PANJIT 2EZ150

2EZ11 THRU 2EZ200
GLASS PASSIVATED JUNCTION SILICON ZENER DIODE
VOLTAGE - 11 TO 200 Volts
Power - 2.0 Watts
FEATURES
l Low profile package
l Built-in strain relief
l
l
Glass passivated junction
Low inductance
l
l
Excellent clamping capability
Typical ID less than 1 £gA above 11V
l
High temperature soldering :
260 ¢J /10 seconds at terminals
l
Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
DO-15
MECHANICAL DATA
Case: JEDEC DO-15, Molded plastic over passivated junction
Terminals: Solder plated, solderable per MIL-STD-750,
method 2026
Polarity: Color band denotes positive end (cathode)
Standard Packaging: 52mm tape
Weight: 0.015 ounce, 0.04 gram
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25 ¢J ambient temperature unless otherwise specified.
SYMBOL
Peak Pulse Power Dissipation (Note A)
PD
Derate above 75 ¢J
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated
IFSM
load(JEDEC Method) (Note B)
Operating Junction and Storage Temperature Range
TJ,TSTG
NOTES:
A. Mounted on 5.0mm2(.013mm thick) land areas.
B. Measured on 8.3ms, single half sine-wave or equivalent square wave, duty cycle = 4 pulses
per minute maximum.
VALUE
2
24
15
UNITS
Watts
mW/¢J
Amps
-55 to +150
¢J
2EZ11 THRU 2EZ200
ELECTRICAL CHARACTERISTICS (T A=25 ¢J unless otherwise noted) VF=1.2 V max , IF=500 mA for all types
Type No. Nominal Zener
Test
(Note 1.) Voltage Vz @ IZT current Maximum Zener Impedance (Note 3.) Leakage Current
volts
IZT
Z ZT @ IZT
Z Zk @ IZK
IZK
IR
VR
(Note 2.)
mA
£g A Max @ Volts
Ohms
Ohms
mA
2EZ11
2EZ12
2EZ13
2EZ14
2EZ15
2EZ16
2EZ17
2EZ18
2EZ19
2EZ20
2EZ22
2EZ24
2EZ27
2EZ30
2EZ33
2EZ36
2EZ39
2EZ43
2EZ47
2EZ51
2EZ56
2EZ62
2EZ68
2EZ75
2EZ82
2EZ91
2EZ100
2EZ110
2EZ120
2EZ130
2EZ140
2EZ150
2EZ160
2EZ170
2EZ180
2EZ190
2EZ200
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
22.0
24.0
27.0
30.0
33.0
36.0
39.0
43.0
47.0
51.0
56.0
62.0
68.0
75.0
82.0
91.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
45.5
41.5
38.5
35.7
33.4
31.2
29.4
27.8
26.3
25.0
22.8
20.8
18.5
16.6
15.1
13.9
12.8
11.6
10.6
9.8
9.0
8.1
7.4
6.7
6.1
5.5
5.0
4.5
4.2
3.8
3.6
3.3
3.1
2.9
2.8
2.6
2.5
4.0
4.5
5.0
5.5
7.0
8.0
9.0
10.0
11.0
11.0
12.0
13.0
18.0
20.0
23.0
25.0
30.0
35.0
40.0
48.0
55.0
60.0
75.0
90.0
100.0
125.0
175.0
250.0
325.0
400.0
500.0
575.0
650.0
675.0
725.0
825.0
900.0
700
700
700
700
700
700
750
750
750
750
750
750
750
1000
1000
1000
1000
1500
1500
1500
2000
2000
2000
2000
3000
3000
3000
4000
4500
5000
5500
6000
6500
7000
7000
8000
8000
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
1.0
1.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
8.4
9.1
9.9
10.6
11.4
12.2
13.0
13.7
14.4
15.2
16.7
18.2
20.6
22.5
25.1
27.4
29.7
32.7
35.8
38.8
42.6
47.1
51.7
56.0
62.2
69.2
76.0
83.6
91.2
98.8
106.4
114.0
121.6
130.4
136.8
144.8
152.0
Maximum Zener
Current
IZM
Madc
Surge Current
@ TA = 25 ¢J
ir - mA
(Note 4.)
166
152
138
130
122
114
107
100
95
90
82
76
68
60
55
50
47
43
39
36
32
29
27
24
22
20
18
17
15
14
13
12
11
11
10
10
9
1.82
1.66
1.54
1.43
1.33
1.25
1.18
1.11
1.05
1.00
0.91
0.83
0.74
0.67
0.61
0.56
0.51
0.45
0.42
0.39
0.36
0.32
0.29
0.27
0.24
0.22
0.20
0.18
0.16
0.15
0.14
0.13
0.12
0.12
0.11
0.10
0.10
NOTES:
1. TOLERANCES - Suffix indicates 5% tolerance any other tolerance will be considered as a special device.
2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when measured at 40 ms ¡Ó 10ms
from the diode body, and an ambient temperature of 25 ¢J ( ¡Ï 68 ¢J , -2 ¢J ).
3.ZENER IMPEDANCE (Zz) DERIVATION - The zener impedance is derived from the 60 cycle ac voltage,
which results when an ac current having an rms falue equal to 10% of the dc zener current (IZT or IZK) is
superimposed on IZT or IZK.
4. SURGE CURRENT (Ir) NON-REPETITIVE - The rating listed in the electrical characteristics table is
maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse
of 1/120 second duration superimposed on the test current, IZT, per JEDEC standards, however, actual
device capability is as described in Figure 3.
