FOD8316 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Features Description ■ High Noise Immunity characterized by common mode The FOD8316 is an advanced 2.5A Output Current IGBT Drive Optocoupler, capable of driving most 1200V/ 150A IGBTs. It is ideally suited for fast switching driving of power IGBTs and MOSFETs used in motor control inverter applications and high performance power systems. It offers critical protection features necessary for preventing fault conditions that lead to destructive thermal runaway of IGBTs. ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ rejection – 35kV/µs Minimum Common Mode Rejection (Vcm = 1500Vpk) 2.5A peak output current driving capability for most 1200V/150A IGBT Optically isolated fault sensing feedback “Soft” IGBT turn-off Built-in IGBT protection – Desaturation detection – Under voltage lockout protection 1,414V (peak) working voltage rating 8,000V (peak) transient isolation voltage rating Wide supply voltage range from 15V to 30V – Use of P-Channel MOSFETs at output stage enables output voltage swing close to the supply rail (rail-to-rail output) 3.3V/5V, CMOS/TTL compatible inputs High Speed – 500ns max. propagation delay over full operating temperature range Extended industrial temperate range, -40°C to 100°C temperature range Safety and regulatory – UL1577, 4,243 VRMS for 1 min. – DIN EN/IEC 60747-5-5 RDS(ON) of 1Ω (typ.) offers lower power dissipation User configurable: inverting, non-inverting, auto-reset, auto-shutdown 8mm creepage and clearance distances It utilizes Fairchild’s patented coplanar packaging technology, Optoplanar®, and optimized IC design to achieve high noise immunity, characterized by high common mode rejection and power supply rejection specifications. It consists of an integrated gate drive optocoupler featuring low RDS(ON) CMOS transistors to drive the IGBT from rail to rail and an integrated high speed isolated feedback for fault sensing. The device is housed in a compact 16-pin small outline plastic package which meets the 8mm creepage and clearance requirements. Applications ■ Industrial inverter ■ Induction heating ■ Isolated IGBT drive ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing September 2012 VIN+ VIN– UVLO (VDD2 – VE) X X Active X X X DESAT Detected? FAULT VO X X Low Yes Low Low Low X X X X Low X High X X X Low High Low Not Active No High High Pin Definitions Pin # Name Description 1 VIN+ Non inverting gate drive control input 2 VIN– Inverting gate drive control input 3 VDD1 Positive input supply voltage (3V to 5.5V) 4 GND1 Input ground 5 RESET FAULT reset input 6 FAULT Fault output (open drain) 7 VLED1+ LED 1 anode (must be left unconnected) 8 VLED1- 9 VSS 10 VSS Output supply voltage (negative) 11 VO Gate drive output voltage LED 1 cathode (must be connected to ground) Output supply voltage (negative) Source of pull-up PMOS transistor 12 VS 13 VDD2 14 DESAT Desaturation voltage input 15 VLED2+ LED 2 anode (must be left unconnected) 16 VE Positive output supply voltage Output Supply Voltage/IGBT Emitter VIN+ 1 16 VE VIN– 2 15 VLED2+ VDD1 3 14 DESAT GND1 4 13 VDD2 RESET 5 12 VS FAULT 6 11 VO VLED1+ 7 10 VSS VLED1-* 8 9 VSS *Pin 8 (VLED1-) is internally connected to Pin 4 (GND1). ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 2 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Truth Table VLED1+ 7 Output IC VDD1 3 13 Input IC 12 VIN+ 1 VIN– 2 VDD2 VS FAULT 6 GND1 VLED1– Driver LED1 Gate Drive Optocoupler UVLO 11 4 8 Shield DESAT 9,10 14 RESET VO 5 Fault 16 LED2 VSS DESAT VE Fault Sense Optocoupler Shield 15 VLED2+ ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 3 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Block Diagram As per DIN EN/IEC 60747-5-5. This optocoupler is suitable for “safe electrical insulation” only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits. Symbol Parameter Min. Typ. Max. Unit Installation Classifications per DIN VDE 0110/1.89 Table 1 For Rated Mains Voltage < 150Vrms I–IV For Rated Mains Voltage < 300Vrms I–IV For Rated Mains Voltage < 450Vrms I–IV For Rated Mains Voltage < 600Vrms I–IV For Rated Mains Voltage < 1000Vrms I–III Climatic Classification 40/100/21 Pollution Degree (DIN VDE 0110/1.89) 2 CTI Comparative Tracking Index 175 VPR Input to Output Test Voltage, Method b, VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec., Partial Discharge < 5pC 2651 Vpeak Input to Output Test Voltage, Method a, VIORM x 1.5 = VPR, Type and Sample Test with tm = 60 sec.,Partial Discharge < 5 pC 2121 Vpeak VIORM Max Working Insulation Voltage 1,414 Vpeak VIOTM Highest Allowable Over Voltage 8000 Vpeak External Creepage 8 mm External Clearance 8 mm Insulation Thickness 0.5 mm Case Temperature 150 °C Input Power 100 mW Output Power 600 mW 109 Ω Safety Limit Values – Maximum Values Allowed in the Event of a Failure TCase PS,INPUT PS,OUTPUT RIO Insulation Resistance at TS, VIO = 500V ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 4 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Safety and Insulation Ratings Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Symbol Parameter TSTG Storage Temperature TOPR TJ Value Units -40 to +125 ºC Operating Temperature -40 to +100 ºC Junction Temperature -40 to +125 ºC 260 for 10 sec ºC 15 mA TSOL Lead Wave Solder Temperature (no solder immersion) IFAULT Fault Output Current Refer to page 27 for reflow temperature profile. Current(1) IO(PEAK) Peak Output VE – VSS Negative Output Supply Voltage(2) VDD2 – VE Positive Output Supply Voltage VO(peak) VDD2 – VSS VDD1 VIN+, VIN- and VRESET VFAULT VS A V -0.5 to 35 – (VE – VSS) V Gate Drive Output Voltage -0.5 to 35 V Output Supply Voltage -0.5 to 35 V Positive Input Supply Voltage -0.5 to 6 V Input Voltages -0.5 to VDD1 V Fault Pin Voltage -0.5 to VDD1 V VSS + 6.5 to VDD2 V VE to VE + 11 V 100 mW 600 mW Source of Pull-up PMOS Transistor Voltage DESAT Voltage VDESAT 3 0 to 15 Dissipation(3)(5) PDI Input Power PDO Output Power Dissipation(4)(5) Notes: 1. Maximum pulse width = 10µs, maximum duty cycle = 0.2%. 2. This negative output supply voltage is optional. It’s only needed when negative gate drive is implemented. Refer to “Dual Supply Operation – Negative Bias at Vss” on page 23. 3. No derating required across temperature range. 4. Derate linearly above 64°C, free air temperature at a rate of 10.2mW/°C 5. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings. Recommended Operating Conditions The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings. Symbol TA VDD1 VDD2 – VSS Parameter Ambient Operating Temperature Min. Max. Unit -40 +100 ºC Supply Voltage(6) 3 5.5 V Total Output Supply Voltage 15 30 V Input VE – VSS Negative Output Supply Voltage 0 15 V VDD2 – VE Positive Output Supply Voltage(6) 15 30 – (VE – VSS) V VSS + 7.5 VDD2 V VS Source of Pull-up PMOS Transistor Voltage Note: 6. During power up or down, it is important to ensure that VIN+ remains low until both the input and output supply voltages reaches the proper recommended operating voltages to avoid any momentary instability at the output state. See also the discussion in the “Time to Good Power” section on page 23. ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 5 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Absolute Maximum Ratings (TA = 25ºC unless otherwise specified) Apply over all recommended conditions, typical value is measured at TA = 25ºC Symbol Parameter Conditions Min. VISO Input-Output Isolation Voltage TA = 25ºC, R.H.< 50%, t = 1.0min, II-O ≤ 10µA, 50Hz(7)(8)(9) RISO Isolation Resistance VI-O = 500V(7) CISO Isolation Capacitance VI-O = 0V, Freq = Typ. Max. 4,243 1.0MHz(7) Units VRMS 1011 Ω 1 pF Notes: 7. Device is considered a two terminal device: Pins 1 to 8 are shorted together and Pins 9 to 16 are shorted together. 8. 4,243 VRMS for 1 minute duration is equivalent to 5,091 VRMS for 1 second duration. 9. The Input-Output Isolation Voltage is a dielectric voltage rating as per UL1577. It should not be regarded as an input-output continuous voltage rating. For the continuous working voltage rating refer to your equipment level safety specification or DIN EN/IEC 60747-5-5 Safety and Insulation Ratings Table. Electrical Characteristics Apply over all recommended conditions, typical value is measured at VDD1 = 5V, VDD2 – VSS = 30V, VE – VSS = 0V, TA = 25°C unless otherwise specified. Symbol Parameter Conditions VIN+L, VIN-L, VRESETL Logic Low Input Voltages VIN+H, VIN-H, VRESETH Logic High Input Voltages IIN+L, IIN-L, IRESETL Logic Low Input Currents VIN = 0.4V IFAULTL FAULT Logic Low Output Current VFAULT = 0.4V IFAULTH FAULT Logic High Output Current VFAULT = VDD1 High Level Output Current VO = VDD2 – 3V IOH Low Level Output Current Typ. Max. 0.8 2.0 -0.5 VO = VDD2 – 6V(10) IOL Min. VO = VSS + 3V Units Figure V V -0.001 mA 5.0 12.0 mA 1, 32 -40 0.002 µA 32 -1 -3 A 2, 7, 33 -2.5 1 A 3 VO = VSS + 6V(11) 2.5 90 185 VS – 1.0V VS – 0.5V A 3, 34 A IOLF Low Level Output Current During Fault Condition VO – VSS = 14V VOH High Level Output Voltage IO = –100mA(12)(13)(14) VOL Low Level Output Voltage IO = 100mA IDD1H High Level Supply Current IDD1L Low Level Supply Current IDD2H High Level Output Supply Current VO = Open(14) 1 3 mA IDD2L Low Level Output Supply Current VO = Open 0.8 2.8 mA 10, 11, 37 ISH High Level Source Current IO = 0mA 0.65 1.5 mA 37 ISL Low Level Source Current IO = 0mA 0.6 1.4 mA 37 IEL VE Low Level Supply Current -0.5 -0.2 mA 13, 37 IEH VE High Level Supply Current -0.5 -0.25 mA -0.13 -0.25 10 36 ICHG IDSCHG 230 mA V 5, 7, 35 0.1 0.5 V 6, 8, 35 VIN+ = VDD1 = 5.5V, VIN– = 0V 14 17 mA 9, 36 VIN+ = VIN- = 0V, VDD1 = 5.5V 2 3 mA Blanking Capacitor Charge Current VDESAT = 2V(14)(15) Blanking Capacitor Discharge Current VDESAT = 7V ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 -0.37 4, 38 mA 12, 38 mA 38 www.fairchildsemi.com 6 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Isolation Characteristics Apply over all recommended conditions, typical value is measured at VDD1 = 5V, VDD2 – VSS = 30V, VE – VSS = 0V, TA = 25°C unless otherwise specified. Symbol VUVLO+ VUVLOUVLOHYS VDESAT Parameter Conditions Under Voltage Lockout Threshold(14) VO > 5V @ 25°C Under Voltage Lockout Threshold Hysteresis DESAT Threshold(14) Min. VO < 5V @ 25°C Typ. Max. 11.5 13.5 Units Figure V 9 10 V @ 25°C 0.4 1.5 V VDD2 – VE > VULVO- , VO < 5V 6.0 7.0 9.0 V 15, 29, 39 16, 38 Notes: 10. Maximum pulse width = 10µs, maximum duty cycle = 0.2%. 