MICREL MIC922

MIC922
Micrel
MIC922
230MHz Low-Power SC-70 Op Amp
Final Information
General Description
Features
The MIC922 is a high-speed operational amplifier with a gainbandwidth product of 230MHz. The part is unity gain stable.
It has a very low 2.5mA supply current, and features the
Teeny™ SC-70 package.
Supply voltage range is from ±2.5V to ±9V, allowing the
MIC922 to be used in low-voltage circuits or applications
requiring large dynamic range.
The MIC922 is stable driving any capacitative load and
achieves excellent PSRR and CMRR, making it much easier
to use than most conventional high-speed devices. Low
supply voltage, low power consumption, and small packing
make the MIC922 ideal for portable equipment. The ability to
drive capacitative loads also makes it possible to drive long
coaxial cables.
•
•
•
•
•
•
•
230MHz gain bandwidth product
400MHz –3dB bandwidth
2.5mA supply current
SC-70 package
1500V/µs slew rate
Drives any capacitive load
Unity gain stable
Applications
•
•
•
•
•
Video
Imaging
Ultrasound
Portable equipment
Line drivers
Ordering Information
Pin Configuration
Part Number
Junction Temp. Range
Package
MIC922BC5
–40°C to +85°C
SC-70
Functional Pinout
IN–
V–
IN+
3
2
1
Part
Identification
IN–
V–
IN+
3
2
1
A39
4
5
4
5
OUT
V+
OUT
V+
SC-70
SC-70
Pin Description
Pin Number
Pin Name
Pin Function
1
IN+
Noninverting Input
2
V–
Negative Supply (Input)
3
IN–
Inverting Input
4
OUT
Output: Amplifier Output
5
V+
Positive Supply (Input)
Teeny is a trademark of Micrel, Inc.
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
March 2002
1
MIC922
MIC922
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VV+ – VV–) ........................................... 20V
Differential Input Voltage (VIN+ – VIN–) .......... 4V, Note 3
Input Common-Mode Range (VIN+, VIN–) .......... VV+ to VV–
Lead Temperature (soldering, 5 sec.) ....................... 260°C
Storage Temperature (TS) ........................................ 150°C
ESD Rating, Note 4 ................................................... 1.5kV
Supply Voltage (VS) ....................................... ±2.5V to ±9V
Junction Temperature (TJ) ......................... –40°C to +85°C
Package Thermal Resistance
SC-70-5 (θJA) .................................................... 450°C/W
Electrical Characteristics (±5V)
V+ = +5V, V– = –5V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted.
Symbol
Parameter
Condition
Min
Typ
Max
Units
VOS
Input Offset Voltage
-5
0.8
5
mV
VOS
VOS Temperature Coefficient
15
IB
Input Bias Current
1.7
4.5
µA
IOS
Input Offset Current
0.3
2
µA
VCM
Input Common-Mode Range
+3.25
V
CMRR
Common-Mode Rejection Ratio
–2.5V < VCM < +2.5V
75
80
dB
PSRR
Power Supply Rejection Ratio
±3.5V < VS < ±9V
68
87
dB
AVOL
Large-Signal Voltage Gain
RL = 2kΩ, VOUT = ±2V
65
74
dB
77
dB
3.6
V
-2
–3.25
RL = 100Ω, VOUT = ±1V
VOUT
Maximum Output Voltage Swing
positive, RL = 2kΩ
+3
negative, RL = 2kΩ
positive, RL = 100Ω
–3.6
+2.7
µV/°C
–3
3.0
negative, RL = 100Ω, Note 5
–2.6
V
V
–2.3
V
GBW
Unity Gain-Bandwidth Product
CL = 1.7pF
200
MHz
PM
