TA1310ANG TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC TA1310ANG NTSC VIDEO, CHROMA, DEFLECTION, AND DISTORTION COMPENSATION IC (WITH YUV INTERFACE AND ACB) TA1310ANG is Video Chroma and deflection signal. Processing IC for NTSC. On a 56-pin shrink DIP package. TA1310ANG has deflection distortion compensation. TA1310ANG uses an I2C Bus controls for controllings and settings. FEATURES Video Signal Processing Built-in Y delay line Black stretch Weight: 5.55 g (Typ.) DC restoration ratio compensation Aperture controlled sharpness Output for velocity scan modulation (VSM) White peak suppression (WPS) Chroma Signal Processing Built-in chroma BPF / TOF R-Y and B-Y outputs Color / BW situation output by read bus Sync Signal Processing Counts down 32 fH Dual AFC Vertical AGC HD and VD outputs Vertical frequency fixed mode Horizontal and Vertical position alignment DC outputs for vertical centering Text Signal Processing Analog RGB inputs Digital RGB inputs Halftone switch (YM) Cutoff and drive alignment YUV inputs ACB 1 2005-09-20 TA1310ANG Deflection Correction Function Horizontal and Vertical amplitude adjustment Vertical linearity correction Vertical S correction Vertical EHT correction E / W parabola correction E / W corner correction E / W trapezium correction 2 2005-09-20 TA1310ANG BLOCK DIAGRAM 3 2005-09-20 TA1310ANG PIN FUNCTION PIN No. SYMBOL 1 VSM OUT 2 GND I FUNCTION INTERFACE VSM means Verocity Scanning Modulation. The terminal for GND of ― Video / Y / TEXT circuits. 3 RIN 4 GIN 5 BIN I / O SIGNAL The terminals for Analog RGB signal input. Input signals clamped by coupling capacitors. (*) : Even when not in use, connect to GND with a coupling capacitor. 6 YS / YM IN The terminal for switching of Analog RGB Mode and Half tone. 7 OSD R IN 8 OSD G IN The terminals for Analog OSD RGB signal input. 9 OSD B IN Input signals clamped by coupling capacitors. (*) : Even when not in use, connect to GND with a coupling capacitor. 4 2005-09-20 TA1310ANG PIN No. SYMBOL FUNCTION 10 OSD Ys IN The terminal for switching of internal RGB signals and Analog OSD RGB signals (Pin 7, 8, 9). 11 ABL IN INTERFACE The terminal for the external unicolor and brightness control. I / O SIGNAL OPEN 6.0 V ABL Gain and ABL start point can be set by using BUS. 12 VK OUT The terminal outputs signal in order to input in H-correction (Pin 42). The signal corresponds to RGB signal. 13 R OUT 14 G OUT 15 B OUT 16 VCC (9 V) The terminals for RGB signal output. The terminal for VCC supply 9 V. ― The terminals is connected to 9 V (typ.). 17 R Filter 18 G Filter 19 B Filter Control the RGB output cutoff voltage, holding the standard pulse period comparator output to one vertical period. At ACB ON, the filters operate so that the IK IN (pin 20) voltage equals the value determined by the bus (when RBG cutoff : center, 1 Vp-p.) The filters must be low leakage current filters. 5 2005-09-20 TA1310ANG PIN No. SYMBOL 20 IK IN 21 V Centering 22 EW FB 23 EW OUT 24 V OUT The terminal for output of Vertical drive signal. 25 V NFB The terminal for input of Vertical negative feedback. FUNCTION INTERFACE I / O SIGNAL Terminal for detection of IK feedback signal. Leakage canceller incorporated. The terminal for the DAC output that controlled by BUS (V-center). The terminal for E / W feedback. The terminal for output of E / W drive signal. If input voltage is less than 2 V, V-Guard function works and blanks RGB signal output. 6 2005-09-20 TA1310ANG PIN No. SYMBOL FUNCTION 26 V AGC Filter The terminal to be connected a capacitor for Automatic gain control of Vertical RAMP signal. 27 V RAMP The terminal to be connected a capacitor to generate Vertical RAMP signal. 28 EHT V The terminal for the Vertical EHT input. 29 SCL The terminal for input of I C BUS clock. 30 SDA The terminal for input / output 2 of I C BUS data. INTERFACE I / O SIGNAL 2 7 2005-09-20 TA1310ANG PIN No. SYMBOL 31 GND II FUNCTION INTERFACE The terminal for the GND of ― 2 DEF / I C / EW. 32 HD OUT I / O SIGNAL The terminal for the HD pulse. The suspension period of the Black peak stretching is extended by inputting the external pulse. 33 VD OUT The terminal for the VD pulse. 34 FBP IN The terminal for the flyback pulse to control H-BLK and H-AFC. 35 H OUT The terminal for the Horizontal output. 8 2005-09-20 TA1310ANG PIN No. SYMBOL FUNCTION 36 SYNC OUT The terminal for output of the synchronizing signal that was separated in the synchronous separation circuit. INTERFACE I / O SIGNAL This terminal is of the open collector system. Connect the pull-up resistor. 37 DEF VCC 38 Y / SYNC IN The terminal for VCC supply 9 (Caution) Be sure to design the power supply so V of DEF. that when the power is Off, DEF VCC is below 1.9 V. The terminal for input of the synchronous separation circuit. Input via clamp capacitor. 39 V SEP Filter The terminal to be connected a capacitor for the Vertical synchronous separation circuit. 40 AFC I Filter Connect the filter for horizontal AFC I detection. The frequency of the horizontal output varies depending on the voltage at this pin. 9 2005-09-20 TA1310ANG PIN No. SYMBOL FUNCTION 41 32 fh VCO Connect the ceramic oscillator for horizontal oscillation. INTERFACE I / O SIGNAL The oscillator to be used is CSBLA503KECZF30, made by Murata electronics. 42 H Correction The terminal to correct distortion of picture in the case of high-tension fluctuation. Input the AC component of high tension fluctuation. This terminal can be inputted VK output (Pin 12). 43 DL OUT The terminal outputs delayed Y signal. Input this signal to Y IN (Pin 54) via a capacitor. 44 GND III The terminal for GND of DEF linear / Chroma circuits. 45 CHROMA IN The terminal for the chroma input. ― DC : 1.77 V AC : Burst 286 mVp-p 10 2005-09-20 TA1310ANG PIN No. SYMBOL FUNCTION 46 APC The terminal to be connected APC filter. INTERFACE I / O SIGNAL The oscillation frequency of VCXO varies depending on the voltage at this pin. 47 B-Y OUT The terminal outputs the B-Y signal. DC : 2.2 V AC : 300m Vp-p (Rainbow color bar) 48 R-Y OUT The terminal outputs the R-Y signal. DC : 2.2 V AC : 300 mVp-p (Rainbow color bar) 49 X’tal The terminal to be connected with a 3.579545 MHz X’tal oscillator. The oscillated frequency, f0, is controlled by series capacitors, and frequency adjustment range can be expanded by putting capacitors in parallel. 50 CW OUT The terminal for CW output generated in VCXO. 11 2005-09-20 TA1310ANG PIN No. SYMBOL 51 VCC (5 V) FUNCTION INTERFACE The terminal for VCC supply ― 5 V. 52 R-Y IN 53 B-Y IN I / O SIGNAL The terminals for the R-Y / B-Y signal input. Input signals clamped by coupling capacitors. (*) : Even when not in use, connect to GND with a coupling capacitor. 54 Y IN The terminal for the Y signal input. Input the Y signals clamped by coupling capacitors. 55 BLACK PEAK DET The terminal to be connected the filter controlling the black stretching gain of the black stretching circuit. The black stretching gain varies depending on the voltage at this pin. 56 DC The terminal to be connected RESTORATION capacitor for DC restoration CORR. correction control. Open this pin if not use the DC restoration correction. 12 2005-09-20 TA1310ANG BUS CONTROL MAP Slave address : 88H (WRITE) / 89H (READ) D7 00 D6 D5 D4 D3 ABL POINT 01 TEST 02 Y-MUTE D2 D1 D0 UNI-COLOR BRIGHTNESS COLOR 03 TINT 04 TOF-SW SHARPNESS 05 ABL GAIN RGB BRIGHTNESS VERTICAL POSITION UV-SW 06 G DRIVE GAIN V-AGC 07 B DRIVE GAIN VSM-G 08 R CUT OFF 09 G CUT OFF 0A B CUT OFF 0B HORIZONTAL POSITION B. S. POINT 0C VERTICAL SIZE 0D HORIZONTAL SIZE 0E V-S CORRECTION V-LIN CORRECTION 10 SUB CONTRAST E / W TRAPEZIUM 11 COL-γ 12 E / W CORNER ACB MODE RY / GY DL- PHASE / GAIN MODE 13 SERVICE HV-FIX E / W PARABOLA 0F 14 ZOOM V-BLK START PHASE V-BLK STOP PHASE VERTICAL CENTERING V CENTERING DAC SW RGB-γ BASE BAND TINT READ MODE PORES Y-IN RGB-OUT H-OUT V-OUT EW-OUT COLOR ED2 The preset value for D7 is 1. The preset values for D0 to D6 are 0. 13 2005-09-20 TA1310ANG BUS CONTROL CHARACTERISTICS BY FUNCTION Write mode ITEM Unicolor (UNI-COLOR) / RGB Contrast DATA 000000 ; −18dB 111111 ; 0 dB No. OF BITS PRESET VALUE 6 −18 dB (000000) Brightness (sub-brightness included) (BRIGHTNESS) 0000000 ; −40 (IRE) 1111111 ; +40 (IRE) 7 −40 (IRE) (0000000) Color (sub-color included) (COLOR) 0000000 ; −∞ 1111111 ; +6 dB 7 −∞ (0000000) Tint (sub-tint included) (TINT) 0000000 ; −32° 1111111 ; +32° 7 ±0° (1000000) 6 +6 dB (100000) Picture Sharpness (PICTURE-SHARPNESS) Sub Contrast (SUB-CONTRAST) DC Output for Vertical Centering (VERTICAL CENTERING) External / Internal Color Difference Switching (UV-SW) RGB Brightness (RGB-BRIGHTNESS) 000000 ; −6 dB 111111 ; +12 dB (at 2.4 MHz) 0000 ; −3 dB 1111 ; +3 dB 4 −3 dB (0000) 0000000 ; 1.0 V 111111 ; 4.0 V 7 Center (1000000) 1 ; EXT 1 INT (0) 4 Center (1000) 0 ; INT 0000 ; −20 (IRE) 1111 ; +20 (IRE) 00000000 ; −0.5 V 11111111 ; +0.5 V 00000000 ; 0.5 Vp-p 11111111 ; 1.5 Vp-p RGB Cut Off (RGB-CUTOFF) −At bus control− 8×3 −0.5 V (00000000) −IK input amplitude in ACB mode− G / B Drive Gain (GB-DRIVE GAIN) 0000000 ; −5 dB 1111111 ; +3 dB 7×2 Center (1000000) VSM Gain (VSM-G) 0 ; ON 1 ; OFF 1 ON (0) Zoom Mode Switching (ZOOM) 0 ; Normal 1 ; ZOOM 1 Normal (0) Black Stretching Start Point (B.S. POINT) 000; Min / black stretch off (black correction on) 111; MAX / 50 (IRE) 3 Black stretch OFF (000) ABL Detection Voltage (ABL POINT) 00 ; MIN 11 ; MAX 2 Center (10) ABL Sensitivity(ABL GAIN) 00 ; MIN 11 ; MAX 2 MIN (00) Horizontal Position (HORIZONTAL POSITION) 00000 ; −3 µs (left shift) 11111 ; +3 µs 5 Center (10000) Horizontal and Vertical Frequency Fixed Mode (HV-FIX) 00 / 01 ; normal 10 ; AFC OFF (Free run) & V = 263 (H) 11 ; AFC OFF (Free run) & V = 262.5 (H) 2 Normal (00) 3 0 (H) (000) Vertical Pulse Phase (VERTICAL-PULSE PHASE) 000 ; 0H 111 ; 7H DELAY Service Mode (SERVICE) 0 ; normal 1 ; Service mode(V-Stop) 1 Normal (0) Test Mode (TEST MODE) 1 ; normal 0 ; RGB BLK OFF 1 Normal (1) 14 2005-09-20 TA1310ANG ITEM DATA No. OF BITS PRESET VALUE TOF Switching (TOF-SW) 0 ; BPF mode 1; TOF mode 1 BPF (0) V-AGC Time Constant (V-AGC) 0 ; fast 1 ; slow 1 Fast (0) 111111 ; MAX 6 Center (100000) 4 Center (1000) 3 (000) 111111 ; MIN 6 Center (100000) 11111 ; MAX 5 Center (10000) 4 (0000) 4 Center (1000) Vertical Amplitude 000000 ; MIN (VERTICAL SIZE) Vertical Linearity Correction (V-LIN CORRECTION) 0000 ; Lower stretch Vertical S Correction 1111 ; Upper stretch 000 ; Reverse S MAX (V-S CORRECTION) Horizontal Amplitude (HORIZONTAL SIZE) 111 ; S MAX 000000 ; MAX E / W Parabola Correction (E / W PARABOLA) 00000 ; MIN E/W Corner Correction (E / W CORNER) 0000 ; Vertical E / W Trapezium Correction (E / W TRAPEZIUM) 0000 ; Expansion 1111 ; Vertical expansion compression 1111 ; Expansion upward downward Color γ Correction (COL-γ) 0 ; ON 1 ; OFF 1 OFF (1) Y Mute (Y MUTE) 0 ; OFF 1 ; ON 1 ON (1) RGB γ Correction (RGB-γ) 0 ; OFF 1 ; ON 1 OFF (0) DL Mode Switching (DL-MODE) 0 ; Through 1 ; ON 1 Through (0) 00 ; ACB OFF & S / H LOW 01 ; ACB OFF (Bus control) ACB Mode Switching (ACB-MODE) 2 10 ; ACB ON & I-DET normal S / H LOW (00) 11 ; ACB ON & I-DET×3 Relative Phase Amplitude Switching (RY / GY PHASE / GAIN) 00 ; NTSC STD 01 ; DVD STD 10 ; NTSC (T) 11; A-TV STD Vertical Blanking Start Phase (V-BLK START PHASE) 00000 ; Vth (Hi) Vertical Blanking Stop Phase (V-BLK STOP PHASE) 00000 ; Vth (Lo) 11111 ; Vth (Lo) 11111 ; Vth (Hi) 0000000 ; +60 deg Base Band Tint 1111111 ; −40 deg *1000000 (Center) :+6 deg V CenteringDAC Output switch(V Centering DAC SW) 0 ; Interlocking E / W trapezium correction (E / W trapezium correction : ±12.5%) 1; Non-interlocking E / W trapezium correction (E / W trapezium correction : ±4.5%) 2 TSB STD (10) 5 (00000) 5 (00000) 7 Center (1000000) 1 NonInterlocking (1) READ MODE Slave address : 89H D7 D6 D5 D4 D3 D2 D1 D0 PONRES Y-IN RGB-OUT H-OUT V-OUT EW-OUT COLOR ED2 15 2005-09-20 TA1310ANG ITEM Power On Reset (PORES) Color Mode (COLOR) Self Diagnosis Result Output (RGB-OUT / Y-IN / H-OUT / V-OUT / E-W OUT / UV-IN) ED2 Indentification DATA 0 ; Normal 1 ; Resister preset 0;B/W 1 ; NTSC 0 ; NG 1 ; OK 0 ; non-ED2 1 ; ED2 2 I C BUS COMMUNICATIONS, RECEIVE METHOD Start and stop condition Bit transfer Acknowledgement When data are received, the master transmitter changes to a receiver immediately after the first acknowledgement and the slave receiver changes to a transmitter. The master always creates the stop condition. 16 2005-09-20 TA1310ANG In the above method, the subaddresses are automatically incremented from the specified subaddress and data are set. I2C BUS Conditions Characteristics Symbol Min Typ. Max Unit Low level input voltage VIL 0 ⎯ 1.5 V High level input voltage VIH 3.0 ⎯ Vcc V VOL1 0 ⎯ 0.4 V Input current each I/O pin with an input voltage between 0.1 VDD and 0.9 VDD Ii −10 ⎯ 10 µA Capacitance for each I/O pin Ci ⎯ ⎯ 10 pF fSCL 0 ⎯ 100 kHz Low level output voltage at 3 mA sink current SCL clock frequency tHD;STA 4.0 ⎯ ⎯ µs Low period of SCL clock tLOW 4.7 ⎯ ⎯ µs High period of SCL clock tHIGH 4.0 ⎯ ⎯ µs Hold time START condition Set-up time for a repeated START condition tSU;STA 4.7 ⎯ ⎯ µs Data hold time tHD;DAT 350 ⎯ ⎯ ns Data set-up time tSU;DAT 250 ⎯ ⎯ ns Set-up time for STOP condition tSU;STO 4.0 ⎯ ⎯ µs tBUF 4.7 ⎯ ⎯ µs Bus free time between a STOP and START condition 17 2005-09-20 TA1310ANG MAXIMUM RATINGS (Ta = 25°C) CHARACTERISTICS Power Supply Voltage (5 V / 9 V ) Input Pin Voltage (5 V / 9 V ) Power Dissipation (Note) SYMBOL RATING UNIT VCCmax 7 / 12 V Vin GND − 0.3~VCC + 0.3 V PD 1920 mW 1 / Qja 15.4 mW / °C Operating Temperature Topr −20~65 °C Storage Temperature Tstg −55~150 °C Power Dissipation Reduction Rate Note: See the figure below. Fig. Temperature reduction curve for power dissipation 18 2005-09-20 TA1310ANG OPERATING CONDITION ITEM DATA AND CONDITIONS Power Supply Voltage Pin 54 Y Input Signal Level Pin 45 Chroma Input Signal Level Pin 38 Sync Signal Input Level Note: MIN TYP. MAX Pin 16, Pin 37 8.7 9.0 9.3 Pin 51 4.8 5.0 5.2 100% white, including synchronization 0.9 1.0 1.1 TOF : off, burst level 100 300 400 TOF : on, burst level 100 300 400 100% white, including synchronization 0.9 1.0 1.1 UNIT V Vp-p mVp-p Vp-p Be sure to design the power supply so that when the power is Off, DEF VCC is below 1.9 V. ELECTRICAL CHARACTERISTICS (VCC = 5 V / 9 V, DEF VCC = 9 V, Ta = 25°C ± 3°C, unless otherwise specified) Current dissipation PIN NAME SYMBOL TEST CIRCUIT MIN TYP. MAX 5 V VCC ICC1 ― 32.50 38.34 9 V VCC ICC2 ― 48.54 57.44 DEF VCC ICC3 ― 19.70 23.31 CURRENT DISSIPATION 19 UNIT REMARKS 45.30 mA ― 67.78 mA ― 27.50 mA ― 2005-09-20 TA1310ANG DC CHARACTERISTICS Pin voltage PIN PIN NAME SYMBOL MIN TYP. MAX V1 4.10 4.30 4.50 29 SCL UNIT PIN PIN NAME SYMBOL MIN TYP. MAX V29 4.90 5.00 ― 1 VSM out 2 GND1 V2 ― 0.00 ― 30 SDA V30 4.90 5.00 ― 3 R in V3 3.40 3.70 4.00 31 D. GND GND2 V31 ― 0.00 ― 4 G in V4 3.40 3.70 4.00 32 HD out V32 0.15 0.20 0.25 5 B in V5 3.40 3.70 4.00 33 VD out V33 4.90 5.00 5.10 6 Ys / Ym in V6 ― 0.00 0.20 34 FBP in V34 1.30 1.60 1.90 7 OSD R in V7 5.00 5.50 6.00 35 H out V35 1.50 1.80 2.10 8 OSD G in V8 5.00 5.50 6.00 36 Sync out V36 8.80 9.00 ― 9 OSD B in V9 5.00 5.50 6.00 37 DEF VCC V37 ― 9.00 ― 10 OSD Ys in V10 ― 0.00 0.20 38 Sync in V38 2.80 3.00 3.20 11 ABL in V11 5.70 6.00 6.30 39 V Sep V39 6.00 6.40 6.80 12 VK out V12 4.85 5.00 ― 40 AFC1 V40 7.20 7.50 7.80 13 R out V13 1.20 1.60 2.00 41 32fh VCO V41 5.70 5.90 6.10 14 G out V14 1.20 1.60 2.00 42 Curve correction V42 4.60 4.80 5.00 15 B out V15 1.20 1.60 2.00 43 DL out V43 0.30 0.80 1.00 16 VCC (9V) V16 ― 9.00 ― 44 GND3 V44 ― 0.00 ― 17 R Filter V17 2.1 2.5 2.9 45 Chroma in V45 1.59 1.77 1.95 18 G Filter V18 2.1 2.5 2.9 46 APC V46 1.39 1.72 2.05 19 B Filter V19 2.1 2.5 2.9 47 B-Y out V47 1.91 2.22 2.53 20 IK in V20 0.95 1.00 1.05 48 R-Y out V48 1.91 2.22 2.53 21 V Centering V21 2.20 2.30 2.40 49 X’tal V49 3.80 4.00 4.20 22 EW FB V22 3.90 4.30 4.70 50 CW out V50 3.00 3.50 4.00 23 EW out V23 0.60 0.70 0.80 51 VCC (5V) V51 ― 5.00 ― 24 V out V24 0.60 0.70 0.80 52 R-Y in V52 2.85 3.00 3.15 25 V NFB V25 4.60 5.00 5.40 53 B-Y in V53 2.85 3.00 3.15 26 V AGC V26 1.80 2.00 2.20 54 Y in V54 3.50 3.65 3.90 V55 3.20 3.70 3.80 V56 2.90 3.00 3.10 V 27 V RAMP V27 4.00 4.20 4.40 55 Black peak detect 28 EHT, V i n V28 4.80 4.90 5.00 56 DC restoration correction 20 UNIT V 2005-09-20 TA1310ANG AC CHARACTERISTICS Video stage SYMBOL TEST CIRCUIT #54 Voltage (Y Input Pedestal Clamp Voltage) V54 ― #55 Voltage V55 #56 Voltage CHARACTERISTIC #1 Voltage Y Input Pedestal Clamp Error Voltage TEST CONDITION MIN TYP. MAX UNIT (Note P1) 3.5 3.65 3.9 V ― (Note P2) 3.2 3.7 3.8 V V56 ― (Note P3) 2.93 3.03 3.13 V (Note P4) 4.1 4.25 4.4 V (Note P5) −7 ±0 +7 mV V1 ― ∆VPC0 ― ∆VPC1 ― TCL1 ― TCL2 ― DR54 ― (Note P7) #56 Output Impedance Z56 ― (Note P8) 4 5 6 kΩ Black Stretching Amplifier Maximum Gain GBS ― (Note P9) 1.3 1.4 1.5 (Times) Black Level Compensation BLC ― (Note P10) 6 7 8 (IRE) Black Peak Detection Level ∆VBP ― (Note P11) −15 0 +15 mV Y Input Pedestal Clamp Pulse Phase Y Input Dynamic Range (Note P6) 2.8 2.9 3.0 4.8 4.9 5.0 1.0 1.25 1.4 µs Vp-p PB001 ― PB111 ― DC Restoration Rate GDTC ― Compensation Amp. Gain GDTR ― SCDC ― SCAC ― Y Mute GYM ― Sharpness Peak Frequency FAP ― GMAX ― GMIN ― GCEN ― (Note P18) 2 5 8 dB TY ― (Note P19) 120 150 180 ns FVSM ― (Note P20) 3 4 5 MHz Black Stretching Start Point Self-Diagnosis Y IN Sharpness Control Range Sharpness Control Center Characteristics Between Y IN and R OUT Delay Time VSM Peak Frequency VSM Gain VSM Muting Threshold Voltage VSM High Speed Muting Response Time VSM Phase GVSM0 ― GVSM1 ― VVM10 ― VVM6 ― THM1 ― THM2 ― THM3 ― THM4 ― TVM24 ― TVMFP ― TVM2T ― 34 36 42 51 54 61 1.45 1.55 1.65 1.3 1.4 1.5 ― OK ― (Note P15) −∞ −50 −45 dB (Note P16) 3.35 4.2 5.05 MHz 8 11 14 −12 −7.5 −3 (Note P12) (Note P13) (Note P14) (Note P17) (Note P21) (Note P22) (Note P23) (Note P24) 9 11 13 −∞ −30 −20 0.7 0.8 0.9 2.15 2.25 2.35 0 +50 +100 64 80 94 59 73 87 64 80 94 (IRE) (Times) ― dB dB V ns ns Note 1: For testng, see the picture sharpness test circuit diagrams. Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 21 2005-09-20 TA1310ANG Chroma stage CHARACTERISTIC ACC Characteristic Color Difference Output Level Color Difference Output Relative Amplitude Color Difference Output Demodulation Angle Color Difference Output Relative Phase Color Difference Characteristics Supply Voltage Difference Output Output Tint Adjustment Dependence of Color Identification Sensitivity SYMBOL TEST CIRCUIT va10 ― va30 ― va300 ― va600 TEST CONDITION MIN TYP. MAX 93.5 110 127 272 320 368 276 325 374 ― 276 325 374 (Note C1) A ― 0.80 1.00 1.10 vB ― 276 325 374 vR ― 276 325 374 vRB ― 0.90 1.00 1.10 θBcnt ― θRcnt ― θRB ― θBmax θBmin θRmax ― θRmin BVp RVp ― BVn ― RVn vCB vBC ― (Note C2) (Note C3) 3.0 6.0 11.0 91.0 94.0 99.0 85.0 89.0 91.0 ― −35.0 −40.0 −46.5 ― 35.0 38.0 44.0 −35.0 −40.0 −46.5 ― 35.0 38.0 46.0 ― 5.00 8.00 11.00 5.00 8.00 11.00 −11.00 −8.00 −5.00 ― −11.00 −8.00 −5.00 ― 3.00 4.10 6.00 3.00 4.40 6.00 (Note C4) (Note C5) (Note C6) (Note C7) (Note C8) bCB ― bBC ― vBH ― vRH ― vBG ― vRG ― VB ― VR ― VRB ― (Note C13) X'tal Free-Run Frequency Xf ― (Note C14) 3.579345 3.579545 3.579745 APC Frequency Control Sensitivity βf ― (Note C15) fh+ ― fh− ― fp+ ― fp− ― vBNo ― vRNo ― vBHN ― vRHN ― Bus Read Identification Color Difference Output Voltage Difference in 1H Period Color Difference Output Voltage Difference Every 1H Period Color Difference Output DC Voltage Difference between DC Voltage Axes of Color Difference Output APC Pull-In / Hold Range Residual Carrier Level Residual Higher Harmonics Level 22 (Note C9) (Note C10) (Note C11) (Note C12) (Note C16) (Note C17) (Note C18) ― 0 ― ― 1 ― ― 0 4.00 ― 0 4.00 ― 0 2.00 ― 0 2.00 1.91 2.22 2.53 1.91 2.22 2.53 −0.1 0 +0.1 0.45 0.90 1.20 +250 +500 +2000 −250 −500 −2000 +250 +500 +2000 −250 −500 −2000 ― 2.0 4.00 ― 2.0 4.00 ― 2.0 4.0 ― 2.0 4.0 UNIT mVp-p ― mVp-p ― ° ° ° % mVp-p ― mVp-p mVp-p V V MHz Hz mV Hz mVp-p mVp-p 2005-09-20 TA1310ANG CHARACTERISTIC TOF-BPF Characteristic CW Output Amplitude SYMBOL TEST CIRCUIT GBL ― GBH ― GTL ― GTH ― vCW ― SYMBOL TEST CIRCUIT VRY ― VBY ― DLRY ― DLBY ― uR ― uB ― cRmax ― cRmin ― cBmax ― cBmin vRHo TEST CONDITION MIN TYP. MAX 17.5 21.0 24.5 21.5 25.0 28.5 14.0 17.5 21.0 21.5 25.0 28.5 420 700 980 mVp-p MIN TYP. MAX UNIT 2.85 3.00 3.15 2.85 3.00 3.15 115 150 185 115 150 185 −17 −19 −21 −17 −19 −21 6.5 8.0 9.5 ― ― −20 6.5 8.0 9.5 ― ― ― −20 ― −5.5 −6 −6.5 (Note C19) (Note C20) UNIT dB Color difference stage CHARACTERISTIC Color Difference Input Clamp Voltage Color Difference Input / Output Delay Time Unicolor Adjustment Characteristics Color Adjustment Characteristics RGB Output Half-Tone Characteristics RGB Output Amplitude RGB Output Relative Amplitude TEST CONDITION (Note A1) (Note A2) (Note A3) (Note A4) (Note A5) vGHo ― −5.5 −6 −6.5 vBHo ― −5.5 −6 −6.5 vRSTD ― 0.64 1.13 0.87 vGSTD ― 0.39 0.50 0.53 vBSTD ― 1.14 1.35 1.56 vRDVD ― 0.90 1.07 1.23 vGDVD ― 0.51 0.61 0.70 vBDVD ― vRTSB ― vGTSB ― (Note A6) 1.14 1.35 1.56 0.78 0.92 1.06 0.34 0.41 0.47 vBTSB ― 1.14 1.35 1.56 vRDTV ― 0.98 1.13 1.34 vGDTV ― 0.34 0.41 0.47 vBDTV ― 1.14 1.35 1.56 vRBSTD ― 0.78 0.87 0.96 vGBSTD ― 0.31 0.35 0.39 vRBDVD ― 0.72 0.80 0.88 vGBDVD ― vRBTSB ― vGBTSB ― (Note A7) 0.37 0.42 0.47 0.62 0.69 0.76 0.25 0.28 0.31 vRBDTV ― 0.78 0.87 0.96 vGBDTV ― 0.24 0.27 0.30 23 V ns dB dB dB Vp-p ― 2005-09-20 TA1310ANG CHARACTERISTIC RGB Output Demodulation Angle RGB Output Relative Phase Color Difference EXT → INT Crosstalk SYMBOL TEST CIRCUIT θRSTD θGSTD TEST CONDITION MIN TYP. MAX ― 86.0 90 94 ― 232.0 236 240.0 θBSTD ― −4 0 4 θRDVD ― 86.0 90 94.0 θGDVD ― 240 244 248 θBDVD ― θRTSB ― θGTSB −4 0 4 88.0 92 96.0 ― 236.0 240 244.0 θBTSB ― −4 0 4 (Note A8) θRDTV ― 86.0 90 94.0 θGDTV ― 240.0 244 248.0 θBDTV ― −4 0 4 θRBSTD ― 92 96 100 θGBSTD ― 236 240 244 θRBDVD ― 88 92 96 240 244 248 90 94 98 θGBDVD ― θRBTSB ― θGBTSB ― 235 239 243 θRBDTV ― 103 107 111 θGBDTV ― 239 243 247 XEIR ― ― −50 −45 XEIG ― ― −50 −45 (Note A9) (Note A10) UNIT ° ° dB XEIB ― ― −50 −45 XIER ― ― −50 −45 Color Difference INT → EXT Crosstalk XIEG ― (Note A11) ― −50 −45 XIEB ― ― −50 −45 Color γ Characteristic Cγ sp ― (Note A12) 1.80 2.07 2.20 V SYMBOL TEST CIRCUIT MIN TYP. MAX UNIT Gyoff ― −0.30 −0.20 0.01 Gyon ― −0.45 −0.35 0.01 dB Y stage CHARACTERISTIC Sync Input~DL Output AC Gain Sync Input~DL Output Frequency Gain Sync Input~DL Output Dynamic Range Sync Input~DL Output Transfer Characteristics Gfyoff Gfyon VDoff VDon TYDL 24 TEST CONDITION (Note Y1) ― (Note Y2) ― (Note Y3) ― (Note Y4) −0.20 0.00 0.20 −3.00 −1.60 0.20 1.30 1.60 ― 1.30 1.60 ― 300 350 410 dB dB Vp-p ns 2005-09-20 TA1310ANG Text stage CHARACTERISTIC AC Gain Frequency Characteristics Unicolor Adjustment Characteristic Brightness Adjustment Characteristic Brightness Control Sensitivity White Peak Slice Level Black Peak Slice Level DC Restoration RGB Output S / N RGB Output Emitter-Follower Drive Current RGB Output Temperature Coefficient Half-Tone Characteristics Half-Tone ON Voltage V-BLK Pulse Output Level H-BLK Pulse Output Level Blanking Pulse Delay Time SYMBOL TEST CIRCUIT GR ― GG ― TEST CONDITION (Note T1) MIN TYP. MAX 3.2 3.80 4.55 3.2 3.80 4.55 GB ― 3.2 3.80 4.55 GfR ― ― −3.0 −6.0 GfG ― ― −3.0 −6.0 (Note T2) UNIT Times dB GfB ― ― −3.0 −6.0 vuMAX ― 0.59 0.74 0.88 vuCNT ― 0.31 0.39 0.47 vuMIN ― 0.06 0.08 0.10 ∆vu ― 17 18.5 20 VbrMAX ― 4.3 4.6 4.9 VbrCNT ― 3.3 3.6 3.9 VbrMIN ― 2.3 2.6 2.9 Gbr ― (Note T5) 14.2 16.3 18.7 mV VWPS ― (Note T6) 2.600 2.825 3.100 Vp-p VBPSR ― (Note T7) 1.95 2.15 2.35 V (Note T8) ― 0.0 50 mV (Note T9) ― −50 −45 dB (Note T10) 1.1 1.5 1.9 mA (Note T11) −2.0 0.0 2.0 mV / °C VBPSG ― VBPSB ― TDCR ― TDCG ― TDCB ― N13 ― N14 ― N15 ― I#13 ― I#14 ― I#15 ― ∆t13 ― (Note T3) (Note T4) Vp-p dB V ∆t14 ― ∆t15 ― GHT ― (Note T12) 0.45 0.5 0.55 Times VHT ― (Note T13) 0.6 0.8 1.0 V VVR ― (Note T14) 0.5 1.0 1.5 V (Note T15) 0.5 1.0 1.5 V ― 0.0 0.3 VVG ― VVB ― VHR ― VHG ― VHB ― tdONR ― tdONG ― tdONB ― tdOFFR ― tdOFFG ― tdOFFB ― 25 (Note T16) µs ― 0.0 0.3 2005-09-20 TA1310ANG CHARACTERISTIC Sub-Contrast Control Range RGB Output Voltage Cut-Off Voltage Control Range Drive Adjustment Range #11 Input Impedance ACL Characteristic ABL Point ABL Gain BLK Off Mode Analog RGB Gain Analog RGB Frequency Characteristics Analog RGB Input Dynamic Lange Analog RGB White Peak Slice Level Analog RGB Black Peak Limiter Level SYMBOL TEST CIRCUIT ∆vsu+ ― ∆vsu− ― V#13 ― V#14 ― V#15 ― CUT+R ― CUT+G ― CUT+B ― CUT−R ― CUT−G ― CUT−B ― DRG+ ― DRG− ― DRB+ ― DRB− ― Zin11 ― ACL1 ― ACL2 ― ABLP1 ― ABLP2 ― ABLP3 ― ABLP4 TEST CONDITION (Note T17) (Note T18) MIN TYP. MAX 1.8 2.3 2.8 −3.0 −3.5 −4.0 2.35 2.6 2.85 0.45 0.5 0.55 (Note T19) (Note T20) −0.45 −0.5 −0.55 2.35 2.85 3.35 −4.25 −5.0 −5.75 2.35 2.85 3.35 −4.25 −5.0 −5.75 24 30 36 −3.5 −5.5 −12 −15 −18 0.04 −0.01 −0.06 −0.09 −0.14 −0.19 −0.24 −0.29 −0.34 ― −0.37 −0.42 −0.47 ABLG1 ― −0.119 −0.095 −0.072 ABLG2 ― −0.400 −0.320 −0.240 ABLG3 ― −0.750 −0.600 −0.450 ABLG4 ― −0.925 −0.740 −0.555 ― GTXR ― GTXG ― GTXB ― GfTXR ― GfTXG ― GfTXB ― GR13 ― GR14 ― GR15 ― VTXMAXR ― VTXMAXG ― VTXMAXB ― VTXMINR ― VTXMING ― VTXMINB ― 26 (Note T22) (Note T23) (Note T24) dB V V −1.5 BLK (Note T21) UNIT (Note T25) ― (Note T26) 4.2 (Note T27) Oper- dB kΩ dB V V ― ― 5.0 6.0 Times ― −1.0 −3.0 dB (Note T28) 0.47 0.55 ― Vp-p (Note T29) 3.5 3.8 4.1 Vp-p (Note T30) 1.9 2.1 2.3 V ating 2005-09-20 TA1310ANG CHARACTERISTIC Analog RGB Contrast Adjustment Characteristics Analog RGB Brightness Adjustment Characteristics Analog RGB Mode On Voltage Analog RGB Mode Transfer Characteristics Crosstalk from Video to Analog RGB Crosstalk from Analog RGB to Video SYMBOL TEST CIRCUIT vuTXR1 ― vuTXG1 ― vuTXB1 ― vuTXR2 ― vuTXG2 ― vuTXB2 ― vuTXR3 ― vuTXG3 ― vuTXB3 ― ∆vuTXR ― ∆vuTXG ― ∆vuTXB ― VbrTX1R ― VbrTX1G ― VbrTX1B ― VbrTX2R ― VbrTX2G ― VbrTX2B ― VbrTX3R ― VbrTX3G ― VbrTX3B ― VTXON ― τRYSR ― τRYSG ― τRYSB ― tPRYSR ― tPRYSG ― tPRYSB ― ∆tPRYS ― τFYSR ― τFYSG ― τFYSB ― tpFYSR ― tpFYSG ― tpFYSB ― ∆tPFYS ― Vv→aR ― Vv→aG ― Vv→aB ― Va→vR ― Va→vG ― Va→vB ― 27 TEST CONDITION MIN TYP. MAX UNIT 0.85 1.0 1.2 0.50 0.59 0.71 0.11 0.13 0.15 17.0 18.5 20 3.3 3.6 3.9 2.8 3.1 3.4 2.2 2.5 2.8 2.0 2.25 2.5 ― 25 100 ― 30 100 ― 0 20 ― 10 100 ― 25 100 ― 0 20 (Note T35) ― −50 −45 dB (Note T36) ― −55 −50 dB Vp-p (Note T31) (Note T32) (Note T33) (Note T34) dB V V ns 2005-09-20 TA1310ANG CHARACTERISTIC Analog OSD Gain Analog OSD Frequency Characteristics Analog OSD Output Level Analog OSD Mode On Voltage Analog OSD Mode Transfer Characteristic RGB Output Self-Diagnosis ACB Input Pulse Phase, Amplitude SYMBOL TEST CIRCUIT GOSDR ― GOSDG ― GOSDB ― GfOSDR ― GfOSDG ― GfOSDB ― VOSD1R ― VOSD1G ― VOSD1B ― VOSD2R ― VOSD2G ― VOSD2B ― VOSD3R ― VOSD3G ― VOSD3B ― VOSDON ― τROSDYSR ― τROSDYSG ― τROSDYSB ― tPROSDYSR ― tPROSDYSG ― tPROSDYSB ― ∆tPROSDYS ― τFOSDYSR ― τFOSDYSG ― τFOSDYSB ― tPFOSDYSR ― tPFOSDYSG ― tPFOSDYSB ― ∆tPFOSDYS ― TEST CONDITION MIN TYP. MAX UNIT (Note T37) 1.8 2.0 2.2 (Times) (Note T38) ― −1.0 −3.0 dB 2.25 2.5 2.75 1.98 2.20 2.42 5.0 5.5 6.0 2.00 2.25 2.50 ― 20 100 ― 30 100 ― 0 20 ― 15 100 ― 30 100 ― 0 20 ― Operating ― (Note T39) (Note T40) (Note T41) SCRGB ― θACBR ― ― 1 ― θACBG ― ― 2 ― θACBB ― ― 3 ― VACBR ― 0.200 0.250 0.300 VACBG ― 0.200 0.250 0.300 VACBB ― 0.200 0.250 0.300 28 (Note T42) (Note T43) V V ns ― (H) Vp-p 2005-09-20 TA1310ANG CHARACTERISTIC ACB Clamp Current IK Input Amplitude RGB γ Correction Characteristics VK Output Characteristic ACB Protector Circuit Operation Check 1 ACB Protector Circuit Operation Check 2 ACB Protector Circuit Operation Check 3 SYMBOL TEST CIRCUIT I17a TEST CONDITION MIN TYP. MAX ― 0.08 0.1 0.125 I17b ― 0.08 0.1 0.125 I17c ― 0.8 1.0 1.3 I17d ― 2.0 2.5 3.2 I18a ― 0.08 0.1 0.125 0.08 0.1 0.125 0.8 1.0 1.3 I18b ― I18c ― I18d ― 2.0 2.5 3.2 I19a ― 0.08 0.1 0.125 I19b ― 0.08 0.1 0.125 I19c ― 0.8 1.0 1.3 I19d ― 2.0 2.5 3.2 0.8 1.0 1.2 0.8 1.0 1.2 (Note T44) IKR ― IKG ― IKB ― 0.8 1.0 1.2 γ1R ― 40 50 60 γ2R ― 60 70 80 ∆1R ― 0.75 1.5 2.25 ∆2R ― −0.75 0.0 0.75 ∆3R ― −2.55 −3.3 −4.05 γ1G ― 40 50 60 γ2G ― 60 70 80 ∆1G ― 0.75 1.5 2.25 ∆2G ― −0.75 0.0 0.75 ∆3G ― −2.55 −3.3 −4.05 γ1B ― 40 50 60 γ2B ― 60 70 80 ∆1B ― 0.75 1.5 2.25 ∆2B ― −0.75 0.0 0.75 (Note T45) (Note T46) ∆3B ― −2.55 −3.3 −4.05 VKA ― 1.90 2.00 2.10 VK1 ― 25.0 35.00 45.0 (Note T47) UNIT mA Vp-p (IRE) dB (IRE) dB (IRE) dB Vp-p VK2 ― 60.0 70.00 80.0 (IRE) ACBPR ― ― ― ― ― ACBPG ― ― ― ― ― ACBBRAR ― ACBBRAG ― ACBBRLO ― 29 (Note T48) (Note T49) (Note T50) ― ― ― ― ― ― ― ― ― ― ― ― 2005-09-20 TA1310ANG CHARACTERISTIC Base Band TINT Adjustment Characteristics Base Band TINT Adjustment Position SYMBOL TEST CIRCUIT ANG RMIN ― ANG BMIN ― ANG RMAX ― ANG BMAX ― BUS BO ― 30 TEST CONDITION (Note T51) (Note T52) MIN TYP. MAX 47.0 53.0 59.0 47.0 53.0 59.0 −51.0 −45.0 −39.0 −51.0 −45.0 −39.0 C2 C6 CA UNIT ° HEX 2005-09-20 TA1310ANG Deflection stage CHARACTERISTIC Sync. Separation Input Sensitivity Current V Separation Filter Pin Source Current V Separation Level H AFC Phase Detection Current Ratio TEST CIRCUIT SYMBOL TEST CONDITION MIN TYP. MAX UNIT IIN38 ― (Note D1) 12 20 30 µA IOUT39 ― (Note D2) 3.2 4.2 5.2 µA VSEP ― (Note D3) 5.0 5.5 6.0 V 210 300 420 µA −5 0 +5 % ― (H) IDET ― ∆IDET ― (Note D4) 262 TCO40 ― (Note D5) ― ~ Phase Detection Stop Period 10 32* fH VCO Oscillation Start Voltage Horizontal Output Start Voltage VVCO ― VHON35 ― VBUS HON ― VBUS HOFF ― (Note D6) (Note D7) 3.7 4.0 4.3 V 4.7 5.0 5.3 V ― 1 ― ― 0 ― ― Horizontal Output Pulse Duty TH35 ― (Note D8) 38.5 40.5 42.5 % Phase Detection Stop Mode fFR ― (Note D9) 15585 15734 15885 Hz Horizontal Output Free-Run Frequency fHO ― (Note D10) 15585 15734 15885 Hz fHMIN ― 14700 15000 15300 fHMAX ― 16500 16700 16900 βH ― 250 300 350 VH35 ― 4.2 4.6 5.0 VL35 ― ― 0.15 0.3 Power Supply Voltage Dependence of Horizontal Oscillation Frequency ∆fHV ― (Note D14) −20 0 +20 Hz / V Temperature Dependence of Horizontal Oscillation Frequency ∆fHT ― (Note D15) ― 60 70 Hz SPH1 ― 2.3 2.5 2.7 SPH2 ― 0.2 0.3 0.4 ∆HSFT ― 5.5 6.0 6.5 VHBLK1 ― 4.7 5.0 5.3 VHBLK2 ― 0.8 1.1 1.4 ∆H42 ― 2.3 2.5 2.7 HBPS ― 7.5 8.0 8.5 HBPW ― 13.0 13.5 14.0 BPV32 ― 0.9 1.1 1.3 Horizontal Oscillation Frequency Range Horizontal Oscillation Control Sensitivity Horizontal Output Voltage Horizontal Sync. Phase Horizontal Picture Phase Adjustment Range Horizontal Blanking Pulse Threshold Curve Correction Characteristic H Cycle Black Peak Detection Disable Pulse External Black Peak Detection Disable Pulse Threshold 31 (Note D11) (Note D12) (Note D13) (Note D16) (Note D17) (Note D18) (Note D19) (Note D20) (Note D21) Hz Hz / 0.1V V µs µs V µs µs V 2005-09-20 TA1310ANG SYMBOL TEST CIRCUIT Clamp Pulse Start Phase CPS ― Clamp Pulse Width CPW HD Output Start Phase HD Output Pulse Width HD Output Amplitude CHARACTERISTIC TEST CONDITION MIN TYP. MAX UNIT (Note D22) 2.8 3.0 3.2 µs ― (Note D22) 5.6 5.8 6.0 µs HDS ― (Note D23) 0.7 0.9 1.1 µs HDW ― (Note D23) 0.7 0.9 1.1 µs VHD ― (Note D23) 4.7 5.0 5.3 V Gate Pulse Start Phase GPS ― (Note D24) 2.7 2.9 3.1 µs Gate Pulse Width GPW ― (Note D24) 1.8 2.0 2.2 µs TCO34 ― (Note D25) ― ― (H) Sync. Out Low Level VSY ― V Vertical Output Oscillation Start Voltage VON Vertical Free-Run Frequency fVO VVH ― VVL ― VDNO ― fPL ― fPH ― Vertical Frequency Forced 263H fV1 ― (Note D32) Vertical Frequency Forced 262.5H fV2 ― (Note D32) VOFF ― (Note D33) Vertical Output Voltage Service Mode Switching Vertical Pull-In Range Vertical Blanking Off Mode Vertical Output Pulse Width RGB Output Vertical Blanking Pulse Start Phase RGB Output Vertical Blanking Pulse Stop Phase 261 ~ Gate Pulse V Mask Period 10 (Note D26) 0.0 0.3 0.5 ― (Note D27) 4.1 4.4 4.7 V ― (Note D28) ― 53 ― Hz 4.9 5.2 5.5 ― 0 0.3 3.1 3.4 3.7 ― 225 ― ― 297 ― ― 263 ― (H) ― 262.5 ― (H) ― Check ― ― 44 46 48 ― 8 ― 44 46 48 ― 22 ― ― 22 ― 22 ― TD ― TW ― VRS1 ― VGS1 ― VBS1 ― VRS2 ― VGS2 ― VBS2 ― (Note D29) (Note D30) (Note D31) (Note D34) (Note D35) (Note D35) ― V V (H) µs µs (H) 257 VBPNORMAL ― (Note D36) ― V Cycle Black Peak Detection Disable Pulse (Zoom) VBPZOOM ― (Note D37) ― ~ V Cycle Black Peak Detection Disable Pulse (Normal) 28 ― (H) ― (H) 229 ~ 32 56 2005-09-20 TA1310ANG Deflection correction stage CHARACTERISTIC Vertical Ramp Amplitude Vertical Amplification Vertical Amp Maximum Output Voltage TEST CIRCUIT SYMBOL TEST CONDITION MIN TYP. MAX UNIT VP27 ― (Note G1) 1.50 1.67 1.83 Vp-p GV ― (Note G2) 22 25 28 dB VH24 ― (Note G3) 2.5 3.0 3.5 V Vertical Amp Minimum Output Voltage VL24 ― (Note G4) ― 0.0 0.3 V Vertical Amp Maximum Output Current IMAX1 ― (Note G5) 11 14 17 mA Vertical NF Sawtooth Wave Amplitude VP25 ― (Note G6) 1.50 1.67 1.83 Vp-p Vertical Amplitude Range VPH ― (Note G7) ±36 ±40 ±44 % Vertical Linearity Correction Maximum Value Vl ― (Note G8) ±12 ±15 ±18 % Vertical S Correction Maximum Value VS ― (Note G9) 20 25 30 % Vertical NF Center Voltage VC ― (Note G10) 4.8 5.0 5.2 V Vertical NF DC Change VDC ― (Note G11) ±100 ±120 ±140 mV Vertical Amplitude EHT Correction VEHT ― (Note G12) 8 9 10 % E-W NF Maximum DC Value (Picture Width) VH22 ― (Note G13) 5.3 5.8 6.3 V E-W NF Minimum DC Value (Picture Width) VL22 ― (Note G14) 1.75 1.90 2.05 V E-W NF Parabola Maximum Value (Parabola) VPB ― (Note G15) 2.1 2.5 2.9 Vp-p E-W NF Corner Correction (Corner) VCR ― (Note G16) 1.0 1.2 1.4 Vp-p Parabola Symmetry Correction VTR ― (Note G17) ±4.5 ±5.5 ±6.5 % E-W Amp Maximum Output Current IMAX2 ― (Note G18) 0.14 0.20 0.28 mA AGC Operating Current 1 VAGC0 ― (Note G19) 470 590 710 µA AGC Operating Current 2 VAGC1 ― (Note G20) 100 130 160 µA (Note G21) 1.80 2.00 2.20 V ― 0 ― ― 1 ― Vertical Guard Voltage E / W Output Self-Diagnosis V-Out Output Self-Diagnosis Vertical Blanking Check V Centering DAC Output V NFB Pin Input Current VVG ― VBUS EW OFF ― VBUS EW ON ― VBUS VOFF ― VBUS VON ― VBLK1 VBLK2 ― V21L ― V21M ― V21H ― I20 ― 33 (Note G22) (Note G23) (Note G24) (Note G25) (Note G26) ― 0 ― ― 1 ― ― Check ― 0.20 0.25 0.30 2.20 2.30 2.35 4.20 4.30 4.35 ― 10 900 ― ― ― V nA 2005-09-20 TA1310ANG TEST CONDITIONS Video stage NOTE ITEM #54 Voltage P1 (Y Input Pedestal Clamp Voltage) C OPEN OPEN P2 #55 Voltage C OPEN OPEN P3 #56 Voltage C OPEN OPEN P4 #1 Voltage C OPEN P5 Y Input Pedestal Clamp Error Voltage (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 C ON MEASUREMENT METHOD 1) Set the bus control data to the preset value. 2) Measure the #54 DC voltage V54. 1) Set the bus control data to the preset value. 2) Measure the #55 DC voltage V55. 1) Set the bus control data to the preset value. 2) Measure the #56 DC voltage V56. 1) Set the bus control data to the preset value. 2) Measure the #1 DC voltage V1. 1) Set the bus control data to the preset value. 2) Set SW 54 to C (connect the Y input to AC-GND). 3) Measure #56 with an oscilloscope as shown in the diagram and calculate∆VPC. 4) Calculate the voltage differences∆VPC1 and∆VPC0 when the Y mute is on (1) and off (0). OPEN OPEN Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 34 2005-09-20 TA1310ANG NOTE ITEM (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 MEASUREMENT METHOD 1) P6 P7 Y Input Pedestal Clamp Pulse Phase Y Input Dynamic Range B C B B Set the bus control data to the preset value. 2) Set SW 54 to B (connect VCC (5 V) to the Y input via a 20-kΩ resistor). 3) Measure #54 and #40 with an oscilloscope as shown in the diagram. Calculate TCL1 and TCL2. 1) Set the bus control data to the preset value. OPEN 2) Set SW 54 to C (connect the Y input to AC-GND). 3) Set the unicolor to the center (100000), the brightness to the center (1000000), RGB cutoff to the center (10000000), the Y mute to OFF (0), and connect an external power supply to #54. 4) Increase the supply voltage from V54 and measure #13 (ROUT). 5) When the #13 voltage stops changing, substitute the supply voltage (V) in the formula below and calculate DR54. DR54 = V−V54 OPEN Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 35 2005-09-20 TA1310ANG NOTE ITEM (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 MEASUREMENT METHOD 1) P8 #56 Output Impedance C B Black Stretching Amplifier Maximum Gain A ↓ A 2) Set SW 54 to C (connect the Y input to AC-GND). 3) Connect the external power supply to #56 via ammeter A as shown in the diagram below. 4) Adjust the power supply until the ammeter reads 0 amperes. 5) Measure the ammeter current I56 when the power supply is increased by 0.1 V. OPEN 6) B P9 OPEN Set the bus control data to the preset value. Calculate Z56 from the following formula. Z56 = 0.1 [V] ÷ I56 [A] 1) Set the bus control data to the preset value. 2) Set the black stretch start point to 001, turn the Y mute off (0), set SW 54 to A, and input a 500-kHz sine wave to TP54A. 3) Use #54 to adjust the signal amplitude to 0.1 Vp-p. 4) Set SW 55 to B (minimum gain) and measure the amplitude VA of #56. 5) Set SW 55 to A (maximum gain) and measure the amplitude VB of #56. 6) Calculate GBS from the following formula. GBS = VB ÷ VA Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 36 2005-09-20 TA1310ANG NOTE ITEM (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 MEASUREMENT METHOD 1) Set the bus control data to the preset value. 2) Set SW 54 to C (connect the Y input to AC-GND), set SW 55 to A (maximum gain), turn the Y mute off (0), and turn the black level compensation on (set the black stretch start point to 000). 3) Observe #56, measure ∆V, and calculate the following formula. 3 BLC [(IRE)] = (∆V [mV] ÷ (0.7 × 10 ) [mV]) × 100 [(IRE)] P10 P11 Black Level Compensation Black Peak Detection Level C C A C OPEN OPEN 1) Set the bus control data to the preset value. 2) Turn the Y mute off (0) and connect #54 to an external power supply (PS). 3) Turn the black level correction on (set the black stretch start point to 000). 4) Increase the PS from 3V and measure the voltage VBP of #56 where the DC level of the picture period of #55 shifts from high to low. 5) Calculate ∆VBP from the following formula. ∆VBP = VBP − V56 Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 37 2005-09-20 TA1310ANG NOTE ITEM B P12 Black Stretching Start Point (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 C ↓ MEASUREMENT METHOD 1) Set the bus control data to the preset value. 2) Set SW 54 to C (connect the Y input to AC-GND), set SW 55 to B (minimum gain), turn the Y mute off (0), and set the black stretch start point to 001. 3) Connect #54 to an external power supply (PS), increase the voltage from V54, and plot the resulting change in voltage S1 of #56. 4) Next, set SW 55 to A (maximum gain). Then, increase the voltage from V54 as in 3) above and plot the resulting change in voltage S2 of #56. 5) Now set the black stretch point to 111 and plot S3 as in 3) above. 6) Use the diagram below to calculate the intersection VB001 of S1 and S2, and the intersection VB111 of S1 and S3. Use the following formals to calculate PB001 and PB111, and calculate PB001 and PB111 from the formulas below. PB001 [(IRE)] = ((VB001 [V] − V56 [V] ÷ 0.7 [V]) × 100 [(IRE)] PB111 [(IRE)] = ((VB111 [V] − V56 [V] ÷ 0.7 [V]) × 100 [(IRE)] OPEN A Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 38 2005-09-20 TA1310ANG NOTE ITEM (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 MEASUREMENT METHOD 1) Set the bus control data to the preset value. 2) Connect #54 to an external power supply (PS). 3) Turn the Y mute off (0), set the unicolor to the center (100000), set the brightness to the center (1000000), set RGB cutoff to the center (10000000), and observe #13 (ROUT). 