2EZ11 THRU 2EZ200 GLASS PASSIVATED JUNCTION SILICON ZENER DIODE VOLTAGE - 11 TO 200 Volts Power - 2.0 Watts FEATURES l Low profile package l Built-in strain relief l l Glass passivated junction Low inductance l l Excellent clamping capability Typical ID less than 1 £gA above 11V l High temperature soldering : 260 ¢J /10 seconds at terminals l Plastic package has Underwriters Laboratory Flammability Classification 94V-O DO-15 MECHANICAL DATA Case: JEDEC DO-15, Molded plastic over passivated junction Terminals: Solder plated, solderable per MIL-STD-750, method 2026 Polarity: Color band denotes positive end (cathode) Standard Packaging: 52mm tape Weight: 0.015 ounce, 0.04 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25 ¢J ambient temperature unless otherwise specified. SYMBOL Peak Pulse Power Dissipation (Note A) PD Derate above 75 ¢J Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated IFSM load(JEDEC Method) (Note B) Operating Junction and Storage Temperature Range TJ,TSTG NOTES: A. Mounted on 5.0mm2(.013mm thick) land areas. B. Measured on 8.3ms, single half sine-wave or equivalent square wave, duty cycle = 4 pulses per minute maximum. VALUE 2 24 15 UNITS Watts mW/¢J Amps -55 to +150 ¢J 2EZ11 THRU 2EZ200 ELECTRICAL CHARACTERISTICS (T A=25 ¢J unless otherwise noted) VF=1.2 V max , IF=500 mA for all types Type No. Nominal Zener Test (Note 1.) Voltage Vz @ IZT current Maximum Zener Impedance (Note 3.) Leakage Current volts IZT Z ZT @ IZT Z Zk @ IZK IZK IR VR (Note 2.) mA £g A Max @ Volts Ohms Ohms mA 2EZ11 2EZ12 2EZ13 2EZ14 2EZ15 2EZ16 2EZ17 2EZ18 2EZ19 2EZ20 2EZ22 2EZ24 2EZ27 2EZ30 2EZ33 2EZ36 2EZ39 2EZ43 2EZ47 2EZ51 2EZ56 2EZ62 2EZ68 2EZ75 2EZ82 2EZ91 2EZ100 2EZ110 2EZ120 2EZ130 2EZ140 2EZ150 2EZ160 2EZ170 2EZ180 2EZ190 2EZ200 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 22.0 24.0 27.0 30.0 33.0 36.0 39.0 43.0 47.0 51.0 56.0 62.0 68.0 75.0 82.0 91.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0 200.0 45.5 41.5 38.5 35.7 33.4 31.2 29.4 27.8 26.3 25.0 22.8 20.8 18.5 16.6 15.1 13.9 12.8 11.6 10.6 9.8 9.0 8.1 7.4 6.7 6.1 5.5 5.0 4.5 4.2 3.8 3.6 3.3 3.1 2.9 2.8 2.6 2.5 4.0 4.5 5.0 5.5 7.0 8.0 9.0 10.0 11.0 11.0 12.0 13.0 18.0 20.0 23.0 25.0 30.0 35.0 40.0 48.0 55.0 60.0 75.0 90.0 100.0 125.0 175.0 250.0 325.0 400.0 500.0 575.0 650.0 675.0 725.0 825.0 900.0 700 700 700 700 700 700 750 750 750 750 750 750 750 1000 1000 1000 1000 1500 1500 1500 2000 2000 2000 2000 3000 3000 3000 4000 4500 5000 5500 6000 6500 7000 7000 8000 8000 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 8.4 9.1 9.9 10.6 11.4 12.2 13.0 13.7 14.4 15.2 16.7 18.2 20.6 22.5 25.1 27.4 29.7 32.7 35.8 38.8 42.6 47.1 51.7 56.0 62.2 69.2 76.0 83.6 91.2 98.8 106.4 114.0 121.6 130.4 136.8 144.8 152.0 Maximum Zener Current IZM Madc Surge Current @ TA = 25 ¢J ir - mA (Note 4.) 166 152 138 130 122 114 107 100 95 90 82 76 68 60 55 50 47 43 39 36 32 29 27 24 22 20 18 17 15 14 13 12 11 11 10 10 9 1.82 1.66 1.54 1.43 1.33 1.25 1.18 1.11 1.05 1.00 0.91 0.83 0.74 0.67 0.61 0.56 0.51 0.45 0.42 0.39 0.36 0.32 0.29 0.27 0.24 0.22 0.20 0.18 0.16 0.15 0.14 0.13 0.12 0.12 0.11 0.10 0.10 NOTES: 1. TOLERANCES - Suffix indicates 5% tolerance any other tolerance will be considered as a special device. 