2005-09-20
TA1310ANG
PIN
No.
SYMBOL
31
GND II
FUNCTION
INTERFACE
The terminal for the GND of
―
2
DEF / I C / EW.
32
HD OUT
I / O SIGNAL
The terminal for the HD pulse.
The suspension period of the
Black peak stretching is
extended by inputting the
external pulse.
33
VD OUT
The terminal for the VD pulse.
34
FBP IN
The terminal for the flyback
pulse to control H-BLK and
H-AFC.
35
H OUT
The terminal for the Horizontal
output.
8
2005-09-20
TA1310ANG
PIN
No.
SYMBOL
FUNCTION
36
SYNC OUT
The terminal for output of the
synchronizing signal that was
separated in the synchronous
separation circuit.
INTERFACE
I / O SIGNAL
This terminal is of the open
collector system.
Connect the pull-up resistor.
37
DEF VCC
38
Y / SYNC IN
The terminal for VCC supply 9 (Caution) Be sure to design the power supply so
V of DEF.
that when the power is Off, DEF VCC is below
1.9 V.
The terminal for input of the
synchronous separation
circuit.
Input via clamp capacitor.
39
V SEP Filter
The terminal to be connected
a capacitor for the Vertical
synchronous separation
circuit.
40
AFC I Filter
Connect the filter for
horizontal AFC I detection.
The frequency of the
horizontal output varies
depending on the voltage at
this pin.
9
2005-09-20
TA1310ANG
PIN
No.
SYMBOL
FUNCTION
41
32 fh VCO
Connect the ceramic oscillator
for horizontal oscillation.
INTERFACE
I / O SIGNAL
The oscillator to be used is
CSBLA503KECZF30, made
by Murata electronics.
42
H Correction
The terminal to correct
distortion of picture in the
case of high-tension
fluctuation.
Input the AC component of
high tension fluctuation.
This terminal can be inputted
VK output (Pin 12).
43
DL OUT
The terminal outputs delayed
Y signal.
Input this signal to Y IN (Pin
54) via a capacitor.
44
GND III
The terminal for GND of DEF
linear / Chroma circuits.
45
CHROMA IN
The terminal for the chroma
input.
―
DC : 1.77 V
AC : Burst 286 mVp-p
10
2005-09-20
TA1310ANG
PIN
No.
SYMBOL
FUNCTION
46
APC
The terminal to be connected
APC filter.
INTERFACE
I / O SIGNAL
The oscillation frequency of
VCXO varies depending on
the voltage at this pin.
47
B-Y OUT
The terminal outputs the B-Y
signal.
DC : 2.2 V
AC : 300m Vp-p
(Rainbow color
bar)
48
R-Y OUT
The terminal outputs the R-Y
signal.
DC : 2.2 V
AC : 300 mVp-p
(Rainbow color
bar)
49
X’tal
The terminal to be connected
with a 3.579545 MHz X’tal
oscillator.
The oscillated frequency, f0, is
controlled by series
capacitors, and frequency
adjustment range can be
expanded by putting
capacitors in parallel.
50
CW OUT
The terminal for CW output
generated in VCXO.
11
2005-09-20
TA1310ANG
PIN
No.
SYMBOL
51
VCC (5 V)
FUNCTION
INTERFACE
The terminal for VCC supply
―
5 V.
52
R-Y IN
53
B-Y IN
I / O SIGNAL
The terminals for the R-Y /
B-Y signal input.
Input signals clamped by
coupling capacitors.
(*) : Even when not in use,
connect to GND with a
coupling capacitor.
54
Y IN
The terminal for the Y signal
input.
Input the Y signals clamped
by coupling capacitors.
55
BLACK PEAK
DET
The terminal to be connected
the filter controlling the black
stretching gain of the black
stretching circuit.
The black stretching gain
varies depending on the
voltage at this pin.
56
DC
The terminal to be connected
RESTORATION capacitor for DC restoration
CORR.
correction control.
Open this pin if not use the
DC restoration correction.
12
2005-09-20
TA1310ANG
BUS CONTROL MAP
Slave address : 88H (WRITE) / 89H (READ)
D7
00
D6
D5
D4
D3
ABL POINT
01
TEST
02
Y-MUTE
D2
D1
D0
UNI-COLOR
BRIGHTNESS
COLOR
03
TINT
04
TOF-SW
SHARPNESS
05
ABL GAIN
RGB BRIGHTNESS
VERTICAL POSITION
UV-SW
06
G DRIVE GAIN
V-AGC
07
B DRIVE GAIN
VSM-G
08
R CUT OFF
09
G CUT OFF
0A
B CUT OFF
0B
HORIZONTAL POSITION
B. S. POINT
0C
VERTICAL SIZE
0D
HORIZONTAL SIZE
0E
V-S CORRECTION
V-LIN CORRECTION
10
SUB CONTRAST
E / W TRAPEZIUM
11
COL-γ
12
E / W CORNER
ACB MODE
RY / GY
DL-
PHASE / GAIN
MODE
13
SERVICE
HV-FIX
E / W PARABOLA
0F
14
ZOOM
V-BLK START PHASE
V-BLK STOP PHASE
VERTICAL CENTERING
V CENTERING
DAC SW
RGB-γ
BASE BAND TINT
READ MODE
PORES
Y-IN
RGB-OUT
H-OUT
V-OUT
EW-OUT
COLOR
ED2
The preset value for D7 is 1. The preset values for D0 to D6 are 0.
13
2005-09-20
TA1310ANG
BUS CONTROL CHARACTERISTICS BY FUNCTION
Write mode
ITEM
Unicolor (UNI-COLOR) / RGB
Contrast
DATA
000000 ; −18dB
111111 ; 0 dB
No. OF
BITS
PRESET
VALUE
6
−18 dB
(000000)
Brightness (sub-brightness
included) (BRIGHTNESS)
0000000 ; −40 (IRE)
1111111 ; +40 (IRE)
7
−40 (IRE)
(0000000)
Color (sub-color included)
(COLOR)
0000000 ; −∞
1111111 ; +6 dB
7
−∞
(0000000)
Tint (sub-tint included) (TINT)
0000000 ; −32°
1111111 ; +32°
7
±0°
(1000000)
6
+6 dB
(100000)
Picture Sharpness
(PICTURE-SHARPNESS)
Sub Contrast
(SUB-CONTRAST)
DC Output for Vertical Centering
(VERTICAL CENTERING)
External / Internal Color
Difference Switching
(UV-SW)
RGB Brightness
(RGB-BRIGHTNESS)
000000 ; −6 dB
111111 ; +12 dB
(at 2.4 MHz)
0000 ; −3 dB
1111 ; +3 dB
4
−3 dB
(0000)
0000000 ; 1.0 V
111111 ; 4.0 V
7
Center
(1000000)
1 ; EXT
1
INT
(0)
4
Center
(1000)
0 ; INT
0000 ; −20 (IRE)
1111 ; +20 (IRE)
00000000 ; −0.5 V
11111111 ; +0.5 V
00000000 ; 0.5 Vp-p
11111111 ; 1.5 Vp-p
RGB Cut Off
(RGB-CUTOFF)
−At bus control−
8×3
−0.5 V
(00000000)
−IK input amplitude in ACB mode−
G / B Drive Gain
(GB-DRIVE GAIN)
0000000 ; −5 dB
1111111 ; +3 dB
7×2
Center
(1000000)
VSM Gain (VSM-G)
0 ; ON
1 ; OFF
1
ON
(0)
Zoom Mode Switching (ZOOM)
0 ; Normal
1 ; ZOOM
1
Normal
(0)
Black Stretching Start Point
(B.S. POINT)
000; Min / black stretch off
(black correction on)
111; MAX / 50 (IRE)
3
Black
stretch OFF
(000)
ABL Detection Voltage
(ABL POINT)
00 ; MIN
11 ; MAX
2
Center
(10)
ABL Sensitivity(ABL GAIN)
00 ; MIN
11 ; MAX
2
MIN
(00)
Horizontal Position
(HORIZONTAL POSITION)
00000 ; −3 µs (left shift)
11111 ; +3 µs
5
Center
(10000)
Horizontal and Vertical
Frequency Fixed Mode (HV-FIX)
00 / 01 ; normal
10 ; AFC OFF (Free run) & V = 263 (H)
11 ; AFC OFF (Free run) & V = 262.5 (H)
2
Normal
(00)
3
0 (H)
(000)
Vertical Pulse Phase
(VERTICAL-PULSE PHASE)
000 ; 0H
111 ; 7H DELAY
Service Mode (SERVICE)
0 ; normal
1 ; Service mode(V-Stop)
1
Normal
(0)
Test Mode (TEST MODE)
1 ; normal
0 ; RGB BLK OFF
1
Normal
(1)
14
2005-09-20
TA1310ANG
ITEM
DATA
No. OF
BITS
PRESET
VALUE
TOF Switching (TOF-SW)
0 ; BPF mode
1; TOF mode
1
BPF
(0)
V-AGC Time Constant (V-AGC)
0 ; fast
1 ; slow
1
Fast
(0)
111111 ; MAX
6
Center
(100000)
4
Center
(1000)
3
(000)
111111 ; MIN
6
Center
(100000)
11111 ; MAX
5
Center
(10000)
4
(0000)
4
Center
(1000)
Vertical Amplitude
000000 ; MIN
(VERTICAL SIZE)
Vertical Linearity Correction
(V-LIN CORRECTION)
0000 ; Lower stretch
Vertical S Correction
1111 ; Upper stretch
000 ; Reverse S MAX
(V-S CORRECTION)
Horizontal Amplitude
(HORIZONTAL SIZE)
111 ; S MAX
000000 ; MAX
E / W Parabola Correction
(E / W PARABOLA)
00000 ; MIN
E/W Corner Correction
(E / W CORNER)
0000 ; Vertical
E / W Trapezium Correction
(E / W TRAPEZIUM)
0000 ; Expansion
1111 ; Vertical
expansion
compression
1111 ; Expansion
upward
downward
Color γ Correction (COL-γ)
0 ; ON
1 ; OFF
1
OFF
(1)
Y Mute (Y MUTE)
0 ; OFF
1 ; ON
1
ON
(1)
RGB γ Correction (RGB-γ)
0 ; OFF
1 ; ON
1
OFF
(0)
DL Mode Switching (DL-MODE)
0 ; Through
1 ; ON
1
Through
(0)
00 ; ACB OFF & S / H LOW
01 ; ACB OFF (Bus control)
ACB Mode Switching
(ACB-MODE)
2
10 ; ACB ON & I-DET normal
S / H LOW
(00)
11 ; ACB ON & I-DET×3
Relative Phase Amplitude
Switching
(RY / GY PHASE / GAIN)
00 ; NTSC STD
01 ; DVD STD
10 ; NTSC (T)
11; A-TV STD
Vertical Blanking Start Phase
(V-BLK START PHASE)
00000 ; Vth (Hi)
Vertical Blanking Stop Phase
(V-BLK STOP PHASE)
00000 ; Vth (Lo)
11111 ; Vth (Lo)
11111 ; Vth (Hi)
0000000 ; +60 deg
Base Band Tint
1111111 ; −40 deg
*1000000 (Center) :+6 deg
V CenteringDAC Output
switch(V Centering DAC SW)
0 ; Interlocking E / W trapezium correction
(E / W trapezium correction : ±12.5%)
1; Non-interlocking E / W trapezium correction
(E / W trapezium correction : ±4.5%)
2
TSB STD
(10)
5
(00000)
5
(00000)
7
Center
(1000000)
1
NonInterlocking
(1)
READ MODE
Slave address : 89H
D7
D6
D5
D4
D3
D2
D1
D0
PONRES
Y-IN
RGB-OUT
H-OUT
V-OUT
EW-OUT
COLOR
ED2
15
2005-09-20
TA1310ANG
ITEM
Power On Reset (PORES)
Color Mode (COLOR)
Self Diagnosis Result Output
(RGB-OUT / Y-IN / H-OUT / V-OUT /
E-W OUT / UV-IN)
ED2 Indentification
DATA
0 ; Normal
1 ; Resister preset
0;B/W
1 ; NTSC
0 ; NG
1 ; OK
0 ; non-ED2
1 ; ED2
2
I C BUS COMMUNICATIONS, RECEIVE METHOD
Start and stop condition
Bit transfer
Acknowledgement
When data are received, the master transmitter changes to a receiver immediately after the first
acknowledgement and the slave receiver changes to a transmitter.
The master always creates the stop condition.
16
2005-09-20
TA1310ANG
In the above method, the subaddresses are automatically incremented from the specified subaddress and data
are set.
I2C BUS Conditions
Characteristics
Symbol
Min
Typ.
Max
Unit
Low level input voltage
VIL
0
⎯
1.5
V
High level input voltage
VIH
3.0
⎯
Vcc
V
VOL1
0
⎯
0.4
V
Input current each I/O pin with an input voltage
between 0.1 VDD and 0.9 VDD
Ii
−10
⎯
10
µA
Capacitance for each I/O pin
Ci
⎯
⎯
10
pF
fSCL
0
⎯
100
kHz
Low level output voltage at 3 mA sink current
SCL clock frequency
tHD;STA
4.0
⎯
⎯
µs
Low period of SCL clock
tLOW
4.7
⎯
⎯
µs
High period of SCL clock
tHIGH
4.0
⎯
⎯
µs
Hold time START condition
Set-up time for a repeated START condition
tSU;STA
4.7
⎯
⎯
µs
Data hold time
tHD;DAT
350
⎯
⎯
ns
Data set-up time
tSU;DAT
250
⎯
⎯
ns
Set-up time for STOP condition
tSU;STO
4.0
⎯
⎯
µs
tBUF
4.7
⎯
⎯
µs
Bus free time between a STOP and START condition
17
2005-09-20
TA1310ANG
MAXIMUM RATINGS (Ta = 25°C)
CHARACTERISTICS
Power Supply Voltage (5 V / 9 V )
Input Pin Voltage (5 V / 9 V )
Power Dissipation (Note)
SYMBOL
RATING
UNIT
VCCmax
7 / 12
V
Vin
GND − 0.3~VCC + 0.3
V
PD
1920
mW
1 / Qja
15.4
mW / °C
Operating Temperature
Topr
−20~65
°C
Storage Temperature
Tstg
−55~150
°C
Power Dissipation Reduction Rate
Note:
See the figure below.
Fig.
Temperature reduction curve for power dissipation
18
2005-09-20
TA1310ANG
OPERATING CONDITION
ITEM
DATA AND CONDITIONS
Power Supply Voltage
Pin 54 Y Input Signal Level
Pin 45 Chroma Input Signal Level
Pin 38 Sync Signal Input Level
Note:
MIN
TYP.
MAX
Pin 16, Pin 37
8.7
9.0
9.3
Pin 51
4.8
5.0
5.2
100% white, including
synchronization
0.9
1.0
1.1
TOF : off, burst level
100
300
400
TOF : on, burst level
100
300
400
100% white, including
synchronization
0.9
1.0
1.1
UNIT
V
Vp-p
mVp-p
Vp-p
Be sure to design the power supply so that when the power is Off, DEF VCC is below 1.9 V.
ELECTRICAL CHARACTERISTICS
(VCC = 5 V / 9 V, DEF VCC = 9 V, Ta = 25°C ± 3°C, unless otherwise specified)
Current dissipation
PIN NAME
SYMBOL
TEST
CIRCUIT
MIN
TYP.
MAX
5 V VCC
ICC1
―
32.50
38.34
9 V VCC
ICC2
―
48.54
57.44
DEF VCC
ICC3
―
19.70
23.31
CURRENT DISSIPATION
19
UNIT
REMARKS
45.30
mA
―
67.78
mA
―
27.50
mA
―
2005-09-20
TA1310ANG
DC CHARACTERISTICS
Pin voltage
PIN
PIN NAME
SYMBOL
MIN
TYP.
MAX
V1
4.10
4.30
4.50
29
SCL
UNIT
PIN
PIN NAME
SYMBOL
MIN
TYP.
