FREESCALE MCF54418CMJ250

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MCF54418
Rev. 8, 06/2012
MCF5441x
MAPBGA–256
17mm x 17mm
MAPBGA–196
12 mm x 12 mm
MCF5441x ColdFire
Microprocessor Data Sheet
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Version 4 ColdFire Core with EMAC and
MMU
Up to 385 Dhrystone 2.1 MIPS @ 250 MHz
8 KB instruction cache and 8 KB data cache
64 KB internal SRAM dual-ported to
processor local bus and other crossbar switch
masters
System boot from NOR, NAND, SPI flash,
EEPROM, or FRAM
Crossbar switch technology (XBS) for
concurrent access to peripherals or RAM
from multiple bus masters
64-channel DMA controller
SDRAM controller supporting full-speed
operation from a single x8 DDR2 component
up to 250 MHz
32-bit FlexBus external memory interface for
RAM, ROM, MRAM, and programmable
logic
USB 2.0 host controller
USB 2.0 host/device/On-the-Go controller
8-bit single data rate ULPI port usable by the
dedicated USB host module or the USB
host/device/OTG module
Dual 10/100 Ethernet MACs with hardware
CRC checking/generation, IEEE 1588-2002
support, and optional Ethernet switch
CPU direct-attached hardware accelerator for
DES, 3DES, AES, MD5, SHA-1, and
SHA-256 algorithms
Random number generator
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Enhanced Secure Digital host controller for
SD, SDHC, SDIO, MMC, and MMCplus
cards
Two ISO7816 smart card interfaces
Two FlexCAN modules
Six I2C bus interfaces with DMA support in
master mode
Two synchronous serial interfaces
Four 32-bit timers with DMA support
Four programmable interrupt timers
8-channel, 16-bit motor control PWM timer
Dual 12-bit ADCs with shared input channels
and multiple conversion trigger sources
Dual 12-bit DACs with DMA support
1-wire module with DMA support
NAND flash controller
Real-time clock with 32-kHz oscillator, 2 KB
standby SRAM, and battery backup supply
input
Up to four DMA-supported serial peripheral
interfaces (DSPI)
Up to ten UARTs with single-wire mode
support
Up to five external IRQ interrupts and 2
external DMA request/acknowledge pairs
Up to 16 processor local bus Rapid GPIO pins
Up to 87 standard GPIO pins
This document contains information on a new product. Specifications and information herein
are subject to change without notice.
© Freescale Semiconductor, Inc., 2011-2012. All rights reserved.
Table of Contents
1
2
3
4
MCF5441x family comparison . . . . . . . . . . . . . . . . . . . . . . . . .4
1.1 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Hardware design considerations . . . . . . . . . . . . . . . . . . . . . . .5
2.1 Power filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.2 Supply voltage sequencing . . . . . . . . . . . . . . . . . . . . . . .7
2.2.1 Power-up sequence . . . . . . . . . . . . . . . . . . . . . . .8
2.2.2 Power-down sequence . . . . . . . . . . . . . . . . . . . .8
2.3 Power consumption specifications . . . . . . . . . . . . . . . . .8
Pin assignments and reset states. . . . . . . . . . . . . . . . . . . . . . .9
3.1 Signal multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3.2 Pinout—196 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .19
3.3 Pinout—256 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .20
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .21
4.2 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .22
4.3 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.4 Static latch-up (LU) . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
4.5 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . .23
4.6 Output pad loading and slew rate . . . . . . . . . . . . . . . . .25
4.7 DDR pad drive strengths. . . . . . . . . . . . . . . . . . . . . . . .26
4.8 Oscillator and PLL electrical characteristics . . . . . . . . .26
4.9 Reset timing specifications . . . . . . . . . . . . . . . . . . . . . .28
4.10 FlexBus timing specifications . . . . . . . . . . . . . . . . . . . .28
4.11 NAND flash controller (NFC) timing specifications . . . .30
4.12 DDR SDRAM controller timing specifications . . . . . . . .33
4.13 USB transceiver timing specifications . . . . . . . . . . . . . .35
4.14 ULPI timing specifications. . . . . . . . . . . . . . . . . . . . . . .35
4.15 eSDHC timing specifications. . . . . . . . . . . . . . . . . . . . .36
4.15.1 eSDHC timing specifications . . . . . . . . . . . . . . .37
5
6
7
4.15.2 eSDHC electrical DC characteristics . . . . . . . .
4.16 SIM timing specifications . . . . . . . . . . . . . . . . . . . . . . .
4.16.1 General timing requirements . . . . . . . . . . . . . .
4.16.2 Reset sequence . . . . . . . . . . . . . . . . . . . . . . . .
4.16.3 Power-down sequence . . . . . . . . . . . . . . . . . . .
4.17 SSI timing specifications . . . . . . . . . . . . . . . . . . . . . . .
4.18 12-bit ADC specifications . . . . . . . . . . . . . . . . . . . . . .
4.19 12-bit DAC timing specifications . . . . . . . . . . . . . . . . .
4.20 mcPWM timing specifications . . . . . . . . . . . . . . . . . . .
4.21 I2C timing specifications . . . . . . . . . . . . . . . . . . . . . . .
4.22 Ethernet assembly timing specifications . . . . . . . . . . .
4.22.1 Receive signal timing specifications. . . . . . . . .
4.22.2 Transmit signal timing specifications . . . . . . . .
4.22.3 Asynchronous input signal timing
specifications . . . . . . . . . . . . . . . . . . . . . . . . . .
4.22.4 MDIO serial management timing
specifications . . . . . . . . . . . . . . . . . . . . . . . . . .
4.23 32-bit timer module timing specifications. . . . . . . . . . .
4.24 DSPI timing specifications . . . . . . . . . . . . . . . . . . . . . .
4.25 SBF timing specifications . . . . . . . . . . . . . . . . . . . . . .
4.26 1-Wire timing specifications. . . . . . . . . . . . . . . . . . . . .
4.27 General purpose I/O timing specifications. . . . . . . . . .
4.28 Rapid general purpose I/O timing specifications . . . . .
4.29 JTAG and boundary scan timing specifications . . . . . .
4.30 Debug AC timing specifications . . . . . . . . . . . . . . . . . .
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
38
39
39
40
41
43
44
45
45
46
47
47
48
48
49
49
52
53
53
53
54
56
57
57
58
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
2
Freescale Semiconductor
MCF5441x
JTAG
Version 4 ColdFire Core
8 KB
Instruction
Cache
8 KB
Data
Cache
EMAC
BDM
Hardware
Divide
CAU
MMU
RGPIO
64 KB
SRAM
PLL
Oscillator
PLL
2 Ethernet
Controllers
eDMA
USB Host
L2 Switch
Serial Boot
Facility
eSDHC
USB OTG
NAND Flash
Controller
Crossbar Switch (XBS)
Peripheral Bus Controller 1
Peripheral Bus Controller 0
FlexBus
Smart Card
ADC
2 DACs
1 Wire
mcPWM
RTC & kHz
Oscillator
RNG
EPORT
2 DSPIs
4 I2Cs
GPIO
6 UARTs
2 SSIs
2 FlexCANs
2 I2Cs
2 DSPIs
3 INTCs
4 UARTs
4 PITs
4 DMA
Timers
ADC
BDM
CAU
DAC
DSPI
eDMA
eSDHC
EMAC
EPORT
GPIO
I2 C
– Analog-to-digital converter
– Background debug module
– Cryptography acceleration unit
– Digital-to-analog
– DMA serial peripheral interface
– Enhanced direct memory access module
– Enhanced Secure Digital host controller
– Enhanced multiply-accumulate unit
– Edge port module
– General purpose input/output module
– Inter-Integrated Circuit
DDR2
Controller
Note: Each of the crossbar switch masters, the FlexBus
and SDRAM controller have access to peripheral
bus controller 0, which is not shown.
INTC
JTAG
mcPWM
PIT
PLL
RGPIO
RNG
RTC
SSI
USB OTG
– Interrupt controller
– Joint Test Action Group interface
– Motor control pulse width modulator
– Programmable interrupt timers
– Phase locked loop module
– Rapid GPIO
– Random number generator
– Real time clock
– Synchronous serial interface
– Universal Serial Bus On-the-Go controller
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
3
MCF5441x family comparison
1
MCF5441x family comparison
Table 1. MCF5441x family configurations
Module
MCF54410
MCF54415
MCF54416
MCF54417
MCF54418
Version 4 ColdFire core with EMAC (enhanced
multiply-accumulate unit) and MMU (memory
management unit)





Cryptography acceleration unit (CAU)
—
—

—

Core (system) and SDRAM clock
up to 250 MHz
Peripheral clock
(Core clock  2)
up to 125 MHz
External bus (FlexBus) clock
up to 100 MHz
Performance (Dhrystone 2.1 MIPS)
up to 385
Static RAM (SRAM)
64 KB
Independent data/instruction cache
8 KB each
USB 2.0 Host controller
—




USB 2.0 Host/Device/On-the-Go controller





UTMI+ Low Pin Interface (ULPI) for external
high-speed USB PHY
—




10/100 Mbps Ethernet controller with IEEE 1588
support
1
2
2
2
2
Level 2 IEEE 1588-compliant 3-port Ethernet
switch
—
—
—


Enhanced Secure Digital host controller (eSDHC)





Smart card/Subscriber Identity Module (SIM)
—
2 ports
2 ports
2 ports
2 ports
UARTs
6
10
10
10
10
DSPI
3
4
4
4
4
CAN 2.0B controllers
1
2
2
2
2
I C
4
6
6
6
6
Synchronous serial interface (SSI)
1
2
2
2
2
12-bit ADC
—




12-bit DAC
—
2
2
2
2
32-bit DMA timers
4
4
4
4
4
Periodic interrupt timers (PIT)
4
4
4
4
4
Motor control PWM timer (mcPWM)
—
8 channel
8 channel
8 channel
8 channel
64-channel DMA controller





Real-time clock with 2 KB standby RAM and
battery back-up input





DDR2 SDRAM controller





FlexBus external memory controller





2
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
4
Freescale Semiconductor
Hardware design considerations
Table 1. MCF5441x family configurations (continued)
Module
MCF54410
MCF54415
MCF54416
MCF54417
MCF54418





1-Wire interface





Serial boot facility





Watchdog timer





Interrupt controllers (INTC)
3
3
3
3
3
Edge port module (EPORT)
3 IRQs
5 IRQs
5 IRQs
5 IRQs
5 IRQs
Rapid GPIO pins
9
16
16
16
16
General-purpose I/O (GPIO) pins
48
87
87
87
87





NAND flash controller
®
®
JTAG - IEEE 1149.1 Test Access Port
Package
1.1
196
MAPBGA
256
MAPBGA
Ordering information
Table 2. Orderable part numbers
Freescale Part
Number
Description
Package
MCF54410CMF250
MCF54410 Microprocessor
196 MAPBGA
MCF54415CMJ250
MCF54415 Microprocessor
MCF54416CMJ250
MCF54416 Microprocessor
Speed
Temperature
250 MHz
–40 to +85C
256 MAPBGA
MCF54417CMJ250
MCF54417 Microprocessor
MCF54418CMJ250
MCF54418 Microprocessor
2
Hardware design considerations
2.1
Power filtering
To further enhance noise isolation, an external filter is strongly recommended for the analog VDD pins (VDDA_PLL and
VDDA_DAC_ADC). The filter shown in Figure 1 should be connected between the board 3.3 V (nominal) supply and the
analog pins. The resistor and capacitors should be placed as close to the dedicated analog VDD pin as possible. The 10  resistor
in the given filter is required.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
5
Hardware design considerations
10 
VDD_OSC_A_PLL
EVDD Pin
1 µF
0.1 µF
VSS_OSC
100 MHz
GND
Figure 1. Oscillator/PLL/DAC power filter
Figure 2 shows an example for isolating the ADC power supply from the I/O supply (EVDD) and ground. Note that in this
power supply the 10  resistor is replaced by a 0  resistor. This will reduce the IR drop into the ADC, limiting additional gain
error.
0
Board 3.3 V
supply
VDDA_ADC
10 µF
0.1 µF
GND
Figure 2. ADC power filter
Figure 3 shows an example for bypassing the internal core digital power supply for the MPU. This bypass should be applied to
as many IVDD signals as routing allows. Each one should be placed as close to the ball as possible.
Board 1.2 V
supply
IVDD
1 µF
0.1 µF
GND
Figure 3. IVDD power filter
Figure 4 shows an example for bypassing the external pad ring digital power supply for the MPU. This bypass should be applied
to as many EVDD signals as routing allows. Each one should be placed as close to the ball as possible.
Board 3.3 V
supply
EVDD
1 µF
0.1 µF
GND
Figure 4. EVDD power filter
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
6
Freescale Semiconductor
Hardware design considerations
Figure 5 shows an example for bypassing the FlexBus power supply for the MPU. This bypass should be applied to as many
FB_VDD signals as routing allows. Each one should be placed as close to the ball as possible.
Board 1.8–3.3 V
supply
FB_VDD
1 µF
0.1 µF
GND
Figure 5. FB_VDD power filter
2.2
Supply voltage sequencing
Figure 6 shows requirements in the sequencing of the I/O VDD (EVDD), FlexBus VDD (FBVDD), SDRAM VDD (SDVDD), PLL
VDD (VDD_OSC_A_PLL), and internal logic/core VDD (IVDD).
EVDD/FBVDD (3.3V)
3.3V
DC Power Supply Voltage
Supplies stable
2.5V
SDVDD (2.5V — DDR)
1.8V
SDVDD/FBVDD (1.8V — DDR2)
1.5V
IVDD, VDD_OSC_A_PLL
0
Time
Notes:
1
Input voltage must not be greater than the supply voltage (EVDD, FBVDD, SDVDD, IVDD, or PVDD) by more
than 0.5V at any time, including during power-up.
2
Use 25 V/millisecond or slower rise time for all supplies.
Figure 6. Supply voltage sequencing and separation cautions
The relationships between FBVDD, SDVDD and EVDD are non-critical during power-up and power-down sequences. FBVDD
(1.8 – 3.3V), SDVDD (2.5V or 1.8V) and EVDD are specified relative to IVDD.
NOTE
All I/O VDD pins must be powered on when the device is functioning, except when in
standby mode.
In standby mode, all I/O VDD pins, except VSTBY_RTC (battery), can be switched off.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
7
Hardware design considerations
2.2.1
Power-up sequence
If EVDD/FBVDD/SDVDD are powered up with the IVDD at 0 V, the sense circuits in the I/O pads cause all pad output drivers
connected to the EVDD/FBVDD/SDVDD to be in a high impedance state. There is no limit on how long after
EVDD/FBVDD/SDVDD powers up before IVDD must power up. IVDD should not lead the EVDD, FBVDD, or SDVDD by more
than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the
power supplies should be slower than 25 V/millisecond to avoid turning on the internal ESD protection clamp diodes.
2.2.2
Power-down sequence
If IVDD/PVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state.
There is no limit on how long after IVDD and PVDD power down before EVDD, FBVDD, or SDVDD must power down. IVDD
should not lag EVDD, FBVDD, or SDVDD going low by more than 0.4 V during power down or there will be undesired high
current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.
The recommended power down sequence is as follows:
1.
2.
2.3
Drop IVDD/PVDD to 0 V.
Drop EVDD/FBVDD/SDVDD supplies.
Power consumption specifications
Table 3. Estimated power consumption specifications
Characteristic
Core operating supply current (nominal 1.2 V)1
Run mode
Wait mode
Doze mode
Stop00 mode
Stop01 mode
Stop02 mode
Stop03 mode
Symbol
Unit
127
33
32
9.3
9.2
3.6
3.4
mA
80
49
42
40
28
mA
3
15
15
mA
IVDD
FlexBus operating supply current
Run mode (application dependent)
Wait mode
Doze mode
Stop00 mode
Stop01, Stop02, Stop03 mode
FBVDD
SDRAM operating supply current (DDR2 at 1.8 V)
Isys(DQ) [8, 2DQS]
Isys(WR) [8, 2DQS]
Isys(RD) [8, 2DQS]
SDRAM input reference current
Isys(REF)
SDRAM termination current
Isys(termRD)
SDVDD
SDVREF
1.3
SDVTT
41
Total SDIDD MPU side2
Oscillator/PLL operating supply current (nominal 3.3 V)
Run, Wait, Doze, Stop00, Stop01 mode
Stop02 mode
Stop03 mode
Typical
75
VDD_OSC_A_PLL
10
6
1
mA
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
8
Freescale Semiconductor
Pin assignments and reset states
Table 3. Estimated power consumption specifications (continued)
Characteristic
Symbol
External I/O pad operating supply current (nominal 3.3 V)
EVDD
USB operating supply current (nominal 3.3 V)
VDD_USBO,
VDD_USBH
ADC operating supply current (nominal 3.3 V)
Speed mode 00
Speed mode 01
VDDA_ADC
DAC operating supply current (nominal 3.3 V)
VDDA_DAC_ADC
RTC standby supply current
ISTBY
Typical
Unit
—3
mA
30
mA
14
22
mA
11
mA
17
A
VSTBY_RTC
1
Current measured at maximum system clock frequency, all modules active, and default drive
strength with matching load.
2 DDR2 interface power is estimated from the Micron DDR2 data sheet. The numbers given in this
table do not include the actual power consumption of the memory itself. The current drawn by the
memory needs to be added to the values in this table and may be several hundred mA.
3 EVDD values depend on the application, with the restrictions that any single pin cannot exceed
25 mA and that the total power does not exceed the thermal characteristics.
3
Pin assignments and reset states
3.1
Signal multiplexing
The following table lists all the MCF5441x pins grouped by function. The Dir column is the direction for the primary function
of the pin only. Refer to the following sections for package diagrams. For a more detailed discussion of the MCF5441x signals,
consult the MCF5441x Reference Manual (MCF54418RM).
NOTE
In this table and throughout this document a single signal within a group is designated
without square brackets (i.e., FB_AD23), while designations for multiple signals within a
group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two
bracketed numbers when these numbers are separated by a colon.
NOTE
The primary functionality of a pin is not necessarily its default functionality. Most pins that
are muxed with GPIO default to their GPIO functionality. See the following table for a list
of the exceptions.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
9
Pin assignments and reset states
Table 4. Special-case default signal functionality
Pin
Default signal
FB_CLK, FB_OE, FB_R/W,
FB_BE/BWE[1:0],
FB_CS[5:4]
FB_CLK, FB_OE, FB_R/W,
FB_BE/BWE[1:0], FB_CS[5:4]
FB_ALE
FB_ALE or FB_TS
(depending on RCON[3])
FB_BE/BWE3
Boot from NFC, NF_ALE.
Otherwise, FB_BE/BWE3.
FB_BE/BWE2
Boot from NFC, NF_CLE.
Otherwise, FB_BE/BWE2.
FB_CS1
Boot from NFC, NFC_CE.
Otherwise, GPIO.
FB_CS0
Boot from FlexBus, FB_CS0.
Otherwise, GPIO.
FB_TA
Boot from NFC, NFC_R/B.
Otherwise, FB_TA.
ALLPST, PST[3:0],
DDATA[3:0]
ALLPST, PST[3:0], DDATA[3:0]
NOTE
While most modules and functionalities between the 196 and 256 MAPBGA package are
the same, the following modules have been removed from 196 MAPBGA for pin space:
UART2, UART6, UART9, PWM, SSI1, SIM1, USB HOST, IRQ6, IRQ3, IRQ2,
FLEXCAN1, I2C1, ADC, DAC.
Other modifications to the 196 MAPBGA package are:
•
•
•
SDRAMC — One address line, SD_A14, is removed.
SDHC — Number of data lines for eSDHC have been reduced to 4 instead of 8.
MAC — Only MAC0_RMII mode is implemented.
Pullup (U)1
Pulldown (D)
Direction2
Voltage domain
Pad type3
196 MAPBGA
256 MAPBGA
Table 5. MCF5441x Signal information and muxing
RESET
—
—
—
U
I
EVDD
ssr
K14
K15
RSTOUT
—
—
—
—
O
EVDD
msr
P12
L16
—
—
4
I
EVDD
ae
G14
G16
Signal name
GPIO
Alternate 1
Alternate 2
Reset
Clock
EXTAL/
RMII_REF_CLK
—
—
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
10
Freescale Semiconductor
Pin assignments and reset states
Signal name
GPIO
Alternate 1
Alternate 2
Pullup (U)1
Pulldown (D)
Direction2
Voltage domain
Pad type3
196 MAPBGA
256 MAPBGA
Table 5. MCF5441x Signal information and muxing (continued)
XTAL
—
—
—
—
O
EVDD
ae
H14
H16
—
—
I
EVDD
msr
G5,H5
K5, L5
—
—
I/O
FBVDD
fsr
A10, A9,
B9, C8, A9,
Mode selection
BOOTMOD[1:0]
—
—
FlexBus
—
FB_AD[31:24]/
NFC_IO[15:8]5
—
B9, C9, A8, B8, D8, A8,
B8, C8, A7
FB_AD[23:16]/
NFC_IO[7:0]5
—
—
—
—
I/O
FBVDD
fsr
D7, B7
B7, C7, C6, C7, A7, D6,
B6, A6, A5, A6, B6, D5,
FB_AD[15:10]
—
—
—
—6
FB_AD[9:8]
—
—
—
U7
FB_AD[7:0]
—
—
—
—
I/O
FBVDD
fsr
I/O
FBVDD
fsr
I/O
FBVDD
fsr
B5, A4
C6, A5
C5, A3, B4,
B5, A4, A3,
C4, B3, A2
D4, B4, C5
B2, C3
C4, B3
D4, B1, C2, C3, E4, D3,
D3, C1, D2, E3, A2, B2,
E3, D1
C2, F3
FB_ALE
PA7
FB_TS
—
—
O
FBVDD
fsr
E2
D2
FB_OE/
NFC_RE
PA6
FB_TBST/
NFC_RE
—
—
O
FBVDD
fsr
H1
F1
FB_R/W/
NFC_WE
PA5
—
—
—
O
FBVDD
fsr
H2
G2
FB_TA
PA4
—
NFC_R/B
U8
O
FBVDD
fsr
H3
H3
FB_BE/BWE3
PA3
FB_CS3
FB_A1/
NFC_ALE9
—
O
FBVDD
fsr
F3
C1
FB_BE/BWE2
PA2
FB_CS2
FB_A0/
NFC_CLE10
—
O
FBVDD
fsr
E1
E2
FB_BE/BWE[1:0]
PA[1:0]
FB_TSIZ[1:0]
—
—
O
FBVDD
fsr
F2, F1
D1, F4
FB_CLK
PB7
—
—
—
O
FBVDD
fsr
G1
G1
FB_CS5
PB6
DACK1
—
—
O
FBVDD
fsr
—
F2
FB_CS4
PB5
DREQ1
—
—
O
FBVDD
fsr
—
B1
FB_CS1
PB4
—
NFC_CE
—
O
FBVDD
fsr
G3
E1
FB_CS0
PB3
—
—
—
O
FBVDD
fsr
G2
G3
I2C 0
I2C0_SCL
PB2
UART8_TXD
CAN0_TX
—
I/O
EVDD
ssr
H12
G15
I2C0_SDA
PB1
UART8_RXD
CAN0_RX
—
I/O
EVDD
ssr
G12
G14
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
11
Pin assignments and reset states
Pullup (U)1
Pulldown (D)
Direction2
Voltage domain
Pad type3
196 MAPBGA
256 MAPBGA
Table 5. MCF5441x Signal information and muxing (continued)
CAN1_TX
PB0
UART9_TXD
I2C1_SCL
—
I/O
EVDD
ssr
—
D14
CAN1_RX
PC7
UART9_RXD
I2C1_SDA
—
I/O
EVDD
ssr
—
D15
—
O
SDVDD
st_dec
—
P6
Signal name
GPIO
Alternate 1
Alternate 2
FlexCAN 1
SDRAM controller
SD_A14
—
—
—
ap
SD_A[13:0]
—
—
—
—
O
SDVDD
st_dec P3, M1, M3, R4, R1, R3,
ap
L2, L1, N4,
N4, P3, T4,
M2, P2, L3, R2, T2, N3,
L4, N1, N2, P5, P4, N5,
SD_BA[2:0]
—
—
—
—
O
SDVDD
st_dec
K1, N3
P2, T3
M6, J4, P4
P7, N6, R5
K4
N8
N6
R7
ap
SD_CAS
—
—
—
—
O
SDVDD
st_dec
ap
SD_CKE
—
—
—
—
O
SDVDD
st_dec
ap
SD_CLK
—
—
—
—
O
SDVDD
st_ck
P6
T5
SD_CLK
—
—
—
—
O
SDVDD
st_ck
P7
T6
SD_CS
—
—
—
—
O
SDVDD
st_dec
M5
N7
P11, M10,
T12, R11,
N10, M9,
T11, R10,
P10, M8,
N9, T10,
N8, M7
P9, R9
ap
SD_D[7:0]
—
—
—
—
I/O
SDVDD
st_odt
SD_DM
—
—
—
—
O
SDVDD
st_odt
N7
T7
SD_DQS
—
—
—
—
I/O
SDVDD
st_dqs
P8
T8
SD_DQS
—
—
—
—
I/O
SDVDD
st_dqs
P9
T9
SD_ODT
—
—
—
—
O
SDVDD
st_dec
P5
P8
M4
R6
N5
R8
ap
SD_RAS
—
—
—
—
O
SDVDD
st_dec
ap
SD_WE
—
—
—
—
O
SDVDD
st_dec
ap
SD_VREF
—
—
—
—
—
SDVDD
st_vref
N9
P10
SD_VTT
—
—
—
—
—
SDVDD
st_vtt
L8
N10
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
12
Freescale Semiconductor
Pin assignments and reset states
196 MAPBGA
256 MAPBGA
Alternate 2
Pad type3
Alternate 1
Voltage domain
GPIO
Direction2
Signal name
Pullup (U)1
Pulldown (D)
Table 5. MCF5441x Signal information and muxing (continued)
—
I
EVDD
ssr
G10
F12
—
I
EVDD
ssr
—
N1
External interrupts port
IRQ7
PC6
—
—
11
IRQ6
PC5
—
USB_CLKIN
IRQ4
PC4
DREQ0
—
—
I
EVDD
ssr
E11
F14
IRQ3
PC3
DSPI0_PCS3
USBH_VBUS_EN
—
I
EVDD
ssr
—
M1
IRQ2
PC2
DSPI0_PCS2
USBH_VBUS_OC
—12
I
EVDD
ssr
—
M2
IRQ1
PC1
—
—
—
I
EVDD
ssr
E13
F13
—
I/O
VDD_
ae
B13
A14
ae
A13
B14
ae
—
A15
ae
—
B15
ae
—
K3
ae
—
H2, J3, G4
ae
—
K4
ae
—
J2, J1, H1
USB On-the-Go
USBO_DM
—
—
—
USB0
USBO_DP
—
—
—
—
I/O
VDD_
USB0
USB host
USBH_DM
—
—
—
—
I/O
VDD_
USBH
USBH_DP
—
—
—
—
I/O
VDD_
USBH
ADC
ADC_IN7/
DAC1_OUT
—
—
—
—
I
VDDA_
DAC_
ADC
ADC_IN[6:4]
—
—
—
—
I
VDDA_
ADC
ADC_IN3/
DAC0_OUT
—
—
—
—
I
VDDA_
DAC_
ADC
ADC_IN[2:0]
—
—
—
—
I
VDDA_
ADC
Real time clock
RTC_EXTAL
—
—
—
—
4
I
VSTBY
ae
B14
B16
RTC_XTAL
—
—
—
—
O
VSTBY
ae
C14
C16
—
I/O
EVDD
msr
K3
L1
DSPI0/SBF13
DSPI0_PCS1/
SBF_CS
PC0
—
—
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
13
Pin assignments and reset states
Signal name
GPIO
Alternate 1
Alternate 2
Pullup (U)1
Pulldown (D)
Direction2
Voltage domain
Pad type3
196 MAPBGA
256 MAPBGA
Table 5. MCF5441x Signal information and muxing (continued)
DSPI0_PCS0/SS
PD7
I2C3_SDA
SDHC_DAT3
—
I/O
EVDD
msr
J1
K2
DSPI0_SCK/
SBF_CK
PD6
I2C3_SCL
SDHC_CLK
—
I/O
EVDD
msr
J3
L2
DSPI0_SIN/
SBF_DI
PD5
UART3_RXD
SDHC_CMD
U14
I
EVDD
msr
K2
L3
DSPI0_SOUT/
SBF_DO
PD4
UART3_TXD
SDHC_DAT0
—
O
EVDD
msr
J2
K1
—
I/O
EVDD
ssr
M11
N11
One wire
OW_DAT
RGPIO0/PD3
DACK0
—
DMA timers
T3IN/PWM_EXTA3
RGPIO1/PD2
T3OUT
USBO_VBUS_EN/
ULPI_DIR15
—
I
EVDD
msr
G13
G13
T2IN/PWM_EXTA2
RGPIO2/PD1
T2OUT
SDHC_DAT2
—
I
EVDD
msr
J12
H14
T1IN/PWM_EXTA1
RGPIO3/PD0
T1OUT
SDHC_DAT1
—
I
EVDD
msr
H13
H13
USBO_VBUS_OC/
ULPI_NXT16
—17
I
EVDD
msr
J13
H15
T0IN/PWM_EXTA0
RGPIO4/PE7
T0OUT
UART 2
UART2_CTS
RGPIO14/PE6
UART6_TXD
SSI1_BCLK
—
I
EVDD
msr
—
M4
UART2_RTS
RGPIO15/PE5
UART6_RXD
SSI1_FS
—
O
EVDD
msr
—
M3
UART2_RXD
PE4
PWM_A3
SSI1_RXD
—
I
EVDD
msr
—
P1
—
18
I/O
EVDD
msr
—
N2
UART2_TXD
PE3
PWM_B3
SSI1_TXD
UART 1
UART1_CTS
RGPIO7/PE2
UART5_TXD
DSPI3_SCK
—
I
EVDD
msr
D12
C10
UART1_RTS
RGPIO8/PE1
UART5_RXD
DSPI3_PCS0
—
O
EVDD
msr
D11
D10
UART1_RXD
PE0
I2C5_SDA
DSPI3_SIN
—
I
EVDD
msr
B10
C9
—
18
I/O
EVDD
msr
C10
D9
UART1_TXD
PF7
I2C5_SCL
DSPI3_SOUT
UART 0
UART0_CTS
RGPIO5/PF6
UART4_TXD
DSPI2_SCK
—
I
EVDD
msr
E12
E13
UART0_RTS
RGPIO6/PF5
UART4_RXD
DSPI2_PCS0
—
O
EVDD
msr
C12
B11
UART0_RXD
PF4
I2C4_SDA
DSPI2_SIN
—
I
EVDD
msr
C11
B10
—
18
I/O
EVDD
msr
B11
D11
UART0_TXD
PF3
I2C4_SCL
DSPI2_SOUT
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
14
Freescale Semiconductor
Pin assignments and reset states
Voltage domain
Pad type3
196 MAPBGA
256 MAPBGA
SDHC_DAT3
PF2
PWM_A1
DSPI1_PCS0
—
I/O
EVDD
msr
—
B13
SDHC_DAT2
PF1
PWM_B1
DSPI1_PCS2
—
I/O
EVDD
msr
—
E14
SDHC_DAT1
PF0
PWM_A2
DSPI1_PCS1
—
I/O
EVDD
msr
—
D12
SDHC_DAT0
PG7
PWM_B2
DSPI1_SOUT
—
I/O
EVDD
msr
—
B12
SDHC_CMD
PG6
PWM_B0
DSPI1_SIN
—
I/O
EVDD
msr
—
C11
SDHC_CLK
PG5
PWM_A0
DSPI1_SCK
—
O
EVDD
msr
—
A10
Signal name
GPIO
Alternate 1
Alternate 2
Pullup (U)1
Pulldown (D)
Direction2
Table 5. MCF5441x Signal information and muxing (continued)
Enhanced secure digital host controller
Smart card interface 0
SIM0_DATA
RGPIO13/PG4
PWM_FAULT2
SDHC_DAT7
—
I/O
EVDD
msr
—
E12
SIM0_VEN
RGPIO12/PG3
PWM_FAULT0
—
—
O
EVDD
msr
—
D13
SIM0_RST
RGPIO11/PG2
PWM_FORCE
SDHC_DAT6
—
O
EVDD
msr
—
C15
SIM0_PD
RGPIO10/PG1
PWM_SYNC
SDHC_DAT5
—
I
EVDD
msr
—
C14
SIM0_CLK
RGPIO9/PG0
PWM_FAULT1
SDHC_DAT4
—
O
EVDD
msr
—
A11
Synchronous serial interface 019
SSI0_RXD
PH7
I2C2_SDA
SIM1_VEN
—
I
EVDD
msr
B12
C12
SSI0_TXD
PH6
I2C2_SCL
SIM1_DATA
—
O
EVDD
msr
A11
C13
SSI0_FS
PH5
UART7_TXD
SIM1_RST
—
I/O
EVDD
msr
C13
E15
SSI0_MCLK
PH4
SSI_CLKIN
SIM1_CLK
—
O
EVDD
msr
A12
A12
SSI0_BCLK
PH3
UART7_RXD
SIM1_PD
—
I/O
EVDD
msr
D13
A13
Ethernet subsystem
MII0_MDC
PI1
RMII0_MDC20
—
—
O
EVDD
fsr
N14
P16
MII0_MDIO
PI0
RMII0_MDIO20
—
—
I/O
EVDD
fsr
M14
N16
PJ7
RMII0_CRS_DV20
—
—
I
EVDD
fsr
M13
P14
PJ[6:5]
RMII0_RXD[1:0]20
—
—
I
EVDD
fsr
P13, N13
R15, T15
—
—
I
EVDD
fsr
M12
N14
MII0_RXDV
MII0_RXD[1:0]
20
MII0_RXER
PJ4
RMII0_RXER
MII0_TXD[1:0]
PJ[3:2]
RMII0_TXD[1:0]20
—
—
O
EVDD
fsr
L12, L11
R13, P13
MII0_TXEN
PJ1
RMII0_TXEN20
—
D21
O
EVDD
fsr
N12
P12
MII0_COL
PJ0
RMII1_MDC
ULPI_STP
—
I
EVDD
fsr
—
R12
MII0_TXER
PK7
RMII1_MDIO
ULPI_DATA4
—
O
EVDD
fsr
—
R14
MII0_CRS
PK6
RMII1_CRS_DV
ULPI_DATA5
—
I
EVDD
fsr
—
P11
MII0_RXD[3:2]
PK[5:4]
RMII1_RXD[1:0]
ULPI_DATA[1:0]
—
I
EVDD
fsr
—
P15, N13
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
15
Pin assignments and reset states
Signal name
GPIO
Alternate 1
Alternate 2
Pullup (U)1
Pulldown (D)
Direction2
Voltage domain
Pad type3
196 MAPBGA
256 MAPBGA
Table 5. MCF5441x Signal information and muxing (continued)
MII0_RXCLK
PK3
RMII1_RXER
ULPI_DATA6
—
I
EVDD
fsr
—
M14
MII0_TXD[3:2]
PK[2:1]
RMII1_TXD[1:0]
ULPI_DATA[3:2]
—
O
EVDD
fsr
—
T13, N12
I
EVDD
fsr
—
T14
MII0_TXCLK
PK0
RMII1_TXEN
ULPI_DATA7
21
D
BDM/JTAG
ALLPST22
PH2
—
—
—
O
EVDD
fsr
K12
—
DDATA[3:2]
PH[1:0]
—
—
—
O
EVDD
fsr
—
L15, M13
DDATA[1:0]
PI[7:6]
—
—
—
O
EVDD
fsr
—
M15, L14
PST[3:0]
PI[5:2]
—
—
—
O
EVDD
fsr
—
J13, J16,
J15, J14
JTAG_EN
—
—
—
D
I
EVDD
msr
N11
N15
PSTCLK
—
TCLK23
—
—
I
EVDD
fsr
L14
M16
DSI
—
TDI23
—
U
I
EVDD
msr
L10
L13
—
TDO23
—
—
O
EVDD
msr
L13
K14
BKPT
—
TMS23
—
U
I
EVDD
msr
K13
K16
DSCLK
—
TRST23
—
U
I
EVDD
msr
L9
K13
D
I
EVDD
ssr
K10
R16
—
—
—
—
D9, D10,
E9–E11,
E9, E10, F9,
F9–F11
DSO
Test
(this signal must be grounded)
TEST
—
—
—
Power supplies
IVDD
—
—
—
F10, F12
EVDD
—
—
—
—
—
—
—
F4–F7, G6, H8, J7–J10,
G7, H6, H7, K6–K11, L6
J5, J6
FB_VDD
SD_VDD
—
—
—
—
—
—
—
—
—
—
—
—
—
—
D5–D7,
E5–E7, F5,
E4–E7
F6, G5
K7–K9,
M7–M12
L5–L7
VDD_OSC_A_PLL
—
—
—
—
—
—
vddint
F14
F15
VSS_OSC_A_PLL
—
—
—
—
—
—
vddint
F13
F16
VDD_USBO
—
—
—
—
—
—
vdde
F11
G12
VDD_USBH
—
—
—
—
—
—
vdde
—
H12
VDDA_ADC
—
—
—
—
—
—
—
—
H4
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
16
Freescale Semiconductor
Pin assignments and reset states
Signal name
GPIO
Alternate 1
Alternate 2
Pullup (U)1
Pulldown (D)
Direction2
Voltage domain
Pad type3
196 MAPBGA
256 MAPBGA
Table 5. MCF5441x Signal information and muxing (continued)
VSSA_ADC
—
—
—
—
—
—
vssint
—
H5
VDDA_DAC_ADC
—
—
—
—
—
—
vddint
—
J4
VSSA_DAC_ADC
—
—
—
—
—
—
vssint
—
J5
VSTBY
—
—
—
—
—
—
vddint
E14
E16
VSS
—
—
—
—
—
—
—
24
A1, A14,
A1, A16,
D8, D14,
D16, E8,
E8, F8, G4,
F7, F8,
G8, G9,
G6–G11,
G11, H4,
H6, H7,
H8–11,
H9–H11,
J7–11, J14,
J6, J11,
K5, K6,
J12, K12,
K11, P1,
L4, L7–L12,
P14
M5, M6, T1,
T16
1
All pins available with GPIO contain a configurable pull-up/down. This column indicates the pull devices that are enabled