4) Use unicolor to adjust the difference in the #13 picture period DC level to 0.7 V when the power supply is set to V54 and V54+0.7 V. 5) Applying V54+0.7 V to #54 as shown in the diagram below, calculate∆V1 of #13, then calculate∆V2 of #13 when SW 56 is on. 6) Connect a 2-kΩ resistor between #56 and C56 (1 µF) and calculate ∆V3 of #13. 7) Calculate GDTC and GDTR from the following formula. GDTC = ((∆V2 [V] −∆V1 [V]) + 0.7 [V]) ÷ 0.7 [V] OPEN P13 DC Restoration Rate Compensation Amp Gain C B GDTR = ((∆V3 [V] −∆V1 [V]) + 0.7 [V]) ÷ 0.7 [V] ↓ ON Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 39 2005-09-20 TA1310ANG NOTE ITEM (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 MEASUREMENT METHOD 1) Set the bus control data to the preset value. 2) Set SW 54 to C (connect the Y input to AC-GND), connect #54 to an external power supply (PS), and turn read mode on. 3) When the power supply is increased from V54 to V54 + 0.7 V, check that in read mode Y-IN changes from error to OK to error. SCDC 4) Next, set SW 54 to A and input a sine wave from TG-7 to TP54. Apply a signal on #54 as shown in the diagram. Check that there is no problem with the Y IN in read mode. SCAC 1) Set the bus control data to the preset value. 2) Input a 100-kHz sine wave to TP54 and adjust #54 to 0.7 Vp-p. 3) Turn the Y mute on (1) and measure the #56 amplitude VYM1. 4) Turn the Y mute off (0) and measure the #56 amplitude VYM0. 5) Calculate the following formula. GYM [dB] = 20 × ℓog (VYM1 / VYM0) C P14 Self-Diagnosis Y-IN ↓ B OPEN A P15 Y Mute A B OPEN Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 40 2005-09-20 TA1310ANG NOTE ITEM (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 MEASUREMENT METHOD 1) P16 Sharpness Peak Frequency A B Set the bus control data to the preset value. 2) Set SW 54 to A and input a sweep signal to TP54. 3) Set the amplitude of #54 to 20 mVp-p. 4) Set the unicolor to the maximum (111111), set the brightness to the center (1000000), set the RGB cutoff to the center (10000000), turn the Y mute off (0), turn test mode on (0), and set the picture sharpness to the maximum (111111). 5) Connect an emitter-follower to TP13 (R OUT) and use a spectrum analyzer to observe TP13 (R OUT). 6) Seek the peak point frequency FAP as shown in the diagram. OPEN Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 41 2005-09-20 TA1310ANG NOTE ITEM (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 MEASUREMENT METHOD 1) P17 Sharpness Control Range A B OPEN 2) Set SW 54 to A and input a sine wave to TP54A. 3) Set the amplitude of #54 to 20 mVp-p. 4) Set the unicolor to the maximum (111111), the brightness to the center (1000000), RGB cutoff to the center (10000000), and turn the Y mute off (0). 5) Set the picture sharpness to the maximum (111111). Connect an emitter-follower to TP13 (R OUT). When the frequencies are 100 kHz and 2.4 MHz, measure the respective V100 and V24 amplitudes. 6) Next, set the picture sharpness to the minimum (000000). As in 5), when the frequencies are 100 kHz and 2.4 MHz, measure the V100 and V24 amplitudes respectively. 7) Calculate GMAX and GMIN from the following formula. GMAX, GMIN [dB] = 20 × ℓog (V24 ÷ V100) 1) Repeat steps 1) to 4) of P17. 2) P18 Sharpness Control Center Characteristics A B Set the bus control data to the preset value. OPEN 3) 4) Set the picture sharpness to the center (100000) Connect an emitter-follower to TP13 (R OUT). When the frequencies are 100 kHz and 2.4 MHz, measure the V100 and V24 amplitudes respectively. Calculate GCEN from the following formula. GCEN [dB] = 20 × ℓog (V24 ÷ V100) Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 42 2005-09-20 TA1310ANG NOTE ITEM (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 MEASUREMENT METHOD 1) P19 Between Y IN and R OUT Delay Time A B Set the bus control data to the preset value. 2) Set SW 54 to A and input a 2T pulse (STD) signal from TG-7 to TP54A. 3) Set the unicolor to the maximum (111111), the brightness to the center (1000000), the RGB cutoff to the center (10000000), turn the Y mute off (0), and set the picture sharpness to the center (100000). 4) Connect an emitter-follower to TP13 (R OUT) to observe TP13 (R OUT). 5) Calculate TY from the following diagram. OPEN Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 43 2005-09-20 TA1310ANG NOTE ITEM (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 MEASUREMENT METHOD 1) P20 P21 P22 VSM Peak Frequency VSM Gain VSM Muting Threshold Voltage A A A B B B OPEN Set the bus control data to the preset value. 2) Set SW 54 to A, turn the Y mute off, and input a sweep signal to TP54. 3) Set the #54 amplitude to 100 mVp-p. 4) Observe TP1 (VSMOUT) with a spectrum analyzer and seek the peak point frequency FVSM. 1) Set the bus control data to the preset value. 2) Set SW 54 to A, turn the Y mute off (0), and input the FVSM sine wave (see P20 above) to TP54. 3) Set the amplitude of #54 to 100 mVp-p. OPEN 4) When the VSM gain is on (0), measure the TP1 (VSMOUT) amplitude VVSM0 (Vp-p). 5) Next, measure the TP1 (VSMOUT) amplitude VVSM1 (Vp-p) when the VSM gain is off (1). 6) Calculate GVSM0 and GVSM1 by the following formulas. GVSM0 [dB] = 20 × ℓog (VVSM0 ÷ 0.1) GVSM1 [dB] = 20 × ℓog (VVSM1 ÷ 0.1) 1) Repeat steps 1) to 3) of P21. 2) Connect the external power supply (PS) to #10 and increase the voltage from 0.5 V. Read the PS voltage VVM10 when the TP1 (VSMOUT) amplitude disappears, as shown in the following diagram. 3) Set SW 6 to open, connect #6 to an external power supply, increase the voltage from 1.5 V. When the TP1 (VSMOUT) amplitude disappears as shown in the following diagram, read the PS voltage VVM6. OPEN Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 44 2005-09-20 TA1310ANG NOTE P23 ITEM VSM High Speed Muting Response Time (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 A B MEASUREMENT METHOD 1) Repeat steps 1) to 3) of P21 above. 2) Set SW 6 to open, input a pulse as shown below to #6 (Ys / Ym IN), and measure the response times THM1 and THM2 at that input. 3) Similarly, input the pulse to #10 (OSD Ys IN) and measure the response times THM3 and THM4 at that input. OPEN Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 45 2005-09-20 TA1310ANG NOTE P24 ITEM VSM Phase (TEST CONDITIONS VCC = 9 V / 5 V, Ta = 25 ± 3°C) SW MODE SW 54 SW 55 SW 56 A B MEASUREMENT METHOD 1) Set the bus control data to the preset value. 2) Input a signal like that shown in the diagram below to TP54, turn the Y mute off (0), and adjust the amplitude of #54 to 0.7 Vp-p. 3) Set the unicolor to the maximum (111111), increase the picture sharpness from the minimum to a level where the R OUT waveform is not distorted. 4) Measure the phase differences TVM24, TVMFP, and TVM2T between TP1 (VSMOUT) and TP13 (R OUT) when the signal is an FVSM sine wave, a 2T pulse, and a 2.4-MHz signal, as shown in the diagram below. (To make a waveform at TP1, reverse the waveform at TP13 using an oscilloscope.) OPEN Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN). 46 2005-09-20 TA1310ANG Chroma stage NOTE C1 C2 C3 ITEM ACC Characteristics Color Difference Output Level Color Difference Output Relative Amplitude (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) SW MODE SW 45 SW 46 B B B ON MEASUREMENT METHOD 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45).Burst : chroma = 1 : 1 2) When the chroma input amplitude levels are set to 10, 30, 300, and 600 mVp-p, measure the output amplitudes va10, va30, va300, and va600 of the R-Y output pin (TP48). 3) Calculate A = va30 / va600. 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 300 mVp-p : 300 mVp-p 2) Change the burst phase so that bar 2 of the B-Y output pin (TP47) output waveform is the bottom peak and bar 7 is the top peak. 3) Measure the amplitude (vB) of the B-Y output pin (TP47). 4) Set the burst phase to 180°. ON 5) Measure the amplitude (vR) of the R-Y output pin (TP48) 1) Calculate the relative amplitude vRB from the following formula using the values obtained in steps 3) and 5) of C2 above. vRB = vR / vB 1) Input a rainbow signal (C-1) to the chroma input pin (TP45). Burst : chroma = 200 mVp-p : 200 mVp-p 2) Calculate the demodulation angles θBcnt and θRcnt of the B-Y output pin (TP47) and the R-Y output pin (TP48) using the formulas and diagram below. ① Calculate the relative phase θRB from the following formula using the values obtained in C4 above. θRB = θRcnt − θBcnt ON C4 Color Difference Output Demodulation Angle B ON C5 Color Difference Output Relative Phase B ON Note 1: Where the bus data are not specified, set the preset values. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 47 2005-09-20 TA1310ANG NOTE C6 C7 ITEM Color Difference Output Tint Adjustment Characteristics Supply Voltage Dependence of Color Difference Output (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) SW MODE SW 45 SW 46 B B MEASUREMENT METHOD 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 300 mVp-p : 300 mVp-p 2) Measure the demodulation angles θB’ and θR’ in the outputs with the tint set to the maximum (subaddress (03H), data (FE)). Calculate θBmax and θRmax by the following formulas. θBmax = θB’ − θBcnt θRmax = θR’ − θRcnt 3) Measure the demodulation angles θB” and θR” in the outputs with the tint set to the minimum (subaddress (03H), data (00). Calculate θBmin and θRmin by the following formulas θBmin = θB″ − θBcnt θRmin = θR″ − θRcnt 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 300 mVp-p : 300 mVp-p 2) As in C2, measure the amplitudes ∆VBp and ∆VRp of the B-Y output pin (TP47) and R-Y output pin (TP48) when the 5-V VCC is set to 5 V + 0.3 V. Calculate the amplitude ratios BVp and RVp when the 5-V VCC is set to 5 V. ON ON BVp = 3) C8 C9 Identification Sensitivity Bus Read Identification B B vB × 100 RVp = ∆VRp − vR vR × 100 Using the same tests as above, calculate BVn and RVn when the 5-V VCC is set to 5 V − 0.3 V ∆VBn − vB ∆VRn − vR BVn = × 100 RVn = × 100 vB vR 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45).Burst : chroma = 1 : 1 2) Gradually reduce the input signal amplitude from 100 mVp-p. When the B-Y output pin (TP47) signal disappears (when the current is DC), measure the input signal amplitude vCB. 3) Gradually increase the input signal amplitude from 0 mVp-p. When a demodulation signal appears on the B-Y output pin (TP47), measure the input signal amplitude vBC. 1) Perform the same tests as above while observing the bus read : When the input signal amplitude is vCB, check that the first bit is set to 0 (bCB). When the input signal amplitude is vBC, check that the first bit is set to 1 (bBC). ON ON ∆VBp − vB Note 1: Where the bus data are not specified, set the preset values. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 48 2005-09-20 TA1310ANG NOTE C10 ITEM Color Difference Output Voltage Difference in 1H Period C11 Color Difference Output Voltage Difference Every 1H Period C12 Color Difference Output DC Voltage (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) SW MODE SW45 SW46 B B B MEASUREMENT METHOD 1) Input no more than 300-mVp-p as a burst signal to chroma input pin (TP45). 2) Measure the DC voltage difference (vBH) between the H blanking period and picture period of the B-Y output pin (TP47). 3) Measure the DC voltage difference (vRH) between the H blanking period and picture period of the R-Y output pin (TP48). ON 1) Input no more than 300-mVp-p as a burst signal to chroma input pin (TP45). 2) Measure the DC voltage difference (vBG) between the H picture period and H + 1 picture period of the B-Y output pin (TP47). 3) Measure the DC voltage difference (vRG) between the H picture period and H + 1 picture period of the R-Y output pin (TP48). 1) Input no more than 300-mVp-p as a burst signal to chroma input pin (TP45). ON ON C13 Difference between DC Voltage Axes of Color Difference Output B ON C14 X’tal Free-Run Frequency A ON 2) Measure the picture period DC voltage VB of the B-Y output pin (TP47). 3) Measure the picture period DC voltage VR of the R-Y output pin (TP48). 1) Use the following formula to calculate the difference (VRB) between the voltage axes from the following formula using the values obtained in C12 above. VRB = VR − VB 1) No signal input to the chroma input pin (TP45) (set SW45 to A). 2) Observe the CW output pin (TP50) and measure the output frequency Xf. Note 1: Where the bus data are not specified, set the preset values. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 49 2005-09-20 TA1310ANG NOTE C15 ITEM APC Frequency Sensitivity (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) SW MODE SW45 SW46 Control A MEASUREMENT METHOD 1) No signal input to the chroma input pin (TP45) (set SW45 to A). 2) Set SW46 to open and connect an external power supply to the APC filter pin (#46). 3) Change the voltage of external power supply to a value regarded as Vc3, where the output frequency of the CW output pin (TP50) is 3.579545 MHz (Xf). 4) Measure the CW output frequencies Xf (+100) and Xf (−100) for Vc3 + ∆Vc3 (±100 mV). Calculate the free-run sensitivity βf from the following formula. OFF β f= C16 APC Pull-In / Hold Range C17 Residual Carrier Level C18 Residual Higher Harmonic Level B B B ON 200 1) Input a 3.579545-MHz sine wave (300 mVp-p) to the chroma input pin (TP45). 