MAX
V29
4.90
5.00
―
1
VSM out
2
GND1
V2
―
0.00
―
30
SDA
V30
4.90
5.00
―
3
R in
V3
3.40
3.70
4.00
31
D. GND GND2
V31
―
0.00
―
4
G in
V4
3.40
3.70
4.00
32
HD out
V32
0.15
0.20
0.25
5
B in
V5
3.40
3.70
4.00
33
VD out
V33
4.90
5.00
5.10
6
Ys / Ym in
V6
―
0.00
0.20
34
FBP in
V34
1.30
1.60
1.90
7
OSD R in
V7
5.00
5.50
6.00
35
H out
V35
1.50
1.80
2.10
8
OSD G in
V8
5.00
5.50
6.00
36
Sync out
V36
8.80
9.00
―
9
OSD B in
V9
5.00
5.50
6.00
37
DEF VCC
V37
―
9.00
―
10
OSD Ys in
V10
―
0.00
0.20
38
Sync in
V38
2.80
3.00
3.20
11
ABL in
V11
5.70
6.00
6.30
39
V Sep
V39
6.00
6.40
6.80
12
VK out
V12
4.85
5.00
―
40
AFC1
V40
7.20
7.50
7.80
13
R out
V13
1.20
1.60
2.00
41
32fh VCO
V41
5.70
5.90
6.10
14
G out
V14
1.20
1.60
2.00
42
Curve
correction
V42
4.60
4.80
5.00
15
B out
V15
1.20
1.60
2.00
43
DL out
V43
0.30
0.80
1.00
16
VCC (9V)
V16
―
9.00
―
44
GND3
V44
―
0.00
―
17
R Filter
V17
2.1
2.5
2.9
45
Chroma in
V45
1.59
1.77
1.95
18
G Filter
V18
2.1
2.5
2.9
46
APC
V46
1.39
1.72
2.05
19
B Filter
V19
2.1
2.5
2.9
47
B-Y out
V47
1.91
2.22
2.53
20
IK in
V20
0.95
1.00
1.05
48
R-Y out
V48
1.91
2.22
2.53
21
V Centering
V21
2.20
2.30
2.40
49
X’tal
V49
3.80
4.00
4.20
22
EW FB
V22
3.90
4.30
4.70
50
CW out
V50
3.00
3.50
4.00
23
EW out
V23
0.60
0.70
0.80
51
VCC (5V)
V51
―
5.00
―
24
V out
V24
0.60
0.70
0.80
52
R-Y in
V52
2.85
3.00
3.15
25
V NFB
V25
4.60
5.00
5.40
53
B-Y in
V53
2.85
3.00
3.15
26
V AGC
V26
1.80
2.00
2.20
54
Y in
V54
3.50
3.65
3.90
V55
3.20
3.70
3.80
V56
2.90
3.00
3.10
V
27
V RAMP
V27
4.00
4.20
4.40
55
Black peak
detect
28
EHT, V i n
V28
4.80
4.90
5.00
56
DC restoration
correction
20
UNIT
V
2005-09-20
TA1310ANG
AC CHARACTERISTICS
Video stage
SYMBOL
TEST
CIRCUIT
#54 Voltage
(Y Input Pedestal Clamp Voltage)
V54
―
#55 Voltage
V55
#56 Voltage
CHARACTERISTIC
#1 Voltage
Y Input Pedestal Clamp Error Voltage
TEST
CONDITION
MIN
TYP.
MAX
UNIT
(Note P1)
3.5
3.65
3.9
V
―
(Note P2)
3.2
3.7
3.8
V
V56
―
(Note P3)
2.93
3.03
3.13
V
(Note P4)
4.1
4.25
4.4
V
(Note P5)
−7
±0
+7
mV
V1
―
∆VPC0
―
∆VPC1
―
TCL1
―
TCL2
―
DR54
―
(Note P7)
#56 Output Impedance
Z56
―
(Note P8)
4
5
6
kΩ
Black Stretching Amplifier Maximum Gain
GBS
―
(Note P9)
1.3
1.4
1.5
(Times)
Black Level Compensation
BLC
―
(Note P10)
6
7
8
(IRE)
Black Peak Detection Level
∆VBP
―
(Note P11)
−15
0
+15
mV
Y Input Pedestal Clamp Pulse Phase
Y Input Dynamic Range
(Note P6)
2.8
2.9
3.0
4.8
4.9
5.0
1.0
1.25
1.4
µs
Vp-p
PB001
―
PB111
―
DC Restoration Rate
GDTC
―
Compensation Amp. Gain
GDTR
―
SCDC
―
SCAC
―
Y Mute
GYM
―
Sharpness Peak Frequency
FAP
―
GMAX
―
GMIN
―
GCEN
―
(Note P18)
2
5
8
dB
TY
―
(Note P19)
120
150
180
ns
FVSM
―
(Note P20)
3
4
5
MHz
Black Stretching Start Point
Self-Diagnosis Y IN
Sharpness Control Range
Sharpness Control Center Characteristics
Between Y IN and R OUT Delay Time
VSM Peak Frequency
VSM Gain
VSM Muting Threshold Voltage
VSM High Speed Muting Response Time
VSM Phase
GVSM0
―
GVSM1
―
VVM10
―
VVM6
―
THM1
―
THM2
―
THM3
―
THM4
―
TVM24
―
TVMFP
―
TVM2T
―
34
36
42
51
54
61
1.45
1.55
1.65
1.3
1.4
1.5
―
OK
―
(Note P15)
−∞
−50
−45
dB
(Note P16)
3.35
4.2
5.05
MHz
8
11
14
−12
−7.5
−3
(Note P12)
(Note P13)
(Note P14)
(Note P17)
(Note P21)
(Note P22)
(Note P23)
(Note P24)
9
11
13
−∞
−30
−20
0.7
0.8
0.9
2.15
2.25
2.35
0
+50
+100
64
80
94
59
73
87
64
80
94
(IRE)
(Times)
―
dB
dB
V
ns
ns
Note 1: For testng, see the picture sharpness test circuit diagrams.
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
21
2005-09-20
TA1310ANG
Chroma stage
CHARACTERISTIC
ACC Characteristic
Color Difference Output Level
Color Difference Output Relative Amplitude
Color Difference Output Demodulation Angle
Color Difference Output Relative Phase
Color Difference
Characteristics
Supply Voltage
Difference Output
Output
Tint
Adjustment
Dependence
of
Color
Identification Sensitivity
SYMBOL
TEST
CIRCUIT
va10
―
va30
―
va300
―
va600
TEST
CONDITION
MIN
TYP.
MAX
93.5
110
127
272
320
368
276
325
374
―
276
325
374
(Note C1)
A
―
0.80
1.00
1.10
vB
―
276
325
374
vR
―
276
325
374
vRB
―
0.90
1.00
1.10
θBcnt
―
θRcnt
―
θRB
―
θBmax
θBmin
θRmax
―
θRmin
BVp
RVp
―
BVn
―
RVn
vCB
vBC
―
(Note C2)
(Note C3)
3.0
6.0
11.0
91.0
94.0
99.0
85.0
89.0
91.0
―
−35.0
−40.0
−46.5
―
35.0
38.0
44.0
−35.0
−40.0
−46.5
―
35.0
38.0
46.0
―
5.00
8.00
11.00
5.00
8.00
11.00
−11.00
−8.00
−5.00
―
−11.00
−8.00
−5.00
―
3.00
4.10
6.00
3.00
4.40
6.00
(Note C4)
(Note C5)
(Note C6)
(Note C7)
(Note C8)
bCB
―
bBC
―
vBH
―
vRH
―
vBG
―
vRG
―
VB
―
VR
―
VRB
―
(Note C13)
X'tal Free-Run Frequency
Xf
―
(Note C14) 3.579345 3.579545 3.579745
APC Frequency Control Sensitivity
βf
―
(Note C15)
fh+
―
fh−
―
fp+
―
fp−
―
vBNo
―
vRNo
―
vBHN
―
vRHN
―
Bus Read Identification
Color Difference Output Voltage Difference in
1H Period
Color Difference Output Voltage Difference
Every 1H Period
Color Difference Output DC Voltage
Difference between DC Voltage Axes of Color
Difference Output
APC Pull-In / Hold Range
Residual Carrier Level
Residual Higher Harmonics Level
22
(Note C9)
(Note C10)
(Note C11)
(Note C12)
(Note C16)
(Note C17)
(Note C18)
―
0
―
―
1
―
―
0
4.00
―
0
4.00
―
0
2.00
―
0
2.00
1.91
2.22
2.53
1.91
2.22
2.53
−0.1
0
+0.1
0.45
0.90
1.20
+250
+500
+2000
−250
−500
−2000
+250
+500
+2000
−250
−500
−2000
―
2.0
4.00
―
2.0
4.00
―
2.0
4.0
―
2.0
4.0
UNIT
mVp-p
―
mVp-p
―
°
°
°
%
mVp-p
―
mVp-p
mVp-p
V
V
MHz
Hz
mV
Hz
mVp-p
mVp-p
2005-09-20
TA1310ANG
CHARACTERISTIC
TOF-BPF Characteristic
CW Output Amplitude
SYMBOL
TEST
CIRCUIT
GBL
―
GBH
―
GTL
―
GTH
―
vCW
―
SYMBOL
TEST
CIRCUIT
VRY
―
VBY
―
DLRY
―
DLBY
―
uR
―
uB
―
cRmax
―
cRmin
―
cBmax
―
cBmin
vRHo
TEST
CONDITION
MIN
TYP.
MAX
17.5
21.0
24.5
21.5
25.0
28.5
14.0
17.5
21.0
21.5
25.0
28.5
420
700
980
mVp-p
MIN
TYP.
MAX
UNIT
2.85
3.00
3.15
2.85
3.00
3.15
115
150
185
115
150
185
−17
−19
−21
−17
−19
−21
6.5
8.0
9.5
―
―
−20
6.5
8.0
9.5
―
―
―
−20
―
−5.5
−6
−6.5
(Note C19)
(Note C20)
UNIT
dB
Color difference stage
CHARACTERISTIC
Color Difference Input Clamp Voltage
Color Difference Input / Output Delay Time
Unicolor Adjustment Characteristics
Color Adjustment Characteristics
RGB Output Half-Tone Characteristics
RGB Output Amplitude
RGB Output Relative Amplitude
TEST
CONDITION
(Note A1)
(Note A2)
(Note A3)
(Note A4)
(Note A5)
vGHo
―
−5.5
−6
−6.5
vBHo
―
−5.5
−6
−6.5
vRSTD
―
0.64
1.13
0.87
vGSTD
―
0.39
0.50
0.53
vBSTD
―
1.14
1.35
1.56
vRDVD
―
0.90
1.07
1.23
vGDVD
―
0.51
0.61
0.70
vBDVD
―
vRTSB
―
vGTSB
―
(Note A6)
1.14
1.35
1.56
0.78
0.92
1.06
0.34
0.41
0.47
vBTSB
―
1.14
1.35
1.56
vRDTV
―
0.98
1.13
1.34
vGDTV
―
0.34
0.41
0.47
vBDTV
―
1.14
1.35
1.56
vRBSTD
―
0.78
0.87
0.96
vGBSTD
―
0.31
0.35
0.39
vRBDVD
―
0.72
0.80
0.88
vGBDVD
―
vRBTSB
―
vGBTSB
―
(Note A7)
0.37
0.42
0.47
0.62
0.69
0.76
0.25
0.28
0.31
vRBDTV
―
0.78
0.87
0.96
vGBDTV
―
0.24
0.27
0.30
23
V
ns
dB
dB
dB
Vp-p
―
2005-09-20
TA1310ANG
CHARACTERISTIC
RGB Output Demodulation Angle
RGB Output Relative Phase
Color Difference EXT → INT Crosstalk
SYMBOL
TEST
CIRCUIT
θRSTD
θGSTD
TEST
CONDITION
MIN
TYP.
MAX
―
86.0
90
94
―
232.0
236
240.0
θBSTD
―
−4
0
4
θRDVD
―
86.0
90
94.0
θGDVD
―
240
244
248
θBDVD
―
θRTSB
―
θGTSB
−4
0
4
88.0
92
96.0
―
236.0
240
244.0
θBTSB
―
−4
0
4
(Note A8)
θRDTV
―
86.0
90
94.0
θGDTV
―
240.0
244
248.0
θBDTV
―
−4
0
4
θRBSTD
―
92
96
100
θGBSTD
―
236
240
244
θRBDVD
―
88
92
96
240
244
248
90
94
98
θGBDVD
―
θRBTSB
―
θGBTSB
―
235
239
243
θRBDTV
―
103
107
111
θGBDTV
―
239
243
247
XEIR
―
―
−50
−45
XEIG
―
―
−50
−45
(Note A9)
(Note A10)
UNIT
°
°
dB
XEIB
―
―
−50
−45
XIER
―
―
−50
−45
Color Difference INT → EXT Crosstalk
XIEG
―
(Note A11)
―
−50
−45
XIEB
―
―
−50
−45
Color γ Characteristic
Cγ sp
―
(Note A12)
1.80
2.07
2.20
V
SYMBOL
TEST
CIRCUIT
MIN
TYP.
MAX
UNIT
Gyoff
―
−0.30
−0.20
0.01
Gyon
―
−0.45
−0.35
0.01
dB
Y stage
CHARACTERISTIC
Sync Input~DL Output AC Gain
Sync Input~DL Output Frequency Gain
Sync Input~DL Output Dynamic Range
Sync Input~DL Output Transfer Characteristics
Gfyoff
Gfyon
VDoff
VDon
TYDL
24
TEST
CONDITION
(Note Y1)
―
(Note Y2)
―
(Note Y3)
―
(Note Y4)
−0.20
0.00
0.20
−3.00
−1.60
0.20
1.30
1.60
―
1.30
1.60
―
300
350
410
dB
dB
Vp-p
ns
2005-09-20
TA1310ANG
Text stage
CHARACTERISTIC
AC Gain
Frequency Characteristics
Unicolor Adjustment Characteristic
Brightness Adjustment Characteristic
Brightness Control Sensitivity
White Peak Slice Level
Black Peak Slice Level
DC Restoration
RGB Output S / N
RGB Output Emitter-Follower Drive Current
RGB Output Temperature Coefficient
Half-Tone Characteristics
Half-Tone ON Voltage
V-BLK Pulse Output Level
H-BLK Pulse Output Level
Blanking Pulse Delay Time
SYMBOL
TEST
CIRCUIT
GR
―
GG
―
TEST
CONDITION
(Note T1)
MIN
TYP.
MAX
3.2
3.80
4.55
3.2
3.80
4.55
GB
―
3.2
3.80
4.55
GfR
―
―
−3.0
−6.0
GfG
―
―
−3.0
−6.0
(Note T2)
UNIT
Times
dB
GfB
―
―
−3.0
−6.0
vuMAX
―
0.59
0.74
0.88
vuCNT
―
0.31
0.39
0.47
vuMIN
―
0.06
0.08
0.10
∆vu
―
17
18.5
20
VbrMAX
―
4.3
4.6
4.9
VbrCNT
―
3.3
3.6
3.9
VbrMIN
―
2.3
2.6
2.9
Gbr
―
(Note T5)
14.2
16.3
18.7
mV
VWPS
―
(Note T6)
2.600
2.825
3.100
Vp-p
VBPSR
―
(Note T7)
1.95
2.15
2.35
V
(Note T8)
―
0.0
50
mV
(Note T9)
―
−50
−45
dB
(Note T10)
1.1
1.5
1.9
mA
(Note T11)
−2.0
0.0
2.0
mV / °C
VBPSG
―
VBPSB
―
TDCR
―
TDCG
―
TDCB
―
N13
―
N14
―
N15
―
I#13
―
I#14
―
I#15
―
∆t13
―
(Note T3)
(Note T4)
Vp-p
dB
V
∆t14
―
∆t15
―
GHT
―
(Note T12)
0.45
0.5
0.55
Times
VHT
―
(Note T13)
0.6
0.8
1.0
V
VVR
―
(Note T14)
0.5
1.0
1.5
V
(Note T15)
0.5
1.0
1.5
V
―
0.0
0.3
VVG
―
VVB
―
VHR
―
VHG
―
VHB
―
tdONR
―
tdONG
―
tdONB
―
tdOFFR
―
tdOFFG
―
tdOFFB
―
25
(Note T16)
µs
―
0.0
0.3
2005-09-20
TA1310ANG
CHARACTERISTIC
Sub-Contrast Control Range
RGB Output Voltage
Cut-Off Voltage Control Range
Drive Adjustment Range
#11 Input Impedance
ACL Characteristic
ABL Point
ABL Gain
BLK Off Mode
Analog RGB Gain
Analog RGB Frequency Characteristics
Analog RGB Input Dynamic Lange
Analog RGB White Peak Slice Level
Analog RGB Black Peak Limiter Level
SYMBOL
TEST
CIRCUIT
∆vsu+
―
∆vsu−
―
V#13
―
V#14
―
V#15
―
CUT+R
―
CUT+G
―
CUT+B
―
CUT−R
―
CUT−G
―
CUT−B
―
DRG+
―
DRG−
―
DRB+
―
DRB−
―
Zin11
―
ACL1
―
ACL2
―
ABLP1
―
ABLP2
―
ABLP3
―
ABLP4
TEST
CONDITION
(Note T17)
(Note T18)
MIN
TYP.