automatically at reset. Pull-ups are generally only enabled on pins with their primary function, except as noted.
2 Refers to pin’s primary function.
3 For details on the available slew rates of the various pad types see section “Output Pad Loading and Slew Rate” of the MCF5441x
Data Sheet or section “Slew Rate Control Registers (SRCR_x)” in chapter “Pin-Multiplexing and Control” of the MCF5441x Reference
Manual.
4 Enabled as input only in oscillator bypass mode (internal crystal oscillator is disabled).
5 These pins are time-division multiplexed between the FlexBus and NFC. An arbitration mechanism determines which module drives
these pins at any point in time.
6 An internal pulldown circuit is enabled during system reset for FB_AD[10].
7 An internal pullup circuit is enabled when the system is in reset state.
8 Configurable pull that is enabled and pulled up after reset.
9 When configured for FB_A1, this pin is time-division multiplexed between the FlexBus and NFC. An arbitration mechanism
determines which module drives the pin at any point in time. When not configured as FB_A1, NFC_ALE cannot be used.
10 When configured for FB_A0, this pin is time-division multiplexed between the FlexBus and NFC. An arbitration mechanism
determines which module drives the pin at any point in time. When not configured as FB_A0, NFC_CLE cannot be used.
11 Since USB_CLKIN is a clock signal, it must be dedicated to the USB system. Do not implement this pin as dual-use.
12 When Alternate 2 is selected, then internal pullup/pulldown control will come from the MISCCR[3] register of CIM.
13 When booting from serial boot flash, the SBF function is enabled automatically. After the SBF function completes its reset sequence,
the signals are returned to GPIO functionality.
14 Automatic pull-up when SBF controls the pin during reset only. Configurable pull when UART, DSPI, or SDHC control the pin.
15 If ULPI is enabled, ULPI_DIR is available as the Alternate 2 function. If ULPI is disabled, USBO_VBUS_EN is available.
16
If ULPI is enabled, ULPI_NXT is available as the Alternate 2 function. If ULPI is disabled, USBO_VBUS_OC is available.
17 When Alternate 2 is selected, then internal pullup/pulldown control will come from the MISCCR[2] register of CIM.
18 UARTx_TXD pad can act as RXD(input) pad when UART One Wire mode is enabled.
19
The SIM1 signals are available with 256 MAPBGA but are not available with 196 MAPBGA.
20 These RMII functions are selected by the mode chosen by the MAC-NET, not by the pin-multiplexing and control (GPIO) module.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
17
Pin assignments and reset states
21
Configurable pull that is enabled and pulled down after reset.
The ALLPST signal is available only on the 196 MAPBGA package and allows limited debug trace functionality compared to the 256
MAPBGA package.
23
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these
pins.
24 VSTBY is for optional standby lithium battery. If not used, connect to EVDD.
22
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
18
Freescale Semiconductor
Pin assignments and reset states
3.2
Pinout—196 MAPBGA
The pinout for the MCF54410 package is shown below.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
A
GND
FB_
AD10
FB_
AD14
FB_
AD16
FB_
AD18
FB_
AD19
FB_
AD24
FB_
AD27
FB_
AD30
FB_
AD31
SSI0_
TXD
SSI0_
MCLK
USB_
DPLS
GND
A
B
FB_
AD6
FB_
AD9
FB_
AD11
FB_
AD13
FB_
AD17
FB_
AD20
FB_
AD23
FB_
AD26
FB_
AD29
U1_
RXD
U0_
TXD
SSI0_
RXD
USB_
DMNS
RTC_
EXTAL
B
C
FB_
AD3
FB_
AD5
FB_
AD8
FB_
AD12
FB_
AD15
FB_
AD21
FB_
AD22
FB_
AD25
FB_
AD28
U1_
TXD
U0_
RXD
U0RTS_
B
SSI0_
FS
RTC_
XTAL
C
D
FB_
AD0
FB_
AD2
FB_
AD4
FB_
AD7
FBVDD
FBVDD
FBVDD
GND
CVDD
CVDD
U1RTS_ U1CTS_
B
B
SSI0_
BCLK
GND
D
E
FB_BE2
_B
FB_ALE
FB_
AD1
FBVDD
FBVDD
FBVDD
FBVDD
GND
CVDD
CVDD
IRQ4_B
U0CTS_
B
IRQ1_B
VSTBY
E
F
FB_BE0
_B
FB_BE1
_B
FB_BE3
_B
EVDD
EVDD
EVDD
EVDD
GND
CVDD
CVDD
VDD_
USBO
CVDD
FB_CS0 FB_CS1
_B
_B
GND
BOOT
MOD1
EVDD
EVDD
GND
GND
IRQ7_B
GND
I2C0_
SDA
T3IN
EXTAL
G
H
FB_OE_ FB_RW_ FB_TA_
B
B
B
GND
BOOT
MOD0
EVDD
EVDD
GND
GND
GND
GND
I2C0_
SCL
T1IN
XTAL
H
J
DSPI0_
PCS0
DSPI0_
SOUT
DSPI0_
SCK
SD_BA1
EVDD
EVDD
GND
GND
GND
GND
GND
T2IN
T0IN
GND
J
K
SD_A1
DSPI0_
SIN
DSPI0_
PCS1
SD_CAS
_B
GND
GND
SDVDD
SDVDD
SDVDD
TEST
GND
ALLPST
TMS
L
SD_A9
SD_A10
SD_A5
SD_A4
SDVDD
SDVDD
SDVDD
SD_VTT TRST_B
TDI
RM110_
TXD0
RM110_
TXD1
TDO
TCLK
L
M SD_A12
SD_A7
SD_A11
SD_RAS SD_CS_
SD_BA2
_B
B
SD_D0
N
SD_A3
SD_A2
SD_A0
P
GND
SD_A6
SD_A13
1
2
3
G FB_CLK
SD_A8
4
5
6
RSTIN_
K
B
SD_D2
SD_D4
SD_D6
OWIO
RMII0_
RXER
RMII0_
CRS_DV
RMII0_
MDIO
M
SD_D1
SD_VRE
F
SD_D5
JTAG_E
N
RMII0_
TXEN
RMII0_
RXD0
RMII0_
MDC
N
SD_DQS
SD_CLK_
SD_DQS
B
_B
SD_D3
SD_D7
RSTOUT
_B
RMII0_
RXD1
GND
P
10
11
12
13
14
SD_WE_
SD_CKE SD_DQM
B
SD_BA0 SD_ODT SD_CLK
VSS_OS VDD_OS
C_A_PL C_A_PL F
L
L
7
8
9
Figure 7. MCF54410 Pinout (196 MAPBGA)
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
19
Pin assignments and reset states
3.3
Pinout—256 MAPBGA
The pinout for the MCF54415, MCF54416, MCF54417, and MCF54418 packages are shown below.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
VSS
FB_
AD3
FB_
AD13
FB_
AD14
FB_
AD16
FB_
AD20
FB_
AD22
FB_
AD26
FB_
AD29
SDHC_
CLK
SIM0_
CLK
SSI0_
MCLK
SSI0_
BCLK
USBO_
DM
USBH_
DM
VSS
A
B
FB_
CS4
FB_
AD2
FB_
AD8
FB_
AD11
FB_
AD15
FB_
AD19
FB_
AD24
FB_
AD28
FB_
AD31
UART0_ UART0_ SDHC_
RXD
DAT0
RTS
SDHC_
DAT3
USBO_
DP
USBH_
DP
RTC_
EXTAL
B
C
FB_BE/
BWE3
FB_
AD1
FB_
AD7
FB_
AD9
FB_
AD10
FB_
AD17
FB_
AD23
FB_
AD30
UART1_ UART1_ SDHC_
RXD
CMD
CTS
SSI0_
TXD
SIM0_
PD
SIM0_
RST
RTC_
XTAL
C
D
FB_BE/
BWE1
FB_
ALE
FB_
AD5
FB_
AD12
FB_
AD18
FB_
AD21
FB_
AD25
FB_
AD27
UART1_ UART1_ UART0_ SDHC_
TXD
TXD
DAT1
RTS
SIM0_
VEN
CAN1_
TX
CAN1_
RX
VSS
D
E
FB_
CS1
FB_
BE/BW
E2
FB_
AD4
FB_
AD6
FB_
VDD
FB_
VDD
FB_
VDD
VSS
IVDD
IVDD
IVDD
SIM0_
XMT
UART0
_CTS
SDHC_
DAT2
SSI0_
FS
VSTBY_
E
RTC
F
FB_
OE
FB_
CS5
FB_
AD0
FB_BE/
BWE0
FB_
VDD
FB_
VDD
VSS
VSS
IVDD
IVDD
IVDD
IRQ7
IRQ1
IRQ4
VDD_
OSC_A
_PLL
VSS_
OSC_A F
_PLL
G
FB_
CLK
FB_
R/W
FB_
CS0
ADC_
IN4
FB_
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VDD_
USBO
T3IN
I2C0_
SDA
I2C0_
SCL
EXTAL
G
H
ADC_
IN0
ADC_
IN6
FB_
TA
AVDD_
ADC
AVSS_
ADC
VSS
VSS
EVDD
VSS
VSS
VSS
VDD_
USBH
T1IN
T2IN
T0IN
XTAL
H
J
ADC_
IN1
ADC_
IN2
ADC_
IN5
VDDA_
DAC_
ADC
VSSA_
DAC_
ADC
VSS
EVDD
EVDD
EVDD
EVDD
VSS
VSS
PST3
PST0
PST1
PST2
J
ADC_
IN7
ADC_
IN3
BOOT
MOD1
EVDD
EVDD
EVDD
EVDD
EVDD
EVDD
VSS
TRST
TDO
RESET
TMS
K
VSS
BOOT
MOD0
EVDD
VSS
VSS
VSS
VSS
VSS
VSS
TDI
DDATA0 DDATA3
RST
OUT
L
VSS
VSS
SD_
VDD
SD_
VDD
SD_
VDD
SD_
VDD
SD_
VDD
SD_
VDD
DDATA2
MII0_ DDATA1
RXCLK
TCLK
M
OW_
IO
MII0_
TXD2
MII0_
RXD2
MII0_
RXER
JTAG_
EN
MII0_
MDIO
N
K
DSPI0_ DSPI0_
SOUT
PCS0
L
DSPI0_ DSPI0_ DSPI0_
PCS1
SCK
SIN
M
IRQ3
N
IRQ6
P
IRQ2
UART2_ UART2_
RTS
CTS
SD_
CAS
SD_D3 SD_VTT
SD_A4 SD_A14 SD_BA2
SD_
ODT
SD_D1
SD_
VREF
MII0_
CRS
MII0_
TXEN
MII0_
TXD0
MII0_
RXDV
MII0_
RXD3
MII0_
MDC
P
SD_
RAS
SD_
CKE
SD_WE
SD_D0
SD_D4
SD_D6
MII0_
COL
MII0_
TXD1
MII0_
TXER
MII0_
RXD1
TEST
R
T
UART2_ SD_A5 SD_A10 SD_A2 SD_BA1
SD_CS
TXD
UART2_
SD_A1
RXD
SD_A9
SD_A3
R SD_A12 SD_A7 SD_A11 SD_A13 SD_BA0
T
SSI0_
RXD
VSS
SD_A6
SD_A0
SD_A8
SD_
CLK
SD_
CLK
SD_
DM
SD_
DQS
SD_
DQS
SD_D2
SD_D5
SD_D7
MII0_
TXD3
MII0_
TXCLK
MII0_
RXD0
VSS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Figure 8. MCF54415, MCF54416, MCF54417, and MCF54418 Pinout (256 MAPBGA)
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
20
Freescale Semiconductor
Electrical characteristics
4
Electrical characteristics
This document contains electrical specification tables and reference timing diagrams for the MCF5441x microprocessor. This
section contains detailed information on AC/DC electrical characteristics and AC timing specifications.
NOTE
The specifications for this device in any other document are superseded by the
specifications in this document.
4.1
Absolute maximum ratings
Table 6. Absolute maximum ratings1, 2
Rating
Symbol
Pin name
Value
Units
External I/O pad supply voltage
EVDD
EVDD
–0.3 to +4.0
V
Internal logic supply voltage
IVDD
IVDD
–0.5 to +2.0
V
FlexBus I/O pad supply voltage
FBVDD
FB_VDD
–0.3 to +4.0
V
SDRAM I/O pad supply voltage
SDVDD
SD_VDD
–0.3 to +4.0
V
PVDD
VDD_OSC_A_PLL
–0.3 to +4.0
V
USB OTG supply voltage
USBVDD
VDD_USBO
–0.3 to +4.0
V
USB host supply voltage
USBVDD
VDD_USBH
–0.3 to +4.0
V
AVDD
VDDA_ADC
–0.3 to +4.0
V
DAC and ADC supply voltage
—
VDDA_DAC_ADC
–0.3 to +4.0
V
RTC standby supply voltage
RTCVSTBY
VSTBY_RTC
–0.3 to +4.0
V
VIN
—
–0.3 to +3.6
V
Instantaneous maximum current
Single pin limit (applies to all pins) 3, 4, 5
IDD
—
25
mA
Operating temperature range (packaged)
TA
(TL – TH)
—
–40 to +85
C
Tstg
—
–55 to +150
C
PLL supply voltage
ADC supply voltage
Digital input
voltage3
Storage temperature range
1
2
3
4
5
Functional operating conditions are given in Table 11. Absolute maximum ratings are stress ratings only, and
functional operation at the maximum is not guaranteed. Continued operation at these levels may affect device
reliability or cause permanent damage to the device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it
is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated
voltages to this high-impedance circuit. Immunity to static and electrical fields is enhanced if unused inputs are tied
to an appropriate logic voltage level (e.g., VSS or EVDD).