RATING AND CHARACTERISTICS CURVES
2EZ11 THRU 2EZ200
£c JL (t,D) TRANSIENT THERMAL
RESISTANCE
JUNCTION-TO-LEAD(¢J/W)
30
D = 0.5
20
10
0.2
7
5
0.1
3
0.05
2
NOTE BELOW 0.1 SECOND,
THERMAL RESPONSE
CURVE IS APPLICABLE TO
ANY LEAD LENGTH (L)
0.02
1
0.7
0.5
0.01
0.3
0.0001
D=0
0.0002
0.0005
0.001
0.002
0.005
0.01
0.02
0.05
SINGLE PULSE £GTJL = £KJL(t)PPK
REPETITIVE PULSES £GTJL = £KJL(t,D)PPK
0.1
0.2
0.5
1
2
5
10
IR, REVERSE LEADAGE(uAdc)
@VR AS SPECIFIED IN ELEC.
CHAR. TABLE
500
250
RECTANGULAR NONREPETITIVE
WAVEFORM TJ = 25¢J PRIOR TO
INITIAL PULSE
150
100
50
30
20
10
.1
.2 .3
5
1
2 3 5
10
20
50
100
0.1
0.05
0.03
0.02
0.01
0.005
0.003
0.002
0.001
0.0005
0.0003
0.0002
0.0001
1
2
5
10
20
50
100
200
500
1K
P.W. PULSE WIDTH (ms)
NOMINAL VZ (VOLTS)
Fig. 3-MAXIMUM SURGE POWER
Fig. 4-TYPICAL REVERSE LEAKAGE
8
200
6
4
2
RANGE
0
-2
-4
3
4
6
8
10
12
£c VZ, TEMPERATURE
COEFFICIENT(mV/¢J) @ IZT
£c VZ, TEMPERATURE
COEFFICIENT(mV/¢J ) @ IZT
PPK, PEAK SURGE POWER(WATTS)
Fig. 2-TYPICAL THERMAL RESPONSE L,
100
RANGE
50
40
30
20
10
0
20
40
60
80
100
120
140
160
180
VZ, ZENER VOLTAGE @IZT (VOLTS)
VZ, ZENER VOLTAGE @IZT (VOLTS)
Fig. 5-UNITS TO 12 VOLTS
Fig. 6-UNITS 10 TO 200 VOLTS
200
RATING AND CHARACTERISTICS CURVES
2EZ11 THRU 2EZ200
100
IZ, ZENER CURRENT (mA)
IZ, ZENER CURRENT (mA)
100
50
30
20
10
5
3
2
1
0.5
0.3
0.2
0.1
0
1
2 3
4
5
6 7
8
50
30
20
10
5
3
2
1
0.5
0.3
0.2
0.1
0
9 10
10
IZ, ZENER CURRENT (mA)
5
3
2
1
0.5
0.3
0.2
0.1
100
120
140
160
180
200
70 80 90
100
Fig. 8-VZ = 12 THRU 82 VOLTS
£c JL, JUNCTION-LEAD THERMAL
RESISTANCE (¢J/W)
Fig. 7-VZ = 3.9 THRU 10 VOLTS
50
30
20
10
50 60
VZ, ZENER VOLTAGE (VOLTS)
VZ, ZENER VOLTAGE (VOLTS)
100
20 30 40
80
70
60
PRIMARY PATH OF
CONDUCTION IS THROUGH
THE CATHODE LEAD
50
40
30
20
10
0
0
1/8
1/4
3/8
1/2
5/8
3/4
7/8
1
VZ, ZENER VOLTAGE (VOLTS)
L, LEAD LENGTH TO HEAT SINK (INCH)
Fig. 9-VZ = 100 THRU 200 VOLTS
Fig. 10-TYPICAL THERMAL RESISTANCE
APPLICATION NOTE:
Since the actual voltage available from a given zener
diode is temperature dependent, it is necessary to
determine junction temperature under any set of
operating conditions in order to calculate its value. The
following procedure is recommended:
Lead Temperature, TL, should be determined from:
TL = £c LAPD + TA
£c LA is the lead-to-ambient thermal resistance (¢J /W)
and PD is the power dissipation. The value for £c LA will
vary and depends on the device mounting method.
£c LA is generally 30-40 ¢J /W for the various chips and
tie points in common use and for printed circuit board
wiring.
The temperature of the lead can also be measured using
a thermocouple placed on the lead as close as possible to
the tie point. The thermal mass connected to the tie point
is normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result
of pulsed operation once steady-state conditions are
achieved. Using the measured value of TL, the junction
temperature may be determined by:
TJ = TL + £GTJL
£GTJL is the increase in junction temperature above the
lead temperature and may be found from Figure 2 for a
train of power pulses or from Figure 10 for dc power.
£GTJL = £c LAPD
For worst-case design, using expected limits of Iz, limits
of PD and the extremes of TJ (£GTJL ) may be estimated.
Changes in voltage, Vz, can then be found from:
£GV = £c VZ £GTJ
£c VZ , the zener voltage temperature coefficient, is
found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage
will vary with time and may also be affected significantly
be the zener resistance. For best regulation, keep current
excursions as low as possible.
Data of Figure 2 should not be used to compute surge
capability. Surge limitations are given in Figure 3. They
are lower than would be expected by considering only
junction temperature, as current crowding effects cause
temperatures to be extremely high in small spots resulting
in device degradation should the limits of Figure 3 be
exceeded.