FOD8318 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Features Description High noise immunity characterized by common mode The FOD8318 is an advanced 2.5 A output current IGBT drive optocoupler capable of driving most 1200 V / 150 A IGBTs. It is ideally suited for fast-switching driving of power IGBTs and MOSFETs used in motor control inverter applications and high-performance power systems. It consists of an integrated gate drive optocoupler featuring low RDS(ON) CMOS transistors to drive the IGBT from rail to rail and an integrated highspeed isolated feedback for fault sensing. The FOD8318 has an active Miller clamp fuction to shut off the IGBT during a high dv/dt situation without the need of a negative supply voltage. It offers critical protection features necessary for preventing fault conditions that lead to destructive thermal runaway of IGBTs. rejection – 35 kV / µs Minimum Common Mode Rejection (Vcm = 1500 Vpeak) 2.5 A peak output current driving capability for most 1200 V / 150 A IGBT Optically isolated fault sensing feedback Active Miller clamp to shut off the IGBT during high dv/dt without needing a negative supply voltage “Soft” IGBT turn-off Built-in IGBT protection – Desaturation detection – Under-voltage lock out (UVLO) protection Wide supply voltage range from 15 V to 30 V – Use of P-Channel MOSFETs at output stage enables output voltage swing close to the supply rail (rail-to-rail output) 3.3 V / 5 V, CMOS/TTL-compatible inputs High Speed – 500 ns max. propagation delay over full operating temperature range Extended industrial temperate range, -40°C to 100°C temperature range Safety and regulatory approvals – UL1577, 4,243 VRMS for 1 min. – DIN EN/IEC 60747-5-5,1,414 Vpeak working insulation voltage, 8000 Vpeak transient isolation voltage ratings RDS(ON) of 1 (typ.) offers lower power dissipation User configurable: inverting, non-inverting, auto-reset, auto-shutdown 8 mm creepage and clearance distances It utilizes Fairchild’s proprietary Optoplanar® coplanar packaging technology and optimized IC design to achieve high noise immunity, characterized by high common mode rejection and power supply rejection specifications. The device is housed in a compact 16-pin small outline plastic package that meets the 8 mm creepage and clearance requirements. Applications Industrial inverter Induction heating Isolated IGBT drive ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing December 2012 VIN+ VIN– UVLO (VDD2 – VE) X X Active X X X DESAT Detected? FAULT VOUT* X X LOW Yes LOW LOW LOW X X X X LOW X HIGH X X X LOW HIGH LOW Not Active No HIGH HIGH *VOUT is always LOW with ‘clamp’ being active (gate voltage < 2 V above VSS). Pin Definitions Pin # Name Description 1 VIN+ Non-inverting gate drive control input 2 VIN– Inverting gate drive control input 3 VDD1 Positive input supply voltage (3 V to 5.5 V) 4 GND1 Input ground 5 RESET Fault reset input 6 FAULT Fault output 7 VLED1+ LED 1 anode (must be left unconnected) 8 VLED1- LED 1 cathode (must be connected to ground) 9 VSS 10 VCLAMP 11 VO Gate drive output voltage 12 VS Source of pull-up PMOS transistor 13 VDD2 14 DESAT Desaturation voltage input 15 VLED2+ LED 2 anode (must be left unconnected) 16 VE Output supply voltage (negative) Active Miller clamp supply voltage Positive output supply voltage Output supply voltage / IGBT emitter VIN+ 1 16 VE VIN– 2 15 VLED2+ VDD1 3 14 DESAT 13 VDD2 GND1 4 ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 RESET 5 12 VS FAULT 6 11 VO VLED1+ 7 10 VCLAMP VLED1- 8 9 VSS www.fairchildsemi.com 2 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Truth Table VLED1+ 7 Output IC VDD1 3 13 Input IC 12 VIN+ 1 VIN– 2 VDD2 VS FAULT 6 GND1 VLED1– Driver LED1 Gate Drive Optocoupler 11 UVLO 4 8 Shield DESAT 9 14 RESET VO 5 Fault 16 LED2 10 VSS DESAT VE VCLAMP Miller Clamp Fault Sense Optocoupler VSS Shield 15 VLED2+ ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 3 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Block Diagram As per DIN EN/IEC 60747-5-5. This optocoupler is suitable for “safe electrical insulation” only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits. Symbol Parameter Min. Typ. Max. Unit Installation Classifications per DIN VDE 0110/1.89 Table 1 For Rated Mains Voltage < 150 Vrms I–IV For Rated Mains Voltage < 300 Vrms I–IV For Rated Mains Voltage < 450 Vrms I–IV For Rated Mains Voltage < 600 Vrms I–IV For Rated Mains Voltage < 1000 Vrms I–III Climatic Classification 40/100/21 Pollution Degree (DIN VDE 0110/1.89) 2 CTI Comparative Tracking Index VPR Input to Output Test Voltage, Method b, VIORM x 1.875 = VPR, 100 % Production Test with tm = 1 s, Partial Discharge < 5 pC 2,651 175 Vpeak Input to Output Test Voltage, Method a, VIORM x 1.5 = VPR, Type and Sample Test with tm = 60 s, Partial Discharge < 5 pC 2,121 Vpeak VIORM Maximum Working Insulation Voltage 1,414 Vpeak VIOTM Highest Allowable Over Voltage 8,000 Vpeak External Creepage 8 mm External Clearance 8 mm Insulation Thickness 0.5 mm Case Temperature 150 °C Input Power 100 mW Output Power 600 mW 109 ¾ Safety Limit Values – Maximum Values Allowed in the Event of a Failure TCase PS,INPUT PS,OUTPUT RIO Insulation Resistance at TS, VIO = 500 V ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 4 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Safety and Insulation Ratings Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Symbol Parameter Value Units -40 to +125 ºC TSTG Storage Temperature TOPR Operating