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,
calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.
All functional non-supply pins are internally clamped to VSS and EVDD .
Power supply must maintain regulation within operating EVDD, FBVDD, and SDVDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > EVDD, FBVDD, or SDVDD) is greater than
IDD, the injection current may flow out of EVDD, FBVDD, or SDVDD and could result in external power supply going
out of regulation. Ensure the external EVDD, FBVDD, or SDVDD load shunts current greater than maximum injection
current. This is the greatest risk when the MPU is not consuming power (for example, no clock).
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
21
Electrical characteristics
4.2
Thermal characteristics
Table 7. Thermal characteristics
Symbol
196
MAPBGA
256
MAPBGA
Single layer
board (1s)2
JA
58
—
Four layer board
(2s2p)2,3
JA
35
32
Single layer
board (1s)
JMA
48
—
Four layer board
(2s2p)
JMA
32
29
C/W
JB
22
22
C/W
JC
14
12
C/W
jt
3
2
C/W
Tj
105
105
oC
Characteristic
Junction to ambient, natural convection1
Junction to ambient (@200 ft/min)1, 3
Junction to board4
Junction to case5
Junction to top of package, natural convection
1, 6
Maximum operating junction temperature
1
Unit
C/W
JA and jt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board,
and board thermal resistance.
2
Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
Per JEDEC JESD51-6 with the board horizontal.
4 Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board
temperature is measured on the top surface of the board near the package.
5 Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL
SPEC-883 Method 1012.1).
6 Thermal characterization parameter indicating the temperature difference between package top and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization
parameter is written in conformance with Psi-JT.
3
The average chip-junction temperature (TJ) in C can be obtained from:
T J = T A +  P D   JMA 
Eqn. 1
Where:
TA
QJMA
PD
PINT
PI/O
=
=
=
=
=
Ambient Temperature, C
Package Thermal Resistance, Junction-to-Ambient, C/W
PINT + PI/O
IDD  IVDD, Watts - Chip Internal Power
Power Dissipation on Input and Output Pins — User Determined
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is:
K
P D = -------------------------------- T J + 273C 
Eqn. 2
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
22
Freescale Semiconductor
Electrical characteristics
Solving equations 1 and 2 for K gives:
2
K = P D   T A  273C  + Q JMA  P D
Eqn. 3
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring PD (at equilibrium)
for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving Equation 1 and Equation 2 iteratively
for any value of TA.
4.3
ESD protection
Table 8. ESD protection characteristics1, 2
Characteristics
ESD Target for Human Body Model
1
2
4.4
Symbol
Value
Units
HBM
2000
V
All ESD testing is in conformity with JESD22 Stress Test Qualification.
A device is defined as a failure if after exposure to ESD pulses the device no longer meets
the device specification requirements. Complete DC parametric and functional testing is
performed per applicable specification at room temperature followed by hot temperature,
unless specified otherwise in the device specifications provided in this document.
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up performance:
•
•
A supply over voltage is applied to each power supply pin.
A current injection is applied to each input, output, and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
Table 9. Latch-up results
No.
1
4.5
Symbol
LU
CC
Parameter
Conditions
Class
Static latch-up class
TA = 125 °C conforming to JESD 78
II level A
DC electrical specifications
Table 10. Power supply specifications
Characteristic
Symbol
Pin Name
Min
Max
Units
IVDD
IVDD
1.14
1.32
V
FlexBus supply voltage
Nominal 1.8–3.3 V
FBVDD
FB_VDD
1.71
3.63
SDRAM supply voltage
DDR2 @ 1.8 V
SDVDD
1.71
1.98
SDRAM input reference voltage
SDVREF
SD_VREF
0.49 x SDVDD
0.51 x SDVDD
V
SDRAM termination supply voltage
SDVTT
SD_VTT
SDVREF – 0.04
SDVREF + 0.04
V
PLL analog operation voltage range, nominal 3.3 V
PVDD
VDD_OSC_
A_PLL
3.135
3.63
V
Internal logic supply voltage, nominal 1.2 V
V
V
SD_VDD
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
23
Electrical characteristics
Table 10. Power supply specifications (continued)
Characteristic
Symbol
Pin Name
Min
Max
Units
EVDD
EVDD
3.135
3.63
V
USBVDD
VDD_USBO
VDD_USBH
3.135
3.63
V
ADC supply voltage
AVDD
VDDA_ADC
3.135
3.63
V
DAC supply voltage
—
VDDA_DAC_
ADC
3.135
3.63
V
RTCVSTBY
VSTBY_RTC
1.6
EVDD – 0.2V
V
External I/O pad supply voltage, nominal 3.3 V
USB supply voltage, nominal 3.3 V
RTC standby supply voltage
Table 11. I/O electrical specifications
Characteristic
Symbol
Min
Max
Units
CMOS input high voltage
EVIH
0.65  EVDD
EVDD + 0.3
V
CMOS input low voltage
EVIL
VSS – 0.3
0.35  EVDD
V
CMOS output high voltage
IOH = –2.0 mA
EVOH
0.8  EVDD
—
V
CMOS output low voltage
IOL = 2.0 mA
EVOL
—
0.2  EVDD
V
SDRAM input high voltage
DDR2 @ 1.8V
SDVIH
SDVREF + 0.125
SDVDD + 0.3
SDRAM input low voltage
DDR2 @ 1.8V
SDVIL
0.3
SDVREF  0.125
SDRAM output high voltage
DDR2@ 1.8V IOH = –13.4 mA
SDVOH
SDVDD  0.9
—
SDRAM output low voltage
DDR2@ 1.8V IOH = 13.4 mA
SDVOL
—
SDVDD  0.1
FlexBus input high voltage
@ 1.8V–3.3V
FBVIH
0.51  FBVDD
FBVDD + 0.3
V
FlexBus input low voltage
@ 1.8V–3.3V
FBVIL
VSS – 0.3
0.42  FBVDD
V
FlexBus output high voltage
@ 1.8V–3.3V
IOH = –5.0 mA for all modes
FBVOH
0.8  FBVDD
—
V
FlexBus output low voltage
@ 1.8V–3.3V
IOL = 5.0 mA for all modes
FBVOL
—
0.2  FBVDD
V
Iin
–2.5
2.5
A
Input Leakage Current
Vin = VDD or VSS, Input-only pins
V
V
V
V
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
24
Freescale Semiconductor
Electrical characteristics
Table 11. I/O electrical specifications (continued)
Characteristic
Weak internal pull-up/pull-down device current1
Selectable weak internal pull-up/pull-down device current
1
2
Min
Max
Units
IAPU
10
315
A
IAPU
25
150
A
—
—
7
7
Input capacitance
All input-only pins
All input/output (three-state) pins
Cin
Output loading for CMOS pads (EVDD and FBVDD domains)
Low drive
High drive
CL
Output loading for SDRAMC pads (SDVDD domain)
Low drive
High drive
CL
1
2
4.6
Symbol
pF
pF
50
200
pF
5
50
Refer to the signals section for pins having weak internal pull-up devices.
This parameter is characterized before qualification rather than 100% tested.
Output pad loading and slew rate
The output pins on the MCF5441x devices have programmable slew rates. Table 12 lists the rise/fall time for pins based on the
type of pad used for the signal, the value programmed into the appropriate field of the slew rate control registers, and capacitive
loading. Refer to Table 5 for a list of the external signals to pad connections.
NOTE
To allow the I/O interfaces to run at their maximum frequency, set their respective slew rate
select values to 11.
Table 12. Output pad slew rates
Pad type1
Slew rate select
field value
ssr
Drive load
(pF)
Rise/fall time
(ns)
50
2.2
200
6
50
22
200
28
50
42
200
50
50
210
200
220
11
10
01
00
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
25
Electrical characteristics
Table 12. Output pad slew rates (continued)
Pad type1
Slew rate select
field value
Drive load
(pF)
Rise/fall time
(ns)
50
1.2
200
6
50
9
200
14
50
17
200
23
50
110
200
120
50
1.1
200
2.6
50
2.4
200
5
50
5
200
8
50
16
200
21
msr
11
10
01
00
fsr
11
10
01
00
1
4.7
The ae pads are used for USB communication and are governed by usb.org
specifications. They are not included in this table.
DDR pad drive strengths
The DDR pins on the MCF5441x devices have programmable drive strengths. Table 13 lists the drive strengths for pins based
on the value programmed into the appropriate field of the drive strength control register. Refer to Table 5 for a list of the external
signals to pad connections.
NOTE
For a single device drive, this setting should be 00 to enable Half Strength mode. High
strength is intended for multiple device drives (DIMM).
Table 13. DDR pad drive strengths
Pad type
Drive strength select
field value
Drive strength
st
00
Half strength 1.8V DDR2
01
Full strength 1.8V DDR2
10
Reserved
11
Reserved
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
26
Freescale Semiconductor
Electrical characteristics
4.8
Oscillator and PLL electrical characteristics
Reference Figure 9 for crystal circuits.
Table 14. PLL electrical characteristics
Num
1
2
3
4
5
6
7
8
PLL Reference Frequency Range1
Crystal reference
External reference
2
Core frequency
FB_CLK frequency2 (MISCCR2[FBHALF] = 0)
3
VCO frequency
4
DCC frequency3
4, 5
Symbol
Min
Max
Unit
fref_crystal
fref_ext
141
141
501
501
MHz
MHz
fsys
fsys/2
120
60
250
100
MHz
MHz
fvco
240
500
MHz
fDCC
300
500
MHz
tcst
—
10
ms
5
Crystal start-up time
6
EXTAL input high voltage
External and limp modes
VIHEXT
EVIH
EVDD
V
EXTAL input low voltage
External and limp modes
VILEXT
0
EVIL
V
tlpll
—
50
ms
7
1
Characteristic
4, 6
8
PLL lock time
9
Duty cycle of reference 4
tdc
–45%
+45%
%
10
Crystal capacitive load
CL
—
From crystal
spec
pF
11
Feedback resistor
RF
10
—
M
12
Series resistor
RS
0
200