2) Vary the input sine wave frequency in ±10-Hz steps from 3.579545 MHz. When the B-Y output pin (TP47) picture period amplitude changes, measure the difference between 3.579545 MHz and the varied sine wave frequencies : on the plus side, fh+, and on the minus side, fh− (hold). 3) Increase and decrease the above measured values by 1 kHz : (fh+) +1 kHz and (fh−) −1 kHz. Adjust to approximately 3.579545 MHz in ±10-Hz steps. When the B-Y output pin (TP47) picture period amplitude changes, measure the difference from 3.579545 MHz : on the plus side, fp+, and on the minus side, fp− (pull-in). 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 300 mVp-p : 300 mVp-p 2) Measure the color subcarrier leak levels vBNo and vRNo of the B-Y output pin (TP47) and the R-Y output pin (TP48). 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 300 mVp-p : 300 mVp-p 2) Measure the higher harmonic levels vBHN and vRHN of the B-Y output pin (TP47) and the R-Y output pin (TP48). ON ON X f ( +100 ) − X f ( −100 ) Note 1: Where the bus data are not specified, set the preset values. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 50 2005-09-20 TA1310ANG NOTE C19 C20 ITEM TOF-BPF Characteristics CW Output Amplitude (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) SW MODE SW45 SW46 B B ON MEASUREMENT METHOD 1) Connect the VCC (5 V) via a 750 Ω resistor to the R-Y output pin (TP48). 2) Input a 3.579545-MHz sine wave (50 mVp-p) to the chroma input pin (TP45). 3) Set to BPF mode (subaddress (03H), data (80)). 4) Set f0 of the sine wave to (3.579545 M − 1 M) Hz, measure the output amplitude of TP48, and calculate the gain from the input (GBL). 5) Set f0 of the sine wave to (3.579545 M+1 M) Hz, measure the output amplitude of TP48, and calculate the gain from the input (GBH). 6) Set to TOF mode (subaddress (03H), data (81)). 7) Set f0 of the sine wave to (3.579545 M − 1 M) Hz, measure the output amplitude of TP48, and calculate the gain from the input (GTL). 8) Set f0 of the sine wave to (3.579545 M + 1 M) Hz, measure the output amplitude of TP48, and calculate the gain from the input (GTH). 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 300 mVp-p : 300 mVp-p 2) Measure the amplitude vCW of the CW output pin. ON Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 51 2005-09-20 TA1310ANG Color difference stage NOTE ITEM SW6 A1 A2 A3 Color Difference Input Clamp Voltage Color Difference Input / Output Delay Time Unicolor Adjustment Characteristics C C C SW MODE SW45 SW 52 A A A A B B (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) MEASUREMENT METHOD SW53 A 1) Connect the color difference input pin to AC-GND. (Set SW52A and SW53A to A.) 2) Measure the voltage VRY of the R-Y input pin (#52) and the voltage VBY of the B-Y input pin (#53). 1) Set to external color difference input mode (subaddress (05H), data (81)). 2) Now set as follows : Unicolor : maximum (subaddress (00H), data (3F)) Brightness : maximum (subaddress (01H), data (7F)) Color : center (subaddress (02H), data (40)). 3) Set SW52A and SW53A to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53) f0 = 100 kHz, picture period amplitude = 0.2 Vp-p. 4) Measure the signal delay time (DLRY) from the R-Y input pin (TP52) to the R output (TP13). 5) Measure the signal delay time (DLBY) from the B-Y input pin (TP53) to the B output (TP15). 1) Set to external color difference input mode (subaddress (05H), data (81)) 2) Now set as follows : Brightness : Color : Relative phase amplitude : B B maximum (subaddress (01H), data (7F)) center (subaddress (02H), data (40)) standard (subaddress (12H), data (00)). 3) Set SW52A and SW53A to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53). f0 = 100 kHz, picture period amplitude = 0.2 Vp-p. 4) Set unicolor to the maximum (subaddress (00H), data (3F)). Measure the RUmax, the amplitude of the R output (TP13), and BUmax, the amplitude of B output (TP15). 5) Set unicolor to the minimum (subaddress (00H), data (00)). Measure the RUmin, the amplitude of the R output (TP13), and BUmin, the amplitude of B output (TP15). 6) Calculate the unicolor adjustment characteristics uR and uB by the following formulas. uR = 20Log RUmin RUmax uB = 20Log BUmin BUmax Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 52 2005-09-20 TA1310ANG NOTE ITEM SW6 A4 Color Adjustment Characteristics C SW MODE SW45 SW 52 A B (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) MEASUREMENT METHOD SW53 B 1) Set to external color difference input mode (subaddress (05H), data (81)) 2) Now set as follows : Unicolor : Brightness : Relative phase amplitude : maximum (subaddress (00H), data (3F)) maximum (subaddress (01H), data (7F)) standard (subaddress (12H), data (00)). 3) Set SW52A and SW53A to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53). f0 = 100 kHz, picture period amplitude = 0.2 Vp-p. 4) Set the color to the maximum (subaddress (02H), data (7F)). Measure RCmax, the amplitude of the R output (TP13), and BCmax, and the amplitude of the B output (TP15). 5) Set the color to the center (subaddress (02H), data (40)). Measure RCcnt, the amplitude of the R output (TP13), and BCcnt, the amplitude of the B output (TP15). 6) Set the color to the minimum (subaddress (02H), data (00)). Measure RCmin, the amplitude of the R output (TP13), and BCmin, the amplitude of the B output (TP15). 7) Calculate the color adjustment characteristics cRmax, cRmin, cBmax, and cBmin by the following formulas. cRmax = 20Log RCMAX RC CNT cRmin = 20Log RCMIN RC CNT cBmaX = 20Log BCMAX BC CNT cBmin = 20Log BCMIN BC CNT Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 53 2005-09-20 TA1310ANG NOTE ITEM SW 6 SW MODE SW 45 SW 52 (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) MEASUREMENT METHOD SW 53 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 200 mVp-p : 200 mVp-p. 2) Now set as follows : Unicolor Brightness Color Relative phase amplitude C A5 RGB Output Half-Tone Characteristics or B A A Measure the amplitudes vRo, vGo, and vBo of the R output pin (TP13), the G output pin (TP14), and the B output pin (TP15). 4) Set SW 6 to B and repeat the test in 3) above. Measure the amplitudes vRH, vGH, and vBH. 5) Calculate the half-tone characteristics vRHo, vGHo, and vBHo by the following formulas. v v RHo = 20Log RH v Ro RGB Output Amplitude C B A maximum (subaddress (00H), data (3F)) maximum (subaddress (01H), data (7F)) center (subaddress (02H), data (40)) standard (subaddress (12H), data (00)). 3) B A6 : : : : v v GHo = 20Log GH v Go 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 200 mVp-p : 200 mVp-p. 2) Now set as follows : Unicolor : maximum (subaddress (00H), data (3F)) Brightness : maximum (subaddress (01H), data (7F)) Color : center (subaddress (02H), data (40)). 3) Switch the relative phase amplitude (subaddress (12H)) and measure the amplitudes (peak values) of the RGB outputs (TP13, TP14, TP15) according to the table below. A Subaddress (12H) data 1) A7 RGB Output Relative Amplitude C B A v v BHo = 20Log BH v Bo TP13 TP14 TP15 STD (00) vRSTD vGSTD vBSTD DVD (40) vRDVD vGDVD vBDVD TSB (80) vRTSB vGTSB vBTSB DTV (C0) vRDTV vGDTV vBDTV Using the values obtained in A06 above, calculate the relative amplitudes by the following formulas. A v v RB ∗ ∗ ∗ = R ∗∗∗ v B∗∗∗ v v GB = G∗∗∗ v B∗∗∗ Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 54 2005-09-20 TA1310ANG NOTE ITEM SW 6 A8 RGB Output Demodulation Angle C SW MODE SW 45 SW 52 B A (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) MEASUREMENT METHOD SW 53 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 200 mVp-p : 200 mVp-p. 2) Now set as follows : Unicolor : maximum (subaddress (00H), data (3F)) Brightness : maximum (subaddress (01H), data (7F)) Color : center (subaddress (02H), data (40)). Adjust the tint so that the waveform angle of the B-Y output pin (TP47) is 0°. 3) Switch the relative phase amplitude (subaddress (12H)) and measure the phase of the RGB outputs (TP13, TP14, TP15) according to the table below. A TP13 TP14 TP15 STD (00) θRSTD θGSTD θBSTD DVD (40) θRDVD θGDVD θBDVD TSB (80) θRTSB θGTSB θBTSB DTV (C0) θRDTV θGDTV θBDTV Subaddress (12H) data (*)The test method is the same as those for C4 in Chroma stage. (Measure bar 2 of the G axis.) 1) A9 RGB Output Relative Phase C B A A Using the values obtained in A08 above, calculate the relative amplitudes by the following formulas. θRB*** = θR*** − θB*** θGB*** = θG*** − θB*** Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 55 2005-09-20 TA1310ANG NOTE ITEM SW 6 SW MODE SW 45 SW 52 (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) Color Difference A10 EXT → INT Crosstalk C A B MEASUREMENT METHOD SW 53 B 1) No signal input to the chroma input pin (TP45) (set SW 45 to A). 2) Now set as follows : Unicolor : maximum (subaddress (00H), data (3F)) Brightness : maximum (subaddress (01H), data (7F)) Relative phase amplitude : standard (subaddress (12H), data (00)). 3) Set SW 52A and SW 53A to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53). f0 = 4 MHz, picture period amplitude = 0.2 Vp-p 4) Set to external color difference input mode (subaddress (05H), data (81)). 5) Adjust the color data so that the amplitude of the R output pin (TP13) is 2 Vp-p. 6) Set to internal color difference input mode (subaddress (05H), data (80)). 7) Measure the amplitude v XER of the R output pin (TP13) and calculate the amount of crosstalk. v XEIR = 20Log XER 2 8) Repeat steps 4) to 7) above for the G and B axes and calculate the amount of crosstalk on those axes. v XEIG = 20Log XEG 2 v XEIB = 20Log XEB 2 Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 56 2005-09-20 TA1310ANG NOTE ITEM SW 6 SW MODE SW 45 SW 52 (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) Color Difference A11 INT→EXT Crosstalk C B A MEASUREMENT METHOD SW 53 A 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 200 mVp-p : 200 mVp-p. 2) Now set as follows : Unicolor : Brightness : Relative phase amplitude : maximum (subaddress (00H), data (3F)) maximum (subaddress (01H), data (7F)) standard (subaddress (12H), data (00)). 3) Set SW 52A and SW 53A to A. 4) Set to internal color difference input mode (subaddress (05H), data (80)). 5) Adjust the color data so that the amplitude of the R output pin (TP13) is 2 Vp-p. 6) Set to external color difference input mode (subaddress (05H), data (81)). 7) Measure the amplitude v XIR of the R output pin (TP13) and calculate the amount of crosstalk. v XIER = 20Log XIR 2 Repeat steps 4) to 7) above for the G and B axes and calculate the amount of crosstalk on those axes. 8) v XIEG = 20Log XIG 2 v XIEB = 20Log XIB 2 Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 57 2005-09-20 TA1310ANG NOTE ITEM SW 6 A12 Color γ Characteristics C SW MODE SW 45 SW 52 B A (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) MEASUREMENT METHOD SW 53 A 1) Set to external color difference input mode (subaddress (05H), data (81)). 2) Now set as follows : Unicolor Brightness Relative phase amplitude Y mute : : : : maximum (subaddress (00H), data (3F)) maximum (subaddress (01H), data (7F)) standard (subaddress (12H), data (00)) on (set D7 of subaddress (02H) to 1). 3) Set SW 52a to a, set SW53a to b, and input the signal shown in Fig.1) below to the B-Y input pin (TP53). 4) Set the color to the minimum and measure the picture period DC voltage v Bγ0 of the B output pin (TP15). 5) Increase the color from the minimum. When the picture period DC voltage of the R output pin (TP13) changes, measure the picture period DC voltage vBγ1 of the B output pin (TP15). 6) Using the values obtained above, calculate the color γ start point Cγsp by the following formula. Cγsp = vBγ1 − vBγ0 Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 58 2005-09-20 TA1310ANG Y stage NOTE Y1 ITEM Sync Input~DL Output AC Gain (#16 VCC = 9 V, #37 VCC = 9 V, #51 VCC = 5 V, Ta = 25 ± 3°C) SW MODE SW 45 A MEASUREMENT METHOD 1) Input signal C-2 to the Sync Input pin (TP38). f0 = 100 kHz, picture period amplitude = 0.2 Vp-p 2) Turn DL mode off (subaddress (12), data (80)) and measure the picture period amplitude v43off of the DL output (TP43). Calculate the gain from the input (GYoff) by the formula shown below. 3) Turn DL mode on (subaddress (12), data (A0)) and measure the picture period amplitude v43on of the DL output (TP43). Calculate the gain from the input (GYon) by the formula shown below. v GYoff = 20Log 43off 0.2 Y2 Sync Input~DL Output Frequency Gain A 1) Input signal C-2 to the Sync Input pin (TP38). f0 = 8 MHz, picture period amplitude = 0.2 Vp-p 2) Turn DL mode off (subaddress (12), data (80)) and measure the picture period amplitude v438Moff of the DL output (TP43). Calculate the gain from the input (GfYoff) by the formula shown below. 3) Turn DL mode on (subaddress (12), data (A0)) and measure the picture period amplitude v438Mon of the DL output (TP43). Calculate the gain from the input (GfYon) by the formula shown below. v GfYoff = 20Log 438Moff v 43off Y3 Sync Input~DL Output Dynamic Range Y4 Sync Input~DL Output Transfer Characteristics A A v GYon = 20Log 43on 0. 