MAX
1.8
2.3
2.8
−3.0
−3.5
−4.0
2.35
2.6
2.85
0.45
0.5
0.55
(Note T19)
(Note T20)
−0.45
−0.5
−0.55
2.35
2.85
3.35
−4.25
−5.0
−5.75
2.35
2.85
3.35
−4.25
−5.0
−5.75
24
30
36
−3.5
−5.5
−12
−15
−18
0.04
−0.01
−0.06
−0.09
−0.14
−0.19
−0.24
−0.29
−0.34
―
−0.37
−0.42
−0.47
ABLG1
―
−0.119
−0.095
−0.072
ABLG2
―
−0.400
−0.320
−0.240
ABLG3
―
−0.750
−0.600
−0.450
ABLG4
―
−0.925
−0.740
−0.555
―
GTXR
―
GTXG
―
GTXB
―
GfTXR
―
GfTXG
―
GfTXB
―
GR13
―
GR14
―
GR15
―
VTXMAXR
―
VTXMAXG
―
VTXMAXB
―
VTXMINR
―
VTXMING
―
VTXMINB
―
26
(Note T22)
(Note T23)
(Note T24)
dB
V
V
−1.5
BLK
(Note T21)
UNIT
(Note T25)
―
(Note T26)
4.2
(Note T27)
Oper-
dB
kΩ
dB
V
V
―
―
5.0
6.0
Times
―
−1.0
−3.0
dB
(Note T28)
0.47
0.55
―
Vp-p
(Note T29)
3.5
3.8
4.1
Vp-p
(Note T30)
1.9
2.1
2.3
V
ating
2005-09-20
TA1310ANG
CHARACTERISTIC
Analog RGB Contrast Adjustment
Characteristics
Analog RGB Brightness Adjustment
Characteristics
Analog RGB Mode On Voltage
Analog RGB Mode Transfer Characteristics
Crosstalk from Video to Analog RGB
Crosstalk from Analog RGB to Video
SYMBOL
TEST
CIRCUIT
vuTXR1
―
vuTXG1
―
vuTXB1
―
vuTXR2
―
vuTXG2
―
vuTXB2
―
vuTXR3
―
vuTXG3
―
vuTXB3
―
∆vuTXR
―
∆vuTXG
―
∆vuTXB
―
VbrTX1R
―
VbrTX1G
―
VbrTX1B
―
VbrTX2R
―
VbrTX2G
―
VbrTX2B
―
VbrTX3R
―
VbrTX3G
―
VbrTX3B
―
VTXON
―
τRYSR
―
τRYSG
―
τRYSB
―
tPRYSR
―
tPRYSG
―
tPRYSB
―
∆tPRYS
―
τFYSR
―
τFYSG
―
τFYSB
―
tpFYSR
―
tpFYSG
―
tpFYSB
―
∆tPFYS
―
Vv→aR
―
Vv→aG
―
Vv→aB
―
Va→vR
―
Va→vG
―
Va→vB
―
27
TEST
CONDITION
MIN
TYP.
MAX
UNIT
0.85
1.0
1.2
0.50
0.59
0.71
0.11
0.13
0.15
17.0
18.5
20
3.3
3.6
3.9
2.8
3.1
3.4
2.2
2.5
2.8
2.0
2.25
2.5
―
25
100
―
30
100
―
0
20
―
10
100
―
25
100
―
0
20
(Note T35)
―
−50
−45
dB
(Note T36)
―
−55
−50
dB
Vp-p
(Note T31)
(Note T32)
(Note T33)
(Note T34)
dB
V
V
ns
2005-09-20
TA1310ANG
CHARACTERISTIC
Analog OSD Gain
Analog OSD Frequency Characteristics
Analog OSD Output Level
Analog OSD Mode On Voltage
Analog OSD Mode Transfer Characteristic
RGB Output Self-Diagnosis
ACB Input Pulse Phase, Amplitude
SYMBOL
TEST
CIRCUIT
GOSDR
―
GOSDG
―
GOSDB
―
GfOSDR
―
GfOSDG
―
GfOSDB
―
VOSD1R
―
VOSD1G
―
VOSD1B
―
VOSD2R
―
VOSD2G
―
VOSD2B
―
VOSD3R
―
VOSD3G
―
VOSD3B
―
VOSDON
―
τROSDYSR
―
τROSDYSG
―
τROSDYSB
―
tPROSDYSR
―
tPROSDYSG
―
tPROSDYSB
―
∆tPROSDYS
―
τFOSDYSR
―
τFOSDYSG
―
τFOSDYSB
―
tPFOSDYSR
―
tPFOSDYSG
―
tPFOSDYSB
―
∆tPFOSDYS
―
TEST
CONDITION
MIN
TYP.
MAX
UNIT
(Note T37)
1.8
2.0
2.2
(Times)
(Note T38)
―
−1.0
−3.0
dB
2.25
2.5
2.75
1.98
2.20
2.42
5.0
5.5
6.0
2.00
2.25
2.50
―
20
100
―
30
100
―
0
20
―
15
100
―
30
100
―
0
20
―
Operating
―
(Note T39)
(Note T40)
(Note T41)
SCRGB
―
θACBR
―
―
1
―
θACBG
―
―
2
―
θACBB
―
―
3
―
VACBR
―
0.200
0.250
0.300
VACBG
―
0.200
0.250
0.300
VACBB
―
0.200
0.250
0.300
28
(Note T42)
(Note T43)
V
V
ns
―
(H)
Vp-p
2005-09-20
TA1310ANG
CHARACTERISTIC
ACB Clamp Current
IK Input Amplitude
RGB γ Correction Characteristics
VK Output Characteristic
ACB Protector Circuit Operation Check 1
ACB Protector Circuit Operation Check 2
ACB Protector Circuit Operation Check 3
SYMBOL
TEST
CIRCUIT
I17a
TEST
CONDITION
MIN
TYP.
MAX
―
0.08
0.1
0.125
I17b
―
0.08
0.1
0.125
I17c
―
0.8
1.0
1.3
I17d
―
2.0
2.5
3.2
I18a
―
0.08
0.1
0.125
0.08
0.1
0.125
0.8
1.0
1.3
I18b
―
I18c
―
I18d
―
2.0
2.5
3.2
I19a
―
0.08
0.1
0.125
I19b
―
0.08
0.1
0.125
I19c
―
0.8
1.0
1.3
I19d
―
2.0
2.5
3.2
0.8
1.0
1.2
0.8
1.0
1.2
(Note T44)
IKR
―
IKG
―
IKB
―
0.8
1.0
1.2
γ1R
―
40
50
60
γ2R
―
60
70
80
∆1R
―
0.75
1.5
2.25
∆2R
―
−0.75
0.0
0.75
∆3R
―
−2.55
−3.3
−4.05
γ1G
―
40
50
60
γ2G
―
60
70
80
∆1G
―
0.75
1.5
2.25
∆2G
―
−0.75
0.0
0.75
∆3G
―
−2.55
−3.3
−4.05
γ1B
―
40
50
60
γ2B
―
60
70
80
∆1B
―
0.75
1.5
2.25
∆2B
―
−0.75
0.0
0.75
(Note T45)
(Note T46)
∆3B
―
−2.55
−3.3
−4.05
VKA
―
1.90
2.00
2.10
VK1
―
25.0
35.00
45.0
(Note T47)
UNIT
mA
Vp-p
(IRE)
dB
(IRE)
dB
(IRE)
dB
Vp-p
VK2
―
60.0
70.00
80.0
(IRE)
ACBPR
―
―
―
―
―
ACBPG
―
―
―
―
―
ACBBRAR
―
ACBBRAG
―
ACBBRLO
―
29
(Note T48)
(Note T49)
(Note T50)
―
―
―
―
―
―
―
―
―
―
―
―
2005-09-20
TA1310ANG
CHARACTERISTIC
Base Band TINT Adjustment Characteristics
Base Band TINT Adjustment Position
SYMBOL
TEST
CIRCUIT
ANG RMIN
―
ANG BMIN
―
ANG RMAX
―
ANG BMAX
―
BUS BO
―
30
TEST
CONDITION
(Note T51)
(Note T52)
MIN
TYP.
MAX
47.0
53.0
59.0
47.0
53.0
59.0
−51.0
−45.0
−39.0
−51.0
−45.0
−39.0
C2
C6
CA
UNIT
°
HEX
2005-09-20
TA1310ANG
Deflection stage
CHARACTERISTIC
Sync. Separation Input Sensitivity Current
V Separation Filter Pin Source Current
V Separation Level
H AFC Phase Detection Current Ratio
TEST
CIRCUIT
SYMBOL
TEST
CONDITION
MIN
TYP.
MAX
UNIT
IIN38
―
(Note D1)
12
20
30
µA
IOUT39
―
(Note D2)
3.2
4.2
5.2
µA
VSEP
―
(Note D3)
5.0
5.5
6.0
V
210
300
420
µA
−5
0
+5
%
―
(H)
IDET
―
∆IDET
―
(Note D4)
262
TCO40
―
(Note D5)
―
~
Phase Detection Stop Period
10
32* fH VCO Oscillation Start Voltage
Horizontal Output Start Voltage
VVCO
―
VHON35
―
VBUS HON
―
VBUS HOFF
―
(Note D6)
(Note D7)
3.7
4.0
4.3
V
4.7
5.0
5.3
V
―
1
―
―
0
―
―
Horizontal Output Pulse Duty
TH35
―
(Note D8)
38.5
40.5
42.5
%
Phase Detection Stop Mode
fFR
―
(Note D9)
15585
15734
15885
Hz
Horizontal Output Free-Run Frequency
fHO
―
(Note D10)
15585
15734
15885
Hz
fHMIN
―
14700
15000
15300
fHMAX
―
16500
16700
16900
βH
―
250
300
350
VH35
―
4.2
4.6
5.0
VL35
―
―
0.15
0.3
Power Supply Voltage Dependence of
Horizontal Oscillation Frequency
∆fHV
―
(Note D14)
−20
0
+20
Hz / V
Temperature Dependence of Horizontal
Oscillation Frequency
∆fHT
―
(Note D15)
―
60
70
Hz
SPH1
―
2.3
2.5
2.7
SPH2
―
0.2
0.3
0.4
∆HSFT
―
5.5
6.0
6.5
VHBLK1
―
4.7
5.0
5.3
VHBLK2
―
0.8
1.1
1.4
∆H42
―
2.3
2.5
2.7
HBPS
―
7.5
8.0
8.5
HBPW
―
13.0
13.5
14.0
BPV32
―
0.9
1.1
1.3
Horizontal Oscillation Frequency Range
Horizontal Oscillation Control Sensitivity
Horizontal Output Voltage
Horizontal Sync. Phase
Horizontal Picture Phase Adjustment Range
Horizontal Blanking Pulse Threshold
Curve Correction Characteristic
H Cycle Black Peak Detection Disable Pulse
External Black Peak Detection Disable Pulse
Threshold
31
(Note D11)
(Note D12)
(Note D13)
(Note D16)
(Note D17)
(Note D18)
(Note D19)
(Note D20)
(Note D21)
Hz
Hz / 0.1V
V
µs
µs
V
µs
µs
V
2005-09-20
TA1310ANG
SYMBOL
TEST
CIRCUIT
Clamp Pulse Start Phase
CPS
―
Clamp Pulse Width
CPW
HD Output Start Phase
HD Output Pulse Width
HD Output Amplitude
CHARACTERISTIC
TEST
CONDITION
MIN
TYP.
MAX
UNIT
(Note D22)
2.8
3.0
3.2
µs
―
(Note D22)
5.6
5.8
6.0
µs
HDS
―
(Note D23)
0.7
0.9
1.1
µs
HDW
―
(Note D23)
0.7
0.9
1.1
µs
VHD
―
(Note D23)
4.7
5.0
5.3
V
Gate Pulse Start Phase
GPS
―
(Note D24)
2.7
2.9
3.1
µs
Gate Pulse Width
GPW
―
(Note D24)
1.8
2.0
2.2
µs
TCO34
―
(Note D25)
―
―
(H)
Sync. Out Low Level
VSY
―
V
Vertical Output Oscillation Start Voltage
VON
Vertical Free-Run Frequency
fVO
VVH
―
VVL
―
VDNO
―
fPL
―
fPH
―
Vertical Frequency Forced 263H
fV1
―
(Note D32)
Vertical Frequency Forced 262.5H
fV2
―
(Note D32)
VOFF
―
(Note D33)
Vertical Output Voltage
Service Mode Switching
Vertical Pull-In Range
Vertical Blanking Off Mode
Vertical Output Pulse Width
RGB Output Vertical Blanking Pulse Start
Phase
RGB Output Vertical Blanking Pulse Stop
Phase
261
~
Gate Pulse V Mask Period
10
(Note D26)
0.0
0.3
0.5
―
(Note D27)
4.1
4.4
4.7
V
―
(Note D28)
―
53
―
Hz
4.9
5.2
5.5
―
0
0.3
3.1
3.4
3.7
―
225
―
―
297
―
―
263
―
(H)
―
262.5
―
(H)
―
Check
―
―
44
46
48
―
8
―
44
46
48
―
22
―
―
22
―
22
―
TD
―
TW
―
VRS1
―
VGS1
―
VBS1
―
VRS2
―
VGS2
―
VBS2
―
(Note D29)
(Note D30)
(Note D31)
(Note D34)
(Note D35)
(Note D35)
―
V
V
(H)
µs
µs
(H)
257
VBPNORMAL
―
(Note D36)
―
V Cycle Black Peak Detection Disable Pulse
(Zoom)
VBPZOOM
―
(Note D37)
―
~
V Cycle Black Peak Detection Disable Pulse
(Normal)
28
―
(H)
―
(H)
229
~
32
56
2005-09-20
TA1310ANG
Deflection correction stage
CHARACTERISTIC
Vertical Ramp Amplitude
Vertical Amplification
Vertical Amp Maximum Output Voltage
TEST
CIRCUIT
SYMBOL
TEST
CONDITION
MIN
TYP.
MAX
UNIT
VP27
―
(Note G1)
1.50
1.67
1.83
Vp-p
GV
―
(Note G2)
22
25
28
dB
VH24
―
(Note G3)
2.5
3.0
3.5
V
Vertical Amp Minimum Output Voltage
VL24
―
(Note G4)
―
0.0
0.3
V
Vertical Amp Maximum Output Current
IMAX1
―
(Note G5)
11
14
17
mA
Vertical NF Sawtooth Wave Amplitude
VP25
―
(Note G6)
1.50
1.67
1.83
Vp-p
Vertical Amplitude Range
VPH
―
(Note G7)
±36
±40
±44
%
Vertical Linearity Correction Maximum Value
Vl
―
(Note G8)
±12
±15
±18
%
Vertical S Correction Maximum Value
VS
―
(Note G9)
20
25
30
%
Vertical NF Center Voltage
VC
―
(Note G10)
4.8
5.0
5.2
V
Vertical NF DC Change
VDC
―
(Note G11)
±100
±120
±140
mV
Vertical Amplitude EHT Correction
VEHT
―
(Note G12)
8
9
10
%
E-W NF Maximum DC Value (Picture Width)
VH22
―
(Note G13)
5.3
5.8
6.3
V
E-W NF Minimum DC Value (Picture Width)
VL22
―
(Note G14)
1.75
1.90
2.05
V
E-W NF Parabola Maximum Value (Parabola)
VPB
―
(Note G15)
2.1
2.5
2.9
Vp-p
E-W NF Corner Correction (Corner)
VCR
―
(Note G16)
1.0
1.2
1.4
Vp-p
Parabola Symmetry Correction
VTR
―
(Note G17)
±4.5
±5.5
±6.5
%
E-W Amp Maximum Output Current
IMAX2
―
(Note G18)
0.14
0.20
0.28
mA
AGC Operating Current 1
VAGC0
―
(Note G19)
470
590
710
µA
AGC Operating Current 2
VAGC1
―
(Note G20)
100
130
160
µA
(Note G21)
1.80
2.00
2.20
V
―
0
―
―
1
―
Vertical Guard Voltage
E / W Output Self-Diagnosis
V-Out Output Self-Diagnosis
Vertical Blanking Check
V Centering DAC Output
V NFB Pin Input Current
VVG
―
VBUS EW OFF
―
VBUS EW ON
―
VBUS VOFF
―
VBUS VON
―
VBLK1 VBLK2
―
V21L
―
V21M
―
V21H
―
I20
―
33
(Note G22)
(Note G23)
(Note G24)
(Note G25)
(Note G26)
―
0
―
―
1
―
―
Check
―
0.20
0.25
0.30
2.20
2.30
2.35
4.20
4.30
4.35
―
10
900
―
―
―
V
nA
2005-09-20
TA1310ANG
TEST CONDITIONS
Video stage
NOTE
ITEM
#54 Voltage
P1
(Y Input Pedestal Clamp
Voltage)
C
OPEN OPEN
P2
#55 Voltage
C
OPEN OPEN
P3
#56 Voltage
C
OPEN OPEN
P4
#1 Voltage
C
OPEN
P5
Y Input Pedestal Clamp
Error Voltage
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
C
ON
MEASUREMENT METHOD
1)
Set the bus control data to the preset value.