Phase Margin
CL = 1.7pF
49
°
BW
–3dB Bandwidth
Av = 1, CL = 1.7pF
320
MHz
SR
Slew Rate
C=1.7pF, Gain=1, VOUT=4VPP
negative SR = 360V/µs
420
V/µs
ISC
Short-Circuit Output Current
source
65
78
mA
sink
40
47
mA
IS
Supply Current
No Load
2.5
3
mA
Input Voltage Noise
f = 10kHz
9
nV/√Hz
Input Current Noise
f = 10kHz
1.1
pA/√Hz
Electrical Characteristics
V+ = +9V, V– = –9V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
Symbol
Parameter
VOS
Input Offset Voltage
VOS
Input Offset Voltage
Temperature Coefficient
15
IB
Input Bias Current
1.7
4.5
µA
IOS
Input Offset Current
0.3
2
µA
VCM
Input Common-Mode Range
+7.25
V
CMRR
Common-Mode Rejection Ratio
–6.5V < VCM < +6.5V
58
83
dB
PSRR
Power Supply Rejection Ratio
±3.5V < VS < ±9V
68
87
dB
MIC922
Condition
Min
Typ
Max
Units
-5
0.4
5
mV
–7.25
2
µV/°C
March 2002
MIC922
Micrel
Symbol
Parameter
Condition
AVOL
Large-Signal Voltage Gain
RL = 2kΩ, VOUT = ±3V
Min
Typ
65
76
dB
86
dB
7.5
V
RL = 100Ω, VOUT = ±1V
VOUT
Maximum Output Voltage Swing
positive, RL = 2kΩ
7
negative, RL = 2kΩ
–7.5
Max
–7
Units
V
GBW
Unity Gain-Bandwidth Product
CL = 1.7pF
230
MHz
PM
Phase Margin
CL = 1.7pF
44
°
BW
–3dB Bandwidth
AV = 1, CL = 1.7pF
400
MHz
SR
Slew Rate
C=1.7pF, Av =1, VOUT=8VPP,
positive SR = 750V/µs
1500
V/µs
ISC
Short-Circuit Output Current
source
70
84
mA
sink
40
50
mA
IS
Supply Current
No Load
2.5
3
mA
Input Voltage Noise
f = 10kHz
9
nV/√Hz
Input Current Noise
f = 10kHz
1.1
pA/√Hz
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to change).
Note 4.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
Note 5.
Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in “Typical Characteristics.”
March 2002
3
MIC922
MIC922
Micrel
Test Circuits
V+
10µF
V+
0.1µF
50Ω
R2
BNC
5k
Input
10µF
0.1µF
10k
10k
10k
2k
3
BNC
MIC922
BNC
4
R1 5k
Input
5
3
1
2
2
5k
R3
200k
Input
50Ω
All resistors:
1% metal film
Output
0.1µF
R5
5k
10µF
V–
All resistors 1%
0.1µF
R4
250Ω
 R2 R2 + R 5 + R4 
VOUT = VERROR 1 +
+


 R1
R7
10µF
V–
PSRR vs. Frequency
100pF
BNC
R6
0.1µF
BNC
4
1
R7a 100Ω
50Ω
0.1µF
MIC922
R7c 2k
R7b 200Ω
Output
5
CMRR vs. Frequency
V+
V+
10µF
10pF
R1
20Ω
10µF
3
R3 27k
S1
S2
R5
20Ω
R2 4k
3
5
0.1µF
MIC922
4
1
2
R4 27k
0.1µF
10pF
10µF
BNC
MIC922
To
Dynamic
Analyzer
VIN
4
300Ω
1
2
0.1µF
50Ω
VOUT
FET Probe
CL
10µF
V–
V–
Noise Measurement
MIC922
0.1µF
5
Closed Loop Frequency Response Measurement
4
March 2002
MIC922
Micrel
Typical Characteristics
Supply Current
vs. Supply Voltage
Supply Current
vs. Temperature
2.60
2.25
-40 -20
0
20
40
60
80 100
TEMPERATURE (°C)
2.30
OFFSET VOLTAGE (mV)
–40°C
8
7
6
5
4
3
2
1
0
-1
-2
-3
-5 -4 -3 -2 -1 0 1 2 3 4 5
25°C
–40°C
85°C
COMMON-MODE VOLTAGE (V)
COMMON-MODE VOLTAGE (V)
Output Voltage
vs. Output Current
Output Voltage
vs. Output Current
0
-40 -20
0
20
40
60
80 100
TEMPERATURE (°C)
Output Voltage
vs. Output Current
5.5
5.0 Sourcing
V± = ±5V
4.5
4.0
3.5
3.0
2.5
–40°C
2.0
1.5
85°C
1.0
0.5
25°C
0
0 10 20 30 40 50 60 70 80
OUTPUT CURRENT (mA)
0.9
Sinking
0.0
V± = ±9V
-0.9
-1.8
25°C
-2.7
-3.6
-4.5
-5.4 –40°C
-6.3
-7.2
-8.1
85°C
-9.0
-60-54-48-42-36-30-24-18-12 -6 0