13
Discrete load capacitance for XTAL
CL_XTAL
—
2  CL –
CS_XTAL –
CPCB_XTAL7
pF
14
Discrete load capacitance for EXTAL
CL_EXTAL
—
2  CL –
CS_EXTAL –
CPCB_EXTAL7
pF
15
FB_CLK period jitter, 4, 5, 7, 8, Measured at fSYS Max
Peak-to-peak jitter (clock edge to clock edge)
Long term jitter
—
—
10
0.1
% fsys/3
% fsys/3
Cjitter
These reference value ranges are for after a PLL predivider (PREDIV), which can be programmed to 1, 2, 4, 8, or 16.
The PREDIV value can be set while booting from serial flash. In parallel reset configuration, the PREDIV value is set to
one. In this mode, if the input frequency results in an out of range reference frequency, boot the processor in limp
mode, set the proper PREDIV and multiplier settings, and switch to PLL mode.
All internal registers retain data at 0 Hz.
Required only for DDR2 memory.
This parameter is guaranteed by characterization before qualification rather than 100% tested.
Proper PC board layout procedures must be followed to achieve specifications.
This specification is the PLL lock time only and does not include oscillator start-up time.
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.
Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase
the Cjitter percentage for a given interval.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
27
Electrical characteristics
XOSC
EXTAL
XTAL
RF
RS
Crystal or Resonator
CC1L
CL
C2
Figure 9. Typical crystal circuit
4.9
Reset timing specifications
Table 15 lists specifications for the reset timing parameters shown in Figure 10.
Table 15. Reset and configuration override timing
Num
Characteristic
Min
Max
Unit
R11
RESET valid to FB_CLK (setup)
9
—
ns
R2
FB_CLK to RESET invalid (hold)
1.5
—
ns
R3
RESET valid time2
5
—
FB_CLK cycles
R4
FB_CLK to RSTOUT valid
—
10
ns
R5
RSTOUT valid to Configuration Override inputs valid
0
—
ns
R6
Configuration Override inputs valid to RSTOUT invalid (setup)
20
—
FB_CLK cycles
R7
Configuration Override inputs invalid after RSTOUT invalid (hold)
0
—
ns
R8
RSTOUT invalid to Configuration Override inputs High Impedance
—
1
FB_CLK cycles
R9
Minimum RSTOUT pulse width
512
—
FB_CLK cycles
1
RESET and configuration override data lines are synchronized internally. Setup and hold times must be met only if
recognition on a particular clock is required.
2 During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously
to the system. Thus, RESET must be held a minimum of 100 ns.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
28
Freescale Semiconductor
Electrical characteristics
FB_CLK
R1
R2
R3
RESET
R4
R4
R9
RSTOUT
R8
R5
R6
R7
BOOTMOD[1:0]
Figure 10. RESET and configuration override timing
4.10
FlexBus timing specifications
All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a
reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider
of that frequency.
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the FlexBus output clock
(FB_CLK). All other timing relationships can be derived from these values.
All FlexBus signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load
of 50 pF.1
Table 16. FlexBus timing specifications
Num
Characteristic
Min
Max
Unit
Notes
Frequency of operation
—
62.5
MHz
FB1
Clock period
16
—
ns
FB2
Output valid
—
6.0
ns
1
FB3
Output hold
0.5
—
ns
1
FB4
Input setup
5.5
—
ns
2
FB5
Input hold
0
—
ns
2
1
Specification is valid for all FB_AD[31:0], FB_R/W, FB_ALE, FB_TS, FB_CSn, FB_OE, FB_BE/BWEn,
and FB_TSIZ[1:0].
2 Specification is valid for all FB_AD[31:0] and FB_TA.
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
29
Electrical characteristics
S0
S1
S2
S3
FB_CLK
FB1
FB3
FB_AD[Y:0]
ADDR[Y:0]
FB2
FB_AD[31:X]
FB5
ADDR[31:X]
DATA
FB4
FB_R/W
FB_ALE
FB_TS
FB_CSn, FB_OE,
FB_BE/BWEn
FB4
FB5
FB_TA
FB_TSIZ[1:0]
TSIZ[1:0]
Note:
1 FB2 and FB3 output specifications are valid for all FB_AD[31:0], FB_R/W, FB_ALE, FB_TS,
FB_CSn, FB_OE, FB_BE/BWEn, and FB_TSIZ[1:0].
2 FB4 and FB5 input specifications are valid for all FB_AD[31:0] and FB_TA.
Figure 11. FlexBus read timing
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
30
Freescale Semiconductor
Electrical characteristics
S0
S1
S2
S3
FB_CLK
FB1
FB3
ADDR[Y:0]
FB_AD[Y:0]
FB2
FB_AD[31:X]
ADDR[31:X]
DATA
FB_R/W
FB_ALE
FB_TS
FB_CSn, FB_BE/BWEn
FB_OE
FB4
FB5
FB_TA
FB_TSIZ[1:0]
TSIZ[1:0]
Note:
1 FB2 and FB3 output specifications are valid for all FB_AD[31:0], FB_R/W, FB_ALE, FB_TS,
FB_CSn, FB_OE, FB_BE/BWEn, and FB_TSIZ[1:0].
2 FB4 and FB5 input specifications are valid for all FB_AD[31:0] and FB_TA.
Figure 12. FlexBus write timing
4.11
NAND flash controller (NFC) timing specifications
The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes
the timing parameters of the NFC.
All NFC signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load of
50 pF.1
Table 17. NFC timing specifications
Num
Characteristic
Symbol
Frequency of operation
Min
Max
Unit
—
401
MHz
NF1
Clock period
tNFC
25
—
ns
NF2
NFC_CLE setup time
tCLS
1.5  tNFC
—
ns
NF3
NFC_CLE hold time
tCLH
tNFC
—
ns
NF4
NFC_CE setup time
tCS
1.5  tNFC
—
ns
NF5
NFC_CE hold time
tCH
tNFC
—
ns
NF6
NFC_WE pulse width
tWP
0.5  tNFC – 0.5
—
ns
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
31
Electrical characteristics
Table 17. NFC timing specifications (continued)
Num
1
Characteristic
Symbol
Min
Max
Unit
NF7
NFC_ALE setup time
tALS
1.5  tNFC
—
ns
NF8
NFC_ALE hold time
tALH
tNFC
—
ns
NF9
Data setup time
tDS
0.5  tNFC – 4
—
ns
NF10
Data hold time
tDH
0.5  tNFC – 10
—
ns
NF11
Write cycle time
tWC
tNFC
—
ns
NF12
NFC_WE high hold time
tWH
0.5  tNFC – 1
—
ns
NF13
Ready to NFC_RE low
tRR
4.5  tNFC
—
ns
NF14
NFC_RE pulse width
tRP
0.5  tNFC – 0.5
—
ns
NF15
Read cycle time
tRC
tNFC
—
ns
NF16
NFC_RE high hold time
tREH
0.5  tNFC – 1
—
ns
NF17
Data in setup time
tDSU
6
—
ns
50 MHz maximum frequency can only be used if the part is in EDO (enhanced data out) mode.
NFC_CLE
NF2
NF3
NF4
NF5
NFC_CE
NF6
NFC_WE
NF7
NF8
NFC_ALE
NF9
NFC_IO[7:0]
NF10
Command
Figure 13. Command latch cycle timing
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
32
Freescale Semiconductor
Electrical characteristics
NFC_CLE
NF2
NF4
NF5
NFC_CE
NF11
NF6
NF12
NFC_WE
NF7
NF8
NFC_ALE
NF10
NF9
NFC_IO[7:0]
Address
Figure 14. Address latch cycle timing
NF3
NFC_CLE
NF5
NFC_CE
NF11
NF6
NF12
NFC_WE
NF7
NFC_ALE
NF9
NFC_IO[15:0]
NF10
Data to NF
Figure 15. Write data latch timing
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
33
Electrical characteristics
NF5
NFC_CE
NF15
NF14
NF16
NFC_RE
NF17
NFC_IO[15:0]
NF10
Data from NF
NF13
NFC_R/B
Figure 16. Read data latch timing
4.12
DDR SDRAM controller timing specifications
The following timing numbers must be followed to properly latch or drive data onto the SDRAM memory bus. All timing
numbers are relative to the DQS byte lanes.
Table 18. SDRAM timing specifications
Num
Characteristic
Symbol
Min
Max
Unit
100
250
MHz
tSDCK
4.0
10.0
ns
Frequency of operation
DD1
Clock period
DD2
Pulse width high
tSDCKH
0.45
0.55
tSDCK
1
DD3
Pulse width low
tSDCKL
0.45
0.55
tSDCK
3
DD4
Address, SD_CKE, SD_CAS, SD_RAS,
SD_WE, SD_CS[1:0] — output valid
tCMV
—
0.5  tSDCK + 1
ns
2
DD5
Address, SD_CKE, SD_CAS, SD_RAS,
SD_WE, SD_CS[1:0] — output hold
tCMH
0.5  tSDCK – 1
—
ns
DD6
Write command to first DQS latching transition
tDQSS
—
WL + 0.2  tSDCK
ns
DD7
Data and data mask output setup (DQDQS)
relative to DQS (DDR write mode)
tQS
0.4
—
ns
DD8
Data and data mask output hold (DQSDQ)
relative to DQS (DDR write mode)
tQH
0.4
—
ns
5
DD9
Input data skew relative to DQS (input setup)
tIS
—
0.5
ns
6
tIH
0.375  tSDCK
—
ns
7
DD10 Input data hold relative to DQS.
1
2
Notes
3
4
Pulse width high plus pulse width low cannot exceed min and max clock period.
Command output valid should be 1/2 the memory bus clock (tSDCK) plus some minor adjustments for process, temperature,
and voltage variations.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
34
Freescale Semiconductor
Electrical characteristics
3
4
5
6
7
This specification relates to the required input setup time of DDR memories. The microprocessor’s output setup should be
larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation.
SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are
valid for each subsequent DQS edge.
This specification relates to the required hold time of DDR memories.
SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other
factors).
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes
invalid.
DD1
DD2
SD_CLK
DD3
SD_CLK
DD5
SD_CSn,SD_WE,
SD_RAS, SD_CAS
CMD
DD6
DD4
SD_A[13:0]
ROW
COL
DD7
SD_DM
DD8
SD_DQS
DD7
SD_D[7:0]
WD1 WD2 WD3 WD4
DD8
Figure 17. DDR write timing
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
35
Electrical characteristics
DD1
DD2
SD_CLK
DD3
SD_CLK
DD5
SD_CSn,SD_WE,
SD_RAS, SD_CAS
CL=2
CMD
DD4
SD_A[13:0]
CL=2.5
ROW
COL
DD9
DQS Read
Preamble
CL = 2
SD_DQS
DQS Read
Postamble
DD10
CL = 2.5
SD_D[7:0]
RD1 RD2 RD3 RD4
DQS Read
DQS Read
Preamble
Postamble
SD_DQS
SD_D[7:0]
RD1 RD2 RD3 RD4
Figure 18. DDR read timing
4.13
USB transceiver timing specifications
The MCF5441x device is compliant with industry standard USB 2.0 specification.
4.14
ULPI timing specifications
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing
requirements for the ULPI pins are given in Table 19. These timings apply to synchronous mode only. All timings are measured
with respect to the clock as seen at the USB_CLKIN pin on the MCF5441x. The ULPI PHY is the source of the 60MHz clock.
NOTE
The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver
instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL
or input on the USB_CLKIN pin.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
36
Freescale Semiconductor
Electrical characteristics
All ULPI signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load of
50 pF.1
Table 19. ULPI interface timing
Num
Characteristic
Min
Nominal
Max
Units
USB_CLKIN operating frequency
—
60
—
MHz
USB_CLKIN duty cycle
—
50
—
%
U1
USB_CLKIN clock period
—
16.67
—
ns
U2
Input setup (control and data)
5.0
—
—
ns