2)
Measure the #54 DC voltage V54.
1)
Set the bus control data to the preset value.
2)
Measure the #55 DC voltage V55.
1)
Set the bus control data to the preset value.
2)
Measure the #56 DC voltage V56.
1)
Set the bus control data to the preset value.
2)
Measure the #1 DC voltage V1.
1)
Set the bus control data to the preset value.
2)
Set SW 54 to C (connect the Y input to AC-GND).
3)
Measure #56 with an oscilloscope as shown in the diagram and calculate∆VPC.
4)
Calculate the voltage differences∆VPC1 and∆VPC0 when the Y mute is on (1) and off (0).
OPEN OPEN
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
34
2005-09-20
TA1310ANG
NOTE
ITEM
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
MEASUREMENT METHOD
1)
P6
P7
Y Input Pedestal Clamp
Pulse Phase
Y Input Dynamic Range
B
C
B
B
Set the bus control data to the preset value.
2)
Set SW 54 to B (connect VCC (5 V) to the Y input via a 20-kΩ resistor).
3)
Measure #54 and #40 with an oscilloscope as shown in the diagram. Calculate TCL1 and TCL2.
1)
Set the bus control data to the preset value.
OPEN
2)
Set SW 54 to C (connect the Y input to AC-GND).
3)
Set the unicolor to the center (100000), the brightness to the center (1000000), RGB cutoff to the center
(10000000), the Y mute to OFF (0), and connect an external power supply to #54.
4)
Increase the supply voltage from V54 and measure #13 (ROUT).
5)
When the #13 voltage stops changing, substitute the supply voltage (V) in the formula below and calculate DR54.
DR54 = V−V54
OPEN
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
35
2005-09-20
TA1310ANG
NOTE
ITEM
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
MEASUREMENT METHOD
1)
P8
#56 Output Impedance
C
B
Black Stretching Amplifier
Maximum Gain
A
↓
A
2)
Set SW 54 to C (connect the Y input to AC-GND).
3)
Connect the external power supply to #56 via ammeter A as shown in the diagram below.
4)
Adjust the power supply until the ammeter reads 0 amperes.
5)
Measure the ammeter current I56 when the power supply is increased by 0.1 V.
OPEN 6)
B
P9
OPEN
Set the bus control data to the preset value.
Calculate Z56 from the following formula.
Z56 = 0.1 [V] ÷ I56 [A]
1)
Set the bus control data to the preset value.
2)
Set the black stretch start point to 001, turn the Y mute off (0), set SW 54 to A, and input a 500-kHz sine wave to
TP54A.
3)
Use #54 to adjust the signal amplitude to 0.1 Vp-p.
4)
Set SW 55 to B (minimum gain) and measure the amplitude VA of #56.
5)
Set SW 55 to A (maximum gain) and measure the amplitude VB of #56.
6)
Calculate GBS from the following formula.
GBS = VB ÷ VA
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
36
2005-09-20
TA1310ANG
NOTE
ITEM
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
MEASUREMENT METHOD
1)
Set the bus control data to the preset value.
2)
Set SW 54 to C (connect the Y input to AC-GND), set SW 55 to A (maximum gain), turn the Y mute off (0), and turn
the black level compensation on (set the black stretch start point to 000).
3)
Observe #56, measure ∆V, and calculate the following formula.
3
BLC [(IRE)] = (∆V [mV] ÷ (0.7 × 10 ) [mV]) × 100 [(IRE)]
P10
P11
Black Level Compensation
Black Peak Detection Level
C
C
A
C
OPEN
OPEN
1)
Set the bus control data to the preset value.
2)
Turn the Y mute off (0) and connect #54 to an external power supply (PS).
3)
Turn the black level correction on (set the black stretch start point to 000).
4)
Increase the PS from 3V and measure the voltage VBP of #56 where the DC level of the picture period of #55
shifts from high to low.
5)
Calculate ∆VBP from the following formula.
∆VBP = VBP − V56
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
37
2005-09-20
TA1310ANG
NOTE
ITEM
B
P12
Black Stretching Start Point
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
C
↓
MEASUREMENT METHOD
1)
Set the bus control data to the preset value.
2)
Set SW 54 to C (connect the Y input to AC-GND), set SW 55 to B (minimum gain), turn the Y mute off (0), and set
the black stretch start point to 001.
3)
Connect #54 to an external power supply (PS), increase the voltage from V54, and plot the resulting change in
voltage S1 of #56.
4)
Next, set SW 55 to A (maximum gain). Then, increase the voltage from V54 as in 3) above and plot the resulting
change in voltage S2 of #56.
5)
Now set the black stretch point to 111 and plot S3 as in 3) above.
6)
Use the diagram below to calculate the intersection VB001 of S1 and S2, and the intersection VB111 of S1 and S3.
Use the following formals to calculate PB001 and PB111, and calculate PB001 and PB111 from the formulas below.
PB001 [(IRE)] = ((VB001 [V] − V56 [V] ÷ 0.7 [V]) × 100 [(IRE)]
PB111 [(IRE)] = ((VB111 [V] − V56 [V] ÷ 0.7 [V]) × 100 [(IRE)]
OPEN
A
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
38
2005-09-20
TA1310ANG
NOTE
ITEM
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
MEASUREMENT METHOD
1)
Set the bus control data to the preset value.
2)
Connect #54 to an external power supply (PS).
3)
Turn the Y mute off (0), set the unicolor to the center (100000), set the brightness to the center (1000000), set
RGB cutoff to the center (10000000), and observe #13 (ROUT).
4)
Use unicolor to adjust the difference in the #13 picture period DC level to 0.7 V when the power supply is set to
V54 and V54+0.7 V.
5)
Applying V54+0.7 V to #54 as shown in the diagram below, calculate∆V1 of #13, then calculate∆V2 of #13 when
SW 56 is on.
6)
Connect a 2-kΩ resistor between #56 and C56 (1 µF) and calculate ∆V3 of #13.
7)
Calculate GDTC and GDTR from the following formula.
GDTC = ((∆V2 [V] −∆V1 [V]) + 0.7 [V]) ÷ 0.7 [V]
OPEN
P13
DC Restoration Rate
Compensation Amp Gain
C
B
GDTR = ((∆V3 [V] −∆V1 [V]) + 0.7 [V]) ÷ 0.7 [V]
↓
ON
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
39
2005-09-20
TA1310ANG
NOTE
ITEM
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
MEASUREMENT METHOD
1)
Set the bus control data to the preset value.
2)
Set SW 54 to C (connect the Y input to AC-GND), connect #54 to an external power supply (PS), and turn read
mode on.
3)
When the power supply is increased from V54 to V54 + 0.7 V, check that in read mode Y-IN changes from error to
OK to error.
SCDC
4)
Next, set SW 54 to A and input a sine wave from TG-7 to TP54. Apply a signal on #54 as shown in the diagram.
Check that there is no problem with the Y IN in read mode.
SCAC
1)
Set the bus control data to the preset value.
2)
Input a 100-kHz sine wave to TP54 and adjust #54 to 0.7 Vp-p.
3)
Turn the Y mute on (1) and measure the #56 amplitude VYM1.
4)
Turn the Y mute off (0) and measure the #56 amplitude VYM0.
5)
Calculate the following formula.
GYM [dB] = 20 × ℓog (VYM1 / VYM0)
C
P14
Self-Diagnosis Y-IN
↓
B
OPEN
A
P15
Y Mute
A
B
OPEN
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
40
2005-09-20
TA1310ANG
NOTE
ITEM
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
MEASUREMENT METHOD
1)
P16
Sharpness Peak Frequency
A
B
Set the bus control data to the preset value.
2)
Set SW 54 to A and input a sweep signal to TP54.
3)
Set the amplitude of #54 to 20 mVp-p.
4)
Set the unicolor to the maximum (111111), set the brightness to the center (1000000), set the RGB cutoff to the
center (10000000), turn the Y mute off (0), turn test mode on (0), and set the picture sharpness to the maximum
(111111).
5)
Connect an emitter-follower to TP13 (R OUT) and use a spectrum analyzer to observe TP13 (R OUT).
6)
Seek the peak point frequency FAP as shown in the diagram.
OPEN
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
41
2005-09-20
TA1310ANG
NOTE
ITEM
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
MEASUREMENT METHOD
1)
P17
Sharpness Control Range
A
B
OPEN
2)
Set SW 54 to A and input a sine wave to TP54A.
3)
Set the amplitude of #54 to 20 mVp-p.
4)
Set the unicolor to the maximum (111111), the brightness to the center (1000000), RGB cutoff to the center
(10000000), and turn the Y mute off (0).
5)
Set the picture sharpness to the maximum (111111). Connect an emitter-follower to TP13 (R OUT). When the
frequencies are 100 kHz and 2.4 MHz, measure the respective V100 and V24 amplitudes.
6)
Next, set the picture sharpness to the minimum (000000). As in 5), when the frequencies are 100 kHz and 2.4
MHz, measure the V100 and V24 amplitudes respectively.
7)
Calculate GMAX and GMIN from the following formula.
GMAX, GMIN [dB] = 20 × ℓog (V24 ÷ V100)
1)
Repeat steps 1) to 4) of P17.
2)
P18
Sharpness Control Center
Characteristics
A
B
Set the bus control data to the preset value.
OPEN 3)
4)
Set the picture sharpness to the center (100000)
Connect an emitter-follower to TP13 (R OUT). When the frequencies are 100 kHz and 2.4 MHz, measure the
V100 and V24 amplitudes respectively.
Calculate GCEN from the following formula.
GCEN [dB] = 20 × ℓog (V24 ÷ V100)
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
42
2005-09-20
TA1310ANG
NOTE
ITEM
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
MEASUREMENT METHOD
1)
P19
Between Y IN and R OUT
Delay Time
A
B
Set the bus control data to the preset value.
2)
Set SW 54 to A and input a 2T pulse (STD) signal from TG-7 to TP54A.
3)
Set the unicolor to the maximum (111111), the brightness to the center (1000000), the RGB cutoff to the center
(10000000), turn the Y mute off (0), and set the picture sharpness to the center (100000).
4)
Connect an emitter-follower to TP13 (R OUT) to observe TP13 (R OUT).
5)
Calculate TY from the following diagram.
OPEN
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
43
2005-09-20
TA1310ANG
NOTE
ITEM
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
MEASUREMENT METHOD
1)
P20
P21
P22
VSM Peak Frequency
VSM Gain
VSM Muting Threshold
Voltage
A
A
A
B
B
B
OPEN
Set the bus control data to the preset value.
2)
Set SW 54 to A, turn the Y mute off, and input a sweep signal to TP54.
3)
Set the #54 amplitude to 100 mVp-p.
4)
Observe TP1 (VSMOUT) with a spectrum analyzer and seek the peak point frequency FVSM.
1)
Set the bus control data to the preset value.
2)
Set SW 54 to A, turn the Y mute off (0), and input the FVSM sine wave (see P20 above) to TP54.
3)
Set the amplitude of #54 to 100 mVp-p.
OPEN 4)
When the VSM gain is on (0), measure the TP1 (VSMOUT) amplitude VVSM0 (Vp-p).
5)
Next, measure the TP1 (VSMOUT) amplitude VVSM1 (Vp-p) when the VSM gain is off (1).
6)
Calculate GVSM0 and GVSM1 by the following formulas.
GVSM0 [dB] = 20 × ℓog (VVSM0 ÷ 0.1)
GVSM1 [dB] = 20 × ℓog (VVSM1 ÷ 0.1)
1)
Repeat steps 1) to 3) of P21.
2)
Connect the external power supply (PS) to #10 and increase the voltage from 0.5 V. Read the PS voltage VVM10
when the TP1 (VSMOUT) amplitude disappears, as shown in the following diagram.
3)
Set SW 6 to open, connect #6 to an external power supply, increase the voltage from 1.5 V. When the TP1
(VSMOUT) amplitude disappears as shown in the following diagram, read the PS voltage VVM6.
OPEN
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
44
2005-09-20
TA1310ANG
NOTE
P23
ITEM
VSM High Speed Muting
Response Time
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
A
B
MEASUREMENT METHOD
1)
Repeat steps 1) to 3) of P21 above.
2)
Set SW 6 to open, input a pulse as shown below to #6 (Ys / Ym IN), and measure the response times THM1 and
THM2 at that input.
3)
Similarly, input the pulse to #10 (OSD Ys IN) and measure the response times THM3 and THM4 at that input.
OPEN
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
45
2005-09-20
TA1310ANG
NOTE
P24
ITEM
VSM Phase
(TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C)
SW MODE
SW 54 SW 55 SW 56
A
B
MEASUREMENT METHOD
1)
Set the bus control data to the preset value.
2)
Input a signal like that shown in the diagram below to TP54, turn the Y mute off (0), and adjust the amplitude of
#54 to 0.7 Vp-p.
3)
Set the unicolor to the maximum (111111), increase the picture sharpness from the minimum to a level where the
R OUT waveform is not distorted.
4)
Measure the phase differences TVM24, TVMFP, and TVM2T between TP1 (VSMOUT) and TP13 (R OUT) when
the signal is an FVSM sine wave, a 2T pulse, and a 2.4-MHz signal, as shown in the diagram below. (To make a
waveform at TP1, reverse the waveform at TP13 using an oscilloscope.)
OPEN
Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).
46
2005-09-20
TA1310ANG
Chroma stage
NOTE
C1
C2
C3
ITEM
ACC Characteristics
Color Difference Output
Level
Color Difference Output
Relative Amplitude
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
SW MODE
SW 45 SW 46
B
B
B
ON
MEASUREMENT METHOD
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).Burst : chroma = 1 : 1
2)
When the chroma input amplitude levels are set to 10, 30, 300, and 600 mVp-p, measure the output
amplitudes va10, va30, va300, and va600 of the R-Y output pin (TP48).
3)
Calculate A = va30 / va600.
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp-p : 300 mVp-p
2)
Change the burst phase so that bar 2 of the B-Y output pin (TP47) output waveform is the bottom peak
and bar 7 is the top peak.
3)
Measure the amplitude (vB) of the B-Y output pin (TP47).
4)
Set the burst phase to 180°.
ON
5)
Measure the amplitude (vR) of the R-Y output pin (TP48)
1)
Calculate the relative amplitude vRB from the following formula using the values obtained in steps 3) and
5) of C2 above.
vRB = vR / vB
1)
Input a rainbow signal (C-1) to the chroma input pin (TP45).
Burst : chroma = 200 mVp-p : 200 mVp-p
2)
Calculate the demodulation angles θBcnt and θRcnt of the B-Y output pin (TP47) and the R-Y output pin
(TP48) using the formulas and diagram below.
①
Calculate the relative phase θRB from the following formula using the values obtained in C4 above.