2 v GfYon = 20Log 438Mon v 43on 1) Input signal C-3 to the Sync Input pin (TP38). 2) When the amplitude A of signal C-3 is increased from 0, observe the change in the picture period amplitude of the DL output (TP43). With DL mode turned on and off, when the output amplitude stops changing in a linear direction, measure the input signal amplitude A. 1) Input signal C-2 to the Sync Input pin (TP38). f0 = 100 kHz, picture period amplitude = 0.2 Vp-p 2) Turn DL mode on (subaddress (12H), data (20)) and measure the amount of delay TYLD from the Sync Input (#38) to the DL output (TP43). Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN). 59 2005-09-20 TA1310ANG Text stage NOTE ITEM S03 T1 T2 T3 T4 AC Gain Frequency Characteristics Unicolor Adjustment Characteristics Brightness Adjustment Characteristics A A A S04 A A A (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 A A A OFF OFF OFF A A A A A A A A A OFF OFF OFF 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54. 2) Measure the picture period amplitudes of pins 13, 14, and 15. (v13, v14, v15) 3) GR = v13 / 0.2 GG = v14 / 0.2 GB = v15 / 0.2 A A 1) Input signal 1 (f = 8 MHz, picture period amplitude = 0.2 Vp-p) to pin 54. 2) Measure the picture period amplitudes of pins 13, 14, and 15. (v13 8 MHz, v14 8 MHz, and v15 8 MHz). 3) Using the values obtained in T01 above, calculate the frequency characteristics from the following formulas. 4) GfR = 20 × ℓog (v13 8 MHz / v13) GfG = 20 × ℓog (v14 8 MHz / v14) GfB = 20 × ℓog (v15 8 MHz / v15) 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54. 2) When the subaddress (00, unicolor) data are changed to the maximum (3F), the center (20), and the minimum (00), measure the picture period amplitude of pin 13. A (vu A A A OFF A A A OFF A MAX Brightness Control Sensitivity A A A OFF A A A OFF 60 , vu MIN ) 3) Calculate the maximum, minimum amplitude ratio for unicolor in decibels. (∆vu) 1) Input signal 2 to pin 54 and adjust the picture period amplitude input of pin 13 to 1 Vp-p. 2) When the subaddress (01, brightness) data are changed to the maximum (FF), the center (C0), and the minimum (80), measure the picture period DC voltage of pin 13. (Vbr T5 CNT , vu MAX , Vbr CNT , Vbr MIN ) 1) Using the values obtained in T4 above, calculate the brightness sensitivity from the following formula. 2) Gbr = (Vbr A MAX MIN − Vbr ) / 128 2005-09-20 TA1310ANG NOTE ITEM S03 S04 (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 1) T6 T7 T8 White Peak Slice Level Black Peak Slice Level DC Restoration A A A A A A A A A OFF OFF OFF A A A A A A A A A OFF OFF OFF 61 A C Change the bus data and set the sub-contrast to the maximum. 2) Input signal 2 to pin 54 and gradually increase the amplitude. 3) When pin 13's picture period is clipped, measure the picture period amplitude of pin 13 1) Apply an external power supply to pin 54 and gradually decrease the voltage from 3.7 V. 2) When their picture periods are clipped, measure the picture period amplitudes of pins 13, 14, and 15. 1) Input the TG7 stair-step signal to pin 54. 2) Adjust the unicolor data so that the pin 13 stair-step output signal is 1.25 Vp-p. 3) When the stair-step signal APL is changed from 10% to 90%, measure the voltage change at point A in the diagram below. 4) Repeat steps 1) to 3) above on pins 14 and 15. A 2005-09-20 TA1310ANG NOTE ITEM S03 S04 (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 T9 RGB Output S / N A A A OFF A A A OFF C T10 RGB Output Emitter-Follower Drive Current A A A OFF A A A OFF C T11 T12 T13 RGB Output Temperature Coefficient Half-Tone Characteristics Half-Tone ON Voltage A A A A A A A A A OFF OFF OFF A A A A A A A A A OFF OFF OFF Measure the picture period noise levels of pins 13, 14, and 15 with an oscilloscope. (n13, n14, n15 (Vp-p)) 2) Calculate the S / N for each pin. N13 = −20 × Log (2.5 / (0.2 × n13)) N14 = −20 × Log (2.5 / (0.2 × n14)) N15 = −20 × Log (2.5 / (0.2 × n15)) 1) Connect a 3.5-V external power supply to pin 13 via a 100-Ω resistor (I#13) and measure the sink current on pin 13. 2) Perform the same test on pins 14 and 15. (I#14, I#15) 1) When the temperature changes through the range −20°C to +65°C, measure the changes in the picture period amplitudes of pins 13, 14, and 15. 2) Calculate the voltage changes per degree of temperature. (∆t13, ∆t14, ∆t15) C A 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54. 2) Measure the picture period amplitude of pin 13. (v13A) 3) Apply 1.5 V DC to pin 6. 4) Measure the picture period amplitude of pin 13. (v13B) 5) GHT = v13B / v13A 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54. 2) Connect an external power supply to pin 6 and gradually increase the voltage from 0 V. 3) When the picture period amplitude of pin 13 changes, measure the pin 3 voltage. (VHT) 1) Measure the voltages of pins 13, 14, and 15 during the vertical blanking period. (VVR, VVG, VVB) 1) Measure the voltages of pins 13, 14, and 15 during the horizontal blanking period. (VHR, VHG, VHB) A T14 V-BLK Pulse Output Level A A A OFF A A A OFF C T15 H-BLK Pulse Output Level A A A OFF A A A OFF C 62 1) 2005-09-20 TA1310ANG NOTE ITEM S03 S04 (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 1) T16 Blanking Pulse Delay Time A A A OFF A A A OFF Measure tdON and tdOFF using the signal input to pin 34 (FBN-IN) (A below) and the signals output from pins 13, 14, and 15 (B below). (A) Signal input to pin 34 C (B) Signals output from pins 13, 14, and 15 T17 T18 T19 Sub-Contrast Control Range RGB Output Voltage Cut-Off Voltage Control Range A A A A A A A A A OFF OFF OFF A A A A A A A A A OFF OFF OFF 63 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54. 2) When the subaddress (0F, sub-contrast) data are changed to the maximum (8F), the center (88), and the minimum (80), measure the picture period amplitude of pin 13. 3) Calculate the maximum and minimum amplitude ratios in relation to the sub-contrast center in decibels. (∆vsu+,∆vsu−) 1) Measure the picture period amplitudes of pins 13, 14, and 15. 1) When the R cutoff (subaddress (08)) data are changed to the maximum (FF), the center (80), and the minimum (00), measure the picture period amplitude of pin 13 and calculate the change in maximum and minimum from the center. (CUT+, CUT−) 2) Make the following changes in steps (1) and (2) above and measure : Change the subaddress (09) data and measure pin 14. Change the subaddress (0A) data and measure pin 15. A C C 2005-09-20 TA1310ANG NOTE ITEM S03 T20 T21 T22 Drive Adjustment Range #11 Input Impedance ACL Characteristics A A A S04 A A A (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 A A A OFF OFF OFF A A A A A A A A A OFF OFF OFF 64 A 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54. 2) When the G drive subaddress (06) data are changed to the maximum (FE), the center (80), and the minimum (00), measure the picture period amplitude of pin 14. 3) Calculate the maximum and minimum amplitude ratios in relation to the drive center in decibels. (DRG+, DRG−) 4) Repeat steps 1) to 3) above with the subaddress (07) data and pin 15 instead of 14. (DRB+, DRB−) 1) Adjust the external power supply voltage until the ammeter reads 0. 2) When the pin 11 voltage is increased by 0.2 V, measure the ammeter current. (i) Zin11 (Ω) = 0.2 (V) ÷ i (A) 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 54. C A 2) Measure the picture period amplitude of pin 13 (vACL1). 3) Apply −0.5 V DC to pin 11 from an external power supply and measure the picture period amplitude of pin 13. (vACL2) 4) Apply −1 V DC to pin 11 from an external power supply and measure the picture period amplitude of pin 13. (vACL3) 5) ACL1 = −20 × ℓog (vACL2 / vACL1) ACL2 = −20 × ℓog (vACL3 / vACL1) 2005-09-20 TA1310ANG NOTE ITEM S03 T23 T24 T25 ABL Point ABL Gain BLK Off Mode A A A S04 A A A (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 A A A OFF OFF OFF A A A A A A A A A OFF OFF OFF 65 C C C 1) Measure the DC voltage of pin 11 (vABL1) 2) Set the subaddress (04) data to (83). 3) Set the subaddress (00) data to (3F). Apply external voltage to pin 11, decrease the pin voltage from 6.5 V. When the voltage of pin 13 starts to change, measure the voltage of pin 11. (vABL2) 4) Change the subaddress (00) data to (7F), (BF), and (FF), and repeat step 3) for each of these data. (vABL3, vABL4, vABL5) 5) ABLP1 = vABL2 − vABL1 ABLP2 = vABL3 − vABL1 ABLP3 = vABL4 − vABL1 ABLP4 = vABL5 − vABL1 1) Apply 6.5 V from an external power supply to pin 11. 2) Set the subaddress (00) data to (3F). 3) Set the brightness to the maximum. 4) Measure the voltage of pin 13 (vABL6) 5) Apply 5 V from the external power supply to pin 11. 6) Change the subaddress (04) data to (80), (81), (82), and (83), and repeat step 4 for each of these data. (vABL7, vABL8, vABL9, vABL10) 7) ABLG1 = vABL7 − vABL6 ABLG2 = vABL8 − vABL6 ABLG3 = vABL9 − vABL6 ABLG4 = vABL10 − vABL6 1) Set the subaddress (01) data to (40) and check that the blanking of pins 13, 14, and 15 is turned off. 2005-09-20 TA1310ANG NOTE ITEM S03 S04 (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 1) T26 T27 T28 Analog RGB Gain Analog RGB Frequency Characteristics Analog RGB Input D Range B B B B B B B B B ON ON ON A A A A A A A A A OFF OFF OFF 66 C Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 3. 2) Measure the picture period amplitude of pin 13 (v13R). 3) As in steps 1) and 2) above, input to pin 4 and measure pin 14 (v14G), then input to pin 5 and measure pin 15 (v15B). 4) GTXR = v13R / 0.2 GTXG = v14G / 0.2 GTXB = v15B / 0.2 1) Input signal 1 (f = 8 MHz, picture period amplitude = 0.2 Vp-p) to pin 3. 2) Measure the picture period amplitude of pin 13. (v13R 8 MHz) 3) As in steps 1) and 2) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15. (v14G 8 MHz, v15B 8 MHz) 4) Calculate the frequency characteristics from the above results and the results obtained in T26. GfTXR = 20 × ℓog (v13R 8 MHz / v13R) GfTXG = 20 × ℓog (v14G 8 MHz / v14G) GfTXB = 20 × ℓog (v15B 8 MHz / v15B) 1) Set the subaddress (00 : unicolor) data to min (00). 2) Input signal 2 to pin 3 and gradually increase picture amplitude A. 3) When the voltage during the picture period of pin 13 stops changing, measure picture amplitude A (DR13). 4) Repeat steps 2) and 3) above under the following conditions : Input to pin 4, measure the voltage during the picture period of pin 14 (DR14). Input to pin 5, measure the voltage during the picture period of pin 15 (DR15). C C 2005-09-20 TA1310ANG NOTE ITEM S03 S04 (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 1) T29 T30 T31 T32 Analog RGB White Peak Slice Level Analog RGB Black Peak Limiter Level Analog RGB Contrast Adjustment Characteristics Analog RGB Brightness Adjustment Characteristics B A B B B A B B B A B B ON ON ON ON A A A A A A A A A A A A OFF OFF OFF OFF 67 C C 2) When pin 13 is clipped, measure the picture period amplitude of pin 13. 3) As in steps 1) and 2) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15. 1) Apply an external power supply to pin 3. Gradually decrease the voltage from 5V DC. When pin 13 is clipped, measure the voltage of pin 13. 2) As in step 1) above, apply to pin 4 and measure pin 14, then apply to pin 5 and measure pin 15. 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 3. 2) When the subaddress (00, unicolor) data are changed to the maximum (3F), the center (20), and the minimum (00), measure the picture period amplitude of pin 13. (vuTXR1, vuTXR2, vuTXR3) 3) Calculate the maximum and minimum amplitude ratios in decibels. 4) As in steps 1), 2) and 3) above, input signal 1 to pin 4 and measure pin 14, then input signal 1 to pin 5 and measure pin 15. 1) Input signal 2 to pins 3, 4, and 5. 2) Adjust the signal 2 amplitude A so that the picture period amplitude of pin 13 is 0.5 Vp-p. 3) When the subaddress (05, RGB brightness) data are changed to the maximum (F8), the center (88), and the minimum (08), measure the picture period amplitudes of pins 13, 14, and 15. (vbrTX1, vbrTX2, vbrTX3) C C Input signal 2 to pin 3. Gradually increase the picture period amplitude A. 2005-09-20 TA1310ANG NOTE ITEM S03 T33 T34 Analog RGB Mode On Voltage Analog RGB Mode Transfer Characteristics B A S04 A A (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 A A OFF OFF A A A A A A OFF OFF C C OFF T35 Crosstalk from Video to Analog RGB A A A or A A A OFF ON 68 A 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 3. 2) Apply an external power supply to pin 6. Gradually increase the voltage from 0 V. 3) When signal 1 is output to pin 13, measure the voltage of pin 6. 1) Set the subaddress (05, RGB brightness) data to the maximum (F8). 2) Input signal 3 (signal amplitude 4.5 Vp-p) to pin 6. 3) Measure the switching transfer characteristics of pins 13, 14, and 15 according to diagram T-2. 4) Using the data obtained from the above measurements, calculate the maximum axis difference between the rising and falling edges of transfer delay time. 1) Input signal 1 (f = 4 MHz, picture period amplitude = 0.5 Vp-p) to pin 54. 