U3
Input hold (control and data)
1.0
—
—
ns
U4
Output valid (control and data)
—
—
9.5
ns
U5
Output hold (control and data)
1.0
—
—
ns
U1
USB_CLKIN
U3
U2
ULPI_DIR / ULPI_NXT
(Control Input)
U2
U3
ULPI_DATA[7:0]
(Data Input)
U5
U4
ULPI_STP
(Control Output)
U4
U5
ULPI_DATA[7:0]
(Data Output)
Figure 19. ULPI timing diagram
4.15
eSDHC timing specifications
This section describes the electrical information of the eSDHC.
All eSDHC signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load
of 50 pF.2
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
2.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
37
Electrical characteristics
4.15.1
eSDHC timing specifications
Figure 20 depicts the timing of eSDHC, and Table 20 lists the eSDHC timing characteristics.
Table 20. eSDHC interface timing specifications
ID
Parameter
Symbols
Min
Max
Unit
Clock frequency (low speed)
fPP1
0
400
kHz
Clock frequency (SD/SDIO full speed)
fPP2
0
40
MHz
Clock frequency (MMC full speed)
fPP3
0
20
MHz
100
400
kHz
Card Input Clock
SD1
4
Clock frequency (identification mode)
fOD
SD2
Clock low time
tWL
7
—
ns
SD3
Clock high time
tWH
7
—
ns
SD4
Clock rise time
tTLH
—
3
ns
SD5
Clock fall time
tTHL
—
3
ns
–5
5
ns
eSDHC Output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6
eSDHC output delay (output valid)
tOD
eSDHC Input / card outputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7
eSDHC input setup time
tISU
5
—
ns
SD8
eSDHC input hold time
tIH
0
—
ns
1
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
In normal data transfer mode for SD/SDIO card, clock frequency can be any value from 0 to 25 MHz.
3 In normal data transfer mode for MMC card, clock frequency can be any value from 0 to 20 MHz.
4 In card identification mode, card clock must be 100 kHz– 400 kHz, voltage ranges from 2.7 to 3.6 V.
2
SD2
SD5
SD1
SD4
SDHC_CLK
SD3
Output from eSDHC to card
SDHC_CMD
SDHC_DAT[3:0]
SD6
SD7
SD8
Input from card to eSDHC
SDHC_CMD
SDHC_DAT[3:0]
Figure 20. eSDHC timing
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
38
Freescale Semiconductor
Electrical characteristics
4.15.2
eSDHC electrical DC characteristics
Table 21 lists the eSDHC electrical DC characteristics.
Table 21. MMC/SD interface electrical specifications
Num
Parameter
Design
value
Min
Max
Unit
Condition/remark
Bus signal line load
7
Pull-up resistance
47
10
100
k
Internal PU
8
Open drain resistance
NA
NA
NA
k
For MMC cards only
Open drain signal level
9
Output high voltage
10
Output low voltage
For MMC cards only
V
IOH = –100 µA
V
IOL = 2 mA
V
IOH = –100 µA @VDD min
0.125 x VDD
V
IOL = 100 µA @VDD min
VDD – 0.2
0.3
Bus signal levels
11
Output high voltage
12
Output low voltage
13
Input high voltage
0.625 x VDD
VDD + 3
V
14
Input low voltage
VSS – 0.3
0.25 x VDD
V
4.16
0.75 x VDD
SIM timing specifications
Each SIM card interface consist of a total of 12 pins (two separate ports of six pins each. Mostly one port with 5 pins is used).
The interface is meant to be used with synchronous SIM cards. This means that the SIM module provides a clock for the SIM
card to use. The frequency of this clock is normally 372 times the data rate on the TX/RX pins, however SIM module can work
with CLK equal to 16 times the data rate on TX/RX pins.
There is no timing relationship between the clock and the data. The clock that the SIM module provides to the SIM card is used
by the SIM card to recover the clock from the data, like a standard UART. All six (or five when a bidirectional TXRX is used)
of the pins for each half of the SIM module are asynchronous to each other. There are no required timing relationships between
the signals in normal mode. However, there are some in reset and power down sequences.
All SIM signals use pad type pad_msr. SIM timing is fairly relaxed compared to other interfaces and can be met at 50 pF loading
with any slew rate setting other than 00.1
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
39
Electrical characteristics
4.16.1
General timing requirements
Figure 21 shows the timing of the SIM module, and Table 22 lists the timing parameters.
1/Sfreq
SIM_CLK
Sfall
Srise
Figure 21. SIM clock timing diagram
Table 22. SIM timing specification—High Drive strength
Num
Description
Symbol
Min
Max
Unit
1
SIM clock frequency (SIM_CLK)1
Sfreq
0.01
5 (Some new cards
may reach 10)
MHz
2
SIM_CLK rise time 2
Srise
–
20
ns
3
SIM_CLK fall time
3
Sfall
–
20
ns
4
SIM input transition time (RX, SIM_PD)
Strans
–
25
ns
1
50% duty cycle clock
With C = 50pF
3 With C = 50pF
2
4.16.2
4.16.2.1
Reset sequence
Cards with internal reset
The reset sequence for this kind of SIM card is as follows (see Figure 22):
•
•
•
After powerup, the clock signal is enabled on SIM_CLK (time T0)
After 200 clock cycles, RX must be high.
The card must send a response on RX acknowledging the reset between 400 and 40,000 clock cycles after T0.
SIM_VEN
SIM_CLK
Response
SIM_RX
1
2
T0
400 clock cycles <
1
< 200 clock cycles
2
< 40,000 clock cycles
Figure 22. Internal-reset card reset sequence
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
40
Freescale Semiconductor
Electrical characteristics
4.16.2.2
Cards with active-low reset
The sequence of reset for this kind of card is as follows (see Figure 23):
1.
2.
3.
4.
5.
After powerup, the clock signal is enabled on SIM_CLK (time T0)
After 200 clock cycles, RX must be high.
SIM_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those
40,000 clock cycles)
SIM_RST is set high (time T1)
SIM_RST must remain high for at least 40,000 clock cycles after T1 and a response must be received on RX between
400 and 40,000 clock cycles after T1.
SIM_VEN
SIM_RST
SIM_CLK
SIM_RX
Response
2
1
3
3
T0
T1
1
< 200 clock cycles
400 clock cycles <
2
< 40,000 clock cycles
400,000 clock cycles <
3
Figure 23. Active-low-reset card reset sequence
4.16.3
Power-down sequence
Power down sequence for SIM interface is as follows:
1.
2.
3.
4.
5.
SIM_PD port detects the removal of the SIM card
SIM_RST goes low
SIM_CLK goes low
SIM_TX goes low
SIM_VEN goes low
Each of these steps is completed in one CKIL period (usually 32 kHz). Power-down may be started in response to a
card-removal detection or launched by the processor. Figure 24 and Table 23 show the usual timing requirements for this
sequence, with Fckil = CKIL frequency value.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
41
Electrical characteristics
Table 23. Timing requirements for power-down sequence
Num
Description
Symbol
Min
Max
Unit
1
SIM reset to SIM clock stop
Srst2clk
0.9  fCKIL
0.8
µs
2
SIM reset to SIM TX data low
Srst2dat
1.8  fCKIL
1.2
µs
3
SIM reset to SIM voltage enable low
Srst2ven
2.7  fCKIL
1.8
µs
4
SIM presence detect to SIM reset low
Spd2rst
0.9  fCKIL
25
ns
Spd2rst
SIM_PD
SIM_RST
Srst2clk
SIM_CLK
Srst2dat
SIM__TX
Srst2ven
SIM_VEN
Figure 24. SmartCard interface power-down AC timing
4.17
SSI timing specifications
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given
for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync
(SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings
remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.
All SSI signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50
pF. When the SSI_MCLK output is not used, the maximum SSI bit clock (SSI_BCLK) frequency is such that timing can also
be met at slew rate settings 10 and 01.1
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
42
Freescale Semiconductor
Electrical characteristics
Table 24. SSI timing — master modes1
Num
Description
Symbol
Min
Max
Units
Notes
tMCLK
15.15
—
ns
2
45%
55%
tMCLK
80
—
ns
45%
55%
tBCLK
S1
SSI_MCLK cycle time
S2
SSI_MCLK pulse width high / low
S3
SSI_BCLK cycle time
S4
SSI_BCLK pulse width
S5
SSI_BCLK to SSI_FS output valid
—
15
ns
S6
SSI_BCLK to SSI_FS output invalid
0
—
ns
S7
SSI_BCLK to SSI_TXD valid
—
15
ns
S8
SSI_BCLK to SSI_TXD invalid / high impedance
0
—
ns
S9
SSI_RXD / SSI_FS input setup before SSI_BCLK
15
—
ns
S10
SSI_RXD / SSI_FS input hold after SSI_BCLK
0
—
ns
tBCLK
3
1
All timings specified with a capacitive load of 25pF.
SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (fsys).
3 SSI_BCLK can be derived from SSI_CLKIN or a divided version of the internal system clock (f ).
sys
2
Table 25. SSI timing — slave modes1
Num
1
Description
Symbol
Min
Max
Units
tBCLK
80
—
ns
45%
55%
tBCLK
S11
SSI_BCLK cycle time
S12
SSI_BCLK pulse width high / low
S13
SSI_FS input setup before SSI_BCLK
10
—
ns
S14
SSI_FS input hold after SSI_BCLK
2
—
ns
S15
SSI_BCLK to SSI_TXD / SSI_FS output valid
—
15
ns
S16
SSI_BCLK to SSI_TXD / SSI_FS output invalid / high
impedance
0
—
ns
S17
SSI_RXD setup before SSI_BCLK
15
—
ns
S18
SSI_RXD hold after SSI_BCLK
2
—
ns
Notes
All timings specified with a capacitive load of 25pF.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
43
Electrical characteristics
S1
S2
S2
SSI_MCLK
(Output)
S3
SSI_BCLK
(Output)
S4
S4
S5
S6
SSI_FS
(Output)
S9
S10
SSI_FS
(Input)
S7
S7
S8
S8
SSI_TXD
S9
S10
SSI_RXD
Figure 25. SSI timing — master modes
S11
SSI_BCLK
(Input)
S12
S12
S15
S16
SSI_FS
(Output)
S13
S14
SSI_FS
(Input)
S15
S16
S16
S15
SSI_TXD
S17
S18
SSI_RXD
Figure 26. SSI timing — slave modes
4.18
12-bit ADC specifications
Table 26. ADC parameters1
Characteristic
Name
Min
Typical
Max
200kHz
—
12MHz
tADC
8.33
—
500
ns
Low reference voltage
VREFL
VSS
—
VREFH
V
High reference voltage
VREFH
VREFL
—
AVDD
V
INL
—
±3
—
lsb
Frequency of operation
ADC clock period
Integral non-linearity (10% to 90% input signal range)2
Unit
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
44
Freescale Semiconductor
Electrical characteristics
Table 26. ADC parameters1 (continued)
Characteristic
Differential non-linearity (10% to 90% input signal
range)3
Name
Min
Typical
Max
Unit
DNL
—
±0.6
—
lsb
Monotonicity
Guaranteed
Conversion time
—
—
6
tADC cycles
Sample time
—
—
1
tADC cycles
ADC power-up time4
tADPU
—
—
13
tADC cycles5
Recovery from auto standby
tREC
—
0
6
tADC cycles
Input impedance
XIN
—
2k
—