θRB = θRcnt − θBcnt
ON
C4
Color Difference Output
Demodulation Angle
B
ON
C5
Color Difference Output
Relative Phase
B
ON
Note 1: Where the bus data are not specified, set the preset values.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
47
2005-09-20
TA1310ANG
NOTE
C6
C7
ITEM
Color Difference Output
Tint Adjustment
Characteristics
Supply Voltage
Dependence of Color
Difference Output
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
SW MODE
SW 45 SW 46
B
B
MEASUREMENT METHOD
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp-p : 300 mVp-p
2)
Measure the demodulation angles θB’ and θR’ in the outputs with the tint set to the maximum
(subaddress (03H), data (FE)). Calculate θBmax and θRmax by the following formulas.
θBmax = θB’ − θBcnt
θRmax = θR’ − θRcnt
3)
Measure the demodulation angles θB” and θR” in the outputs with the tint set to the minimum (subaddress
(03H), data (00). Calculate θBmin and θRmin by the following formulas
θBmin = θB″ − θBcnt
θRmin = θR″ − θRcnt
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp-p : 300 mVp-p
2)
As in C2, measure the amplitudes ∆VBp and ∆VRp of the B-Y output pin (TP47) and R-Y output pin
(TP48) when the 5-V VCC is set to 5 V + 0.3 V. Calculate the amplitude ratios BVp and RVp when the 5-V
VCC is set to 5 V.
ON
ON
BVp =
3)
C8
C9
Identification Sensitivity
Bus Read Identification
B
B
vB
× 100
RVp =
∆VRp − vR
vR
× 100
Using the same tests as above, calculate BVn and RVn when the 5-V VCC is set to 5 V − 0.3 V
∆VBn − vB
∆VRn − vR
BVn =
× 100
RVn =
× 100
vB
vR
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).Burst : chroma = 1 : 1
2)
Gradually reduce the input signal amplitude from 100 mVp-p. When the B-Y output pin (TP47) signal
disappears (when the current is DC), measure the input signal amplitude vCB.
3)
Gradually increase the input signal amplitude from 0 mVp-p. When a demodulation signal appears on the
B-Y output pin (TP47), measure the input signal amplitude vBC.
1)
Perform the same tests as above while observing the bus read : When the input signal amplitude is vCB,
check that the first bit is set to 0 (bCB).
When the input signal amplitude is vBC, check that the first bit is set to 1 (bBC).
ON
ON
∆VBp − vB
Note 1: Where the bus data are not specified, set the preset values.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
48
2005-09-20
TA1310ANG
NOTE
C10
ITEM
Color Difference Output
Voltage Difference in 1H
Period
C11
Color Difference Output
Voltage Difference Every
1H Period
C12
Color Difference Output DC
Voltage
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
SW MODE
SW45 SW46
B
B
B
MEASUREMENT METHOD
1)
Input no more than 300-mVp-p as a burst signal to chroma input pin (TP45).
2)
Measure the DC voltage difference (vBH) between the H blanking period and picture period of the B-Y
output pin (TP47).
3)
Measure the DC voltage difference (vRH) between the H blanking period and picture period of the R-Y
output pin (TP48).
ON
1)
Input no more than 300-mVp-p as a burst signal to chroma input pin (TP45).
2)
Measure the DC voltage difference (vBG) between the H picture period and H + 1 picture period of the
B-Y output pin (TP47).
3)
Measure the DC voltage difference (vRG) between the H picture period and H + 1 picture period of the
R-Y output pin (TP48).
1)
Input no more than 300-mVp-p as a burst signal to chroma input pin (TP45).
ON
ON
C13
Difference between DC
Voltage Axes of Color
Difference Output
B
ON
C14
X’tal Free-Run Frequency
A
ON
2)
Measure the picture period DC voltage VB of the B-Y output pin (TP47).
3)
Measure the picture period DC voltage VR of the R-Y output pin (TP48).
1)
Use the following formula to calculate the difference (VRB) between the voltage axes from the following
formula using the values obtained in C12 above.
VRB = VR − VB
1)
No signal input to the chroma input pin (TP45) (set SW45 to A).
2)
Observe the CW output pin (TP50) and measure the output frequency Xf.
Note 1: Where the bus data are not specified, set the preset values.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
49
2005-09-20
TA1310ANG
NOTE
C15
ITEM
APC Frequency
Sensitivity
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
SW MODE
SW45 SW46
Control
A
MEASUREMENT METHOD
1)
No signal input to the chroma input pin (TP45) (set SW45 to A).
2)
Set SW46 to open and connect an external power supply to the APC filter pin (#46).
3)
Change the voltage of external power supply to a value regarded as Vc3, where the output frequency of
the CW output pin (TP50) is 3.579545 MHz (Xf).
4)
Measure the CW output frequencies Xf (+100) and Xf (−100) for Vc3 + ∆Vc3 (±100 mV). Calculate the
free-run sensitivity βf from the following formula.
OFF
β f=
C16
APC Pull-In / Hold Range
C17
Residual Carrier Level
C18
Residual Higher Harmonic
Level
B
B
B
ON
200
1)
Input a 3.579545-MHz sine wave (300 mVp-p) to the chroma input pin (TP45).
2)
Vary the input sine wave frequency in ±10-Hz steps from 3.579545 MHz. When the B-Y output pin (TP47)
picture period amplitude changes, measure the difference between 3.579545 MHz and the varied sine
wave frequencies : on the plus side, fh+, and on the minus side, fh− (hold).
3)
Increase and decrease the above measured values by 1 kHz : (fh+) +1 kHz and (fh−) −1 kHz. Adjust to
approximately 3.579545 MHz in ±10-Hz steps. When the B-Y output pin (TP47) picture period amplitude
changes, measure the difference from 3.579545 MHz : on the plus side, fp+, and on the minus side, fp−
(pull-in).
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp-p : 300 mVp-p
2)
Measure the color subcarrier leak levels vBNo and vRNo of the B-Y output pin (TP47) and the R-Y output
pin (TP48).
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp-p : 300 mVp-p
2)
Measure the higher harmonic levels vBHN and vRHN of the B-Y output pin (TP47) and the R-Y output pin
(TP48).
ON
ON
X f ( +100 ) − X f ( −100 )
Note 1: Where the bus data are not specified, set the preset values.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
50
2005-09-20
TA1310ANG
NOTE
C19
C20
ITEM
TOF-BPF Characteristics
CW Output Amplitude
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
SW MODE
SW45 SW46
B
B
ON
MEASUREMENT METHOD
1)
Connect the VCC (5 V) via a 750 Ω resistor to the R-Y output pin (TP48).
2)
Input a 3.579545-MHz sine wave (50 mVp-p) to the chroma input pin (TP45).
3)
Set to BPF mode (subaddress (03H), data (80)).
4)
Set f0 of the sine wave to (3.579545 M − 1 M) Hz, measure the output amplitude of TP48, and calculate
the gain from the input (GBL).
5)
Set f0 of the sine wave to (3.579545 M+1 M) Hz, measure the output amplitude of TP48, and calculate
the gain from the input (GBH).
6)
Set to TOF mode (subaddress (03H), data (81)).
7)
Set f0 of the sine wave to (3.579545 M − 1 M) Hz, measure the output amplitude of TP48, and calculate
the gain from the input (GTL).
8)
Set f0 of the sine wave to (3.579545 M + 1 M) Hz, measure the output amplitude of TP48, and calculate
the gain from the input (GTH).
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 300 mVp-p : 300 mVp-p
2)
Measure the amplitude vCW of the CW output pin.
ON
Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
51
2005-09-20
TA1310ANG
Color difference stage
NOTE
ITEM
SW6
A1
A2
A3
Color Difference Input
Clamp Voltage
Color Difference Input /
Output Delay Time
Unicolor Adjustment
Characteristics
C
C
C
SW MODE
SW45 SW 52
A
A
A
A
B
B
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
MEASUREMENT METHOD
SW53
A
1)
Connect the color difference input pin to AC-GND. (Set SW52A and SW53A to A.)
2)
Measure the voltage VRY of the R-Y input pin (#52) and the voltage VBY of the B-Y input pin (#53).
1)
Set to external color difference input mode (subaddress (05H), data (81)).
2)
Now set as follows :
Unicolor
: maximum (subaddress (00H), data (3F))
Brightness : maximum (subaddress (01H), data (7F))
Color
: center (subaddress (02H), data (40)).
3)
Set SW52A and SW53A to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53)
f0 = 100 kHz, picture period amplitude = 0.2 Vp-p.
4)
Measure the signal delay time (DLRY) from the R-Y input pin (TP52) to the R output (TP13).
5)
Measure the signal delay time (DLBY) from the B-Y input pin (TP53) to the B output (TP15).
1)
Set to external color difference input mode (subaddress (05H), data (81))
2)
Now set as follows :
Brightness
:
Color
:
Relative phase amplitude :
B
B
maximum (subaddress (01H), data (7F))
center (subaddress (02H), data (40))
standard (subaddress (12H), data (00)).
3)
Set SW52A and SW53A to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53).
f0 = 100 kHz, picture period amplitude = 0.2 Vp-p.
4)
Set unicolor to the maximum (subaddress (00H), data (3F)). Measure the RUmax, the amplitude of the R output (TP13),
and BUmax, the amplitude of B output (TP15).
5)
Set unicolor to the minimum (subaddress (00H), data (00)). Measure the RUmin, the amplitude of the R output (TP13),
and BUmin, the amplitude of B output (TP15).
6)
Calculate the unicolor adjustment characteristics uR and uB by the following formulas.
uR = 20Log
RUmin
RUmax
uB = 20Log
BUmin
BUmax
Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
52
2005-09-20
TA1310ANG
NOTE
ITEM
SW6
A4
Color Adjustment
Characteristics
C
SW MODE
SW45 SW 52
A
B
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
MEASUREMENT METHOD
SW53
B
1)
Set to external color difference input mode (subaddress (05H), data (81))
2)
Now set as follows :
Unicolor
:
Brightness
:
Relative phase amplitude :
maximum (subaddress (00H), data (3F))
maximum (subaddress (01H), data (7F))
standard (subaddress (12H), data (00)).
3)
Set SW52A and SW53A to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53).
f0 = 100 kHz, picture period amplitude = 0.2 Vp-p.
4)
Set the color to the maximum (subaddress (02H), data (7F)). Measure RCmax, the amplitude of the R output (TP13), and
BCmax, and the amplitude of the B output (TP15).
5)
Set the color to the center (subaddress (02H), data (40)). Measure RCcnt, the amplitude of the R output (TP13), and
BCcnt, the amplitude of the B output (TP15).
6)
Set the color to the minimum (subaddress (02H), data (00)). Measure RCmin, the amplitude of the R output (TP13), and
BCmin, the amplitude of the B output (TP15).
7)
Calculate the color adjustment characteristics cRmax, cRmin, cBmax, and cBmin by the following formulas.
cRmax = 20Log
RCMAX
RC CNT
cRmin = 20Log
RCMIN
RC CNT
cBmaX = 20Log
BCMAX
BC CNT
cBmin = 20Log
BCMIN
BC CNT
Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
53
2005-09-20
TA1310ANG
NOTE
ITEM
SW 6
SW MODE
SW 45 SW 52
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
MEASUREMENT METHOD
SW 53
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 200 mVp-p : 200 mVp-p.
2)
Now set as follows :
Unicolor
Brightness
Color
Relative phase amplitude
C
A5
RGB Output Half-Tone
Characteristics
or
B
A
A
Measure the amplitudes vRo, vGo, and vBo of the R output pin (TP13), the G output pin (TP14), and the B output pin
(TP15).
4)
Set SW 6 to B and repeat the test in 3) above. Measure the amplitudes vRH, vGH, and vBH.
5)
Calculate the half-tone characteristics vRHo, vGHo, and vBHo by the following formulas.
v
v RHo = 20Log RH
v Ro
RGB Output Amplitude
C
B
A
maximum (subaddress (00H), data (3F))
maximum (subaddress (01H), data (7F))
center (subaddress (02H), data (40))
standard (subaddress (12H), data (00)).
3)
B
A6
:
:
:
:
v
v GHo = 20Log GH
v Go
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 200 mVp-p : 200 mVp-p.
2)
Now set as follows :
Unicolor
:
maximum (subaddress (00H), data (3F))
Brightness :
maximum (subaddress (01H), data (7F))
Color
:
center (subaddress (02H), data (40)).
3)
Switch the relative phase amplitude (subaddress (12H)) and measure the amplitudes (peak values) of the RGB outputs
(TP13, TP14, TP15) according to the table below.
A
Subaddress (12H) data
1)
A7
RGB Output Relative
Amplitude
C
B
A
v
v BHo = 20Log BH
v Bo
TP13
TP14
TP15
STD (00)
vRSTD
vGSTD
vBSTD
DVD (40)
vRDVD
vGDVD
vBDVD
TSB (80)
vRTSB
vGTSB
vBTSB
DTV (C0)
vRDTV
vGDTV
vBDTV
Using the values obtained in A06 above, calculate the relative amplitudes by the following formulas.
A
v
v RB ∗ ∗ ∗ = R ∗∗∗
v B∗∗∗
v
v GB = G∗∗∗
v B∗∗∗
Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
54
2005-09-20
TA1310ANG
NOTE
ITEM
SW 6
A8
RGB Output Demodulation
Angle
C
SW MODE
SW 45 SW 52
B
A
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
MEASUREMENT METHOD
SW 53
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 200 mVp-p : 200 mVp-p.
2)
Now set as follows :
Unicolor
: maximum (subaddress (00H), data (3F))
Brightness : maximum (subaddress (01H), data (7F))
Color
: center (subaddress (02H), data (40)).
Adjust the tint so that the waveform angle of the B-Y output pin (TP47) is 0°.
3)
Switch the relative phase amplitude (subaddress (12H)) and measure the phase of the RGB outputs (TP13, TP14, TP15)
according to the table below.
A
TP13
TP14
TP15
STD (00)
θRSTD
θGSTD
θBSTD
DVD (40)
θRDVD
θGDVD
θBDVD
TSB (80)
θRTSB
θGTSB
θBTSB
DTV (C0)
θRDTV
θGDTV
θBDTV
Subaddress (12H) data
(*)The test method is the same as those for C4 in Chroma stage. (Measure bar 2 of the G axis.)
1)
A9
RGB Output Relative
Phase
C
B
A
A
Using the values obtained in A08 above, calculate the relative amplitudes by the following formulas.
θRB*** = θR*** − θB***
θGB*** = θG*** − θB***
Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
55
2005-09-20
TA1310ANG
NOTE
ITEM
SW 6
SW MODE
SW 45 SW 52
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
Color Difference
A10
EXT → INT
Crosstalk
C
A
B
MEASUREMENT METHOD
SW 53
B
1)
No signal input to the chroma input pin (TP45) (set SW 45 to A).
2)
Now set as follows :
Unicolor
: maximum (subaddress (00H), data (3F))
Brightness
: maximum (subaddress (01H), data (7F))
Relative phase amplitude : standard (subaddress (12H), data (00)).
3)
Set SW 52A and SW 53A to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53).
f0 = 4 MHz, picture period amplitude = 0.2 Vp-p
4)
Set to external color difference input mode (subaddress (05H), data (81)).
5)
Adjust the color data so that the amplitude of the R output pin (TP13) is 2 Vp-p.
6)
Set to internal color difference input mode (subaddress (05H), data (80)).
7)
Measure the amplitude v XER of the R output pin (TP13) and calculate the amount of crosstalk.
v
XEIR = 20Log XER
2
8)
Repeat steps 4) to 7) above for the G and B axes and calculate the amount of crosstalk on those axes.
v
XEIG = 20Log XEG
2
v
XEIB = 20Log XEB
2
Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
56
2005-09-20
TA1310ANG
NOTE
ITEM
SW 6
SW MODE
SW 45 SW 52
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
Color Difference
A11
INT→EXT
Crosstalk
C
B
A
MEASUREMENT METHOD
SW 53
A
1)
Input a rainbow signal (signal C-1) to the chroma input pin (TP45).
Burst : chroma = 200 mVp-p : 200 mVp-p.
2)
Now set as follows :
Unicolor
:
Brightness
:
Relative phase amplitude :
maximum (subaddress (00H), data (3F))
maximum (subaddress (01H), data (7F))
standard (subaddress (12H), data (00)).
3)
Set SW 52A and SW 53A to A.
4)
Set to internal color difference input mode (subaddress (05H), data (80)).