2) Adjust the input amplitude so that the picture period amplitude of pin 13 is 2 Vp-p. 3) Turn SW 6 on. 4) Measure the picture period amplitude (Vp-p) of pin 13. (v13A) 5) Calculate by the following formula the amount of crosstalk from the video to the analog RGB. Vv → AR = −20 × ℓog (v13A / 2) 6) Repeat steps 4) and 5) above on pins 14 and 15. 2005-09-20 TA1310ANG NOTE ITEM S03 S04 (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 1) ON T36 Crosstalk from Analog RGB to Video B B B or A A A OFF C OFF T37 T38 Analog OSD Gain Analog OSD Frequency Characteristics A A A A A A OFF OFF B B B B B B ON ON 69 C C Turn SW 6 on. 2) Input signal 1 (f = 4MHz, picture period amplitude = 0.5 Vp-p) to pin 3. 3) Adjust the input amplitude so that the picture period amplitude of pin 13 is 2 Vp-p. 4) Turn SW 6 off. 5) Measure the picture period amplitude (Vp-p) of pin 13. (v13B) 6) Calculate by the following formula the amount of crosstalk from the analog RGB to the video. vA → AR = −20 × ℓog (v13B / 2) 7) As in steps 2) to 6) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 7. 2) Measure the picture period amplitude of pin 13. (v13R) 3) As in steps 1) and 2) above, input to pin 8 and measure pin 14, then input to pin 9 and measure pin 15. (v14G, v15B) 4) GOSDR = v13R / 0.2 GOSDG = v14G / 0.2 GOSDB = v15B / 0.2 1) Input signal 1 (f = 8 MHz, picture period amplitude = 0.2 Vp-p) to pin 7. 2) Measure the picture period amplitude of pin 13. (v13R 8MHz) 3) As in steps 1) and 2) above, input to pin 8 and measure pin 14, then input to pin 9 and pin 15. (v14G 8 MHz, v15B 8 MHz) 4) Calculate the frequency characteristics from the above results and the results in T37. 5) GfOSDR = 20 × ℓog (v13R 8 MHz / v13R) GfOSDG = 20 × ℓog (v14G 8 MHz / v14G) GfOSDB = 20 × ℓog (v15B 8 MHz / v15B) 2005-09-20 TA1310ANG NOTE ITEM S03 T39 T40 T41 T42 Analog OSD Output Level Analog OSD Mode On Voltage Analog OSD Mode Transfer Characteristics RGB Output Self-Diagnosis A A A A S04 A A A A (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 A A A A OFF OFF OFF OFF A B A A A A A A A A A A OFF OFF OFF OFF 70 C C C A 1) When 0V (DC) is input from an external power supply to pin 7, when 7.5 V is input to pin 7, and when no external voltage is applied to pin 7, measure the picture period amplitude of pin 13. (VOSD1R, VOSD2R, VOSD3R) 2) As in step 1) above, input to pin 8 and measure pin 14, then input to pin 9 and measure pin 15. (VOSD1G, VOSD2G, VOSD3G) (VOSD1B, VOSD2B, VOSD3B) 1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 Vp-p) to pin 7. 2) Apply an external power supply to pin 10. Gradually increase the voltage from 0 V. 3) When signal 1 is output to pin 13, measure the pin 10 voltage. 1) Apply 2.5 V from an external power supply to pins 7, 8, and 9. 2) Input signal 4 (signal amplitude = 4.5 Vp-p) to pin 10. 3) Measure the switching transfer characteristics of pins 13, 14, and 15 according to diagram T-2. 4) Using the data obtained from the above measurements, calculate the maximum axis difference between the rising and falling edge of the transfer delay time. 1) Set the bus control data to read mode and reset. 2) Set to read mode again. 3) Check that the read mode parameter (RGB-OUT) is 0 (error). 4) Measure the voltage of pin 54 and apply that voltage +0.7 V to pin 53 using an external power supply. 5) Set to read mode again. 6) Check that the read mode parameter (RGB-OUT) is 1 (OK). 2005-09-20 TA1310ANG NOTE ITEM S03 S04 (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 1) Input signal 1 (f = 100 kHz, picture amplitude 0.2 Vp-p) to pin 53 and adjust drive data so that the picture period amplitude of pins 14 and 15 equals that of pin 13. 2) Set SW 54 to C. 3) Measure the voltages on pins 17, 18, and 19 and apply the measured voltages to the pins from an external power supply. 4) Set the subaddress (11) data to (50). 5) According to the voltage on pins 13, 14, and 15 in Figure 1 below, determine the phase of ACB input pulse. Note : The phase starts after the V-BLK period. The picture period after the falling edge of FBP input is 1 H ; then, every time H-BLK ends, the period is 2 H, 3 H, and so on. A T43 ACB Input Pulse Phase, Amplitude A A A OFF A A A OFF or C 71 6) According to pins 13, 14, and 15 the voltage on, determine the ACB input pulse amplitude (amplitude from the BLK level at RGB-BLK OFF). 2005-09-20 TA1310ANG NOTE ITEM S03 T44 T45 ACB Clamp Current IK Input Amplitude A A S04 A A (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 A A OFF OFF A A A A A A OFF OFF 72 1) Set pin 17 to open, connect a 1-kΩ resistor to the pin, and apply 3V to the pin from the power supply. 2) When the subaddress (11) data are set to (10), (30), (50), and (70), measure from the waveform of pin 17 the current flowing to GND during the clamp period. (I17a, I17b, I17c I17d ) 3) Repeat the measurements in steps 1) and 2) above on pins 18 and 19. (I18a, I18b, I18c I18d ) (I19a, I19b, I19c I19d ) C C 1) Connect TP13 to TP13b ; TP14 to TP14b ; TP15 to TP15b. 2) Set SW 20 to b. 3) Set the subaddress (11) data to (50). 4) By referring to Figure 1 of T43, determine the voltage output from pins 13, 14, and 15 (IKR, IKG, IKB) during the ACB pulse input to the signal input to pin 20. 2005-09-20 TA1310ANG NOTE ITEM S03 T46 RGB γ Correction Characteristics A S04 A (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 A OFF A A A OFF 73 1) Input a ramp waveform to pin 54 (Y IN) and adjust the input amplitude so that the picture period amplitude of pin 13 is 2.5 Vp-p. 2) Adjust the drive adjustment data so that the picture period amplitudes of pins 14 and 15 are equal to that of pin 13. 3) Set the subaddress (13) data to (81). 4) Using pins 13, 14, and 15, calculate the RGBγ start point and its gradient (in decibels) in relation to the off point, using Fig.1 below. A 2005-09-20 TA1310ANG NOTE ITEM S03 T47 VK Output Characteristics A S04 A (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S05 S06 S07 S08 S09 S10 S54 A ON B B B OFF 74 1) Input a sync signal to pin 38. 2) Input a ramp waveform (1.25 Vp-p) to pins 7, 8, and 9 during the picture period. 3) Acquire VK1 and VK2 of the input level, by means of monitering the VKA and the inflection points of the output waveform for pin #12. C 2005-09-20 TA1310ANG NOTE ITEM SYMBOL S03 T48 T49 T50 ACB Protection Circuit Operating monitor 1 ACB Protection Circuit Operating monitor 2 ACB Protection Circuit Operating monitor 3 ACBPR ACBPG ACBBRAR ACBBRAG ACBBRLO A A A SW MODE & SUB ADDRESS & DATA S04 S05 S06 S07 S08 S09 S10 A A A A A A OFF OFF OFF S52 A A A S53 A A A A A A OFF OFF OFF (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) C C C − ANG RMIN T51 Base BandTint Adjustment Characteristics ANG BMIN ANG RMAX A A A OFF ON ON − OFF MEASUREMENT METHOD S54 1) Set the subaddress (11) data to (A0). 2) Apply 8.0 V to pin 17. 3) Monitor pin 13 and confirm that the picture period has not dropped to the BLK level (ACBPR). 4) Monitor pin 14 and confirm that the picture period has not dropped to the BLK level (ACBPG) 1) Set the subaddress (11) data to (C0). 2) Apply 8.0 V to pin 17. 3) Monitor pin 13 and confirm that the picture period is at the BLK level (ACBBRAR). 4) Monitor pin 14 and confirm that the picture period is at the BLK level (ACBBRAG) 1) Set the subaddress (11) data to (C0). 2) Apply 6.8 V to 9 V VCC (pin 16). 3) Apply 6.8 V to pin 17. 4) Monitor pin 13 and confirm that the picture period has not dropped to the BLK level (ACBBRLO) 1) Change subaddress (05) H to (81) H. 2) Set unicolor = max ; bright = max ; color = center. 3) Input signal 1 (f0 = 100 kHz, 100 mVp-p) to pin 53. 4) To pin 52, input a signal with the same amplitude but 90°C phase advanced compared to the signal input to pin 53. 5) When subaddress (14) H is changed to (C0) H → (80) H, measure the amount of change in the output phase of pin 13. (ANG RMIN) 6) Under the same conditions as 5) above, measure the amount of change in the output phase of pin 15. (ANG BMIN) 7) When subaddress (14) H is changed to (C0) H → (FF), measure the amount of change in the output phase of pin 13. (ANG RMAX) 8) Under the same conditions as 7) above, measure the amount of change in the output phase of pin 15. (ANG BMAX) C ANG BMAX 75 2005-09-20 TA1310ANG NOTE ITEM SYMBOL S03 T52 Base BandTint Adjustment Position BUS B0 A (TEST CONDITIONS VCC = 5 V and 9 V, Ta = 25 ± 3°C) SW MODE & SUB ADDRESS & DATA MEASUREMENT METHOD S04 S05 S06 S07 S08 S09 S10 S54 A A OFF ON ON − OFF C 76 1) Change subaddress (05) H to (81) H. 2) Set unicolor = max ; bright = max ; color = center.Relative amplitude, phase switching: Change subaddress (12) H to (00). 3) Input signal 1 (f0 = 100 kHz, 100 mVp-p) to pin 53. 4) To pin 52, input a signal with the same amplitude but 90°C phase advanced compared to the signal input to pin 53. 5) Changing subaddress (14) H from (C0) H, read the transmission data at subaddress (14) H when the output phase of the pin 15 signal is the same as the input phase of the pin 53 signal. (BUS B0) 2005-09-20 TA1310ANG Deflection stage NOTE ITEM SW MODE SW 34 SW 38 TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) MEASUREMENT METHOD When the number of H periods in the #33 (VD out) waveform changes from 297 to 225, increase the voltage from 3 V and measure the value at in the diagram. D1 Sync separation Input Sensitivity Current OFF B When the subaddress (0D) D1 is set to (1), measure the value at D2 V separation Filter Pin Source Current OFF in the diagram. B When #38 (Sync in) is connected to GND, measure the #39 (VSEP FILTER) voltage. D3 V Separation Level OFF B Set the voltage to around 7.5 V, equivalent to when #40 (AFC1 FILTER) has no load. When a signal as shown in the diagram below is input to #38 (Sync in) from TG7, calculate V1 and V2 using the #40 waveform. D4 D5 IDET = V1 ÷ 1 kΩ (µA) H AFC Phase Detection Curren H AFC Phase Detection Current Ratio OFF Phase Detection Stop Period OFF A ∆IDET = (V1 / V2 − 1) × 100 (%) A Input a composite video signal to #38 and measure the V mask period of the #40 (AFC1 FILTER) waveform. 77 2005-09-20 TA1310ANG Note D5 : Phase detection stop period 78 2005-09-20 TA1310ANG NOTE ITEM SW MODE SW 34 SW 38 TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) MEASUREMENT METHOD Increase the voltage from 2.5 V. When an oscillation waveform appears on TP41, measure the voltage. At the same time, check that no waveform is output (0V DC) to #35 (H out).(Apply only DEF VCC.) D6 32*fH VCO Oscillation Start Voltage OFF B Increase the voltage. When a horizontal pulse appears on #35 (H out), measure the voltage. Note that the horizontal oscillation frequency at this time is near fHO (15.7 kHz ± 1 kHz). D7 Horizontal Output Start Voltage (Apply only DEF VCC.) OFF B 1) Under the above conditions, when no horizontal pulse is output on #35, read D4 in bus read mode. (Apply also the chroma VCC.) (VBUS HOFF) 2) Under the above conditions, when a horizontal pulse is output on #35, read D4 in bus read mode. (Apply also the chroma VCC.) (VBUS HON) Observe the #35 (H out) waveform and measure t1 and t2. D8 Horizontal Output Pulse Duty OFF B D9 Phase Detection Stop Mode OFF B D10 Horizontal Free-Run Frequency OFF B D11 Horizontal Oscillation Frequency Range OFF B D12 Horizontal Oscillation Control Sensitivity OFF B TH35 = t1 × 100(%) t1 + t2 Input a composite video signal to TP38. When the subaddress (0D) D1 is set to (1), measure the oscillation frequency of the #35 (H out) waveform. Measure the oscillation frequency of #35 (H out). 1) When #40 (AFC1 FILTER) is connected to DEF VCC via a 10-kΩ resistor, measure the #35 (H out) oscillation frequency. (VHMIN) 2) When #40 (AFC1 FILTER) is connected to GND via a 68-kΩ resistor, measure the #35 (H out) oscillation frequency. (VHMAX) When the voltage on #40 (AFC1 FILTER) is varied by ±0.05 V with a horizontal oscillation frequency of 15.734 kHz, calculate the #35 (H out) frequency variation rate. 79 2005-09-20 TA1310ANG NOTE ITEM TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) SW MODE SW 34 SW 38 D13 Horizontal Output Voltage OFF B D14 Supply Voltage Dependence of Horizontal Oscillation Frequency OFF B D15 Temperature Dependence of Horizontal Oscillation Frequency OFF B MEASUREMENT METHOD 1) Measure the high-level voltage of #35 (H out) (when #35 is connected to GND via a 481-Ω resistor). (VH35) 2) Measure the low-level voltage of #35 (H out) (when #35 is connected to GND via a 481-Ω resistor). (VL35) When the #37 (DEF VCC) voltage is varied from 8.5 V to 9.5 V, measure the variation in the #35 (H out) oscillation frequency. When the temperature is varied through the range −20°C to +60°C, measure the variation in the #35 (H out) oscillation frequency. When a signal as shown at left is input to TP38 from TG7, measure the phase difference of the #34 (FBP in) waveform in relation to the #40 (AFC1 FILTER) waveform (SPH1). Also measure the phase difference of the #40 waveform in relation to the center of the input horizontal sync signal (SPH2). D16 Horizontal Sync Phase OFF A Under the above conditions, when the subaddress (0B) D7 to D3 are varied from (00000) to (11111), measure the phase variation in the #34 (FBP in) waveform. D17 Horizontal Picture Phase Adjustment Range OFF A 80 2005-09-20 TA1310ANG NOTE D18 ITEM Horizontal Blanking Pulse Threshold SW MODE SW 34 SW 38 ON TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) MEASUREMENT METHOD Decrease the amplitude of #34 (FBP in) from 9 Vp-p. When AFC2 stops locking, measure the amplitude. (VHBLK1) A Increase the amplitude of #34 (FBP in) from 0 Vp-p. When horizontal blanking is applied to #13 (R in), measure the amplitude. (VHBLK2) Input a signal as shown below to TP38 from TG7. When the voltage is varied from 3 V to 6 V, measure the phase variation in the #34 (FBP in) waveform. D19 Curve Correction Range OFF A Set the subaddress (01) D7 to (0), set the subaddress (05) D3~D1 to (010), and set the subaddress (0C) D0 to (1). D20 H Cycle Black Peak Detection Disable Pulse OFF A D21 Threshold of External Black Peak Detection Disable Pulse OFF A When a signal as shown at left is input to TP38 from TG7, measure the #32 (HD out) waveform phase difference HBPS and pulse width HBPW in relation to the #40 (AFC1 FILTER) waveform. Set the subaddress (02) D7 to (1). Increase the voltage from 0 V. When #52 reaches 3.4 V DC, measure the voltage. 