11. Maximum pulse width = 4.99ms, maximum duty cycle = 99.8%. 12. VOH is measured with the DC load current in this testing (Maximum pulse width = 1ms, Maximum duty cycle = 20%).When driving capacitive loads, VOH will approach VDD as IOH approaches zero units. 13. Positive Output supply voltage (VDD2 – VE) should be at least 15V. This is to ensure adequate margin in excess of the maximum Under Voltage Lockout Threshold VUVLO+ of 13.5V. 14. When VDD2 – VE > VUVLO and output state VO of the FOD8316 is allowed to go high, the DESAT detection feature will be active and will provide the primary source of IGBT protection. UVLO is needed to ensure DESAT detection is functional. 15. The blanking time, tBLANK is adjustable by an external capacitor (CBLANK) where tBLANK = CBLANK * (VDESAT/ICHG) Switching Characteristics Apply over all recommended conditions, typical value is measured at VDD1 = 5V, VDD2 – VSS = 30V, VE – VSS = 0V, TA = 25°C unless otherwise specified. Symbol Parameter tPHL Propagation Delay Time to Logic Low Output(17) tPLH Propagation Delay Time to Logic High Output(18) PWD Pulse Width Distortion, | tPHL – tPLH|(19) PDD Skew Conditions Min. Rg = 10Ω, Cg = 10nF, f = 10kHz, Duty Cycle = 50%(16) Typ. Max. 300 500 ns 250 500 ns 50 300 ns 350 ns –350 Propagation Delay Difference Between Any Two Parts or Channels, ( tPHL – tPLH)(20) Units Figure 17, 18, 19, 20, 21, 22, 40, 48 tR Output Rise Time (10% – 90%) 34 ns tF Output Fall Time (90% – 10%) 34 ns 850 ns 23, 41 tDESAT(90%) DESAT Sense to 90% VO Delay(21) tDESAT(10%) (21) DESAT Sense to 10% VO Delay Rg = 10Ω, Cg = 10nF, VDD2 – VSS = 30V 2 3 µs 24, 26, 27, 41 5 µs 25, 41, 49 ns 41 µs 28, 42, 49 tDESAT(FAULT) DESAT Sense to Low Level FAULT Signal Delay(22) 1.8 tDESAT(LOW) DESAT Sense to DESAT Low Propagation Delay(23) 850 tRESET(FAULT) RESET to High Level FAULT Signal Delay(24) PWRESET RESET Signal Pulse Width tUVLO ON UVLO Turn On Delay(25) tUVLO OFF (26) UVLO Turn Off Delay ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 3 6 1.2 VDD2 = 20V in 1.0ms Ramp 40, 48 20 µs 4 µs 3 µs 29, 43 www.fairchildsemi.com 7 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Electrical Characteristics (Continued) Apply over all recommended conditions, typical value is measured at VDD1 = 5V, VDD2 – VSS = 30V, VE – VSS = 0V, TA = 25°C unless otherwise specified. Symbol tGP Parameter Conditions (27) VDD2 = 0 to 30V in 10µs Ramp Time to Good Power Min. Typ. Max. Units Figure 30 µs 30, 31, 43 | CMH | Common Mode Transient Immunity at Output High TA = 25ºC, VDD1 = 5V, VDD2 = 25V, VSS = Ground, VCM = 1500Vpk(28) 35 50 kV/µs 45, 46 | CML | Common Mode Transient Immunity at Output Low TA = 25ºC, VDD1 = 5V, VDD2 = 25V, VSS = Ground, VCM = 1500Vpk(29) 35 50 kV/µs 44, 47 Notes: 16. This load condition approximates the gate load of a 1200 V/150A IGBT. 17. tPHL propagation delay is measured from the 50% level on the falling edge of the input pulse(VIN+, VIN-) to the 50% level of the falling edge of the VO signal. Refer to Figure 48. 18. tPHL propagation delay is measured from the 50% level on the rising edge of the input pulse (VIN+, VIN-) to the 50% level of the rising edge of the VO signal. Refer to Figure 48. 19. PWD is defined as | tPHL – tPLH | for any given device. 20. The difference between tPHL and tPLH between any two FOD8316 parts under same operating conditions, with equal loads. 21. This is the amount of time the DESAT threshold must be exceeded before VO begins to go low. This is supply voltage dependent. See Figure 49. 22. This is the amount of time from when the DESAT threshold is exceeded, until the FAULT output goes low. See Figure 49. 23. This is the amount of time the DESAT threshold must be exceeded before VO begins to go low, and the FAULT output to go low. See Figure 49. 24. This is the amount of time from when RESET is asserted low, until FAULT output goes high. See Figure 49. 25. tUVLO ON UVLO Turn On Delay is measured from VUVLO+ threshold voltage of the output supply voltage (VDD2) to the 5V level of the rising edge of the VO signal. 26. tUVLO OFF UVLO Turn Off Delay is measured from VUVLO– threshold voltage of the output supply voltage (VDD2) to the 5V level of the falling edge of the VO signal. 27. tGP Time to Good Power is measured from 13.5V level of the rising edge of the output supply voltage (VDD2) to the 5V level of the rising edge of the VO signal. 28. Common mode transient immunity at output high state is the maximum tolerable negative dVCM/dt on the trailing edge of the common mode pulse, VCM, to assure that the output will remain in the high state (i.e., VO > 15 V or FAULT > 2 V). 29.Common mode transient immunity at output low state is the maximum positive tolerable dVCM/dt on the leading edge of the common mode pulse, VCM, to assure that the output will remain in a low state (i.e., VO < 1.0 V or FAULT < 0.8 V). ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 8 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Switching Characteristics (Continued) Figure 1. Fault Logic Low Output Current (IFAULTL) vs. Fault Logic Low Output Voltage (VFAULTL) Figure 2. Output High Current (IOH) vs. Temperature 7 IOH – OUTPUT HIGH CURRENT (A) IFAULTL – FAULT CURRENT (mA) 50 40 30 20 VDD1 = 5V VIN+ = 5V ILED2+ = 10mA TA = 25°C 10 0 0 1 2 3 4 6 5 VO = V DD2 – 6V 4 3 VO = V DD2 – 3V 2 1 VDD2 – V SS = 30V VDD1 = 5V 0 -40 -20 0 5 VFAULTL – FAULT VOLTAGE (V) 6 5 VO = V SS + 6V 4 3 VO = V SS + 3V 2 1 100 VDD2 – V SS = 30V VDD1 = 5V -20 0 20 40 60 80 TA = -40°C TA = 25°C 175 125 100 75 VDD2 – V SS = 30V VDD1 = 5V 50 25 0 100 TA = 100°C 150 5 10 15 20 25 30 VO – OUTPUT VOLTAGE (V) Figure 5. Output High Voltage (VOH–VDD2) vs. Temperature Figure 6. Output Low Voltage (VOL) vs. Temperature 0.1 0.25 IO = -650μA 0 VOL – OUTPUT LOW VOLTAGE (V) (VOH–VDD2) – HIGH OUTPUT VOLTAGE DROP (V) 80 200 TA – TEMPERATURE (°C) -0.1 IO = -100mA -0.2 -0.3 -0.5 -40 60 225 IOLF – LOW LEVEL OUTPUT CURRENT DURING FAULT CONDITIONS (mA) IOL – OUTPUT LOW CURRENT (A) 7 -0.4 40 Figure 4. Low Level Output Current (IOLF) vs. Output Voltage (VO) Figure 3. Output Low Current (IOL) vs. Temperature 0 -40 20 TA – TEMPERATURE (°C) VDD2 – V SS = 30V VDD1 = 5V VIN+ = 5V -20 0 20 40 60 80 0.15 IO = 100mA 0.10 0.05 0 -40 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 0.20 VDD2 – V SS = 30V VDD1 = 5V VIN+ = 0V -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) www.fairchildsemi.com 9 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Typical Performance Characteristics Figure 7. Output High Voltage (VOH) vs. Output High Current (IOH) 29 TA = -40°C 25°C 28 100°C 27 26 VDD2 – V SS = 30V VDD1 = 5V VIN+ = 5V 25 0 0.5 1.0 1.5 Figure 8. Output Low Voltage (VOL) vs. Output Low Current (IOL) 5 VOL – OUTPUT LOW VOLTAGE (V) VOH – OUTPUT HIGH VOLTAGE (V) 30 2.0 VDD2 – V SS = 30V VDD1 = 5V VIN+ = 0V 4 3 TA = 100°C 2 25°C -40°C 1 0 2.5 0 0.5 IOH – OUTPUT HIGH CURRENT (A) Figure 9. Supply Current (IDD1) vs. Temperature IDD2 – OUTPUT SUPPLY CURRENT (mA) IDD1 – SUPPLY CURRENT (mA) 15 2.5 IDD1H 10 5 IDD1L -20 0 20 40 60 80 1.2 IDD2H 1.0 0.8 IDD2L 0.6 VDD2 – V SS = 30V VDD1 = 5V VIN+ = 5V (IDD2H) or 0V (IDD2L) 0.4 -40 100 -20 0 TA – TEMPERATURE (°C) 20 40 60 80 100 TA – TEMPERATURE (°C) Figure 11. Output Supply Current (IDD2) vs. Output Supply Voltage (VDD2) Figure 12. Blanking Capacitor Charging Current (ICHG) vs. Temperature 1.2 -0.15 ICHG – BLANKING CAPACITOR CHARGING CURRENT (mA) IDD2 – OUTPUT SUPPLY CURRENT (mA) 2.0 1.4 VDD1 = 5.5V VIN+ = 5V (IDD1H) or 0V (I DD1L) VDD1 = 5V VIN+ = 5V (IDD2H) or 0V (IDD2L) 1.0 IDD2H 0.8 IDD2L 0.6 0.4 15 1.5 Figure 10. Output Supply Current (IDD2) vs. Temperature 20 0 -40 1.0 IOL – OUTPUT LOW CURRENT (A) 20 25 -0.20 -0.25 -0.30 -40 30 VDD2 – OUTPUT SUPPLY VOLTAGE (V) ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 VDD2 – V SS = 30V VDD1 = 5V VIN+ = 5V VDESAT = 0V to 6V -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) www.fairchildsemi.com 10 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Typical Performance Characteristics (Continued) Figure 13. Supply Current (IE) vs. Temperature Figure 14. Source Current (IS) vs. Output Current (IO) -0.10 3.0 IS – SOURCE CURRENT (mA) IE – SUPPLY CURRENT (mA) -0.15 IEL -0.20 IEH -0.25 -0.30 -0.35 VDD2 – V SS = 30V VDD1 = 5V VIN+ = 5V (IEH) / 0V (IEL) -0.40 -40 -20 0 20 40 60 80 2.5 2.0 1.5 1.0 0.5 0 100 -40°C 25°C 100°C VDD2 – V SS = 30V VDD1 = 5V VIN+ = 5V 0 0.5 TA – TEMPERATURE (°C) Figure 15. Under Voltage Lockout Threshold (VUVLO) vs. Temperature V UVLO – UNDER VOLTAGE LOCKOUT THRESHOLD (V) 1.0 1.5 2.0 IO – OUTPUT CURRENT (mA) Figure 16. DESAT Threshold (VDESAT) vs. Temperature 8.0 VDESAT – DESAT THRESHOLD (V) 15 V UVLO+ 10 V UVLO– 5 7.5 7.0 6.5 VDD2 – V SS = 30V VDD1 = 5V VIN+ = 5V VDD1 = 5V VIN+ = 5V 0 -40 -20 0 20 40 60 80 6.0 -40 100 -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) TA – TEMPERATURE (°C) Figure 18. Propagation Delay (tP) vs. Supply Voltage (VDD2) Figure 17. Propagation Delay (tP) vs. Temperature 0.5 0.45 tP – PROPAGATION DELAY (μs) tP – PROPAGATION DELAY (μs) 0.40 0.4 tPLH 0.3 tPHL 0.2 0.1 -40 VDD2 – V SS = 30V VDD1 = 5V f = 10kHz 50% Duty Cycle RL = 10Ω, CL = 10nF -20 0 20 40 60 80 tPLH 0.30 tPHL 0.25 0.20 0.15 0.10 15 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 0.35 VDD1 = 5V f = 10kHz 50% Duty Cycle RL = 10Ω, CL = 10nF 20 25 30 VDD2 – SUPPLY VOLTAGE (V) www.fairchildsemi.com 11 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Typical Performance Characteristics (Continued) Figure 20. Propagation Delay Time to Logic Low Output (tPHL) vs. Temperature Figure 19. Propagation Delay Time to Logic High Output (tPLH) vs. Temperature 0.35 VDD2 – V SS = 30V f = 10kHz 50% Duty Cycle RL = 10Ω, CL = 10nF tPHL – PROPAGATION DELAY (μs) tPLH – PROPAGATION DELAY (μs) 0.45 0.40 0.35 0.30 VDD1 = 4.5V VDD1 = 5.0V VDD1 = 5.5V 0.25 -40 -20 0 20 40 60 80 VDD2 – V SS = 30V f = 10kHz 50% Duty Cycle RL = 10Ω, CL = 10nF 0.30 0.25 0.20 VDD1 = 4.5V VDD1 = 5.0V VDD1 = 5.5V 0.15 -40 100 -20 0 TA – TEMPERATURE (°C) Figure 21. Propagation Delay (tP) vs. Load Capacitance (CL) VDD2 – V SS = 30V VDD1 = 5V f = 10kHz 50% Duty Cycle RL = 10Ω 0.35 tP – PROPAGATION DELAY (μs) tP – PROPAGATION DELAY (μs) 60 80 100 0.40 tPLH 0.30 tPHL 0.25 0 20 40 60 80 0.35 tPLH 0.30 tPHL 0.25 0.20 100 VDD2 – V SS = 30V VDD1 = 5V f = 10kHz 50% Duty Cycle CL = 10nF 0 10 CL – LOAD CAPACITANCE (nF) Figure 23. DESAT Sense to 90% VO (tDESAT(90%)) vs. Temperature 1.2 VDD2 – V SS = 30V VDD1 = 5V VIN+ = 5V RL = 10Ω, CL = 10nF 1.1 1.0 0.9 0.8 -40 -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 20 30 40 50 RL – LOAD RESISTANCE (Ω) tDESAT(10%) – DESAT SENSE TO 10% VO DELAY (μs) tDESAT(90%) – DESAT SENSE TO 90% VO DELAY (μs) 40 Figure 22. Propagation Delay (tP) vs. Load Resistance (RL) 0.40 0.20 20 TA – TEMPERATURE (°C) Figure 24. DESAT Sense to 10% VO Delay (tDESAT(10%)) vs. Temperature 3.0 VDD2 – V SS = 15 or 30V VDD1 = 5V VIN+ = 5V RL = 10Ω, CL = 10nF 2.5 VDD2 – V SS = 30V 2.0 VDD2 – V SS = 15V 1.5 1.0 -40 -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) www.fairchildsemi.com 12 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Typical Performance Characteristics (Continued) Figure 25. DESAT Sense to Low Fault Signal Delay (tDESAT(FAULT)) vs. Temperature 0.008 VDD2 – V SS = 30V VDD1 = 5V VIN+ = 5V RL = 10Ω, CL = 10nF 2.4 tDESAT(10%) – DESAT SENSE TO 10% VO tDESAT(FAULT) – DESAT SENSE TO LOW FAULT SIGNAL DELAY (μs) 2.6 2.2 VE – V SS = 0V VE – V SS = 15V 2.0 1.8 1.6 -40 -20 0 20 40 60 80 100 Figure 26. DESAT Sense to 10% VO Delay (tDESAT(10%)) vs. Load Capacitance (CL) VDD2 – V SS = 15V or 30V VDD1 = 5V VIN+ = 5V RL = 10Ω 0.006 VDD2 – V SS = 30V 0.004 0.002 0 VDD2 – V SS = 15V 0 5 Figure 27. DESAT Sense to 10% VO Delay (tDESAT(10%)) vs. Load Resistance (RL) 15 20 25 30 Figure 28. RESET to High Level FAULT Signal Delay (tRESET(FAULT)) vs. Temperature 0.0030 10 VDD2 – V SS = 15V or 30V VDD1 = 5V VIN+ = 5V CL = 10nF 0.0250 VDD2 – V SS = 30V 0.0020 VDD2 – V SS = 15V 0.0015 0.0010 10 20 30 40 50 9 VDD1 = 5.0V 6 VDD1 = 4.5V 5 4 -40 100 tGP – TIME TO GOOD POWER (μs) VDD2 = 20V VDD1 = 5V VIN+ = 5V f = 50Hz, 50% Duty Cycle tR = 1ms 6 tUVLO ON 4 tUVLO OFF 2 -20 0 20 40 60 80 0 20 40 60 80 100 Figure 30. Time to Good Power (tGP) vs. Supply Voltage (VDD2) VDD1 = 5V VIN+ = 5V f = 50Hz, 50% Duty Cycle 80 60 40 20 0 15 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 -20 TA – TEMPERATURE (°C) 10 0 -40 VDD1 = 5.5V 7 Figure 29. Under Voltage Lockout Threshold Delay (tUVLO) vs. Temperature 8 VDD2 – V SS = 30V VIN+ = 5V RL = 10Ω, CL = 10nF 8 RL – LOAD RESISTANCE (Ω) tUVLO – UNDER VOLTAGE LOCKOUT THRESHOLD DELAY (μs) 10 CL – LOAD CAPACITANCE (nF) tRESET(FAULT) – RESET TO HIGH LEVEL FAULT SIGNAL DELAY (μs) tDESAT(10%) – DESAT SENSE TO 10% VO DELAY (μs) TA – TEMPERATURE (°C) 20 25 30 VDD2 – SUPPLY VOLTAGE (V) www.fairchildsemi.com 13 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Typical Performance Characteristics (Continued) FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Typical Performance Characteristics (Continued) Figure 31. Time to Good Power (tGP) vs. Temperature tGP – TIME TO GOOD POWER (μs) 120 100 VDD2 = 15V to 30V VDD1 = 5V VIN+ = 5V f = 50Hz 50% Duty Cycle 80 60 40 20 0 -40 -20 0 20 40 60 80 100 TA – TEMPERATURE (°C) ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 14 + – 5V VFAULT FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS A 0.1μF 10mA 0.1μF – + IFAULT VFAULT = 0.4V for IFAULTL VDD2 13 9 Switch A closed for IFAULTL Switch A opened for IFAULTH VFAULT = 5.0V for IFAULTH *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 32. Fault Output Current (IFAULTL) and (IFAULTH) Test Circuit Pulse Gen PW = 10μs Period = 5ms + – 0.1μF 5V – + FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS VDD2 13 + – 0.1μF 0.1μF 47μF VE 0.1μF 47μF + – VO + – 30V 3kΩ 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 33. High Level Output Current (IOH) Test Circuit Pulse Gen PW = 4.99ms Period = 5ms + – 0.1μF 5V – + FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS 0.1μF + – VE + – 30V VDD2 13 0.1μF 47μF 3kΩ VO + – 9 0.1μF 47μF *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 34. Low Level Output Current (IOL) Test Circuit ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 15 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Test Circuits FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Test Circuits (Continued) A B 5V 0.1μF + – FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS 0.1μF VDD2 13 + – 100mA pulsed VO B A 3kΩ Switch A for VOH test Switch B for VOL test VE 0.1μF 30V + – 100mA pulsed 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 35. High Level (VOH) and Low Level (VOL) Output Voltage Test Circuit A B + – 5V 0.1μF FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS IDD1 Switch A for IDD1H test Switch B for IDD1L test VDD2 13 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 36. High Level (IDD1H) and Low Level (IDD1L) Supply Current Test Circuit A B 0.1μF 5V + – FOD8316 IE VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS Switch A for IDD2H, ISH and IEH test Switch B for IDD2L, ISL and IEL test VDD2 13 0.1μF VE + – IDD2 IS VO 0.1μF 30V + – 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 37. High Level (IDD2H), Low Level (IDD2L) Output Supply Current, High Level (ISH), Low Level (ISL) Source Current, VE High Level (IEH), and VE Low Level (IEL) Supply Current Test Circuit ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 16 5V + – VE 16 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VDESAT + – 0.1μF FOD8316 