5)
Adjust the color data so that the amplitude of the R output pin (TP13) is 2 Vp-p.
6)
Set to external color difference input mode (subaddress (05H), data (81)).
7)
Measure the amplitude v XIR of the R output pin (TP13) and calculate the amount of crosstalk.
v
XIER = 20Log XIR
2
Repeat steps 4) to 7) above for the G and B axes and calculate the amount of crosstalk on those axes.
8)
v
XIEG = 20Log XIG
2
v
XIEB = 20Log XIB
2
Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
57
2005-09-20
TA1310ANG
NOTE
ITEM
SW 6
A12
Color γ Characteristics
C
SW MODE
SW 45 SW 52
B
A
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
MEASUREMENT METHOD
SW 53
A
1)
Set to external color difference input mode (subaddress (05H), data (81)).
2)
Now set as follows :
Unicolor
Brightness
Relative phase amplitude
Y mute
:
:
:
:
maximum (subaddress (00H), data (3F))
maximum (subaddress (01H), data (7F))
standard (subaddress (12H), data (00))
on (set D7 of subaddress (02H) to 1).
3)
Set SW 52a to a, set SW53a to b, and input the signal shown in Fig.1) below to the B-Y input pin (TP53).
4)
Set the color to the minimum and measure the picture period DC voltage v Bγ0 of the B output pin (TP15).
5)
Increase the color from the minimum. When the picture period DC voltage of the R output pin (TP13) changes, measure
the picture period DC voltage vBγ1 of the B output pin (TP15).
6)
Using the values obtained above, calculate the color γ start point Cγsp by the following formula.
Cγsp = vBγ1 − vBγ0
Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
58
2005-09-20
TA1310ANG
Y stage
NOTE
Y1
ITEM
Sync Input~DL Output AC
Gain
(#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C)
SW MODE
SW 45
A
MEASUREMENT METHOD
1)
Input signal C-2 to the Sync Input pin (TP38).
f0 = 100 kHz, picture period amplitude = 0.2 Vp-p
2)
Turn DL mode off (subaddress (12), data (80)) and measure the picture period amplitude v43off of the DL output
(TP43). Calculate the gain from the input (GYoff) by the formula shown below.
3)
Turn DL mode on (subaddress (12), data (A0)) and measure the picture period amplitude v43on of the DL output
(TP43). Calculate the gain from the input (GYon) by the formula shown below.
v
GYoff = 20Log 43off
0.2
Y2
Sync Input~DL Output
Frequency Gain
A
1)
Input signal C-2 to the Sync Input pin (TP38).
f0 = 8 MHz, picture period amplitude = 0.2 Vp-p
2)
Turn DL mode off (subaddress (12), data (80)) and measure the picture period amplitude v438Moff of the DL
output (TP43). Calculate the gain from the input (GfYoff) by the formula shown below.
3)
Turn DL mode on (subaddress (12), data (A0)) and measure the picture period amplitude v438Mon of the DL
output (TP43). Calculate the gain from the input (GfYon) by the formula shown below.
v
GfYoff = 20Log 438Moff
v 43off
Y3
Sync Input~DL Output
Dynamic Range
Y4
Sync Input~DL Output
Transfer Characteristics
A
A
v
GYon = 20Log 43on
0. 2
v
GfYon = 20Log 438Mon
v 43on
1)
Input signal C-3 to the Sync Input pin (TP38).
2)
When the amplitude A of signal C-3 is increased from 0, observe the change in the picture period amplitude of
the DL output (TP43). With DL mode turned on and off, when the output amplitude stops changing in a linear
direction, measure the input signal amplitude A.
1)
Input signal C-2 to the Sync Input pin (TP38).
f0 = 100 kHz, picture period amplitude = 0.2 Vp-p
2)
Turn DL mode on (subaddress (12H), data (20)) and measure the amount of delay TYLD from the Sync Input
(#38) to the DL output (TP43).
Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).
59
2005-09-20
TA1310ANG
Text stage
NOTE
ITEM
S03
T1
T2
T3
T4
AC Gain
Frequency Characteristics
Unicolor Adjustment
Characteristics
Brightness Adjustment
Characteristics
A
A
A
S04
A
A
A
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
A
A
A
OFF
OFF
OFF
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54.
2)
Measure the picture period amplitudes of pins 13, 14, and 15. (v13, v14,
v15)
3)
GR = v13 / 0.2
GG = v14 / 0.2
GB = v15 / 0.2
A
A
1)
Input signal 1 (f = 8 MHz, picture period amplitude = 0.2 Vp-p) to pin 54.
2)
Measure the picture period amplitudes of pins 13, 14, and 15. (v13
8 MHz, v14 8 MHz, and v15 8 MHz).
3)
Using the values obtained in T01 above, calculate the frequency
characteristics from the following formulas.
4)
GfR = 20 × ℓog (v13 8 MHz / v13)
GfG = 20 × ℓog (v14 8 MHz / v14)
GfB = 20 × ℓog (v15 8 MHz / v15)
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54.
2)
When the subaddress (00, unicolor) data are changed to the maximum
(3F), the center (20), and the minimum (00), measure the picture period
amplitude of pin 13.
A
(vu
A
A
A
OFF
A
A
A
OFF
A
MAX
Brightness Control
Sensitivity
A
A
A
OFF
A
A
A
OFF
60
, vu
MIN
)
3)
Calculate the maximum, minimum amplitude ratio for unicolor in decibels.
(∆vu)
1)
Input signal 2 to pin 54 and adjust the picture period amplitude input of
pin 13 to 1 Vp-p.
2)
When the subaddress (01, brightness) data are changed to the maximum
(FF), the center (C0), and the minimum (80), measure the picture period
DC voltage of pin 13.
(Vbr
T5
CNT
, vu
MAX
, Vbr
CNT
, Vbr
MIN
)
1)
Using the values obtained in T4 above, calculate the brightness
sensitivity from the following formula.
2)
Gbr = (Vbr
A
MAX
MIN
− Vbr
) / 128
2005-09-20
TA1310ANG
NOTE
ITEM
S03
S04
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
1)
T6
T7
T8
White Peak Slice Level
Black Peak Slice Level
DC Restoration
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
61
A
C
Change the bus data and set the sub-contrast to the maximum.
2)
Input signal 2 to pin 54 and gradually increase the amplitude.
3)
When pin 13's picture period is clipped, measure the picture period
amplitude of pin 13
1)
Apply an external power supply to pin 54 and gradually decrease the
voltage from 3.7 V.
2)
When their picture periods are clipped, measure the picture period
amplitudes of pins 13, 14, and 15.
1)
Input the TG7 stair-step signal to pin 54.
2)
Adjust the unicolor data so that the pin 13 stair-step output signal is 1.25
Vp-p.
3)
When the stair-step signal APL is changed from 10% to 90%, measure
the voltage change at point A in the diagram below.
4)
Repeat steps 1) to 3) above on pins 14 and 15.
A
2005-09-20
TA1310ANG
NOTE
ITEM
S03
S04
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
T9
RGB Output S / N
A
A
A
OFF
A
A
A
OFF
C
T10
RGB Output
Emitter-Follower Drive
Current
A
A
A
OFF
A
A
A
OFF
C
T11
T12
T13
RGB Output Temperature
Coefficient
Half-Tone Characteristics
Half-Tone ON Voltage
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
Measure the picture period noise levels of pins 13, 14, and 15 with an
oscilloscope.
(n13, n14, n15 (Vp-p))
2)
Calculate the S / N for each pin.
N13 = −20 × Log (2.5 / (0.2 × n13))
N14 = −20 × Log (2.5 / (0.2 × n14))
N15 = −20 × Log (2.5 / (0.2 × n15))
1)
Connect a 3.5-V external power supply to pin 13 via a 100-Ω resistor
(I#13) and measure the sink current on pin 13.
2)
Perform the same test on pins 14 and 15. (I#14, I#15)
1)
When the temperature changes through the range −20°C to +65°C,
measure the changes in the picture period amplitudes of pins 13, 14, and
15.
2)
Calculate the voltage changes per degree of temperature. (∆t13, ∆t14,
∆t15)
C
A
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54.
2)
Measure the picture period amplitude of pin 13. (v13A)
3)
Apply 1.5 V DC to pin 6.
4)
Measure the picture period amplitude of pin 13. (v13B)
5)
GHT = v13B / v13A
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54.
2)
Connect an external power supply to pin 6 and gradually increase the
voltage from 0 V.
3)
When the picture period amplitude of pin 13 changes, measure the pin 3
voltage. (VHT)
1)
Measure the voltages of pins 13, 14, and 15 during the vertical blanking
period.
(VVR, VVG, VVB)
1)
Measure the voltages of pins 13, 14, and 15 during the horizontal
blanking period.
(VHR, VHG, VHB)
A
T14
V-BLK Pulse Output Level
A
A
A
OFF
A
A
A
OFF
C
T15
H-BLK Pulse Output Level
A
A
A
OFF
A
A
A
OFF
C
62
1)
2005-09-20
TA1310ANG
NOTE
ITEM
S03
S04
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
1)
T16
Blanking Pulse Delay Time
A
A
A
OFF
A
A
A
OFF
Measure tdON and tdOFF using the signal input to pin 34 (FBN-IN) (A
below) and the signals output from pins 13, 14, and 15 (B below).
(A) Signal input to pin 34
C
(B) Signals output from pins
13, 14, and 15
T17
T18
T19
Sub-Contrast Control Range
RGB Output Voltage
Cut-Off Voltage Control
Range
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
63
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54.
2)
When the subaddress (0F, sub-contrast) data are changed to the
maximum (8F), the center (88), and the minimum (80), measure the
picture period amplitude of pin 13.
3)
Calculate the maximum and minimum amplitude ratios in relation to the
sub-contrast center in decibels.
(∆vsu+,∆vsu−)
1)
Measure the picture period amplitudes of pins 13, 14, and 15.
1)
When the R cutoff (subaddress (08)) data are changed to the maximum
(FF), the center (80), and the minimum (00), measure the picture period
amplitude of pin 13 and calculate the change in maximum and minimum
from the center.
(CUT+, CUT−)
2)
Make the following changes in steps (1) and (2) above and measure :
Change the subaddress (09) data and measure pin 14.
Change the subaddress (0A) data and measure pin 15.
A
C
C
2005-09-20
TA1310ANG
NOTE
ITEM
S03
T20
T21
T22
Drive Adjustment Range
#11 Input Impedance
ACL Characteristics
A
A
A
S04
A
A
A
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
A
A
A
OFF
OFF
OFF
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
64
A
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54.
2)
When the G drive subaddress (06) data are changed to the maximum
(FE), the center (80), and the minimum (00), measure the picture period
amplitude of pin 14.
3)
Calculate the maximum and minimum amplitude ratios in relation to the
drive center in decibels.
(DRG+, DRG−)
4)
Repeat steps 1) to 3) above with the subaddress (07) data and pin 15
instead of 14. (DRB+, DRB−)
1)
Adjust the external power supply voltage until the ammeter reads 0.
2)
When the pin 11 voltage is increased by 0.2 V, measure the ammeter
current.
(i)
Zin11 (Ω) = 0.2 (V) ÷ i (A)
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54.
C
A
2)
Measure the picture period amplitude of pin 13 (vACL1).
3)
Apply −0.5 V DC to pin 11 from an external power supply and measure
the picture period amplitude of pin 13. (vACL2)
4)
Apply −1 V DC to pin 11 from an external power supply and measure the
picture period amplitude of pin 13. (vACL3)
5)
ACL1 = −20 × ℓog (vACL2 / vACL1)
ACL2 = −20 × ℓog (vACL3 / vACL1)
2005-09-20
TA1310ANG
NOTE
ITEM
S03
T23
T24
T25
ABL Point
ABL Gain
BLK Off Mode
A
A
A
S04
A
A
A
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
A
A
A
OFF
OFF
OFF
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
65
C
C
C
1)
Measure the DC voltage of pin 11 (vABL1)
2)
Set the subaddress (04) data to (83).
3)
Set the subaddress (00) data to (3F). Apply external voltage to pin 11,
decrease the pin voltage from 6.5 V. When the voltage of pin 13 starts to
change, measure the voltage of pin 11. (vABL2)
4)
Change the subaddress (00) data to (7F), (BF), and (FF), and repeat
step 3) for each of these data. (vABL3, vABL4, vABL5)
5)
ABLP1 = vABL2 − vABL1
ABLP2 = vABL3 − vABL1
ABLP3 = vABL4 − vABL1
ABLP4 = vABL5 − vABL1
1)
Apply 6.5 V from an external power supply to pin 11.
2)
Set the subaddress (00) data to (3F).
3)
Set the brightness to the maximum.
4)
Measure the voltage of pin 13 (vABL6)
5)
Apply 5 V from the external power supply to pin 11.
6)
Change the subaddress (04) data to (80), (81), (82), and (83), and repeat
step 4 for each of these data.
(vABL7, vABL8, vABL9, vABL10)
7)
ABLG1 = vABL7 − vABL6
ABLG2 = vABL8 − vABL6
ABLG3 = vABL9 − vABL6
ABLG4 = vABL10 − vABL6
1)
Set the subaddress (01) data to (40) and check that the blanking of pins
13, 14, and 15 is turned off.
2005-09-20
TA1310ANG
NOTE
ITEM
S03
S04
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
1)
T26
T27
T28
Analog RGB Gain
Analog RGB Frequency
Characteristics
Analog RGB Input D Range
B
B
B
B
B
B
B
B
B
ON
ON
ON
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
66
C
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 3.
2)
Measure the picture period amplitude of pin 13 (v13R).
3)
As in steps 1) and 2) above, input to pin 4 and measure pin 14 (v14G),
then input to pin 5 and measure pin 15 (v15B).
4)
GTXR = v13R / 0.2
GTXG = v14G / 0.2
GTXB = v15B / 0.2
1)
Input signal 1 (f = 8 MHz, picture period amplitude = 0.2 Vp-p) to pin 3.
2)
Measure the picture period amplitude of pin 13. (v13R 8 MHz)
3)
As in steps 1) and 2) above, input to pin 4 and measure pin 14, then
input to pin 5 and measure pin 15. (v14G 8 MHz, v15B 8 MHz)
4)
Calculate the frequency characteristics from the above results and the
results obtained in T26.
GfTXR = 20 × ℓog (v13R 8 MHz / v13R)
GfTXG = 20 × ℓog (v14G 8 MHz / v14G)
GfTXB = 20 × ℓog (v15B 8 MHz / v15B)
1)
Set the subaddress (00 : unicolor) data to min (00).
2)
Input signal 2 to pin 3 and gradually increase picture amplitude A.
3)
When the voltage during the picture period of pin 13 stops changing,
measure picture amplitude A (DR13).
4)
Repeat steps 2) and 3) above under the following conditions :
Input to pin 4, measure the voltage during the picture period of pin 14
(DR14).
Input to pin 5, measure the voltage during the picture period of pin 15
(DR15).
C
C
2005-09-20
TA1310ANG
NOTE
ITEM
S03
S04
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
1)
T29
T30
T31
T32
Analog RGB White Peak
Slice Level
Analog RGB Black Peak
Limiter Level
Analog RGB Contrast
Adjustment Characteristics
Analog RGB Brightness
Adjustment Characteristics
B
A
B
B
B
A
B
B
B
A
B
B
ON
ON
ON
ON
A
A
A
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
OFF
67
C
C
2)
When pin 13 is clipped, measure the picture period amplitude of pin 13.
3)
As in steps 1) and 2) above, input to pin 4 and measure pin 14, then
input to pin 5 and measure pin 15.
1)
Apply an external power supply to pin 3. Gradually decrease the voltage
from 5V DC. When pin 13 is clipped, measure the voltage of pin 13.
2)
As in step 1) above, apply to pin 4 and measure pin 14, then apply to pin
5 and measure pin 15.
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 3.
2)
When the subaddress (00, unicolor) data are changed to the maximum
(3F), the center (20), and the minimum (00), measure the picture period
amplitude of pin 13.
(vuTXR1, vuTXR2, vuTXR3)
3)
Calculate the maximum and minimum amplitude ratios in decibels.
4)
As in steps 1), 2) and 3) above, input signal 1 to pin 4 and measure pin
14, then input signal 1 to pin 5 and measure pin 15.
1)
Input signal 2 to pins 3, 4, and 5.