81 2005-09-20 TA1310ANG NOTE ITEM SW MODE SW 34 SW 38 TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) MEASUREMENT METHOD Set the subaddress (01) D7 to (0), set the subaddress (05) D3~D1 to (001), and set the subaddress (0C) D0 to (1). Input a signal as shown at left to TP38 from TG7, then measure the #32 (HD out) waveform phase difference CPS and pulse width CPW in relation to the #40 (AFC1 FILTER) waveform. D22 Clamp Pulse Start Phase Clamp Pulse Width OFF A Input a signal as shown at left to TP38 from TG7, then measure the #32 (HD out) waveform phase difference HDS and pulse width HDW and VHD in relation to the #40 (AFC1 FILTER) waveform. HD Output Start Phase D23 HD Output Pulse Width OFF A HD Output Amplitude Input a signal as shown at left to TP38 from TG7, then measure the #34 (FBP in) waveform phase difference GPS and pulse width GPW in relation to the #40 (AFC1 FILTER) waveform. D24 Gate Pulse Start Phase Gate Pulse Width OFF A 82 2005-09-20 TA1310ANG Note D24 : Gate pulse V mask period 83 2005-09-20 TA1310ANG NOTE D25 ITEM Gate Pulse V Mask Period TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) SW MODE SW 34 SW 38 OFF A MEASUREMENT METHOD Input a composite video signal to TP38, observe the #34 (FBP in) waveform, and measure the V mask period. Input a composition video signal to TP38, observe the #36 (Sync out) waveform, and measure the low level of the sync period. D26 Sync Out Low Level OFF A D27 Vertical Oscillation Start Voltage OFF B D28 Vertical Free-Run Frequency OFF B D29 Vertical Output Voltage OFF B D30 Service Mode Switching OFF B When the subaddress (0C) D0 is set to (1), check that the #27 (V.Ramp) waveform is low (3.4 V DC). D31 Vertical Pull-In Range OFF C Input a composite video signal to TP38, vary the vertical frequency of this signal in 0.5-H steps, and measure the vertical pull-in range. 1) Measure the number of H periods of #33 (HD out) when the subaddress (0D) D1 and D0 are set to (10). (fV1) OFF B 2) Measure the number of H periods of #33 (HD out) when the subaddress (0D) D1 and D0 are set to (11). (fV2) OFF B Set the subaddress (01) D7 to (1) and check that no vertical or horizontal blanking pulse is applied to #13 (R out), #14 (G out), or #15 (B out). Increase the voltage from 0 V. When a pulse is output from #33 (VD out), measure the voltage. D32 D33 Vertical Frequency Forced 263H Vertical Frequency Forced 262.5H Vertical Blanking Off Mode (Apply only DEF VCC.) Measure the frequency of #33 (VD out). 1) Measure the high level voltage of the #33 (VD out) waveform. (VVH) 2) Measure the low level voltage of the #33 (VD out) waveform. (VVL) 84 2005-09-20 TA1310ANG NOTE ITEM SW MODE SW 34 SW 38 OFF C TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) MEASUREMENT METHOD Input a composite video signal to TP38, then measure the #33 (VD out) vertical pulse delay TD and pulse width TW in relation to the vertical sync signal of #38 (Sync in). D34 Vertical Output Pulse Width D35 RGB Output Vertical Blanking Pulse Start PhaseRGB Output Vertical Blanking Pulse Stop Phase OFF D36 V Cycle Black Peak Detection Disable Pulse (Normal) OFF C Input a composite video signal to TP38 and measure the V cycle black peak detection disable pulse period of #55 (BLACK PEAK DET). D37 V Cycle Black Peak Detection Disable Pulse (Zoom) OFF C Under the conditions in D38 above, set the subaddress (0C) D1 to (1) and measure the V cycle black peak detection disable period of #55. Input a composite video signal to TP38, then measure the #13 (R out) waveform phase difference VRS1 and pulse width VRS2 in relation to the #38 (Sync in) waveform. C Repeat measurement on #14 and #15. Set the subaddress (11) D4~D1 to (1111) and the subaddress (12) D4~D1 to (1111). 85 2005-09-20 TA1310ANG Note D34 : Vertical output pulse width, vertical output pulse phase variation, and vertical output pulse phase range Note D35 : RGB output vertical blanking pulse start and stop phases 86 2005-09-20 TA1310ANG Note D36 : Video mute period (normal) Field 2 to field 1 Field 1 to field 2 D37 : Video mute period (zoom) Field 2 to field 1 Field 1 to field 2 87 2005-09-20 TA1310ANG Note D38 : V cycle black peak detection disable pulse (normal) Field 2 to field 1 Field 1 to field 2 Note D39 : V cycle black peak detection disable pulse (zoom) Field 2 to field 1 Field 1 to field 2 88 2005-09-20 TA1310ANG Deflection correction stage NOTE ITEM SW MODE SW 28 TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) MEASUREMENT METHOD Measure the amplitude of the vertical ramp wave on #27. G1 Vertical Ramp Amplitude A G2 Vertical Amplification A G3 Vertical Amp Maximum Output Voltage A Connect #25 to an external power supply. When the voltage is varied from 5.5 V to 6.5 V, measure the vertical amplification on the #24 voltage. G4 Vertical Amp Minimum Output Voltage A (GV) (VH24) (VL24) G5 Vertical Amp Maximum Output Current Set #24 and #25 to open. Set the subaddress (0C) data to (81). Set #24 and #25 to open. A Apply 7 V to #25 from an external source. Insert an ammeter between #24 and GND, and measure the current. Measure the amplitude of the #25 waveform (vertical sawtooth waveform). G6 Vertical NF Sawtooth Wave Amplitude A When the subaddress (0C) data are set to (00) and (FC), measure the amplitudes of the #25 waveform (vertical sawtooth waveform) G7 Vertical Amplitude Range A VP25 (00) and VP25 (FC). V PH = ± V P25 (FC) − V P25 ( 00 ) V P25 (FC) + V P25 ( 00 ) × 100(%) 89 2005-09-20 TA1310ANG NOTE ITEM SW MODE SW28 TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) MEASUREMENT METHOD Set the subaddress (0E) data to (F8). Change the subaddress (10) D7~D4 so that the #22 parabola waveform is symmetrical. Set the subaddress (0E) data to (00). When the subaddress (0F) data are (80), measure the #25 waveform V1 (80) and V2 (80). Likewise, when the subaddress (0F) data are (00) and (F0), measure V1 (00), V2 (00), V1 (F0), and V2 (F0). G8 Vertical Linearity Correction Maximum Value A V I= ± V1(00) − V1(F0) + V 2 (F0) − V 2 (00) 2 × ( V1(80) + V 2 (80) ) Set the subaddress (0E) data to (F8). Change the subaddress (10) D7~D4 so that the #22 parabola waveform is symmetrical. Set the subaddress (0E) data to (00). G9 Vertical S Correction Maximum Value When the subaddress (0E) data are (80), measure the amplitude of the #25 waveform VS25 (80). A Likewise, when the subaddress (0E) data are (87), measure the amplitude of the #25 waveform VS25 (87). VS= ± V S25 (80 ) − V S25 (87 ) V S25 (80 ) 90 × 100 (%) 2005-09-20 TA1310ANG NOTE ITEM SW MODE SW 28 TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) MEASUREMENT METHOD Set the subaddress data (0E) to (F8). Change the subaddress (10) D7~D4 so that the #22 parabola waveform is symmetrical. Set the subaddress data (0E) to (00). Measure the center voltage VC of the #25 waveform. G10 Vertical NF Center Voltage A Under the conditions in G10 above, set the subaddress (13) data to (80) and measure the vertical NF center voltage VC (80). G11 Vertical NF DC Change A Next, set the subaddress (13) data to (00) and measure the vertical NF center voltage VC (00). VDC = ± VC (00) − VC (80) (V) Set the subaddress (0E) data to (F8). Change the subaddress (10) D7~D4 so that the #22 parabola waveform is symmetrical. Set the subaddress (0E) data to (00). G12 Vertical Amplitude EHT Correction A Connect #28 to GND and measure the amplitude of the #25 waveform VEHT (0V). Connect #28 to a 5-V power supply and measure the amplitude of the #25 waveform VEHT (5 V). VEHT = V EHT (5V ) − V EHT (0V ) V EHT (5V ) 91 × 100 (%) 2005-09-20 TA1310ANG NOTE ITEM SW MODE SW 28 TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) MEASUREMENT METHOD Set the subaddress (0E) data to (F8). Change the subaddress (10) D7~D4 so that the #22 parabola waveform is symmetrical. G13 E-W NF Maximum DC Value (Picture Width) Set the subaddress (0E) data to (00). Set the subaddress (0D) data to (00) and measure the #22 voltage VL22. Set the subaddress (0D) data to (FC) and measure the #22 voltage VH22. A G14 E-W NF Minimum DC Value (Picture Width) Set the subaddress (0D) data to (00) and the subaddress (0E) data to (F8). Measure the amplitude of the #22 waveform (parabola waveform) VPB. G15 E-W NF Parabola Maximum Value (Parabola) A 92 2005-09-20 TA1310ANG NOTE ITEM TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) SW MODE SW 28 MEASUREMENT METHOD Set the subaddress (0E) data to (F8). Change the subaddress (10) D7 ~ D4 so that the #22 parabola waveform is symmetrical. Set the subaddress (10) D3~D0 to (0) and measure the amplitude of the #22 waveform VCR (0). Likewise, when the subaddress (10) data are set to (F), measure the #22 waveform amplitude VCR (F). G16 E-W NF Corner Correction (Corner) A VCR = VCR (F) − VCR (0) Set the subaddress (14) data to (7F). G17 Parabola Symmetry Correction Set the subaddress (10) data to (00) and measure the vertical NF center voltage of the #25 waveform VC (00). A Likewise, when the subaddress (10) data are set to (FC), measure the #25 voltage VC (FC). V TR = ± V C (00) − V C (FC) 2 ×V P25 × 100 (%) 93 2005-09-20 TA1310ANG NOTE ITEM TEST CONDITIONS (DEF VCC = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET) SW MODE SW 28 MEASUREMENT METHOD Connect an ammeter between #23 and GND. G18 E-W Amp Maximum Output Current A Measure the current. Measure the TP26 waveform peak value. (VAGC0) G19 AGC Operating Current 1 A Set the subaddress (06) D0 to (1) and repeat the measurement. (VAGC1) IAGC0 = VX ÷ 200 (µA) (IAGC1) G20 AGC Operating Current 2 A G21 Vertical Guard Voltage A Set #25 to open. Connect an external power supply to #25. Decrease the voltage from 5 V. When full blanking is applied to #13, measure the voltage. Connect a 5-V external power supply to #23. Read D2 in bus read mode. (VBUS EW OFF) G22 E / W Output Self-Diagnosis A When the external power supply connected to #23 is disconnected, read D2 in bus read mode. Ensure that an E / W waveform is output from #22. (VBUS EW ON) Connect a 9-V external power supply to #24. Read D3 in bus read mode. (VBUS VOFF) G23 V-Out Output Self-Diagnosis A When the external power supply connected to #24 is disconnected, read D3 in bus read mode. Ensure that a V-out waveform is output from #25. (VBUS VON) G24 G25 G26 Vertical Blanking Check V Centering DAC Output V NFB Pin Input Current A 1) Set the subaddress (0C) data to (81). 2) When the subaddress (11) D4~D0 are changed from 0000 to 1111, check that the #13 blanking stop phase begins. (VBLK1) 3) When the subaddress (12) D4~D0 are changed from 0000 to 1111, check that the #13 blanking start phase begins. (VBLK2) 1) Set the subaddress (13) data to (00) and measure the #21 voltage V21L. A 2) Set the subaddress (13) data to (80) and measure the #21 voltage V21M. 3) Set the subaddress (13) data to (FE) and measure the #21 voltage V21H. A Connect a 9-V VCC via a 100-kΩ resistor to #25. Measure the sink current on #25 according to the voltage difference of the 100-kΩ resistance. I25 = V / 100 kΩ 94 2005-09-20 TA1310ANG 1) Input signal C-1 2) Input signal C-2 3) Input signal C-3 Fig.C Test signals for TA1310ANG chroma, color difference, and Y stage 95 2005-09-20 TA1310ANG 1) Video signal 2) Input signal 1 3) Input signal 2 Fig.T-1 Test signals for TA1310ANG text stage 96 2005-09-20 TA1310ANG Fig.T-2 Test pulses for TA1310ANG text stage 97 2005-09-20 TA1310ANG TEST CIRCUIT DC TA1310ANG 98 2005-09-20 TA1310ANG TEST CIRCUIT AC characteristics for picture sharpness stage TA1310ANG 99 2005-09-20 TA1310ANG TEST CIRCUIT Chroma stage TA1310ANG 100 2005-09-20 TA1310ANG TEST CIRCUIT Color difference stage TA1310ANG 101 2005-09-20 TA1310ANG TEST CIRCUIT Y stage TA1310ANG 102 2005-09-20 TA1310ANG TEST CIRCUIT Diflection stage and deflection correction stage TA1310ANG 103 2005-09-20 TA1310ANG APPLICATION CIRCUIT TA1310ANG 104 2005-09-20 TA1310ANG PACKAGE DIMENSIONS Weight: 5.55 g (Typ.) 105 2005-09-20 TA1310ANG 106 2005-09-20