Temperature -40 to +100 ºC Junction Temperature -40 to +125 ºC Lead Wave Solder Temperature (no solder immersion) 260 for 10 s ºC 15 mA 3 A 0 to 15 V TJ TSOL Refer to page 28 for reflow temperature profile. IFAULT Fault Output Current Current(1) IO(PEAK) Peak Output VE – VSS Negative Output Supply Voltage(2) VDD2 – VE Positive Output Supply Voltage VO(peak) VDD2 – VSS VDD1 VIN+, VIN- and VRESET VFAULT VS -0.5 to 35 – (VE – VSS) V Gate Drive Output Voltage -0.5 to 35 V Output Supply Voltage -0.5 to 35 V Positive Input Supply Voltage -0.5 to 6 V Input Voltages -0.5 to VDD1 V Fault Pin Voltage -0.5 to VDD1 V Source of Pull-up PMOS Transistor Voltage VDESAT DESAT Voltage ICLAMP Peaking Clamping Sinking Current VCLAMP Miller Clamping Voltage PDI PDO Input Power Dissipation(3)(5) Output Power Dissipation(4)(5) VSS + 6.5 to VDD2 V VE to VE + 11 V 1.7 A -0.5 to VDD2 V 100 mW 600 mW Notes: 1. Maximum pulse width = 10 µs, maximum duty cycle = 0.2 %. 2. This negative output supply voltage is optional. It’s only needed when negative gate drive is implemented. A schottky diode is recommended to be connected between VE and VSS to protect against a reverse voltage greater than 0.5 V. Refer to application information, “6. Active Miller Clamp Function” on page 25. 3. No derating required across temperature range. 4. Derate linearly above 64 °C, free air temperature at a rate of 10.2 mW/°C 5. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings. ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 5 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Absolute Maximum Ratings (TA = 25 ºC unless otherwise specified) The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings. Symbol TA VDD1 VDD2 – VSS VE – VSS VDD2 – VE VS Parameter Ambient Operating Temperature Input Supply Min. Max. Unit -40 +100 ºC Voltage(6) 3 5.5 V Total Output Supply Voltage 15 30 V Negative Output Supply Voltage 0 15 V 15 30 – (VE – VSS) V VSS + 7.5 VDD2 V Positive Output Supply Voltage(6) Source of Pull-up PMOS Transistor Voltage Note: 6. During power up or down, it is important to ensure that VIN+ remains LOW until both the input and output supply voltages reach the proper recommended operating voltage to avoid any momentary instability at the output state. Refer to “Time to Good Power” section on page 25. Isolation Characteristics Apply over all recommended conditions, typical value is measured at TA = 25 ºC Symbol Parameter Conditions Min. 4,243 VISO Input-Output Isolation Voltage TA = 25 ºC, R.H.< 50 %, t = 1.0 min, II-O ð 10 µA, 50 Hz(7)(8)(9) RISO Isolation Resistance VI-O = 500 V(7) CISO Isolation Capacitance VI-O = 0 V, freq = 1.0 MHz(7) Typ. Max. Units VRMS 1011 ¾ 1 pF Notes: 7. Device is considered a two terminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together. 8. 4,243 VRMS for 1-minute duration is equivalent to 5,091 VRMS for 1-second duration. 9. The Input-Output Isolation Voltage is a dielectric voltage rating as per UL1577. It should not be regarded as an input-output continuous voltage rating. For the continuous working voltage rating, refer to the equipment level safety specification or DIN EN/IEC 60747-5-5 Safety and Insulation Ratings Table on page 4. Electrical Characteristics Apply over all recommended conditions; typical value is measured at VDD1 = 5 V, VDD2 – VSS = 30 V, VE – VSS = 0 V, TA = 25 °C unless otherwise specified. Symbol Parameter Conditions Min. Typ. VIN+L, VIN-L, Logic Low Input Voltages VRESETL Max. 0.8 VIN+H, VIN-H, Logic High Input Voltages VRESETH 2.0 Units Figure V V IIN+L, IIN-L, IRESETL Logic Low Input Currents VIN = 0.4 V -0.5 -0.001 mA IFAULTL FAULT Logic Low Output Current VFAULT = 0.4 V 5.0 12.0 mA 1, 35 IFAULTH FAULT Logic High Output Current VFAULT = VDD1 -40 0.002 µA 35 IOH High Level Output Current VO = VDD2 – 3 V -1 -3 A 2, 7, 36 VO = VDD2 – 6 ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 V(10) -2.5 A www.fairchildsemi.com 6 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Recommended Operating Conditions Apply over all recommended conditions; typical value is measured at VDD1 = 5 V, VDD2 – VSS = 30 V, VE – VSS = 0 V, TA = 25 °C unless otherwise specified. Symbol IOL Parameter Low Level Output Current Conditions VO = VSS + 3 V (11) Min. Typ. 1 3 VO = VSS + 6 V 2.5 IOLF Low Level Output Current During Fault Condition VO – VSS = 14 V 90 185 VOH High Level Output Voltage IO = –100 mA VS – 1.0 V VS – 0.5 V VOL Low Level Output Voltage IO = 100 mA 0.1 IDD1H High Level Supply Current VIN+ = VDD1 = 5.5 V, VIN– = 0 V IDD1L Low Level Supply Current IDD2H IDD2L Max. Units Figure A 3, 37 A mA 4, 41 V 5, 7, 38 0.5 V 6, 8, 38 14 17 mA 9, 39 VIN+ = VIN- = 0 V, VDD1 = 5.5 V 2 3 mA High Level Output Supply Current VO = Open(14) 1 3 mA Low Level Output Supply Current VO = Open 0.8 2.8 mA ISH High Level Source Current IO = 0 mA 0.65 1.5 mA 40 ISL Low Level Source Current IO = 0 mA 0.6 1.4 mA 40 IEL VE Low Level Supply Current -0.5 -0.2 mA 13, 40 IEH VE High Level Supply Current -0.5 -0.25 mA -0.13 -0.25 10 36 (12)(13)(14) Blanking Capacitor Charge Current VDESAT = 2 V(14)(15) IDSCHG Blanking Capacitor Discharge Current VDESAT = 7 V VUVLO+ Under-Voltage Lockout Threshold(14) VO > 5 V at 25 °C Under-Voltage Lockout Threshold Hysteresis At 25 °C VDESAT DESAT Threshold(14) VDD2 – VE > VUVLO- , VO < 5 V VCLAMP_ Clamping Threshold Voltage ICHG VUVLOUVLOHYS VO < 5 V at 25 °C 11.5 230 -0.37 13.5 mA 12, 41 mA 41 V 15, 29, 42 9 10 V 0.4 1.5 V 6 7 9 10, 11, 40 V 16, 41 2.2 V 33, 52 1.2 A 32, 51 THRES ICLAMPL Clamp Low Level Sinking Current VO = VSS + 2.5 V 0.35 Notes: 10. Maximum pulse width = 10 µs, maximum duty cycle = 0.2 %. 