2)
Adjust the signal 2 amplitude A so that the picture period amplitude of pin
13 is 0.5 Vp-p.
3)
When the subaddress (05, RGB brightness) data are changed to the
maximum (F8), the center (88), and the minimum (08), measure the
picture period amplitudes of pins 13, 14, and 15.
(vbrTX1, vbrTX2, vbrTX3)
C
C
Input signal 2 to pin 3. Gradually increase the picture period amplitude A.
2005-09-20
TA1310ANG
NOTE
ITEM
S03
T33
T34
Analog RGB Mode On
Voltage
Analog RGB Mode Transfer
Characteristics
B
A
S04
A
A
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
A
A
OFF
OFF
A
A
A
A
A
A
OFF
OFF
C
C
OFF
T35
Crosstalk from Video to
Analog RGB
A
A
A
or
A
A
A
OFF
ON
68
A
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 3.
2)
Apply an external power supply to pin 6. Gradually increase the voltage
from 0 V.
3)
When signal 1 is output to pin 13, measure the voltage of pin 6.
1)
Set the subaddress (05, RGB brightness) data to the maximum (F8).
2)
Input signal 3 (signal amplitude 4.5 Vp-p) to pin 6.
3)
Measure the switching transfer characteristics of pins 13, 14, and 15
according to diagram T-2.
4)
Using the data obtained from the above measurements, calculate the
maximum axis difference between the rising and falling edges of transfer
delay time.
1)
Input signal 1 (f = 4 MHz, picture period amplitude = 0.5 Vp-p) to pin 54.
2)
Adjust the input amplitude so that the picture period amplitude of pin 13
is 2 Vp-p.
3)
Turn SW 6 on.
4)
Measure the picture period amplitude (Vp-p) of pin 13. (v13A)
5)
Calculate by the following formula the amount of crosstalk from the video
to the analog RGB.
Vv → AR = −20 × ℓog (v13A / 2)
6)
Repeat steps 4) and 5) above on pins 14 and 15.
2005-09-20
TA1310ANG
NOTE
ITEM
S03
S04
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
1)
ON
T36
Crosstalk from Analog RGB
to Video
B
B
B
or
A
A
A
OFF
C
OFF
T37
T38
Analog OSD Gain
Analog OSD Frequency
Characteristics
A
A
A
A
A
A
OFF
OFF
B
B
B
B
B
B
ON
ON
69
C
C
Turn SW 6 on.
2)
Input signal 1 (f = 4MHz, picture period amplitude = 0.5 Vp-p) to pin 3.
3)
Adjust the input amplitude so that the picture period amplitude of pin 13
is 2 Vp-p.
4)
Turn SW 6 off.
5)
Measure the picture period amplitude (Vp-p) of pin 13. (v13B)
6)
Calculate by the following formula the amount of crosstalk from the
analog RGB to the video.
vA → AR = −20 × ℓog (v13B / 2)
7)
As in steps 2) to 6) above, input to pin 4 and measure pin 14, then input
to pin 5 and measure pin 15
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 7.
2)
Measure the picture period amplitude of pin 13. (v13R)
3)
As in steps 1) and 2) above, input to pin 8 and measure pin 14, then
input to pin 9 and measure pin 15. (v14G, v15B)
4)
GOSDR = v13R / 0.2
GOSDG = v14G / 0.2
GOSDB = v15B / 0.2
1)
Input signal 1 (f = 8 MHz, picture period amplitude = 0.2 Vp-p) to pin 7.
2)
Measure the picture period amplitude of pin 13. (v13R 8MHz)
3)
As in steps 1) and 2) above, input to pin 8 and measure pin 14, then
input to pin 9 and pin 15. (v14G 8 MHz, v15B 8 MHz)
4)
Calculate the frequency characteristics from the above results and the
results in T37.
5)
GfOSDR = 20 × ℓog (v13R 8 MHz / v13R)
GfOSDG = 20 × ℓog (v14G 8 MHz / v14G)
GfOSDB = 20 × ℓog (v15B 8 MHz / v15B)
2005-09-20
TA1310ANG
NOTE
ITEM
S03
T39
T40
T41
T42
Analog OSD Output Level
Analog OSD Mode On
Voltage
Analog OSD Mode Transfer
Characteristics
RGB Output Self-Diagnosis
A
A
A
A
S04
A
A
A
A
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
A
A
A
A
OFF
OFF
OFF
OFF
A
B
A
A
A
A
A
A
A
A
A
A
OFF
OFF
OFF
OFF
70
C
C
C
A
1)
When 0V (DC) is input from an external power supply to pin 7, when 7.5
V is input to pin 7, and when no external voltage is applied to pin 7,
measure the picture period amplitude of pin 13.
(VOSD1R, VOSD2R, VOSD3R)
2)
As in step 1) above, input to pin 8 and measure pin 14, then input to pin 9
and measure pin 15.
(VOSD1G, VOSD2G, VOSD3G)
(VOSD1B, VOSD2B, VOSD3B)
1)
Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 7.
2)
Apply an external power supply to pin 10. Gradually increase the voltage
from 0 V.
3)
When signal 1 is output to pin 13, measure the pin 10 voltage.
1)
Apply 2.5 V from an external power supply to pins 7, 8, and 9.
2)
Input signal 4 (signal amplitude = 4.5 Vp-p) to pin 10.
3)
Measure the switching transfer characteristics of pins 13, 14, and 15
according to diagram T-2.
4)
Using the data obtained from the above measurements, calculate the
maximum axis difference between the rising and falling edge of the
transfer delay time.
1)
Set the bus control data to read mode and reset.
2)
Set to read mode again.
3)
Check that the read mode parameter (RGB-OUT) is 0 (error).
4)
Measure the voltage of pin 54 and apply that voltage +0.7 V to pin 53
using an external power supply.
5)
Set to read mode again.
6)
Check that the read mode parameter (RGB-OUT) is 1 (OK).
2005-09-20
TA1310ANG
NOTE
ITEM
S03
S04
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
1)
Input signal 1 (f = 100 kHz, picture amplitude 0.2 Vp-p) to pin 53 and
adjust drive data so that the picture period amplitude of pins 14 and 15
equals that of pin 13.
2)
Set SW 54 to C.
3)
Measure the voltages on pins 17, 18, and 19 and apply the measured
voltages to the pins from an external power supply.
4)
Set the subaddress (11) data to (50).
5)
According to the voltage on pins 13, 14, and 15 in Figure 1 below,
determine the phase of ACB input pulse.
Note : The phase starts after the V-BLK period. The picture period after
the falling edge of FBP input is 1 H ; then, every time H-BLK ends,
the period is 2 H, 3 H, and so on.
A
T43
ACB Input Pulse Phase,
Amplitude
A
A
A
OFF
A
A
A
OFF
or
C
71
6)
According to pins 13, 14, and 15 the voltage on, determine the ACB input
pulse amplitude (amplitude from the BLK level at RGB-BLK OFF).
2005-09-20
TA1310ANG
NOTE
ITEM
S03
T44
T45
ACB Clamp Current
IK Input Amplitude
A
A
S04
A
A
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
A
A
OFF
OFF
A
A
A
A
A
A
OFF
OFF
72
1)
Set pin 17 to open, connect a 1-kΩ resistor to the pin, and apply 3V to
the pin from the power supply.
2)
When the subaddress (11) data are set to (10), (30), (50), and (70),
measure from the waveform of pin 17 the current flowing to GND during
the clamp period.
(I17a, I17b, I17c I17d )
3)
Repeat the measurements in steps 1) and 2) above on pins 18 and 19.
(I18a, I18b, I18c I18d )
(I19a, I19b, I19c I19d )
C
C
1)
Connect TP13 to TP13b ; TP14 to TP14b ; TP15 to TP15b.
2)
Set SW 20 to b.
3)
Set the subaddress (11) data to (50).
4)
By referring to Figure 1 of T43, determine the voltage output from pins
13, 14, and 15 (IKR, IKG, IKB) during the ACB pulse input to the signal
input to pin 20.
2005-09-20
TA1310ANG
NOTE
ITEM
S03
T46
RGB γ Correction
Characteristics
A
S04
A
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
A
OFF
A
A
A
OFF
73
1)
Input a ramp waveform to pin 54 (Y IN) and adjust the input amplitude so
that the picture period amplitude of pin 13 is 2.5 Vp-p.
2)
Adjust the drive adjustment data so that the picture period amplitudes of
pins 14 and 15 are equal to that of pin 13.
3)
Set the subaddress (13) data to (81).
4)
Using pins 13, 14, and 15, calculate the RGBγ start point and its gradient
(in decibels) in relation to the off point, using Fig.1 below.
A
2005-09-20
TA1310ANG
NOTE
ITEM
S03
T47
VK Output Characteristics
A
S04
A
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S05
S06
S07
S08
S09
S10
S54
A
ON
B
B
B
OFF
74
1)
Input a sync signal to pin 38.
2)
Input a ramp waveform (1.25 Vp-p) to pins 7, 8, and 9 during the picture
period.
3)
Acquire VK1 and VK2 of the input level, by means of monitering the VKA
and the inflection points of the output waveform for pin #12.
C
2005-09-20
TA1310ANG
NOTE
ITEM
SYMBOL
S03
T48
T49
T50
ACB Protection
Circuit
Operating
monitor 1
ACB Protection
Circuit
Operating
monitor 2
ACB Protection
Circuit
Operating
monitor 3
ACBPR
ACBPG
ACBBRAR
ACBBRAG
ACBBRLO
A
A
A
SW MODE & SUB ADDRESS & DATA
S04 S05 S06 S07 S08 S09 S10
A
A
A
A
A
A
OFF
OFF
OFF
S52
A
A
A
S53
A
A
A
A
A
A
OFF
OFF
OFF
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
C
C
C
−
ANG RMIN
T51
Base BandTint
Adjustment
Characteristics
ANG BMIN
ANG RMAX
A
A
A
OFF
ON
ON
−
OFF
MEASUREMENT METHOD
S54
1)
Set the subaddress (11) data to (A0).
2)
Apply 8.0 V to pin 17.
3)
Monitor pin 13 and confirm that the picture period has not dropped to the BLK level
(ACBPR).
4)
Monitor pin 14 and confirm that the picture period has not dropped to the BLK level
(ACBPG)
1)
Set the subaddress (11) data to (C0).
2)
Apply 8.0 V to pin 17.
3)
Monitor pin 13 and confirm that the picture period is at the BLK level (ACBBRAR).
4)
Monitor pin 14 and confirm that the picture period is at the BLK level (ACBBRAG)
1)
Set the subaddress (11) data to (C0).
2)
Apply 6.8 V to 9 V VCC (pin 16).
3)
Apply 6.8 V to pin 17.
4)
Monitor pin 13 and confirm that the picture period has not dropped to the BLK level
(ACBBRLO)
1)
Change subaddress (05) H to (81) H.
2)
Set unicolor = max ; bright = max ; color = center.
3)
Input signal 1 (f0 = 100 kHz, 100 mVp-p) to pin 53.
4)
To pin 52, input a signal with the same amplitude but 90°C phase advanced
compared to the signal input to pin 53.
5)
When subaddress (14) H is changed to (C0) H → (80) H, measure the amount of
change in the output phase of pin 13. (ANG RMIN)
6)
Under the same conditions as 5) above, measure the amount of change in the
output phase of pin 15. (ANG BMIN)
7)
When subaddress (14) H is changed to (C0) H → (FF), measure the amount of
change in the output phase of pin 13. (ANG RMAX)
8)
Under the same conditions as 7) above, measure the amount of change in the
output phase of pin 15. (ANG BMAX)
C
ANG BMAX
75
2005-09-20
TA1310ANG
NOTE
ITEM
SYMBOL
S03
T52
Base BandTint
Adjustment
Position
BUS B0
A
(TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C)
SW MODE & SUB ADDRESS & DATA
MEASUREMENT METHOD
S04 S05 S06 S07 S08 S09 S10 S54
A
A
OFF
ON
ON
−
OFF
C
76
1)
Change subaddress (05) H to (81) H.
2)
Set unicolor = max ; bright = max ; color = center.Relative amplitude, phase
switching: Change subaddress (12) H to (00).
3)
Input signal 1 (f0 = 100 kHz, 100 mVp-p) to pin 53.
4)
To pin 52, input a signal with the same amplitude but 90°C phase advanced
compared to the signal input to pin 53.
5)
Changing subaddress (14) H from (C0) H, read the transmission data at subaddress
(14) H when the output phase of the pin 15 signal is the same as the input phase of
the pin 53 signal. (BUS B0)
2005-09-20
TA1310ANG
Deflection stage
NOTE
ITEM
SW MODE
SW 34 SW 38
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
MEASUREMENT METHOD
When the number of H periods in the #33 (VD out) waveform changes from 297 to 225, increase the
voltage from 3 V and measure the value at
in the diagram.
D1
Sync separation Input
Sensitivity Current
OFF
B
When the subaddress (0D) D1 is set to (1), measure the value at
D2
V separation Filter Pin
Source Current
OFF
in the diagram.
B
When #38 (Sync in) is connected to GND, measure the #39 (VSEP FILTER) voltage.
D3
V Separation Level
OFF
B
Set the voltage to around 7.5 V, equivalent to when #40 (AFC1 FILTER) has no load. When a signal as
shown in the diagram below is input to #38 (Sync in) from TG7, calculate V1 and V2 using the #40
waveform.
D4
D5
IDET = V1 ÷ 1 kΩ (µA)
H AFC Phase Detection
Curren H AFC Phase
Detection Current Ratio
OFF
Phase Detection Stop Period
OFF
A
∆IDET = (V1 / V2 − 1) × 100 (%)
A
Input a composite video signal to #38 and measure the V mask period of the #40 (AFC1 FILTER) waveform.
77
2005-09-20
TA1310ANG
Note D5 : Phase detection stop period
78
2005-09-20
TA1310ANG
NOTE
ITEM
SW MODE
SW 34 SW 38
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
MEASUREMENT METHOD
Increase the voltage from 2.5 V.
When an oscillation waveform appears on TP41, measure the voltage. At the same time, check that no
waveform is output (0V DC) to #35 (H out).(Apply only DEF VCC.)
D6
32*fH VCO Oscillation Start
Voltage
OFF
B
Increase the voltage. When a horizontal pulse appears on #35 (H out), measure the voltage. Note that the
horizontal oscillation frequency at this time is near fHO (15.7 kHz ± 1 kHz).
D7
Horizontal Output Start
Voltage
(Apply only DEF VCC.)
OFF
B
1) Under the above conditions, when no horizontal pulse is output on #35, read D4 in bus read mode. (Apply
also the chroma VCC.) (VBUS HOFF)
2) Under the above conditions, when a horizontal pulse is output on #35, read D4 in bus read mode. (Apply
also the chroma VCC.) (VBUS HON)
Observe the #35 (H out) waveform and measure t1 and t2.
D8
Horizontal Output Pulse Duty
OFF
B
D9
Phase Detection Stop Mode
OFF
B
D10
Horizontal Free-Run
Frequency
OFF
B
D11
Horizontal Oscillation
Frequency Range
OFF
B
D12
Horizontal Oscillation Control
Sensitivity
OFF
B
TH35 =
t1
× 100(%)
t1 + t2
Input a composite video signal to TP38. When the subaddress (0D) D1 is set to (1), measure the oscillation frequency of the #35 (H out)
waveform.
Measure the oscillation frequency of #35 (H out).
1) When #40 (AFC1 FILTER) is connected to DEF VCC via a 10-kΩ resistor, measure the #35 (H out) oscillation frequency. (VHMIN)
2) When #40 (AFC1 FILTER) is connected to GND via a 68-kΩ resistor, measure the #35 (H out) oscillation frequency. (VHMAX)
When the voltage on #40 (AFC1 FILTER) is varied by ±0.05 V with a horizontal oscillation frequency of 15.734 kHz, calculate the #35 (H
out) frequency variation rate.
79
2005-09-20
TA1310ANG
NOTE
ITEM
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
SW MODE
SW 34 SW 38
D13
Horizontal Output Voltage
OFF
B
D14
Supply Voltage Dependence
of Horizontal Oscillation
Frequency
OFF
B
D15
Temperature Dependence of
Horizontal Oscillation
Frequency
OFF
B
MEASUREMENT METHOD
1)
Measure the high-level voltage of #35 (H out) (when #35 is connected to GND via a 481-Ω resistor). (VH35)
2)
Measure the low-level voltage of #35 (H out) (when #35 is connected to GND via a 481-Ω resistor). (VL35)
When the #37 (DEF VCC) voltage is varied from 8.5 V to 9.5 V, measure the variation in the #35 (H out) oscillation frequency.