1 ICHG/DSCHG 0.1μF VE + – VDD2 13 VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS VRL VO RL 0.1μF IOLF 3K 30V + – 10nF 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 38. Low Level Output Current During Fault Conditions (IOLF), Blanking Capacitor Charge Current (ICHG), Blanking Capacitor Discharging Current (IDSCHG) and DESAT Threshold (VDESAT) Test Circuit 5V 0.1μF + – FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS VDD2 13 DC Sweep 0 to 15V (100 steps) Parameter Analyzer VO 0.1μF + – 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 39. Under Voltage Lockout Threshold (VUVLO) Test Circuit F = 10kHz DC = 50% + – 0.1μF 5V + – FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS 0.1μF VE + – VDD2 13 VCL VO RL 3K 0.1μF 30V + – 10nF 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 40. Propagation Delay (tPLH, tPHL), Pulse Width Distortion (PWD), Rise Time (tR) and Fall Time (tF) Test Circuit ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 17 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Test Circuits (Continued) Low to High + – 5V 0.1μF + – FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS 100pF + – VE VDD2 13 VO RL 3K VFAULT 0.1μF 0.1μF + – 30V 10nF 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 41. DESAT Sense (tDESAT(90%), tDESAT(10%)), DESAT Fault (tDESAT(FAULT)), and (tDESAT(LOW)) Test Circuit 0.1μF 5V + – 3K FOD8316 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 – 8 VLED1-* VSS Strobe 8V 0.1μF + – VE VDD2 13 VO RL + VFAULT VE 16 1 0.1μF + – 30V 10nF 9 *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 42. Reset Delay (tRESET(FAULT)) Test Circuit 0.1μF 5V + – FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS 0.1μF VE + – VDD2 13 VO + 3K 0.1μF VDD2** – 9 **1.0ms ramp for tUVLO 10μs ramp for tGP *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 43. Under Voltage Lockout Delay (tUVLO) and Time to Good Power (tGP) Test Circuit ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 18 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Test Circuits (Continued) 5V 0.1μF 1kΩ FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 25V 0.1μF VDD2 13 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1-* VSS SCOPE 10Ω 300pF 10nF 9 VCM Floating GND *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 44. Common Mode Low (CML) Test Circuit @ LED1 Off 5V FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 10Ω 8 VLED1-* VSS 10nF 25V 0.1μF VDD2 13 0.1μF 1kΩ 300pF Floating GND 9 SCOPE VCM *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 45. Common Mode High (CMH) Test Circuit @ LED1 On ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 19 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Test Circuits (Continued) FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Test Circuits (Continued) 5V 0.1μF FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 10Ω 8 VLED1-* VSS 10nF 25V VDD2 13 0.1μF 1kΩ SCOPE 300pF 9 VCM Floating GND *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 46. Common Mode High (CMH) Test Circuit @ LED2 Off 5V 0.1μF FOD8316 VE 16 1 VIN+ 2 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 750Ω 25V VDD2 13 0.1μF 1kΩ SCOPE 300pF 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 10Ω 8 VLED1-* VSS 10nF VCM 9 + – 9V Floating GND *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 47. Common Mode Low (CML) Test Circuit @ LED2 On ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 20 VIN+ 2.5V VIN– 0V 2.5V tR tF 90% 50% 10% VO tPLH tPHL Figure 48. Propagation Delay (tPLH, tPHL), Rise Time (tR) and Fall Time (tF) Timing Diagram RESET 50% 7V VDESAT tDESAT (LOW) tRESET (FAULT) 50% tDESAT (90%) 90% VO 10% tDESAT (10%) 50% (0.5 x VDD1) FAULT tDESAT (FAULT) Figure 49. Definitions for Fault Reset Input (RESET), Desaturation Voltage Input (DESAT), Output Voltage (VO) and Fault Output (FAULT) Timing Waveforms ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 21 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Timing Diagrams Micro Controller 5V + 1kΩ 1 VIN+ 2 VE 16 VIN– VLED2+ 15 3 VDD1 DESAT 14 4 GND1 VDD2 13 5 RESET VS 12 6 FAULT VO 11 7 VLED1+ VSS 10 8 VLED1- VSS 9 0.1μF – 330pF FOD8316 C2 1μF C3 10μF 100pF 100Ω + – C1 1μF DDESAT + – VF VDD2 = 15V + Q1 VCE Rg + – D1 VSS = –8V – 3-Phase Output Q2 + VCE – *Pin 8 (VLED1-) is internally connected to pin 4 (GND1). Figure 50. Recommended Application Circuit Functional Description The relationship between the inputs and output are illustrated in the Figure 52. The typical application circuit is shown in Figure 50 and the functional behavioral of the FOD8316 is illustrated by the detailed internal schematic shown in Figure 51. This helps explain the interaction and sequence of internal and external signals, together with the timing diagrams. 1. Non-Inverting and Inverting Inputs During normal operation, when no fault is detected, the FAULT output, which is an open-drain configuration, will be latched to high state. This allows the gate driver to be controlled by the input logic signal. There are two CMOS/TTL compatible inputs, VIN+ and VIN- to control the IGBT, in non-inverting and inverting configurations respectively. When VIN- is set to low, VIN+ controls the driver output, VO, in non-inverting configuration. When VIN+ is set to high, VIN- controls the driver output in inverting configuration. When a fault is detected, the FAULT output will be latched to low state. This condition will remain until the RESET pin is also pulled low for a period longer than PWRESET. While setting the RESET pin to a low state, the input pins must be pulled to low to ensure an output state (VIN+ is low or VIN- is high). 250μA + – VLED+ VDD1 3 7 VIN+ 1 VIN– 2 FAULT 14 Gate Drive Optocoupler 16 UVLO Comparator 6 – + 13 12V 12 4 GND1 VLED1– VE VDD2 VS Delay 8 11 Q R S RESET DESAT VDESAT 5 Fault Sense Optocoupler VO 50x 5μs Pulse Generator 1x 9,10 VSS 15 VLED2+ Figure 51. Detailed Internal Schematic ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 22 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Application Information 4. “Soft” Turn-Off A pair of PMOS and NMOS transistors made up the output driver stage, which facilitates close to rail-to-rail output swing. This feature allows a tight control of gate voltage during on-state and short circuit condition. The output driver is typically capable of sinking 2A and sourcing 2A at room temperature. Due to the low RDS(ON) of the MOSFETs, the power dissipation is reduced as compared to those bipolar-type driver output stages. The absolute maximum rating of the output peak current, IO(PEAK) is 3A, thus the careful selection of the gate resistor, Rg, is required to limit the short circuit current of the IGBT. The soft turn-off feature ensures the safe turn off of the IGBT under fault condition. This reduces the voltage spike on the collector of the IGBT. Without this, the IGBT would see a heavy spike on the collector and hence resulting in a permanent damage to the device when it’s turned off immediately. 5. Under Voltage Lockout Under voltage detection prevents the application of insufficient gate voltage to the IGBT. This could be dangerous, as it would drive the IGBT out of saturation and into the linear operation where the losses are very high and quickly overheated. This feature ensures the proper operating of the IGBTs. The output voltage, VO, remains low irregardless of the inputs as long as the supply voltage, VDD2 – VE, is less than VULVO+. When the supply voltage falls below VULVO- , VO will go low, as illustrated in Figure 54. As shown in Figure 51, the gate driver output is influenced by signals from the photodetector circuitry, the UVLO comparator and the DESAT signals. Under no fault condition, normal operation resumes while the supply voltage is above the UVLO threshold, the output of the photodetector will drive the MOSFETs of the output stage. 6. Time to Good Power At initial power up, the LED is off and the output of the gate driver should be in the low or off state. Sometimes race conditions exist that causes the output to follow the VD (assuming VDD2 and VE are connected externally), until all of the circuits in the output IC have stabilized. This condition can result in output transitions or transients that are coupled to the driven IGBT. These transients can cause the high and low side IGBTs to conduct shoot-through current that may result in destructive damage to the power semiconductor devices. Fairchild has introduced an initial turn-on delay which is generally regarded as “time to good power”. This delay, typically 30µs, is only present during the initial power-up of the device. Once powered, the “time to good power” delay is determined by the delay of the UVLO circuitry. If the LED is “ON” during the initial turn-on activation, low to high transition at the output of the gate driver will only occur 30µs after the VDD2 power is applied. The logic circuitry of the output stage will ensure that the push-pull devices will never be turned “ON” simultaneously. When the output of the photodetector is high, the output, VO will be pulled to high state by turning on the PMOS. When the output of the photodetector is low, VO will be pulled to low state by turning on the NMOS. When VDD2 supply goes below VUVLO, which is the designated ULVO threshold at the comparator, VO will be pulled down to low state regardless of photodetector output. When desaturation is detected, VO will turn off slowly as it is pulled low by the NMOS1X device, the input to the Fault Sense circuitry will be latched to high state and turns on the LED. When VO goes below 2V, the NMOS50X device turns on again, clamping the IGBT gate firmly to VSS. The Fault Sense signal will remain latched in the high state until the LED of the gate driver circuitry turns off. 7. Dual Supply Operation – Negative Bias at Vss 3. Desaturation Protection, FAULT Output The IGBT’s off-state noise immunity can be enhanced by providing a negative gate to emitter bias when the IGBT is in the off-state. This static off-state bias can be supplied by connecting a separate negative voltage source between the VE (pin 16) and VSS (pin 9 &10). Figure 51 illustrates the two distinct grounds. The primary ground reference is the IGBT’s emitter connection - VE, pin 16. The under-voltage threshold and desaturation voltage detection are referenced to the IGBT’s emitter (VE) ground. Desaturation detection protection ensures the protection of the IGBT at short circuit by monitoring the collectoremitter voltage of the IGBT in the half bridge. When the DESAT voltage goes up and reaches above the threshold voltage, a short circuit condition is detected and the driver output stage will execute a “soft” IGBT turn-off and will be eventually driven low. This sequence is illustrated in Figure 53. The FAULT open-drain output is triggered active low to report a desaturation error. It could only be cleared by activating active low by the external controller to the RESET input. The recommended application circuit, Figure 50, shows the interconnection of the VDD2 and VE supplies. The IGBT’s gate to emitter voltage is the absolute value sum of the VDD2 supply and the VSS reverse bias. The negative voltage supply at VSS appears at the gate drive input, VO, when the FOD8316 is in the low state. When The DESAT fault detector should be disabled for a short time period (blanking time) before the IGBT turns on to allow the collector voltage to fall below DESAT threshold. This blanking period protects against false trigger of the DESAT while the IGBT is turning on. ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 23 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing 2. Gate Driver Output Figure 50 shows the operation with a dual or split power supply. The Vss supply provides the negative gate bias, and VDD2 + VSS supplies power to the output IC. The VSS and VDD2 supplies require three power supply bypass capacitors. These capacitors provide the low equivalent series resistant (ESR) paths for the instantaneous gate charging and discharging currents. VIN– VIN+ VO Figure 52. Input/Output Relationship Normal Operation VIN– VIN+ RESET Fault Condition Reset 0V 5V 0V Blanking Time 7V VDESAT VO FAULT Figure 53. Timing Relationship Among Desatuation Voltage (DESAT), Fault Output (FAULT) and Fault Reset Input (RESET) ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 24 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Selecting capacitors with low ESR will optimize the available output current. C3 is a low ESR 1812 style, 10µF, multilayer ceramic capacitor. This capacitor is the primary filter for the Vss and VDD2 supplies. C1 and C2 are also low ESR capacitors. They provide the primary gate charge and discharge paths. The Schottky diode, D1, is connected between VE and VSS to protect against a reverse voltage greater than 0.5V. the input drives the output high, the output voltage, VO, will have the potential of the VDD2 and VSS. 5V VIN+ 0V VUVLO+ VUVLO– VDD2 – VE VO Figure 54. Under Voltage Lockout (UVLO) for Output Side ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 25 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing VIN– Part Number Package Packing Method FOD8316 SO 16-Pin Tube (50 units per tube) FOD8316R2 SO 16-Pin Tape and Reel (750 units per reel) FOD8316V SO 16-Pin, DIN EN/IEC 60747-5-5 option Tube (50 units per tube) FOD8316R2V SO 16-Pin, DIN EN/IEC 60747-5-5 option Tape and reel (750 units per reel) All packages are lead free per JEDEC: J-STD-020B standard. Marking Information 1 2 3 8316 V D X YY KK 4 6 5 J 8 7 Definitions 1 Fairchild logo 2 Device number, e.g., ‘8316’ for FOD8316 3 DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option) 4 Plant code, e.g., ‘D’ 5 Last digit year code, e.g., ‘B’ for 2011 6 Two digit work week ranging from ‘01’ to ‘53’ 7 Lot traceability code 8 Package assembly code, J ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 26 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Ordering Information FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Reflow Profile Temperature (°C) TP 260 240 TL 220 200 180 160 140 120 100 80 60 40 20 0 Max. Ramp-up Rate = 3°C/S Max. Ramp-down Rate = 6°C/S tP Tsmax tL Preheat Area Tsmin ts 120 240 360 Time 25°C to Peak Time (seconds) Profile Freature Pb-Free Assembly Profile Temperature Min. (Tsmin) 150°C Temperature Max. (Tsmax) 200°C Time (tS) from (Tsmin to Tsmax) 60–120 seconds Ramp-up Rate (tL to tP) 3°C/second max. Liquidous Temperature (TL) 217°C Time (tL) Maintained Above (TL) 60–150 seconds Peak Body Package Temperature 260°C +0°C / –5°C Time (tP) within 5°C of 260°C 30 seconds Ramp-down Rate (TP to TL) 6°C/second max. Time 25°C to Peak Temperature ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 8 minutes max. www.fairchildsemi.com 27 0.406 ± 0.10 (10.312 ± 0.254) RECOMMENDED LAND PATTERN 16 15 14 13 12 11 10 9 0.295 ± 0.010 (7.493 ± 0.254) 1 2 3 4 5 0.050 (1.27) 0.138 ± 0.005 (3.505 ± 0.127) 6 7 0.458 (11.63) 0.085 (2.16) 8 0.025 (0.64) 0.018 (0.457) 0.050 (1.27) 0.345 ± 0.100 (8.763 ± 0.254) 9° All leads to be coplanar ± 0.002 0.8° 0.025 Min. Dimensions in inches (millimeters) 0.408 ± 0.010 (10.363 ± 0.254) 0.008 ± 0.003 (0.203 ± 0.076) Standoff Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0 www.fairchildsemi.com 28 FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing Package Dimensions FOD8316 — 2.5A Output Current, IGBT Drive Optocoupler with Desaturation Detection and Isolated Fault Sensing 29 www.fairchildsemi.com ©2010 Fairchild Semiconductor Corporation FOD8316 Rev. 1.2.0