11. Maximum pulse width = 4.99 ms, maximum duty cycle = 99.8 %. 12. VOH is measured with the DC load current in this testing (maximum pulse width = 1 ms, maximum duty cycle = 20 %). When driving capacitive loads, VOH approaches VDD as IOH approaches zero units. 13. Positive output supply voltage (VDD2 – VE) should be at least 15 V. This ensures adequate margin in excess of the maximum under-voltage lockout threshold VUVLO+ of 13.5 V. 14. When VDD2 – VE > VUVLO and output state VO of the FOD8318 is allowed to go HIGH, the DESAT detection feature is active and provides the primary source of IGBT protection. UVLO is needed to ensure DESAT detection is functional. 15. The blanking time, tBLANK, is adjustable by an external capacitor (CBLANK) where tBLANK = CBLANK * (VDESAT / ICHG). ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 7 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Electrical Characteristics (Continued) Apply over all recommended conditions; typical value is measured at VDD1 = 5 V, VDD2 – VSS = 30 V, VE – VSS = 0 V, TA = 25 °C unless otherwise specified. Symbol Parameter tPHL Propagation Delay Time to Logic Low Output(17) tPLH Propagation Delay Time to Logic High Output(18) PWD Pulse Width Distortion, | tPHL – tPLH|(19) PDD Skew Conditions Min. Rg = 10 ¾, Cg = 10 nF, f = 10 kHz, Duty Cycle = 50 %(16) Propagation Delay Difference Between Any Two Parts or Channels, ( tPHL – tPLH)(20) Typ. Max. Units Figure 300 500 ns 250 500 ns 50 300 ns 350 ns –350 17, 18, 19, 20, 21, 22, 43, 51 tR Output Rise Time (10 % – 90 %) 34 ns tF Output Fall Time (90 % – 10 %) 34 ns 850 ns 23, 44 tDESAT(90 %) DESAT Sense to 90 % VO Delay(21) tDESAT(10 %) DESAT Sense to 10 % VO Delay(21) Rg = 10 ¾, Cg = 10 nF, VDD2 – VSS = 30 V 43, 53 2 3 µs 24, 26, 27, 44 DESAT Sense to Low Level FAULT Signal Delay(22) 1.8 5 µs 25, 44, 54 tDESAT(LOW) DESAT Sense to DESAT Low Propagation Delay(23) 850 ns 44 tRESET(FAULT) RESET to High Level FAULT Signal Delay(24) µs 28, 45, 54 tDESAT(FAULT) PWRESET tUVLO ON tUVLO OFF tGP 3 RESET Signal Pulse Width UVLO Turn On Delay(25) UVLO Turn Off Delay(26) Time to Good Power(27) 6 1.2 VDD2 = 20 V in 1.0ms Ramp VDD2 = 0 to 30 V in 10 µs Ramp 20 µs 4 µs 29, 46 3 µs 30 µs 30, 31, 46 | CMH | Common Mode Transient Immunity at Output High TA = 25 ºC, VDD1 = 5 V, VDD2 = 25 V, VSS = Ground, VCM = 1500 Vpeak(28) 35 50 kV/µs 48, 49 | CML | Common Mode Transient Immunity at Output Low TA = 25 ºC, VDD1 = 5 V, VDD2 = 25 V, VSS = Ground, VCM = 1500 Vpeak(29) 35 50 kV/µs 47, 50 Notes: 16. This load condition approximates the gate load of a 1200 V / 150 A IGBT. 17. tPHL propagation delay is measured from the 50 % level on the falling edge of the input pulse (VIN+, VIN-) to the 50 % level of the falling edge of the VO signal. Refer to Figure 53. 18. tPHL propagation delay is measured from the 50 % level on the rising edge of the input pulse (VIN+, VIN-) to the 50 % level of the rising edge of the VO signal. Refer to Figure 53. 19. PWD is defined as | tPHL – tPLH | for any given device. 20. The difference between tPHL and tPLH between any two FOD8318 parts under same operating conditions, with equal loads. 21. This is the amount of time the DESAT threshold must be exceeded before VO begins to go LOW. This is supply voltage dependent. Refer to Figure 54. ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 8 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Switching Characteristics ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 9 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing 22. This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes LOW. Refer to Figure 54. 23. This is the amount of time the DESAT threshold must be exceeded before VO begins to go LOW and the FAULT output to go LOW. Refer to Figure 54. 24. This is the amount of time from when RESET is asserted LOW, until FAULT output goes HIGH. Refer to Figure 54. 25. tUVLO ON UVLO turn-on delay is measured from VUVLO+ threshold voltage of the output supply voltage (VDD2) to the 5 V level of the rising edge of the VO signal. 26. tUVLO OFF UVLO turn-off delay is measured from VUVLO– threshold voltage of the output supply voltage (VDD2) to the 5 V level of the falling edge of the VO signal. 27. tGP time to good power is measured from 13.5 V level of the rising edge of the output supply voltage (VDD2) to the 5 V level of the rising edge of the VO signal. 28. Common mode transient immunity at output HIGH state is the maximum tolerable negative dVcm / dt on the trailing edge of the common mode pulse, VCM, to assure that the output remains in HIGH state (i.e., VO > 15 V or FAULT > 2 V). 29.Common mode transient immunity at output LOW state is the maximum positive tolerable dVcm / dt on the leading edge of the common mode pulse, VCM, to assure that the output remains in a LOW state (i.e., VO < 1.0 V or FAULT < 0.8 V). Figure 1. Fault Logic Low Output Current (IFAULTL) vs. Fault Logic Low Output Voltage (VFAULTL) Figure 2. Output High Current (IOH) vs. Temperature 7 IOH – OUTPUT HIGH CURRENT (A) IFAULTL – FAULT CURRENT (mA) 50 40 30 20 VDD1 = 5 V VIN+ = 5 V ILED2+ = 10 mA TA = 25 °C 10 0 0 1 2 3 4 6 5 VO = V DD2 – 6 V 4 3 VO = V DD2 – 3 V 2 1 VDD2 – V SS = 30 V VDD1 = 5 V 0 -40 -20 0 5 VFAULTL – FAULT VOLTAGE (V) 7 60 80 100 225 IOLF – LOW LEVEL OUTPUT CURRENT DURING FAULT CONDITIONS (mA) IOL – OUTPUT LOW CURRENT (A) 40 Figure 4. Low Level Output Current (IOLF) vs. Output Voltage (VO) Figure 3. Output Low Current (IOL) vs. Temperature 6 5 VO = V SS + 6 V 4 3 VO = V SS + 3 V 2 1 VDD2 – V SS = 30 V VDD1 = 5 V 0 -40 -20 0 20 40 60 80 TA = -40 °C 200 TA = 100 °C 150 125 100 75 VDD2 – V SS = 30 V VDD1 = 5 V 50 25 0 100 TA = 25 °C 175 5 TA – TEMPERATURE (°C) 20 25 30 0.25 VOL – OUTPUT LOW VOLTAGE (V) IO = -650 μA 0 -0.1 IO = -100 mA -0.2 -0.3 -0.5 -40 15 Figure 6. Output Low Voltage (VOL) vs. Temperature 0.1 -0.4 10 VO – OUTPUT VOLTAGE (V) Figure 5. Output High Voltage (VOH–VDD2) vs. Temperature (VOH–VDD2) – HIGH OUTPUT VOLTAGE DROP (V) 20 TA – TEMPERATURE (°C) VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 5 V -20 0 20 40 60 80 0.15 IO = 100 mA 0.10 0.05 0 -40 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 0.20 VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 0 V -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) www.fairchildsemi.com 10 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Typical Performance Characteristics Figure 7. Output High Voltage (VOH) vs. Output High Current (IOH) 5 VOL – OUTPUT LOW VOLTAGE (V) VOH – OUTPUT HIGH VOLTAGE (V) 30 29 TA = -40 °C 25 °C 28 100 °C 27 26 VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 5 V 25 0 0.5 1.0 1.5 Figure 8. Output Low Voltage (VOL) vs. Output Low Current (IOL) 2.0 VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 0 V 4 3 TA = 100 °C 2 -40 °C 1 0 2.5 0 0.5 IOH – OUTPUT HIGH CURRENT (A) Figure 9. Supply Current (IDD1) vs. Temperature 2.5 IDD2 – OUTPUT SUPPLY CURRENT (mA) IDD1H 10 5 IDD1L -20 0 20 40 60 80 1.2 IDD2H 1.0 0.8 IDD2L 0.6 VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 5 V (I DD2H) or 0 V (I DD2L) 0.4 -40 100 -20 0 TA – TEMPERATURE (°C) 20 40 60 80 100 TA – TEMPERATURE (°C) Figure 11. Output Supply Current (IDD2) vs. Output Supply Voltage (VDD2) Figure 12. Blanking Capacitor Charging Current (ICHG) vs. Temperature 1.2 -0.15 ICHG – BLANKING CAPACITOR CHARGING CURRENT (mA) IDD2 – OUTPUT SUPPLY CURRENT (mA) 2.0 Figure 10. Output Supply Current (IDD2) vs. Temperature 15 VDD1 = 5 V VIN+ = 5 V (I DD2H) or 0 V (I DD2L) 1.0 IDD2H 0.8 IDD2L 0.6 0.4 15 1.5 1.4 VDD1 = 5.5 V VIN+ = 5 V (I DD1H) or 0 V (I DD1L) IDD1 – SUPPLY CURRENT (mA) 1.0 IOL – OUTPUT LOW CURRENT (A) 20 0 -40 25 °C 20 25 -0.20 -0.25 -0.30 -40 30 VDD2 – OUTPUT SUPPLY VOLTAGE (V) ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 5 V VDESAT = 0 V to 6 V -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) www.fairchildsemi.com 11 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Typical Performance Characteristics (Continued) Figure 14. Source Current (IS) vs. Output Current (IO) 3.0 -0.15 2.5 IS – SOURCE CURRENT (mA) IE – SUPPLY CURRENT (mA) Figure 13. Supply Current (IE) vs. Temperature -0.10 IEL -0.20 IEH -0.25 -0.30 -0.35 VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 5 V (I EH) / 0 V (I EL) -0.40 -40 -20 0 20 40 60 80 2.0 1.5 1.0 0.5 0 100 -40 °C 25 °C 100 °C VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 5 V 0 0.5 1.0 TA – TEMPERATURE (°C) Figure 15. Under-Voltage Lockout Threshold (VUVLO) vs. Temperature V UVLO – UNDER VOLTAGE LOCKOUT THRESHOLD (V) 1.5 2.0 IO – OUTPUT CURRENT (mA) Figure 16. DESAT Threshold (VDESAT) vs. Temperature 8.0 VDESAT – DESAT THRESHOLD (V) 15 V UVLO+ 10 V UVLO– 5 7.5 7.0 6.5 VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 5 V VDD1 = 5 V VIN+ = 5 V 0 -40 -20 0 20 40 60 80 6.0 -40 100 -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) TA – TEMPERATURE (°C) Figure 18. Propagation Delay (tP) vs. Supply Voltage (VDD2) Figure 17. Propagation Delay (tP) vs. Temperature 0.5 0.45 tP – PROPAGATION DELAY (μs) tP – PROPAGATION DELAY (μs) 0.40 0.4 tPLH 0.3 tPHL 0.2 0.1 -40 VDD2 – V SS = 30 V VDD1 = 5 V f = 10 kHz 50 % Duty Cycle RL = 10 Ω, CL = 10 nF -20 0 20 40 60 80 tPLH 0.30 tPHL 0.25 0.20 0.15 0.10 15 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 0.35 VDD1 = 5 V f = 10 kHz 50 % Duty Cycle RL = 10 Ω, C L = 10 nF 20 25 30 VDD2 – SUPPLY VOLTAGE (V) www.fairchildsemi.com 12 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Typical Performance Characteristics (Continued) Figure 20. Propagation Delay to Logic Low Output (tPHL) vs. Temperature Figure 19. Propagation Delay to Logic High Output (tPLH) vs. Temperature 0.35 VDD2 – V SS = 30 V f = 10 kHz 50 % Duty Cycle RL = 10 Ω, CL = 10 nF tPHL – PROPAGATION DELAY (μs) tPLH – PROPAGATION DELAY (μs) 0.45 0.40 0.35 0.30 VDD1 = 4.5 V VDD1 = 5.0 V VDD1 = 5.5 V 0.25 -40 -20 0 20 40 60 80 VDD2 – V SS = 30 V f = 10 kHz 50 % Duty Cycle RL = 10 Ω, CL = 10 nF 0.30 0.25 0.20 VDD1 = 4.5 V VDD1 = 5.0 V VDD1 = 5.5 V 0.15 -40 100 -20 0 TA – TEMPERATURE (°C) Figure 21. Propagation Delay (tP) vs. Load Capacitance (CL) VDD2 – V SS = 30 V VDD1 = 5 V f = 10 kHz 50 % Duty Cycle RL = 10 Ω 0.35 tP – PROPAGATION DELAY (μs) tP – PROPAGATION DELAY (μs) 60 80 100 0.40 tPLH 0.30 tPHL 0.25 0 20 40 60 80 0.35 tPLH 0.30 tPHL 0.25 0.20 100 VDD2 – V SS = 30 V VDD1 = 5 V f = 10 kHz 50 % Duty Cycle CL = 10 nF 0 10 CL – LOAD CAPACITANCE (nF) Figure 23. DESAT Sense to 90 % VO (tDESAT(90 %)) vs. Temperature 1.2 VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 5 V RL = 10 Ω, CL = 10 nF 1.1 1.0 0.9 0.8 -40 -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 20 30 40 50 RL – LOAD RESISTANCE (Ω) tDESAT(10 %) – DESAT SENSE TO 10 % VO DELAY (μs) tDESAT(90 %) – DESAT SENSE TO 90 % VO DELAY (μs) 40 Figure 22. Propagation Delay (tP) vs. Load Resistance (RL) 0.40 0.20 20 TA – TEMPERATURE (°C) Figure 24. DESAT Sense to 10 % VO Delay (tDESAT(10 %)) vs. Temperature 3.0 VDD2 – V SS = 15 or 30 V VDD1 = 5 V VIN+ = 5 V RL = 10 Ω, CL = 10 nF 2.5 VDD2 – V SS = 30 V 2.0 VDD2 – V SS = 15 V 1.5 1.0 -40 -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) www.fairchildsemi.com 13 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Typical Performance Characteristics (Continued) Figure 25. DESAT Sense to Low Fault Signal Delay (tDESAT(FAULT)) vs. Temperature Figure 26. DESAT Sense to 10 % VO Delay (tDESAT(10 %)) vs. Load Capacitance (CL) 0.008 VDD2 – V SS = 30 V VDD1 = 5 V VIN+ = 5 V RL = 10 Ω, CL = 10 nF 2.4 tDESAT(10 %) – DESAT SENSE TO 10% VO tDESAT(FAULT) – DESAT SENSE TO LOW FAULT SIGNAL DELAY (μs) 2.6 2.2 VE – V SS = 0 V VE – V SS = 15 V 2.0 1.8 1.6 -40 -20 0 20 40 60 80 100 VDD2 – V SS = 15 V or 30 V VDD1 = 5 V VIN+ = 5 V RL = 10 Ω 0.006 VDD2 – V SS = 30 V 0.004 0.002 0 VDD2 – V SS = 15 V 0 5 15 20 25 30 Figure 28. RESET to High Level FAULT Signal Delay (tRESET(FAULT)) vs. Temperature Figure 27. DESAT Sense to 10 % VO Delay (tDESAT(10 %)) vs. Load Resistance (RL) 0.0030 10 VDD2 – V SS = 15 V or 30 V VDD1 = 5 V VIN+ = 5 V CL = 10 nF 0.0250 VDD2 – V SS = 30 V 0.0020 VDD2 – V SS = 15 V 0.0015 0.0010 10 20 30 40 50 9 VDD1 = 5.0 V 6 VDD1 = 4.5 V 5 4 -40 100 tGP – TIME TO GOOD POWER (μs) VDD2 = 20 V VDD1 = 5 V VIN+ = 5 V f = 50 Hz, 50 % Duty Cycle tR = 1 ms 6 tUVLO ON 4 tUVLO OFF 2 -20 0 20 40 60 80 0 20 40 60 80 100 Figure 30. Time to Good Power (tGP) vs. Supply Voltage (VDD2) VDD1 = 5 V VIN+ = 5 V f = 50Hz, 50 % Duty Cycle 80 60 40 20 0 15 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 -20 TA – TEMPERATURE (°C) 10 0 -40 VDD1 = 5.5 V 7 Figure 29. Under Voltage Lockout Threshold Delay (tUVLO) vs. Temperature 8 VDD2 – V SS = 30 V VIN+ = 5 V RL = 10 Ω, C L = 10 nF 8 RL – LOAD RESISTANCE (Ω) tUVLO – UNDER VOLTAGE LOCKOUT THRESHOLD DELAY (μs) 10 CL – LOAD CAPACITANCE (nF) tRESET(FAULT) – RESET TO HIGH LEVEL FAULT SIGNAL DELAY (μs) tDESAT(10 %) – DESAT SENSE TO 10 % VO DELAY (μs) TA – TEMPERATURE (°C) 20 25 30 VDD2 – SUPPLY VOLTAGE (V) www.fairchildsemi.com 14 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Typical Performance Characteristics (Continued) Figure 31. Time to Good Power (tGP) vs. Temperature Figure 32. Clamp Low Level Sinking Current (ICLAMPL) vs. Temperature 100 3 VDD2 = 15 V to 30 V VDD1 = 5 V VIN+ = 5 V f = 50 Hz 50 % Duty Cycle ICLAMP – CLAMP LOW LEVEL SINKING CURRENT (A) tGP – TIME TO GOOD POWER (μs) 120 80 60 40 20 0 -40 -20 0 20 40 60 80 VDD2 – VSS = 30 V VDD1 = 5 V 2.5 VIN+ = 5 V VCLAMP = 2.5 V 2.0 1.5 1.0 0.5 0 -40 100 -20 0 TA – TEMPERATURE (°C) 2.6 3.0 VDD2 – VSS = 30 V VDD1 = 5 V 2.4 VIN+ = 0 V VDD2 – VSS = 30 V VDD1 = 5 V 2.5 VIN+ = 0 V 2.2 2.0 1.8 1.6 -20 0 20 40 60 80 60 80 100 2.0 1.5 1.0 0.5 0 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 40 Figure 34. Clamp Low Level Sinking Current (ICLAMPL) vs. Clamp Voltage (VCLAMP) ICLAMP – CLAMP LOW LEVEL SINKING CURRENT (A) VCLAMP – CLAMP PIN THRESHOLD VOLTAGE (V) Figure 33. Clamping Threshold Voltage (VCLAMP) vs. Temperature 1.4 -40 20 TA – TEMPERATURE (°C) 0 0.5 1.0 1.5 2.0 2.5 3.0 VCLAMP – CLAMP VOLTAGE (V) www.fairchildsemi.com 15 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Typical Performance Characteristics (Continued) + – 5V VFAULT IFAULT VFAULT = 0.4 V for IFAULTL VE 16 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS 0.1 μF – + FOD8318 1 A 0.1 μF 10 mA VDD2 13 Switch A closed for IFAULTL Switch A opened for IFAULTH 9 VFAULT = 5.0 V for IFAULTH *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 35. Fault Output Current (IFAULTL) and (IFAULTH) Test Circuit Pulse Gen PW = 10 μs Period = 5 ms + – 0.1 μF 5V – + FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS VDD2 13 + – 0.1 μF VE 0.1 μF 47 μF 0.1 μF 47 μF + – VO + – 30 V 3 kΩ 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 36. High Level Output Current (IOH) Test Circuit Pulse Gen PW = 4.99 ms Period = 5 ms + – 0.1 μF 5V – + FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS 0.1 μF + – VE + – 30 V VDD2 13 0.1 μF 47 μF 3 kΩ + – VO 9 0.1 μF 47 μF *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 37. Low Level Output Current (IOL) Test Circuit ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 16 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Test Circuits FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Test Circuits (Continued) A B + – 5V 0.1 μF FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS 0.1 μF VDD2 13 VO Switch A for VOH test Switch B for VOL test + – 100 mA pulsed 30 V B A 3 kΩ VE + – 0.1 μF 100 mA pulsed 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 38. High Level (VOH) and Low Level (VOL) Output Voltage Test Circuit A B 5V 0.1 μF + – FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS IDD1 Switch A for IDD1H test Switch B for IDD1L test VDD2 13 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 39. High Level (IDD1H) and Low Level (IDD1L) Supply Current Test Circuit A B 0.1 μF 5V + – FOD8318 IE VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS Switch A for IDD2H, ISH and IEH test Switch B for IDD2L, ISL and IEL test VDD2 13 0.1 μF VE + – IDD2 IS VO 0.1 μF 30 V + – 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 40. High Level (IDD2H), Low Level (IDD2L) Output Supply Current, High Level (ISH), Low Level (ISL) Source Current, VE High Level (IEH), and VE Low Level (IEL) Supply Current Test Circuit ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 17 5V + – VE 16 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VDESAT + – 0.1 μF FOD8318 1 ICHG/DSCHG 0.1 μF VE + – VDD2 13 VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS VRL VO RL 0.1 μF IOLF 3 kΩ 30 V + – 10 nF 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 41. Low Level Output Current During Fault Conditions (IOLF), Blanking Capacitor Charge Current (ICHG), Blanking Capacitor Discharging Current (IDSCHG), and DESAT Threshold (VDESAT) Test Circuit 0.1 μF 5V + – FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS VDD2 13 VO 0.1 μF DC Sweep 0 to 15 V (100 steps) Parameter Analyzer + – 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 42. Under-Voltage Lockout Threshold (VUVLO) Test Circuit F = 10 kHz DC = 50 % + – 0.1 μF 5V + – FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS 0.1 μF VE + – VDD2 13 VCL VO 0.1 μF 30 V + – RL 3 kΩ 10 nF 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 43. Propagation Delay (tPLH, tPHL), Pulse Width Distortion (PWD), Rise Time (tR), and Fall Time (tF) Test Circuit ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 18 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Test Circuits (Continued) LOW to HIGH + – 5V 0.1 μF + – FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS 100 pF 0.1 μF + – VE VDD2 13 VO 0.1 μF + – 30 V RL 3 kΩ VFAULT 10 nF 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 44. DESAT Sense (tDESAT(90 %), tDESAT(10 %)), DESAT Fault (tDESAT(FAULT)), and (tDESAT(LOW)) Test Circuit 0.1 μF 5V + – 3 kΩ – VE 16 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS Strobe 8 V 0.1 μF + – VE VDD2 13 VO 0.1 μF + – 30 V RL + VFAULT FOD8318 1 10 nF 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 45. Reset Delay (tRESET(FAULT)) Test Circuit 0.1 μF 5V + – FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS 0.1 μF VE + – VDD2 13 VO 3 kΩ + 0.1 μF VDD2** – 9 **1.0 ms ramp for tUVLO 10 μs ramp for tGP *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 46. Under-Voltage Lockout Delay (tUVLO) and Time to Good Power (tGP) Test Circuit ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 19 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Test Circuits (Continued) 5V 0.1 μF 1 kΩ FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 25 V 0.1 μF VDD2 13 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS SCOPE 10 Ω 300 pF 10 nF 9 VCM Floating GND *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 47. Common Mode Low (CML) Test Circuit at LED1 Off 5V FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS 25 V 0.1 μF 1 kΩ 300 pF Floating GND VDD2 13 9 0.1 μF SCOPE 10 Ω 10 nF VCM *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 48. Common Mode High (CMH) Test Circuit at LED1 On ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 20 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Test Circuits (Continued) FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Test Circuits (Continued) 5V 0.1 μF 1 kΩ SCOPE 300 pF FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS 25 V VDD2 13 0.1 μF 10 Ω 9 VCM 10 nF Floating GND *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 49. Common Mode High (CMH) Test Circuit at LED2 Off 5V 0.1 μF 1 kΩ SCOPE 300 pF FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 25 V 750 Ω VDD2 13 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS VCM 0.1 μF + – 9V 10 Ω 9 10 nF Floating GND *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 50. Common Mode Low (CML) Test Circuit at LED2 On ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 21 5V + – 0.1 μF FOD8318 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 0V 0.1 μF + – VDD2 13 0.1 μF 30 V + – ICLAMPL + 3 kΩ – 8 VLED1-* VSS Pulsed VCLAMP 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 51. Clamp Low Level Sinking Current (ICLAMPL) A S1 + – VE 16 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS B 5V FOD8318 1 0.1 μF 0.1 μF 0V + – VDD2 13 0.1 μF 30 V + – 3 kΩ 50 Ω + – Sweep from 3 V to VCLAMP_THRES 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Initially set S1 to A before connecting 3 V to clamp pin. Then switch to B before sweeping down to get the VCLAMP_THRES, clamping threshold voltage. Figure 52. Clamp Pin Threshold Voltage (VCLAMP) ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 22 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Test Circuits (Continued) VIN+ 2.5 V VIN– 0V 2.5 V tR tF 90 % 50 % 10 % VO tPLH tPHL Figure 53. Propagation Delay (tPLH, tPHL), Rise Time (tR), and Fall Time (tF) Timing Diagram RESET 50 % tDESAT (LOW) 7V VDESAT tRESET (FAULT) 50 % tDESAT (90 %) 90 % VO 10 % tDESAT (10 %) 50 % (0.5 x VDD1) FAULT tDESAT (FAULT) Figure 54. Definitions for Fault Reset Input (RESET), Desaturation Voltage Input (DESAT), Output Voltage (VO), and Fault Output (FAULT) Timing Waveforms ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 23 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Timing Diagrams Micro Controller 5 V + 0.1 μF 3 kΩ – 330 pF FOD8318 1 VIN+ VE 16 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 VDD2 13 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VCLAMP 10 8 VLED1-* VSS CBLANK 1 μF 10 μF 100 pF 1 kΩ + – 1 μF DDESAT + – VF VDD2 = 15 V + Q1 VCE Rg – Q2 9 3-Phase Output + VCE – *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 55. Recommended Application Circuit Functional Description The functional behavioral of FOD8318 is illustrated by the detailed internal schematic shown in Figure 56. This explains the interaction and sequence of internal and external signals, together with the timing diagrams. The relationship between the inputs and output are illustrated in the Figure 57. During normal operation, when no fault is detected, the FAULT output, which is an open-drain configuration, is latched to HIGH state. This allows the gate driver to be controlled by the input logic signal. 1. Non-Inverting and Inverting Inputs There are two CMOS/TTL-compatible inputs, VIN+ and VIN-, to control the IGBT in non-inverting and inverting configurations, respectively. When VIN- is set to LOW state, VIN+ controls the driver output, VO, in non-inverting configuration. When VIN+ is set to HIGH state, VIN- controls the driver output in inverting configuration. When a fault is detected, the FAULT output is latched to LOW state. This condition remains until the input logic is pulled to LOW and the RESET pin is also pulled LOW for a period longer than PWRESET. 250 μA 14 + – VLED+ VDD1 3 7 VIN+ 1 VIN– 2 FAULT Gate Drive Optocoupler 16 UVLO Comparator 6 – + 13 12 V 12 4 GND1 VLED1– VE VDD2 VS Delay 8 11 Q R S RESET DESAT VDESAT 5 Fault Sense Optocoupler VO 50x 5 μs Pulse Generator 1x 9 VSS 15 VLED2+ 10 + – VCLAMP 2V 25x Figure 56. Detailed Internal Schematic ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 24 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Application Information threshold voltage (VDESAT), and DESAT charge current (ICHG) as: A pair of PMOS and NMOS comprise the output driver stage, which facilitates close to rail-to-rail output swing. This feature allows a tight control of gate voltage during on-state and short-circuit condition. The output driver is typically to sink 2 A and source 2 A at room temperature. Due to the low RDS(ON) of the MOSFETs, the power dissipation is reduced as compared to those bipolar-type driver output stages. The absolute maximum rating of the output peak current, IO(PEAK), is 3 A; therefore the careful selection of the gate resistor, Rg, is required to limit the short-circuit current of the IGBT. tBLANK = CBLANK x VDESAT / ICHG With a recommended 100 pF DESAT capacitor, the nominal blanking time is: 100 pF x 7 V / 250 µA = 2.8 µs 4. “Soft” Turn-Off The soft turn-off feature ensures the safe turn off of the IGBT under fault conditions. This reduces the voltage spike on the collector of the IGBT. Without this, the IGBT would see a heavy spike on the collector and result in permanent damage to the device. As shown in Figure 56, gate driver output is influenced by signals from the photodetector circuitry, the UVLO comparator, and the DESAT signals. Under no-fault condition, normal operation resumes while the supply voltage is above the UVLO threshold, the output of the photodetector drives the MOSFETs of the output stage. 5. Under-Voltage Lockout Under-voltage detection prevents the application of insufficient gate voltage to the IGBT. This could be dangerous, as it would drive the IGBT out of saturation and into the linear operation where the losses are very high and quickly overheated. This feature ensures the proper operating of the IGBTs. The output voltage, VO, remains LOW regardless of the inputs as long as the supply voltage, VDD2 – VE, is less than VUVLO+. When the supply voltage falls below VUVLO- , VO goes LOW, as illustrated in Figure 59. The logic circuitry of the output stage ensures that the push-pull devices are never “ON” simultaneously. When the output of the photodetector is HIGH, the output, VO, is pulled to HIGH state by turning on the PMOS. When the output of the photodetector is LOW, VO is pulled to LOW state by turning on the NMOS. When VDD2 supply goes below VUVLO, which is the designated UVLO threshold at the comparator, VO is pulled down to LOW state regardless of photodetector output. 6. Active Miller Clamp Function An active Miller clamp feature allows the sinking of the Miller current to the ground or emitter of the IGBT during a high-dV/dt situation. Instead of driving the IGBT gate to a negative supply voltage to increase the safety margin, the device has a dedicated VCLAMP pin to control the Miller current. During turn-off, the gate voltage of the IGBT is monitored and the VCLAMP output is activated when the gate voltage goes below 2 V (relative to VSS). The Miller clamp NMOS transistor is then turned on and provides a low resistive path for the Miller current. This helps prevent a self-turn-on due to the parasitic Miller capacitor in power switches. The clamp voltage is VOL + 2.5 V maximum for a Miller current up to 1200 mA. In this way, the VCLAMP function does not affect the turnoff characteristic. It helps to clamp the gate to the LOW level throughout the turn-off time. During turn-on, where the input of the driver is activated, the VCLAMP function is disabled or opened. When desaturation is detected, VO turns off slowly as it is pulled LOW by the NMOS1X device. The input to the fault sense circuitry is latched to HIGH state and turns on the LED. When VO goes below 2 V, the NMOS50X device turns on again, clamping the IGBT gate firmly to VSS. The Fault Sense signal remains latched in the HIGH state until the LED of the gate driver circuitry turns off. 3. Desaturation Protection, FAULT Output Desaturation detection protection ensures the protection of the IGBT at short-circuit by monitoring the collectoremitter voltage of the IGBT in the half bridge. When the DESAT voltage goes up and reaches above the threshold voltage, a