Input injection current6, per pin
IADI
—
—
3
mA
IVREFH
—
100
—
nA
VOFFSET0
—
±20
—
LSB
Offset voltage internal reference (at the 50% FSR point) VOFFSET50
—
±12
—
LSB
Gain error (transfer path)
EGAIN
—
±0.2
—
%
Spurious free dynamic range
SFDR
—
57
—
dB
Signal-to-noise plus distortion
SINAD
—
55
—
dB
SNR
—
60
—
dB
ENOB
—
9
—
Bits
VREFH current
Offset voltage internal reference (at the y intercept)
Signal-to-noise ratio
Effective number of bits
1
2
3
4
5
6
All ADC parameter measurements are preliminary pending full characterization.
These measurements were made at VDD = 3.3 V, VREFH = 3.3 V, and VREFL = ground.
INL measured from VIN = 0.1VREFH to VIN = 0.9VREFH
INL measured from VIN = 0.1VREFH to VIN = 0.9VREFH
Includes power-up of ADC and VREF
ADC clock cycles
The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the
ADC
4.19
12-bit DAC timing specifications
Table 27 shows electrical specifications of DAC.
Table 27. DAC parameters1
Characteristic
Name
Min
Typical
Max
Unit
Range of digital input words: 497 to 3599 (0x1F1–0xE0F)
LSB
—
806
—
uV
Monotonicity
Guaranteed
Conversion time (high-speed)
1
—
—
us
Conversion time (low-speed)
2
—
—
us
Conversion rate (high-speed)
—
—
1M
conv/sec
Conversion rate (low-speed)
—
—
500K
conv/sec
AVSS + 0.04
—
AVDD – 0.04
V
Output swing
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
45
Electrical characteristics
Table 27. DAC parameters1 (continued)
Characteristic
Name
Min
Typical
Max
Unit
Integral non-linearity (497 to 3599)
INL
—
—
±8.0
lsb
Differential non-linearity (497 to 3599)
DNL
—
—
±0.5
lsb
Gain error (497 to 3599)
EGAIN
—
±0.26
—
%
Effective number of bits
ENOB
9
—
—
bits
DAC power-up time
tDAPU
—
—
11
us
Output load resistance
RL
3K
—
—
Ohm
Output load capacitance
CL
—
400
—
pF
PSRR
—
60
—
dB
Power supply ripple rejection
1
All measurements were made at VDD = 3.3V, VREFH = 3.3V, and VREFL = ground
4.20
mcPWM timing specifications
Table 28. mcPWM timing
Num
4.21
Characteristic
Min
Max
Unit
G1
FB_CLK high to output valid
—
7
ns
G2
FB_CLK high to output invalid
1
—
ns
G3
Input valid to FB_CLK high
3
—
ns
G4
FB_CLK high to input invalid
1
—
ns
I2C timing specifications
Table 29 lists specifications for the I2C input timing parameters shown in Figure 27.
Table 29. I2C input timing specifications between SCL and SDA
Num
Characteristic
Min
Max
Units
I1
Start condition hold time
2
—
1/fSYS
I2
Clock low period
8
—
1/fSYS
I3
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)
—
1
ms
I4
Data hold time
0
—
ns
I5
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)
—
1
ms
I6
Clock high time
4
—
1/fSYS
I7
Data setup time
0
—
ns
I8
Start condition setup time (for repeated start condition only)
2
—
1/fSYS
I9
Stop condition setup time
2
—
1/fSYS
Table 30 lists specifications for the I2C output timing parameters shown in Figure 27.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
46
Freescale Semiconductor
Electrical characteristics
Table 30. I2C output timing specifications between SCL and SDA
Num
I1
1
I21
I3
2
Characteristic
Min
Max
Units
Start condition hold time
6
—
1/fSYS
Clock low period
10
—
1/fSYS
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)
—
—
µs
I41
Data hold time
7
—
1/fSYS
I53
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)
—
3
ns
I61
Clock high time
10
—
1/fSYS
I7
1
Data setup time
2
—
1/fSYS
I8
1
Start condition setup time (for repeated start condition only)
20
—
1/fSYS
I9
1
Stop condition setup time
10
—
1/fSYS
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 30. The I2C interface is
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual
position is affected by the prescale and division values programmed into the IFDR. However, the numbers
given in Table 30 are minimum values.
2 Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive
low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and
pull-up resistor values.
3 Specified at a nominal 50-pF load.
I5
I6
I2
I2C_SCL
I1
I4
I7
I8
I3
I9
I2C_SDA
Figure 27. I2C input/output timings
4.22
Ethernet assembly timing specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing
specs/constraints for the physical interface.
All Ethernet signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load
of 50 pF.1
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
47
Electrical characteristics
4.22.1
Receive signal timing specifications
The following timing specs meet the requirements for MII and RMII interfaces for a range of transceiver devices.
Table 31. Receive signal timing
MII mode
Num
—
1
RMII mode
Characteristic
Unit
RXCLK frequency
setup1
Min
Max
Min
Max
—
25
—
50
MHz
5
—
4
—
ns
5
—
2
—
ns
E1
RXD[n:0], RXDV, RXER to RXCLK
E2
RXCLK to RXD[n:0], RXDV, RXER hold1
E3
RXCLK pulse width high
35%
65%
35%
65%
RXCLK period
E4
RXCLK pulse width low
35%
65%
35%
65%
RXCLK period
In MII mode, n = 3; In RMII mode, n = 1
E4
RXCLK (MII) / EXTAL (RMII)
E1
RXD[n:0]
RXDV,
RXER
E3
E2
Valid Data
Figure 28. MII/RMII receive signal timing diagram
4.22.2
Transmit signal timing specifications
Table 32. Transmit signal timing
MII mode
Num
—
1
RMII mode
Characteristic
Unit
TXCLK frequency
1
Min
Max
Min
Max
—
25
—
50
MHz
E5
TXCLK to TXD[n:0], TXEN, TXER invalid
4
—
5
—
ns
E6
TXCLK to TXD[n:0], TXEN, TXER valid1
—
25
—
14
ns
E7
TXCLK pulse width high
35%
65%
35%
65%
tTXCLK
E8
TXCLK pulse width low
35%
65%
35%
65%
tTXCLK
In MII mode, n = 3; In RMII mode, n = 1
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
48
Freescale Semiconductor
Electrical characteristics
E8
TXCLK (MII) / EXTAL (RMII)
E7
E6
TXD[n:0]
TXEN,
TXER
E5
Valid Data
Figure 29. MII/RMII transmit signal timing diagram
4.22.3
Asynchronous input signal timing specifications
Table 33. MII/RMII transmit signal timing
Num
Characteristic
E9
CRS, COL minimum pulse width
Min
Max
Unit
1.5
—
TXCLK period
CRS, COL
E9
Figure 30. MII/RMII async inputs timing diagram
4.22.4
MDIO serial management timing specifications
Table 34. MDIO serial management channel signal timing
Num
Characteristic
Symbol
Min
Max
Unit
tMDC
400
—
ns
E10
MDC cycle time
E11
MDC pulse width
40
60
% tMDC
E12
MDC to MDIO output valid
—
375
ns
E13
MDC to MDIO output invalid
25
—
ns
E14
MDIO input to MDC setup
10
—
ns
E15
MDIO input to MDC hold
0
—
ns
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
49
Electrical characteristics
E10
E11
MDC (Output)
E11
E13
E12
Valid Data
MDIO (Output)
E14
MDIO (Input)
E15
Valid Data
Figure 31. MDIO serial management channel timing diagram
4.23
32-bit timer module timing specifications
Table 35 lists timer module AC timings.
Table 35. Timer module AC timing specifications
Name
4.24
Characteristic
Min
Max
Unit
T1
DTnIN cycle time (n = 0:3)
3
—
1/fSYS/2
T2
DTnIN pulse width (n = 0:3)
1
—
1/fSYS/2
DSPI timing specifications
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the
transfer attributes are programmable. Table 36 provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the MCF54418 Reference Manual for information on the modified transfer formats used for communicating
with slower peripheral devices.
All DSPI signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of
50 pF.1
Table 36. DSPI module AC timing specifications1
Name
Characteristic
Symbol
Min
Max
Unit
Notes
Master Mode
—
DSPI_SCK frequency
fSCK
—
50
MHz
DS1
DSPI_SCK cycle time
tSCK
20
—
ns
2
DS2
DSPI_SCK duty cycle
—
(tsck 2) – 2.0
(tsck 2) + 2.0
ns
3
DS3
DSPI_PCSn to DSPI_SCK delay
tCSC
(tsck 2) – 2.0
—
ns
4
DS4
DSPI_SCK to DSPI_PCSn delay
tASC
(tsck 2) – 3.0
—
ns
5
DS5
DSPI_SCK to DSPI_SOUT valid
—
—
5
ns
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
50
Freescale Semiconductor
Electrical characteristics
Table 36. DSPI module AC timing specifications1 (continued)
Name
Characteristic
Symbol
Min
Max
Unit
DS6
DSPI_SCK to DSPI_SOUT invalid
—
–5
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
—
6
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
—
0
—
ns
Notes
Slave Mode
1
2
3
4
5
—
DSPI_SCK frequency
fSCK
—
fSYS  8
MHz
DS9
DSPI_SCK cycle time
tSCK
8 fSYS
—
ns
DS10
DSPI_SCK duty cycle
—
(tsck 2) – 2.0
(tsck 2) + 2.0
ns
DS11
DSPI_SCK to DSPI_SOUT valid
—
—
12
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
—
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
—
2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
—
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
—
10
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
—
10
ns
Timings shown are for DMCR[MTFE] = 0 (classic SPI) and DCTARn[CPHA] = 0. Data is sampled on the DSPI_SIN pin
on the odd-numbered DSPI_SCK edges and driven on the DSPI_SOUT pin on even-numbered DSPI edges.
When in master mode, the baud rate is programmable in DCTARn[DBR], DCTARn[PBR], and DCTARn[BR].
This specification assumes a 50/50 duty cycle setting. The duty cycle is programmable in DCTARn[DBR],
DCTARn[CPHA], and DCTARn[PBR].
The DSPI_PCSn to DSPI_SCK delay is programmable in DCTARn[PCSSCK] and DCTARn[CSSCK].
The DSPI_SCK to DSPI_PCSn delay is programmable in DCTARn[PASC] and DCTARn[ASC].
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
51
Electrical characteristics
DS3
DS4
DSPI_PCSn
DS1
DS2
DSPI_SCK
(DCTARn[CPOL] = 0)
DS2
DSPI_SCK
(DCTARn[CPOL] = 1)
DS7
DS8
DSPI_SIN
First Data
Data
DS5
DSPI_SOUT
Last Data
DS6
First Data
Data
Last Data
Figure 32. DSPI Classic SPI timing — master Mode
DSPI_SS
DS9
DSPI_SCK
(DCTARn[CPOL] = 0)
DS10
DS10
DSPI_SCK
(DCTARn[CPOL] = 1)
DS15
DSPI_SOUT
DS12
First Data
DS13
DSPI_SIN
DS11
Data
Last Data
Data
Last Data
DS16
DS14
First Data
Figure 33. DSPI Classic SPI timing — slave mode
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
52
Freescale Semiconductor
Electrical characteristics
4.25
SBF timing specifications
The Serial boot facility (SBF) provides a means to read configuration information and system boot code from a broad array of
SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 37 provides the AC timing specifications for the SBF.
All SBF signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of
50 pF.1
Table 37. SBF AC timing specifications
Name
1
Characteristic
Symbol
Min
Max
Unit
—
SBF_CK frequency
fSBFCK
—
62.5
MHz
SB1
SBF_CK cycle time
tSBFCK
16.67
—
ns
SB2
SBF_CK high/low time
—
30%
—
tSBFCK
SB3
SBF_CS to SBF_CK delay
—
tSBFCK – 2.0
—
ns
SB4
SBF_CK to SBF_CS delay
—
tSBFCK – 2.0
—
ns
SB5
SBF_CK to SBF_DO valid
—
—
5
ns
SB6
SBF_CK to SBF_DO invalid
—
–5
—
ns
SB7
SBF_DI to SBF_SCK input setup
—
10
—
ns
SB8
SBF_CK to SBF_DI input hold
—
0
—
ns
Notes
1
At reset, the SBF_CK cycle time is tREF  60. The first byte of data read from the serial memory contains a divider value
that is used to set the SBF_CK cycle time for the duration of the serial boot process.
SBF_CS
SB3
SB2
SBF_CK
SB7
SBF_DI
SB1
SB4
SB2
SB8
First Data
Data
Last Data
SB6
SB5
SBF_DO
First Data
Data
Last Data
Figure 34. SBF timing
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
53
Electrical characteristics
4.26
1-Wire timing specifications
Specifications for the 1-Wire interface are provided by Maxim Integrated Products, Inc. Please refer to data sheet information
for the appropriate device at www.maxim-ic.com.
4.27
General purpose I/O timing specifications
Table 38. GPIO timing1
Num
1
Characteristic
Min
Max
Unit
G1
FB_CLK high to GPIO output valid
—
9
ns
G2
FB_CLK high to GPIO output invalid
1
—
ns
G3
GPIO input valid to FB_CLK high
9
—
ns
G4
FB_CLK high to GPIO input invalid
1.5
—
ns
These general purpose specifications apply to the following signals: IRQn, all UART signals, all timer
signals, FlexCAN signals, DACKn and DREQn, and all signals configured as GPIO.
FB_CLK
G1
G2
GPIO Outputs
G3
G4
GPIO Inputs
Figure 35. GPIO timing
4.28
Rapid general purpose I/O timing specifications
RGPIO signals use a mix of pad types: pad_fsr, pad_msr, and pad_ssr. The following timing specifications assume a pad slew
rate setting of 11 and a load of 50 pF.
Table 39. RGPIO timing
Num
Characteristic
Min
Max
Unit
RG1
PST_CLK high to RGPIO output valid
—
6
ns
RG2
PST_CLK high to RGPIO output Invalid
0.5
—
ns
RG3
RGPIO input valid to PST_CLK high
6
—
ns
RG4
PST_CLK high to RGPIO input invalid
1.5
—
ns
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
54
Freescale Semiconductor
Electrical characteristics
PST_CLK
RG1
RG2
RGPIO Outputs
RG3
RG4
RGPIO Inputs
Figure 36. RGPIO timing
4.29
JTAG and boundary scan timing specifications
All JTAG signals use pad type pad_msr except for TCLK which use pad type pad_fsr. The following timing specifications
assume a pad slew rate setting of 11 and a load of 50 pF.1
Table 40. JTAG and boundary scan timing
Characteristics1
Num
1
Min
Max
Unit
J1
TCLK frequency of operation
DC
25
MHz
J2
TCLK cycle period
40
—
ns
J3
TCLK clock pulse width
20
—
ns
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
4
—
ns
J6
Boundary scan input data hold time after TCLK rise
20
—
ns
J7
TCLK low to boundary scan output data valid
—
13
ns
J8
TCLK low to boundary scan output high-Z
—
13
ns
J9
TMS, TDI input data setup time to TCLK rise
4
—
ns
J10
TMS, TDI input data hold time after TCLK rise
10
—
ns
J11
TCLK low to TDO data valid
—
12
ns
J12
TCLK low to TDO high-Z
—
0
ns
J13
TRST assert time
32
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
55
Electrical characteristics
J2
J3
J3
VIH
TCLK
(input)
VIL
J4
J4
Figure 37. Test clock input timing
TCLK
VIL
VIH
J5
Data Inputs
J6
Input Data Valid
J7
Data Outputs
Output Data Valid
J8
Data Outputs
J7
Data Outputs
Output Data Valid
Figure 38. Boundary scan (JTAG) timing
TCLK
VIL
VIH
J9
TDI
TMS
J10
Input Data Valid
J11
TDO
Output Data Valid
J12
TDO
J11
TDO
Output Data Valid
Figure 39. Test access port timing
TCLK
J14
TRST
J13
Figure 40. TRST timing
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
56
Freescale Semiconductor
Electrical characteristics
4.30
Debug AC timing specifications
Table 41 lists specifications for the debug AC timing parameters shown in Figure 41 and Table 42.
All debug signals use pad type pad_msr except for PSTCLK which use pad type pad_fsr. The following timing specifications
assume a pad slew rate setting of 11 and a load of 50 pF.1
Table 41. Debug AC timing specification
Num
Min
Max
Units
D0
PSTCLK cycle time
0.5
0.5
1/fSYS
D1
PSTCLK rising to PSTDDATA valid
—
3.0
ns
D2
PSTCLK rising to PSTDDATA invalid
0.5
—
ns
D3
DSI-to-DSCLK setup
1
—
PSTCLK
1
DSCLK-to-DSO hold
4
—
PSTCLK
D5
DSCLK cycle time
5
—
PSTCLK
D6
BKPT assertion time
1
—
PSTCLK
D4
1
Characteristic
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative
to the rising edge of PSTCLK.
D0
PSTCLK
D2
D1
PSTDDATA[7:0]
Figure 41. Real-time trace AC timing
D5
DSCLK
D3
DSI
Current
Next
D4
DSO
Past
Current
Figure 42. BDM serial port AC timing
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to
increase edge rise and fall times, thus reducing EMI.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
57
Package information
5
Package information
The latest package outline drawings are available on the product summary pages on http://www.freescale.com/coldfire.
Table 42 lists the case outline numbers per device. Use these numbers in the web page’s keyword search engine to find the latest
package outline drawings.
Table 42. Package information
Device
Package type
Case outline numbers
MCF54410
196 MAPBGA
98ASA00321D
256 MAPBGA
98ARH98219A
MCF54415
MCF54416
MCF54417
MCF54418
6
Product documentation
Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution
Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
58
Freescale Semiconductor
Revision history
7
Revision history
Table 43 summarizes revisions to this document.
Table 43. Revision history
Rev. No.
2
Date
Summary of changes
10 Jun 2009 In Section 2.2, “Supply voltage sequencing” added the following note:
NOTE
All I/O VDD pins must be powered on when the device is functioning,
except when in standby mode.
In standby mode, all I/O VDD pins, except VSTBY_RTC (battery), can
be switched off.
Added Section 3.2, “Pinout—169 MAPBGA” and Section 3.3, “Pinout—256 MAPBGA” and updated Table 5 with
pin locations.
In Section 4.1, “Absolute maximum ratings”:
• Added USB OTG, USB host, ADC, DAC/ADC, and RTC standby supply voltages
In Section 4.5, “DC electrical specifications”:
• Added RTC standby supply voltage
• Split out Power Supplies and I/O Characteristics to two separate tables
In Section 4.10, “FlexBus timing specifications”:
• Changed maximum frequency to 100MHz and updated specs throughout the table
• Changed FB2 maximum from 5 to 6
• Added notes to Figure 11 and Figure 12
In Section 4.12, “DDR SDRAM controller timing specifications”:
• Changed minimum frequency from 50 to 100
• Changed maximum DD1 from 20 to 10
• Changed DD5 from 2 to 0.5 x tSDCK – 1
• Changed DD6 from 1.2 x tSDCK to WL + 0.2 x tSDCK
• Changed DD7 from 1.5 to 0.7
• Changed DD8 from 1.0 to 0.7
• Changed DD9 from 1.0 to 0.5
• Changed DD10 from 0.25 x tSDCK + 0.5 to 0.375 x tSDCK
In Section 4.17, “SSI timing specifications”:
• Changed S7, S9, S15, and S17 from 10 to 15
In Section 4.22.2, “Transmit signal timing specifications”:
• Changed E5 for MII from 5 to 4
In Section 4.20, “mcPWM timing specifications”:
• Changed G2 from 2 to 1
In Section 4.24, “DSPI timing specifications”:
• Changed DS3 from (2 x 1/fsys) – 2.0 to (tsck ³ 2) – 2.0
• Changed DS4 from (2 x 1/fsys) – 3.0 to (tsck ³ 2) – 3.0
• Changed DS7 from 7 to 6
• Changed DS11 from 4 to 12
In Section 4.25, “SBF timing specifications”:
• Changed SB5 maximum from 5 to 3
• Changed SB6 minimum from –5 to 5
In Section 4.26, “1-Wire timing specifications”:
• Added link to 1-wire specs
In Section 4.27, “General purpose I/O timing specifications”:
• Changed G2 from 1.5 to 1
In Section 4.28, “Rapid general purpose I/O timing specifications”:
• Changed RG1 from 3 to 6
• Changed RG2 from 1.5 to 0.5
• Changed RG3 from 3 to 6
In Section 4.29, “JTAG and boundary scan timing specifications”:
• Changed J9-12 and J14 from TBD
In Section 4.30, “Debug AC timing specifications”:
• Changed D2 from 1.5 to 0.5
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
Freescale Semiconductor
59
Revision history
Table 43. Revision history (continued)
Rev. No.
Date
Summary of changes
3
31 July 2009 Changed 169MAPBGA package to 196MAPBGA throughout.
MCF54410 device now supports a single SSI module and one Ethernet controller with IEEE 1588
support
4
17 Aug 2009 Updated MCF5441x Signal Information and Muxing table with 196MAPBGA pin locations
Changed SD_Dn pin locations on 256 MAPBGA package
Added note to Section 4.6, “Output pad loading and slew rate”
5
29 Jan 2010 Added orderable part numbers
6
7
8
Swapped locations of RTC_EXTAL and RTC_XTAL pins in Table 5, Figure 7, and Figure 8
Corrected instances of MCF5445x to MCF5441x
Added thermal characteristic s to Table 7
Added case outline numbers to Table 42
Changed PLL supply voltage from “–0.5 to +2.0” to “–0.3 to +4.0” in Table 6
Miscellaneous corrections based on information from shared review comments by team members
October 2011 •
•
•
•
•
June 2012
Updated the pinouts in Table 5, “MCF5441x Signal information and muxing”.
Updated the Figure 7, “MCF54410 Pinout (196 MAPBGA)”.
Removed the symbol ADC_IN7/DAC1_OUT from Table 9, “Latch-up results”.
Updated Table 11, “I/O electrical specifications”.
Updated Table 13, “DDR pad drive strengths”.
• In Table 7, added the thermal characteristics for the 196 MAPBGA package.
• In Table 42, updated the case outline number for the 196 MAPBGA package from “98ARH98217”
to “98ASA00321D”.
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8
60
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Document Number: MCF54418
Rev. 8
06/2012
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2011-2012. All rights reserved.