2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when measured at 40 ms ¡Ó 10ms from the diode body, and an ambient temperature of 25 ¢J ( ¡Ï 68 ¢J , -2 ¢J ). 3.ZENER IMPEDANCE (Zz) DERIVATION - The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms falue equal to 10% of the dc zener current (IZT or IZK) is superimposed on IZT or IZK. 4. SURGE CURRENT (Ir) NON-REPETITIVE - The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, IZT, per JEDEC standards, however, actual device capability is as described in Figure 3. RATING AND CHARACTERISTICS CURVES 2EZ11 THRU 2EZ200 £c JL (t,D) TRANSIENT THERMAL RESISTANCE JUNCTION-TO-LEAD(¢J/W) 30 D = 0.5 20 10 0.2 7 5 0.1 3 0.05 2 NOTE BELOW 0.1 SECOND, THERMAL RESPONSE CURVE IS APPLICABLE TO ANY LEAD LENGTH (L) 0.02 1 0.7 0.5 0.01 0.3 0.0001 D=0 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 SINGLE PULSE £GTJL = £KJL(t)PPK REPETITIVE PULSES £GTJL = £KJL(t,D)PPK 0.1 0.2 0.5 1 2 5 10 IR, REVERSE LEADAGE(uAdc) @VR AS SPECIFIED IN ELEC. CHAR. TABLE 500 250 RECTANGULAR NONREPETITIVE WAVEFORM TJ = 25¢J PRIOR TO INITIAL PULSE 150 100 50 30 20 10 .1 .2 .3 5 1 2 3 5 10 20 50 100 0.1 0.05 0.03 0.02 0.01 0.005 0.003 0.002 0.001 0.0005 0.0003 0.0002 0.0001 1 2 5 10 20 50 100 200 500 1K P.W. PULSE WIDTH (ms) NOMINAL VZ (VOLTS) Fig. 3-MAXIMUM SURGE POWER Fig. 4-TYPICAL REVERSE LEAKAGE 8 200 6 4 2 RANGE 0 -2 -4 3 4 6 8 10 12 £c VZ, TEMPERATURE COEFFICIENT(mV/¢J) @ IZT £c VZ, TEMPERATURE COEFFICIENT(mV/¢J ) @ IZT PPK, PEAK SURGE POWER(WATTS) Fig. 2-TYPICAL THERMAL RESPONSE L, 100 RANGE 50 40 30 20 10 0 20 40 60 80 100 120 140 160 180 VZ, ZENER VOLTAGE @IZT (VOLTS) VZ, ZENER VOLTAGE @IZT (VOLTS) Fig. 5-UNITS TO 12 VOLTS Fig. 6-UNITS 10 TO 200 VOLTS 200 RATING AND CHARACTERISTICS CURVES 2EZ11 THRU 2EZ200 100 IZ, ZENER CURRENT (mA) IZ, ZENER CURRENT (mA) 100 50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 9 10 10 IZ, ZENER CURRENT (mA) 5 3 2 1 0.5 0.3 0.2 0.1 100 120 140 160 180 200 70 80 90 100 Fig. 8-VZ = 12 THRU 82 VOLTS £c JL, JUNCTION-LEAD THERMAL RESISTANCE (¢J/W) Fig. 7-VZ = 3.9 THRU 10 VOLTS 50 30 20 10 50 60 VZ, ZENER VOLTAGE (VOLTS) VZ, ZENER VOLTAGE (VOLTS) 100 20 30 40 80 70 60 PRIMARY PATH OF CONDUCTION IS THROUGH THE CATHODE LEAD 50 40 30 20 10 0 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 VZ, ZENER VOLTAGE (VOLTS) L, LEAD LENGTH TO HEAT SINK (INCH) Fig. 9-VZ = 100 THRU 200 VOLTS Fig. 10-TYPICAL THERMAL RESISTANCE APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, TL, should be determined from: TL = £c LAPD + TA £c LA is the lead-to-ambient thermal resistance (¢J /W) and PD is the power dissipation. The value for £c LA will vary and depends on the device mounting method. £c LA is generally 30-40 ¢J /W for the various chips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: TJ = TL + £GTJL £GTJL is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses or from Figure 10 for dc power. £GTJL = £c LAPD For worst-case design, using expected limits of Iz, limits of PD and the extremes of TJ (£GTJL ) may be estimated. Changes in voltage, Vz, can then be found from: £GV = £c VZ £GTJ £c VZ , the zener voltage temperature coefficient, is found from Figures 5 and 6. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly be the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded.