MITSUBISHI PM100CLA060

MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CLA060
FLAT-BASE TYPE
INSULATED PACKAGE
PM100CLA060
FEATURE
a) Adopting new 5th generation IGBT (CSTBT) chip, which
performance is improved by 1µm fine rule process.
For example, typical Vce(sat)=1.5V @Tj=125°C
b) I adopt the over-temperature conservation by Tj detection of
CSTBT chip, and error output is possible from all each conservation upper and lower arm of IPM.
c) New small package
Reduce the package size by 10%, thickness by 22% from
S-DASH series.
• 3φ 100A, 600V Current-sense IGBT type inverter
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-Fo available
from upper arm devices)
• Acoustic noise-less 11kW class inverter application
• UL Recognized
Yellow Card No.E80276(N)
File No.E80271
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES
Dimensions in mm
11
120
106
7
19.75
3.25
16
16
16
3-2
3-2
3-2
16
15.25
2-φ5.5
MOUNTING HOLES
6-2
3
2-φ2.5
55
N
17.5
12
19.75
5
9
13
19
U
V
W
13.5
B
6-M5 NUTS
22 +– 10.5
12
32.75
23
23
23
Terminal code
19-■0.5
31
13
7
(SCREWING DEPTH)
10.75
12
11.75
14.5
32
P
17.5
1
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
VUPC
UFO
UP
VUP1
VVPC
VFO
VP
VVP1
VWPC
WFO
11.
12.
13.
14.
15.
16.
17.
18.
19.
WP
VWP1
VNC
VN1
NC
UN
VN
WN
Fo
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CLA060
FLAT-BASE TYPE
INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
NC Fo
VNC WN
VN1
WP
VWP1
VWPC WFO
UN
VN
1.5k
VP
VVPC
1.5k
Gnd In
Gnd
Fo Vcc
Si Out
OT
NC
Gnd In
Gnd
Fo Vcc
Si Out
OT
Gnd In
Gnd
Fo Vcc
Si Out
OT
N
Gnd In
Gnd
UP
VUPC
VUP1
UFO
1.5k
Fo Vcc
Si Out
VVP1
VFO
OT
Gnd In
Gnd
W
V
1.5k
Fo Vcc
Si Out
Gnd In
OT
Gnd
Fo Vcc
Si Out
U
OT
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCES
±IC
±ICP
PC
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
Condition
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
(Note-1)
Ratings
600
100
200
462
–20 ~ +150
Unit
V
A
A
W
°C
Ratings
Unit
20
V
20
V
20
V
20
mA
CONTROL PART
Symbol
Parameter
VD
Supply Voltage
VCIN
Input Voltage
VFO
Fault Output Supply Voltage
IFO
Fault Output Current
Condition
Applied between : VUP1-VUPC
VVP1-VVPC, VWP1-VWPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC
WP-VWPC, UN • VN • WN-VNC
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC
FO-VNC
Sink current at UFO, VFO, WFO, FO terminals
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CLA060
FLAT-BASE TYPE
INSULATED PACKAGE
TOTAL SYSTEM
Symbol
Parameter
Supply Voltage Protected by
VCC(PROT)
SC
VCC(surge) Supply Voltage (Surge)
Storage Temperature
Tstg
Isolation Voltage
Viso
Ratings
Condition
VD = 13.5 ~ 16.5V, Inverter Part,
Tj = +125°C Start
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
Unit
400
V
500
–40 ~ +125
2500
V
°C
Vrms
THERMAL RESISTANCES
Symbol
Condition
Parameter
Rth(j-c)Q
Rth(j-c)F
Junction to case Thermal
Resistances
Rth(c-f)
Contact Thermal Resistance
Inverter IGBT (per 1 element)
Inverter FWDi (per 1 element)
Case to fin, (per 1 module)
Thermal grease applied
(Note-1)
(Note-1)
(Note-1)
Min.
—
—
Limits
Typ.
—
—
Max.
0.27*
0.43*
—
—
0.038
Limits
Typ.
1.6
1.5
2.2
1.0
0.2
0.4
1.2
0.5
—
—
Max.
2.1
2.0
3.3
2.4
0.4
1.0
2.5
1.0
1
10
Unit
°C/W
* If you use this value, Rth(f-a) should be measured just under the chips.
(Note-1) Tc (under the chip) measurement point is below.
arm
axis
X
Y
UP
IGBT FWDi
28.3
28.0
–8.5
1.7
VP
IGBT FWDi
65.0
65.2
–8.5
1.7
WP
IGBT FWDi
87.0
87.2
–8.5
1.7
(unit : mm)
UN
IGBT FWDi
39.3
39.5
6.5
–5.2
VN
IGBT FWDi
54.0
53.7
6.5
–5.2
WN
IGBT FWDi
76.0
75.7
6.5
–5.2
Bottom view
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCE(sat)
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Parameter
Condition
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
VD = 15V, IC = 100A
VCIN = 0V
(Fig. 1)
–IC = 100A, VD = 15V, VCIN = 15V
Switching Time
VD = 15V, VCIN = 0V↔15V
VCC = 300V, IC = 100A
Tj = 125°C
Inductive Load
Collector-Emitter
Cutoff Current
VCE = VCES, VCIN = 15V
Tj = 25°C
Tj = 125°C
(Fig. 2)
(Fig. 3,4)
(Fig. 5)
Tj = 25°C
Tj = 125°C
Min.
—
—
—
0.5
—
—
—
—
—
—
Unit
V
V
µs
mA
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CLA060
FLAT-BASE TYPE
INSULATED PACKAGE
CONTROL PART
Symbol
Parameter
Condition
VN1-VNC
V*P1-V*PC
ID
Circuit Current
VD = 15V, VCIN = 15V
Vth(ON)
Vth(OFF)
SC
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN-VNC
(Fig. 3,6)
–20 ≤ Tj ≤ 125°C, VD = 15V
toff(SC)
OT
OTr
UV
UVr
IFO(H)
IFO(L)
tFO
VD = 15V
(Fig. 3,6)
Over Temperature Protection
VD = 15V
Detect Tj of IGBT chip
Supply Circuit Under-Voltage
Protection
–20 ≤ Tj ≤ 125°C
Fault Output Current
VD = 15V, VFO = 15V
(Note-2)
Minimum Fault Output Pulse
Width
VD = 15V
(Note-2)
Trip level
Reset level
Trip level
Reset level
Min.
—
—
1.2
1.7
200
Limits
Typ.
15
5
1.5
2.0
—
Max.
25
10
1.8
2.3
—
Unit
mA
V
A
—
0.2
—
µs
135
—
11.5
—
—
—
145
125
12.0
12.5
—
10
—
—
12.5
—
0.01
15
°C
1.0
1.8
—
V
mA
ms
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
—
—
—
Condition
Parameter
Mounting torque
Mounting torque
Weight
Main terminal
Mounting part
screw : M5
screw : M5
—
Min.
2.5
2.5
—
Limits
Typ.
3.0
3.0
380
Max.