short-circuit condition is detected and the driver output stage executes a “soft” IGBT turn-off and is eventually driven LOW, as illustrated in Figure 58. The FAULT open-drain output is triggered active LOW to report a desaturation error. It is only cleared by activating active LOW by the external controller to the RESET input with the input logic is pulled to LOW. 7. Time to Good Power At initial power up, the LED is off and the output of the gate driver should be in the LOW state. Sometimes race conditions exist that causes the output to follow the VE (assuming VDD2 and VE are connected externally), until all of the circuits in the output IC have stabilized. This condition can result in output transitions or transients that are coupled to the driven IGBT. These glitches can cause the high-side and low-side IGBTs to conduct shoot-through current that may result in destructive damage to the power semiconductor devices. Fairchild has introduced a initial turn-on delay, generally called “time-to-good power”. This delay, typically 30 µs, is only The DESAT fault detector should be disabled for a short period (blanking time) before the IGBT turns on to allow the collector voltage to fall below DESAT threshold. This blanking period protects against false trigger of the DESAT while the IGBT is turning on. The blanking time is controlled by the internal DESAT charge current, the DESAT voltage threshold, and the external DESAT capacitor (capacitor between DESAT and VE pin). The nominal blanking time can be calculated using external capacitance (CBLANK), FAULT ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 25 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing 2. Gate Driver Output during the initial turn-on activation, LOW-to-HIGH transition at the output of the gate driver only occurs 30 µs after the VDD2 power is applied. VIN– VIN+ VO Figure 57. Input/Output Relationship Normal Operation VIN– Fault Condition Reset 0V 5V VIN+ 0V Blanking Time RESET 7V VDESAT VO FAULT Figure 58. Timing Relationship Among DESAT, FAULT, and RESET VIN– 5V VIN+ 0V VUVLO+ VUVLO– VDD2 – VE VO Figure 59. UVLO for Output Side ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 26 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing present during the initial power-up of the device. Once powered, the “time-to-good power” delay is determined by the delay of the UVLO circuitry. If the LED is “ON” Part Number Package Packing Method FOD8318 SO 16-Pin Tube (50 units per tube) FOD8318R2 SO 16-Pin Tape and Reel (750 units per reel) FOD8318V SO 16-Pin, DIN EN/IEC 60747-5-5 Option Tube (50 units per tube) FOD8318R2V SO 16-Pin, DIN EN/IEC 60747-5-5 Option Tape and Reel (750 units per reel) All packages are lead free per JEDEC: J-STD-020B standard. Marking Information 1 2 3 8318 V D X YY KK 4 6 5 J 8 7 Definitions ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 1 Fairchild logo 2 Device number, e.g., ‘8318’ for FOD8318 3 DIN EN/IEC60747-5-5 option (only appears on component ordered with this option) 4 Plant code, e.g., ‘D’ 5 Last-digit year code, e.g., ‘B’ for 2011 6 Two-digit work week ranging from ‘01’ to ‘53’ 7 Lot traceability code 8 Package assembly code, J www.fairchildsemi.com 27 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Ordering Information FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Reflow Profile Temperature (°C) TP 260 240 TL 220 200 180 160 140 120 100 80 60 40 20 0 Max. Ramp-up Rate = 3 °C/s Max. Ramp-down Rate = 6 °C/s tP Tsmax tL Preheat Area Tsmin ts 120 240 360 Time 25 °C to Peak Time (seconds) Profile Freature Pb-Free Assembly Profile Temperature Minimum (Tsmin) 150 °C Temperature Maximum (Tsmax) 200 °C Time (tS) from (Tsmin to Tsmax) 60–120 seconds Ramp-up Rate (tL to tP) 3 °C/second max. Liquidous Temperature (TL) 217 °C Time (tL) Maintained Above (TL) 60–150 seconds Peak Body Package Temperature 260 °C +0 °C / –5 °C Time (tP) within 5 °C of 260 °C 30 seconds Ramp-down Rate (TP to TL) 6 °C/second max. Time 25 °C to Peak Temperature ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 8 minutes max. www.fairchildsemi.com 28 NOTES: UNLESS OTHERWISE SPECIFIED A) DRAWING REFERS TO JEDEC MS-013, VARIATION AA. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS D) DRAWING CONFORMS TO ASME Y14.5M-1994 E) LAND PATTERN STANDARD: SOIC127P1030X275-16N F) DRAWING FILE NAME: MKT-M16FREV2 Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 www.fairchildsemi.com 29 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Package Dimensions P2 t Do E Po F d W W1 Bo Ao K1 P D1 Ko User Direction of Feed Symbol W Description Dimmension in mm Tape Width 24.00 ± 0.30 Tape Thickness 0.30 ± 0.05 Po Sprocket Hole Pitch 4.00 ± 0.10 Do Sprocket Hole Diameter D1 Pocket Hole Diameter 1.50 Min E Sprocket Hole Location 1.75 ± 0.10 F Pocket Location 11.50 ± 0.10 P Pocket Pitch 16.00 ± 0.10 Ao Pocket Dimension 11.10 ± 0.10 t 1.50 + 0.10 / -0 P2 2.00 ± 0.10 Bo 11.00 ± 0.10 Ko 3.20 ± 0.10 K1 2.70 ± 0.10 W1 d Cover Tape Width 21.30 ± 0.10 Cover Tape Thickness 0.05 ± 0.01 Max Component Rotation or Tilt ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2 10° www.fairchildsemi.com 30 FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing Carrier Tape Specification (SOIC-16L OPTO R2 & R2V Option) FOD8318 — 2.5 A Output Current, IGBT Drive Optocoupler with Active Miller Clamp, Desaturation Detection, and Isolated Fault Sensing 31 www.fairchildsemi.com ©2010 Fairchild Semiconductor Corporation FOD8318 Rev. 1.1.2