OUTPUT CURRENT (mA)
Bias Current
vs. Temperature
3
INPUT BIAS CURRENT (µA)
Sinking
25°C
85°C
8.3
9.0
6.9
7.6
5.5
6.2
–40°C
3.4
4.1
4.8
9.0
25°C
6
0
-6
-12
-18
-24
-30
-36
-42
-48
-54
-60
2.0
2.7
NOISE VOLTAGE (nV/HZ)
85°C
7.6
8.3
V± = ±9V
0.2
Short Circuit Current
vs. Supply Voltage
–40°C
5.5
6.2
6.9
4.1
4.8
2.7
3.4
2.0
March 2002
V± = ±5V
0.4
Output Votage
vs. Output Current
0.5
Sinking
0
V± = ±5V
-0.5
-1.0
-1.5
-2.0 –40°C
-2.5
25°C
-3.0
-3.5
-4.0
85°C
-4.5
-5.0
-50-45-40-35-30-25-20-15-10 -5 0
OUTPUT CURRENT (mA)
Short-Circuit Current
vs. Supply Voltage
SUPPLY VOLTAGE (±V)
0.6
V± = ±9V
-9.0
85°C
OUTPUT VOLTAGE (V)
OFFSET VOLTAGE (mV)
OUTPUT VOLTAGE (V)
25°C
99
90 Sourcing
81
72
63
54
45
36
27
18
9
0
0.8
Offset Voltage
vs. Common-Mode Voltage
V± = ±5V
9.9
9.0 Sourcing
V± = ±9V
8.1
7.2
6.3
–40°C
5.4
4.5
3.6
2.7
+25°C
1.8
+85°C
0.9
0
0 10 20 30 40 50 60 70 80 90
OUTPUT CURRENT (mA)
1
2.25
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
SUPPLY VOLTAGE (V)
Offset Voltage
vs. Common-Mode Voltage
SHORT-CIRCUIT CURRENT (mA)
OFFSET VOLTAGE (mV)
V± = ±2.5V
2.30
85°C
2.35
V± = ±2.5V
1.2
OUTPTU VOLTAGE (V)
2.35
OUTPUT VOLTAGE (V)
2.40
2.40
9.0
V± = ±5V
2.45
25°C
2.45
5.4
7.2
2.50
2.50
0
1.8
3.6
2.55
2.55
-3.6
-1.8
V± = ±9V
2.60
1.4
–40°C
-7.2
-5.4
2.65
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
2.70
8
7
6
5
4
3
2
1
0
-1
-2
-3
Offset Voltage
vs. Temperature
SUPPLY VOLTAGE (±V)
5
2.5
V± = ±2.5V
2
1.5
V± = ±5V
1
V± = ±9V
0.5
0
-40 -20
0
20
40
60
80 100
TEMPERATURE (°C)
MIC922
MIC922
Micrel
Open-Loop Frequency
Response
Open-Loop Frequency
Response
85°C
30
20
180
60
RL = 100Ω
135
90
50
40
No Load
45
0
10 Gain Bandwidth
0
RL = 100Ω
-45
-90
-10
-20
-135
-180
-30
V± = ±9V
-40
100M
10M
1M
CAPACITIVE LOAD (pF)
-225
-270
30
20
180
Phase
RL = 100Ω
135
90
No Load
45
0
Gain
10
0
-45
-90
RL = 100Ω
-10
-20
-135
-180
-30
V± = ±5V
-40
100M
10M
1M
CAPACITIVE LOAD (pF)
-225
-270
PHASE MARGIN (°)
25°C
Phase Margin
GAIN BANDWIDTH (MHz)
–40°C
50
40
PHASE MARGIN (°)
60
GAIN BANDWIDTH (MHz)
4.4
4.0
3.6
3.2
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
BIAS CURRENT (±V)
Bias Current
vs. Supply Voltage
SUPPLY VOLTAGE (±V)
35
200 400 600 800 1000
LOAD CAPACITANCE (pF)
0
0
Positive Slew Rate
700
30
200 400 600 800 1000
LOAD CAPACITANCE (pF)
180
500
400
300
200
160
41
150
40
0 1 2 3 4 5 6 7 8 9 10
SUPPLY VOLTAGE (±V)
V± = ±9V
1000
800
600
400
350
300
250
200
150
100
200
150
100
50
MIC922
200 400 600 800 1000
LOAD CAPACITANCE (pF)
900
1000
700
800
V± = ±5V
90
80
70
60
50
40
Closed-Loop Gain
vs. Frequency
1.7pF
220pF
100pF
1000pF
800pF
600pF
30
20
10
0
1x10
1M6
10x10
10M 6
100x10
100M6
FREQUENCY (Hz)
6
500x106
30
CLOSED-LOOP GAIN (dB)
250
LOAD CAPACITANCE (pF)
Closed Loop Gain
vs. Frequency
100
CLOSED-LOOP GAIN (dB)
SLEW RATE (V/µs)
300
500
600
LOAD CAPACITANCE (pF)
Negative Slew Rate
V± = ±5V
200
300
400
0
100
900
1000
700
800
0
500
600
0
400
50
0
200
300
200
LOAD CAPACITANCE (pF)
V± = ±5V
400
100
0
0
43
42
170
Positive Slew Rate
SLEW RATE (V/µs)
SLEW RATE (V/µs)
600
350
45
44
190
450
1200
400
47
46
Negative Slew Rate
1400
V± = ±9V
0
100
POSITIVE SLEW RATE (V/µs)
800
35
Gain Bandwidth
Gain Bandwidth
200
0
100
0
0
Gain Bandwidth
50
210
900
1000
40
40
49
48
700
800
50
100
Phase Margin
220
500
600
45
45
50
400
100
150
230
200
300
50
50
Phase Margin
GAIN BANDWIDTH (MHz)
150
200
V± = ±5V
240
55
PHASE MARGIN (°)
55
GAIN BANDWIDTH (MHz)
Phase Margin
200
250
PHASE MARGIN (°)
GAIN BANDWIDTH (MHz)
V± = ±9V
Gain Bandwidth and Phase
Margin vs. Supply Voltage
Gain Bandwidth and Phase
Margin vs. Load
60
PHASE MARGIN (°)
Gain Bandwidth and Phase
Margin vs. Load
250
V± = ±9V
20
10
1.7pF
0
-10
-20
-30
100pF
1000pF
-40
-50
-60
-70 6
1x10
1M
220pF
400pF
800pF
600pF
6
6
10x10
100x10
100M
10M
FREQUENCY (Hz)
500x106
March 2002
MIC922
Micrel
Open-Loop Gain
vs. Frequency
30
20
10
0
-10
-20
-30
-40
1M
March 2002
60
V± = ±5V
50
40
1.7pF
50pF
100pF
225pF
1000pF
675pF
450pF
10M
100M
FREQUENCY (Hz)
OPEN-LOOP GAIN (dB)
OPEN-LOOP GAIN (dB)
60
Open-Loop Gain
vs. Frequency
V± = ±9V
50
40
30
20
10
0
-10
-20
-30
-40
1M
1.7pF
50pF
100pF
225pF
450pF
675pF
1000pF
100M
10M
FREQUENCY (Hz)
7
MIC922
MIC922
Micrel
Functional Characteristics
INPUT
(50mV/div)
Small Signal Response
V± = ±5.0V
Av = 1
CL = 1.7µF
RL = 1MΩ
OUTPUT
(50mV/div)
Small Signal Response
Small Signal Response
INPUT
(50mV/div)
TIME (100ns/div)
TIME (100ns/div)
Small Signal Response
Small Signal Response
INPUT
(50mV/div)
TIME (100ns/div)
V± = ±9.0V
Av = 1
CL = 1000pF
RL = 1MΩ
OUTPUT
(50mV/div)
V± = ±5.0V
Av = 1
CL = 1000pF
RL = 1MΩ
OUTPUT
(50mV/div)
INPUT
(50mV/div)
V± = ±9.0V
Av = 1
CL = 100pF
RL = 1MΩ
OUTPUT
(50mV/div)
V± = ±5.0V
Av = 1
CL = 100pF
RL = 1MΩ
TIME (100ns/div)
TIME (100ns/div)
MIC922
V± = ±9.0V
Av = 1
CL = 1.7µF
RL = 1MΩ
TIME (100ns/div)
OUTPUT
(50mV/div)
INPUT
(50mV/div)
OUTPUT
(50mV/div)
INPUT
(50mV/div)
Small Signal Response
8
March 2002
MIC922
Micrel
Large Signal Response
OUTPUT
(1V/div)
OUTPUT
(2V/div)
Large Signal Response
V± = ±5.0V
Av = 1
CL = 1.7µF
RL = 1MΩ
Positive Slew Rate = 418V/µs
Negative Slew Rate = 356V/µs
V± = ±9.0V
Av = 1
CL = 1.7µF
RL = 1MΩ
Positive Slew Rate = 747V/µs
Negative Slew Rate = 1320V/µs
Large Signal Response
Large Signal Response
OUTPUT
(2V/div)
TIME (25ns/div)
OUTPUT
(1V/div)
TIME (25ns/div)
V± = ±5.0V
Av = 1
CL = 100pF
RL = 1MΩ
Positive Slew Rate = 350V/µs
Negative Slew Rate = 303V/µs
V± = ±9.0V
Av = 1
CL = 100pF
RL = 1MΩ
Positive Slew Rate = 274V/µs
Negative Slew Rate = 274V/µs
TIME (25ns/div)
Large Signal Response
Large Signal Response
OUTPUT
(1V/div)
OUTPUT
(2V/div)
TIME (25ns/div)
V± = ±9.0V
Av = 1
CL = 1000pF
RL = 1MΩ
Positive Slew Rate = 78V/µs
Negative Slew Rate = 51V/µs
V± = ±5.0V
Av = 1
CL = 1000pF
RL = 1MΩ
Positive Slew Rate = 106V/µs
Negative Slew Rate = 66V/µs
TIME (250ns/div)
TIME (250ns/div)
March 2002
9
MIC922
MIC922
Micrel
It is important to ensure adequate supply bypassing capacitors are located close to the device.
Power Supply Bypassing
Regular supply bypassing techniques are recommended. A
10µF capacitor in parallel with a 0.1µF capacitor on both the
positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to
the op amp as possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal.
Thermal Considerations
The SC70-5 package, like all small packages, has a high
thermal resistance. It is important to ensure the IC does not
exceed the maximum operating junction (die) temperature of
85°C. The part can be operated up to the absolute maximum
temperature rating of 125°C, but between 85°C and 125°C
performance will degrade, in par-ticular CMRR will reduce.
An MIC922 with no load, dissipates power equal to the
quiescent supply current × supply voltage
Applications Information
The MIC922 is a high-speed, voltage-feedback operational
amplifier featuring very low supply current and excellent
stability. This device is unity gain stable, capable of driving
high capacitance loads.
Driving High Capacitance
The MIC922 is stable when driving high capacitance, making
it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive
limited capacitance.
Note: increasing load capacitance does reduce
the speed of the device. In applications where
the load capacitance reduces the speed of the
op amp to an unacceptable level, the effect of
the load capacitance can be reduced by adding
a small resistor (<100Ω) in series with the
output.
Feedback Resistor/Capacitor Selection
Conventional op amp gain configurations and resistor selection apply, the MIC922 is NOT a current feedback device.
Also, for minimum peaking, the feedback resistor should
have low parasitic capacitance. To use the part as a follower,
the output should be connected to input via a short wire. At
high frequency, the parasitic capacitance at the input might
cause peaking in the closed-loop frequency response. A 1pF
capacitor should be used across the feedback resistor to
compensate for this parasitic peaking.
Layout Considerations
All high speed devices require careful PCB layout. The
following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance;
avoid large copper traces to the inputs. Keep the output signal
away from the inputs and use a ground plane.
MIC922
(
)
PD(no load) = VV + − VV − IS
When a load is added, the additional power is dissipated in
the output stage of the op amp. The power dissipated in the
device is a function of supply voltage, output voltage and
output current.
(
)
PD(output stage) = VV + − VOUT IOUT
Total Power Dissipation = PD(no load) + PD(output stage)
Ensure the total power dissipated in the device is no greater
than the thermal capacity of the package. The SC70-5
package has a thermal resistance of 450°C/W.
Max. AllowablePowerDissipation =
10
TJ(max) − TA(max)
450°C / W
March 2002
MIC922
Micrel
Package Information
0.65 (0.0256) BSC
1.35 (0.053) 2.40 (0.094)
1.15 (0.045) 1.80 (0.071)
2.20 (0.087)
1.80 (0.071)
DIMENSIONS:
MM (INCH)
1.00 (0.039) 1.10 (0.043)
0.80 (0.032) 0.80 (0.032)
0.30 (0.012)
0.15 (0.006)
0.10 (0.004)
0.00 (0.000)
0.18 (0.007)
0.10 (0.004)
0.30 (0.012)
0.10 (0.004)
SC-70 (C5)
March 2002
11
MIC922
MIC922
Micrel
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2002 Micrel Incorporated
MIC922
12
March 2002