When the temperature is varied through the range −20°C to +60°C, measure the variation in the #35 (H out) oscillation frequency.
When a signal as shown at left is input to TP38 from TG7,
measure the phase difference of the #34 (FBP in) waveform
in relation to the #40 (AFC1 FILTER) waveform (SPH1). Also
measure the phase difference of the #40 waveform in relation
to the center of the input horizontal sync signal (SPH2).
D16
Horizontal Sync Phase
OFF
A
Under the above conditions, when the subaddress (0B) D7 to
D3 are varied from (00000) to (11111), measure the phase
variation in the #34 (FBP in) waveform.
D17
Horizontal Picture Phase
Adjustment Range
OFF
A
80
2005-09-20
TA1310ANG
NOTE
D18
ITEM
Horizontal Blanking Pulse
Threshold
SW MODE
SW 34 SW 38
ON
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
MEASUREMENT METHOD
Decrease the amplitude of #34 (FBP in) from 9 Vp-p.
When AFC2 stops locking, measure the amplitude.
(VHBLK1)
A
Increase the amplitude of #34 (FBP in) from 0 Vp-p.
When horizontal blanking is applied to #13 (R in),
measure the amplitude. (VHBLK2)
Input a signal as shown below to TP38 from TG7. When the voltage is varied from 3 V to 6 V, measure the
phase variation in the #34 (FBP in) waveform.
D19
Curve Correction Range
OFF
A
Set the subaddress (01) D7 to (0), set the subaddress
(05) D3~D1 to (010), and set the subaddress (0C) D0 to
(1).
D20
H Cycle Black Peak
Detection Disable Pulse
OFF
A
D21
Threshold of External Black
Peak Detection Disable
Pulse
OFF
A
When a signal as shown at left is input to TP38 from TG7,
measure the #32 (HD out) waveform phase difference
HBPS and pulse width HBPW in relation to the #40 (AFC1
FILTER) waveform.
Set the subaddress (02) D7 to (1).
Increase the voltage from 0 V. When #52 reaches 3.4 V DC, measure the voltage.
81
2005-09-20
TA1310ANG
NOTE
ITEM
SW MODE
SW 34 SW 38
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
MEASUREMENT METHOD
Set the subaddress (01) D7 to (0), set the subaddress (05) D3~D1 to (001), and set the subaddress (0C) D0 to
(1).
Input a signal as shown at left to TP38 from TG7, then measure
the #32 (HD out) waveform phase difference CPS and pulse width
CPW in relation to the #40 (AFC1 FILTER) waveform.
D22
Clamp Pulse Start Phase
Clamp Pulse Width
OFF
A
Input a signal as shown at left to TP38 from TG7, then measure
the #32 (HD out) waveform phase difference HDS and pulse width
HDW and VHD in relation to the #40 (AFC1 FILTER) waveform.
HD Output Start Phase
D23
HD Output Pulse Width
OFF
A
HD Output Amplitude
Input a signal as shown at left to TP38 from TG7, then measure
the #34 (FBP in) waveform phase difference GPS and pulse width
GPW in relation to the #40 (AFC1 FILTER) waveform.
D24
Gate Pulse Start Phase
Gate Pulse Width
OFF
A
82
2005-09-20
TA1310ANG
Note D24 : Gate pulse V mask period
83
2005-09-20
TA1310ANG
NOTE
D25
ITEM
Gate Pulse V Mask Period
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
SW MODE
SW 34 SW 38
OFF
A
MEASUREMENT METHOD
Input a composite video signal to TP38, observe the #34 (FBP in) waveform, and measure the V mask period.
Input a composition video signal to TP38, observe the #36 (Sync
out) waveform, and measure the low level of the sync period.
D26
Sync Out Low Level
OFF
A
D27
Vertical Oscillation Start
Voltage
OFF
B
D28
Vertical Free-Run Frequency
OFF
B
D29
Vertical Output Voltage
OFF
B
D30
Service Mode Switching
OFF
B
When the subaddress (0C) D0 is set to (1), check that the #27 (V.Ramp) waveform is low (3.4 V DC).
D31
Vertical Pull-In Range
OFF
C
Input a composite video signal to TP38, vary the vertical frequency of this signal in 0.5-H steps, and measure the vertical pull-in range.
1)
Measure the number of H periods of #33 (HD out) when the subaddress (0D) D1 and D0 are set to (10). (fV1)
OFF
B
2)
Measure the number of H periods of #33 (HD out) when the subaddress (0D) D1 and D0 are set to (11). (fV2)
OFF
B
Set the subaddress (01) D7 to (1) and check that no vertical or horizontal blanking pulse is applied to #13 (R out), #14 (G out), or #15 (B
out).
Increase the voltage from 0 V. When a pulse is output from #33 (VD out), measure the voltage.
D32
D33
Vertical Frequency Forced
263H
Vertical Frequency Forced
262.5H
Vertical Blanking Off Mode
(Apply only DEF VCC.)
Measure the frequency of #33 (VD out).
1)
Measure the high level voltage of the #33 (VD out) waveform. (VVH)
2)
Measure the low level voltage of the #33 (VD out) waveform. (VVL)
84
2005-09-20
TA1310ANG
NOTE
ITEM
SW MODE
SW 34 SW 38
OFF
C
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
MEASUREMENT METHOD
Input a composite video signal to TP38, then measure the #33 (VD out) vertical pulse delay TD and pulse width TW in relation to the
vertical sync signal of #38 (Sync in).
D34
Vertical Output Pulse Width
D35
RGB Output Vertical
Blanking Pulse Start
PhaseRGB Output Vertical
Blanking Pulse Stop Phase
OFF
D36
V Cycle Black Peak
Detection Disable Pulse
(Normal)
OFF
C
Input a composite video signal to TP38 and measure the V cycle black peak detection disable pulse period of #55 (BLACK PEAK DET).
D37
V Cycle Black Peak
Detection Disable Pulse
(Zoom)
OFF
C
Under the conditions in D38 above, set the subaddress (0C) D1 to (1) and measure the V cycle black peak detection disable period of
#55.
Input a composite video signal to TP38, then measure the #13 (R out) waveform phase difference VRS1 and pulse width VRS2 in
relation to the #38 (Sync in) waveform.
C
Repeat measurement on #14 and #15.
Set the subaddress (11) D4~D1 to (1111) and the subaddress (12) D4~D1 to (1111).
85
2005-09-20
TA1310ANG
Note D34 : Vertical output pulse width, vertical output pulse phase variation, and vertical output pulse phase range
Note D35 : RGB output vertical blanking pulse start and stop phases
86
2005-09-20
TA1310ANG
Note D36 : Video mute period (normal)
Field 2 to field 1
Field 1 to field 2
D37 : Video mute period (zoom)
Field 2 to field 1
Field 1 to field 2
87
2005-09-20
TA1310ANG
Note D38 : V cycle black peak detection disable pulse (normal)
Field 2 to field 1
Field 1 to field 2
Note D39 : V cycle black peak detection disable pulse (zoom)
Field 2 to field 1
Field 1 to field 2
88
2005-09-20
TA1310ANG
Deflection correction stage
NOTE
ITEM
SW MODE
SW 28
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
MEASUREMENT METHOD
Measure the amplitude of the vertical ramp wave on #27.
G1
Vertical Ramp Amplitude
A
G2
Vertical Amplification
A
G3
Vertical Amp Maximum
Output Voltage
A
Connect #25 to an external power supply. When the voltage is varied from 5.5 V to 6.5 V,
measure the vertical amplification on the #24 voltage.
G4
Vertical Amp Minimum
Output Voltage
A
(GV) (VH24) (VL24)
G5
Vertical Amp Maximum
Output Current
Set #24 and #25 to open.
Set the subaddress (0C) data to (81).
Set #24 and #25 to open.
A
Apply 7 V to #25 from an external source.
Insert an ammeter between #24 and GND, and measure the current.
Measure the amplitude of the #25 waveform (vertical sawtooth waveform).
G6
Vertical NF Sawtooth Wave
Amplitude
A
When the subaddress (0C) data are set to (00) and (FC), measure the amplitudes of the #25 waveform (vertical sawtooth waveform)
G7
Vertical Amplitude Range
A
VP25 (00) and VP25 (FC).
V PH = ±
V P25 (FC) − V P25 ( 00 )
V P25 (FC) + V P25 ( 00 )
× 100(%)
89
2005-09-20
TA1310ANG
NOTE
ITEM
SW MODE
SW28
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
MEASUREMENT METHOD
Set the subaddress (0E) data to (F8). Change the subaddress (10) D7~D4 so that the
#22 parabola waveform is symmetrical.
Set the subaddress (0E) data to (00). When the subaddress (0F) data are (80), measure
the #25 waveform V1 (80) and V2 (80).
Likewise, when the subaddress (0F) data are (00) and (F0), measure V1 (00), V2 (00),
V1 (F0), and V2 (F0).
G8
Vertical Linearity Correction
Maximum Value
A
V I= ±
V1(00) − V1(F0) + V 2 (F0) − V 2 (00)
2 × ( V1(80) + V 2 (80) )
Set the subaddress (0E) data to (F8). Change the subaddress (10) D7~D4 so that the
#22 parabola waveform is symmetrical.
Set the subaddress (0E) data to (00).
G9
Vertical S Correction
Maximum Value
When the subaddress (0E) data are (80), measure the amplitude of the #25 waveform
VS25 (80).
A
Likewise, when the subaddress (0E) data are (87), measure the amplitude of the #25
waveform VS25 (87).
VS= ±
V S25 (80 ) − V S25 (87 )
V S25 (80 )
90
× 100 (%)
2005-09-20
TA1310ANG
NOTE
ITEM
SW MODE
SW 28
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
MEASUREMENT METHOD
Set the subaddress data (0E) to (F8). Change the subaddress (10) D7~D4 so that the #22
parabola waveform is symmetrical.
Set the subaddress data (0E) to (00). Measure the center voltage VC of the #25 waveform.
G10
Vertical NF Center Voltage
A
Under the conditions in G10 above, set the subaddress (13) data to (80) and measure the vertical NF center voltage VC (80).
G11
Vertical NF DC Change
A
Next, set the subaddress (13) data to (00) and measure the vertical NF center voltage VC (00).
VDC = ± VC (00) − VC (80) (V)
Set the subaddress (0E) data to (F8). Change the subaddress (10) D7~D4 so that the #22
parabola waveform is symmetrical.
Set the subaddress (0E) data to (00).
G12
Vertical Amplitude EHT
Correction
A
Connect #28 to GND and measure the amplitude of the #25 waveform VEHT (0V).
Connect #28 to a 5-V power supply and measure the amplitude of the #25 waveform VEHT (5 V).
VEHT =
V EHT (5V ) − V EHT (0V )
V EHT (5V )
91
× 100 (%)
2005-09-20
TA1310ANG
NOTE
ITEM
SW MODE
SW 28
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
MEASUREMENT METHOD
Set the subaddress (0E) data to (F8). Change the subaddress (10) D7~D4 so
that the #22 parabola waveform is symmetrical.
G13
E-W NF Maximum DC Value
(Picture Width)
Set the subaddress (0E) data to (00).
Set the subaddress (0D) data to (00) and measure the #22 voltage VL22.
Set the subaddress (0D) data to (FC) and measure the #22 voltage VH22.
A
G14
E-W NF Minimum DC Value
(Picture Width)
Set the subaddress (0D) data to (00) and the subaddress (0E) data to (F8).
Measure the amplitude of the #22 waveform (parabola waveform) VPB.
G15
E-W NF Parabola Maximum
Value (Parabola)
A
92
2005-09-20
TA1310ANG
NOTE
ITEM
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
SW MODE
SW 28
MEASUREMENT METHOD
Set the subaddress (0E) data to (F8). Change the subaddress (10) D7 ~ D4 so that the #22
parabola waveform is symmetrical.
Set the subaddress (10) D3~D0 to (0) and measure the amplitude of the #22 waveform VCR (0).
Likewise, when the subaddress (10) data are set to (F), measure the #22 waveform amplitude
VCR (F).
G16
E-W NF Corner Correction
(Corner)
A
VCR = VCR (F) − VCR (0)
Set the subaddress (14) data to (7F).
G17
Parabola Symmetry
Correction
Set the subaddress (10) data to (00) and measure the vertical NF center voltage of the #25
waveform VC (00).
A
Likewise, when the subaddress (10) data are set to (FC), measure the #25 voltage VC (FC).
V TR = ±
V C (00) − V C (FC)
2 ×V P25
× 100 (%)
93
2005-09-20
TA1310ANG
NOTE
ITEM
TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
SW MODE
SW 28
MEASUREMENT METHOD
Connect an ammeter between #23 and GND.
G18
E-W Amp Maximum Output
Current
A
Measure the current.
Measure the TP26 waveform peak value. (VAGC0)
G19
AGC Operating Current 1
A
Set the subaddress (06) D0 to (1) and repeat the measurement. (VAGC1)
IAGC0 = VX ÷ 200 (µA)
(IAGC1)
G20
AGC Operating Current 2
A
G21
Vertical Guard Voltage
A
Set #25 to open. Connect an external power supply to #25. Decrease the voltage from 5 V. When full blanking is applied to #13, measure
the voltage.
Connect a 5-V external power supply to #23. Read D2 in bus read mode. (VBUS EW OFF)
G22
E / W Output Self-Diagnosis
A
When the external power supply connected to #23 is disconnected, read D2 in bus read mode.
Ensure that an E / W waveform is output from #22. (VBUS EW ON)
Connect a 9-V external power supply to #24. Read D3 in bus read mode. (VBUS VOFF)
G23
V-Out Output Self-Diagnosis
A
When the external power supply connected to #24 is disconnected, read D3 in bus read mode.
Ensure that a V-out waveform is output from #25. (VBUS VON)
G24
G25
G26
Vertical Blanking Check
V Centering DAC Output
V NFB Pin Input Current
A
1)
Set the subaddress (0C) data to (81).
2)
When the subaddress (11) D4~D0 are changed from 0000 to 1111, check that the #13 blanking stop phase begins. (VBLK1)
3)
When the subaddress (12) D4~D0 are changed from 0000 to 1111, check that the #13 blanking start phase begins. (VBLK2)
1)
Set the subaddress (13) data to (00) and measure the #21 voltage V21L.
A
2)
Set the subaddress (13) data to (80) and measure the #21 voltage V21M.
3)
Set the subaddress (13) data to (FE) and measure the #21 voltage V21H.
A
Connect a 9-V VCC via a 100-kΩ resistor to #25. Measure the sink current on #25
according to the voltage difference of the 100-kΩ resistance.
I25 = V / 100 kΩ
94
2005-09-20
TA1310ANG
1)
Input signal C-1
2)
Input signal C-2
3)
Input signal C-3
Fig.C Test signals for TA1310ANG chroma, color difference, and Y stage
95
2005-09-20
TA1310ANG
1)
Video signal
2)
Input signal 1
3)
Input signal 2
Fig.T-1 Test signals for TA1310ANG text stage
96
2005-09-20
TA1310ANG
Fig.T-2 Test pulses for TA1310ANG text stage
97
2005-09-20
TA1310ANG
TEST CIRCUIT
DC
TA1310ANG
98
2005-09-20
TA1310ANG
TEST CIRCUIT
AC characteristics for picture sharpness stage
TA1310ANG
99
2005-09-20
TA1310ANG
TEST CIRCUIT
Chroma stage
TA1310ANG
100
2005-09-20
TA1310ANG
TEST CIRCUIT
Color difference stage
TA1310ANG
101
2005-09-20
TA1310ANG
TEST CIRCUIT
Y stage
TA1310ANG
102
2005-09-20
TA1310ANG
TEST CIRCUIT
Diflection stage and deflection correction stage
TA1310ANG
103
2005-09-20
TA1310ANG
APPLICATION CIRCUIT
TA1310ANG
104
2005-09-20
TA1310ANG
PACKAGE DIMENSIONS
Weight: 5.55 g (Typ.)
105
2005-09-20
TA1310ANG
106
2005-09-20