3.5
3.5
—
Unit
N•m
N•m
g
RECOMMENDED CONDITIONS FOR USE
Symbol
VCC
Parameter
Supply Voltage
VD
Control Supply Voltage
VCIN(ON)
VCIN(OFF)
fPWM
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through
Blocking Time
tdead
Condition
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
(Note-3)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN-VNC
Using Application Circuit of Fig. 8
For IPM’s each input signals
Recommended value
≤ 400
Unit
V
15 ± 1.5
V
(Fig. 7)
≤ 0.8
≥ 9.0
≤ 20
kHz
≥ 2.0
µs
V
(Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CLA060
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W)
IN
Fo
VCIN
P, (U,V,W)
Ic
V
IN
Fo
VCIN
–Ic
V
(15V)
(0V)
U,V,W, (N)
VD (all)
U,V,W, (N)
VD (all)
Fig. 1 VCE(sat) Test
Fig. 2 VEC Test
a) Lower Arm Switching
P
VCIN
(15V)
Fo
Signal input
(Upper Arm)
trr
CS
Ic
Vcc
Fo
Signal input
(Lower Arm)
VCIN
VCE
Irr
U,V,W
90%
90%
N
VD (all)
b) Upper Arm Switching
Ic
10%
10%
10%
10%
P
Fo
Signal input
(Upper Arm)
VCIN
tc(on)
VCIN
U,V,W
CS
VCIN
(15V)
tc(off)
Vcc
td(on)
tr
td(off)
tf
Fo
Signal input
(Lower Arm)
(ton= td(on) + tr)
(toff= td(off) + tf)
N
Ic
VD (all)
Fig. 3 Switching time and SC test circuit
Fig. 4 Switching time test waveform
VCIN
Short Circuit Current
P, (U,V,W)
A
VCIN
(15V)
Constant Current
IN
Fo
SC
Pulse VCE
Ic
VD (all)
U,V,W, (N)
Fo
toff(SC)
Fig. 5 ICES Test
Fig. 6 SC test waveform
IPM’ input signal VCIN
(Upper Arm)
1.5V
0V
IPM’ input signal VCIN
(Lower Arm)
0V
2V
tdead
2V
1.5V
1.5V
2V
tdead
t
t
tdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
Fig. 7 Dead time measurement point example
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CLA060
FLAT-BASE TYPE
INSULATED PACKAGE
P
≥10µ
20k
VUP1
→
VD
UFo
IF
1.5k
Vcc
Fo
UP
OT
OUT
VUPC
+
–
Si
In
U
GND GND
≥0.1µ
VVP1
VFo
VD
1.5k
Fo
VP
1.5k
Vcc
Fo
WP
Vcc
≥10µ
Fo
UN
OT
OUT
Si
W
OT
OUT
Si
In
GND GND
≥0.1µ
N
OT
20k
→
M
GND GND
20k
IF
V
In
VWPC
→
Si
GND GND
VWP1
VD
OT
OUT
In
VVPC
WFo
Vcc
Vcc
≥10µ
IF
Fo
VN
OUT
Si
In
GND GND
≥0.1µ
20k
→
VD
VN1
Vcc
≥10µ
IF
Fo
WN
≥0.1µ
In
OT
OUT
Si
GND GND
VNC
NC
NC
5V
1k
Fo
1.5k
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL ≤ 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
•
•
•
•
•
•
•
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CLA060
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(INVERTER PART · TYPICAL)
OUTPUT CHARACTERISTICS
(INVERTER PART · TYPICAL)
100
VD = 17V
60
40
20
0
0.5
1
1.5
2
2
VD = 15V
1.5
1
0.5
Tj = 25°C
Tj = 125°C
0
0
20
40
60
80
100
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(INVERTER PART · TYPICAL)
2
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
1.5
1
0.5
IC = 100A
Tj = 25°C
Tj = 125°C
0
12
101
7
5
4
3
2
13
14
15
16
17
7 VCC = 300V
5 VD = 15V
Tj = 25°C
4
Tj = 125°C
3
2 Inductive load
100
7
5
4
3
tc(off)
tc(on)
tc(off)
2
10–1
18
4 5 7 101
2
3 4 5 7 102
2
3
CONTROL SUPPLY VOLTAGE VD (V)
COLLECTOR CURRENT IC (A)
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
ton
100
toff
7
5
4
3
toff
2
10–1
101
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
13V
80
0
SWITCHING TIME ton, toff (µs)
15V
4 5 7 101
2
3 4 5 7 102
2
COLLECTOR CURRENT IC (A)
3
SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse)
COLLECTOR CURRENT IC (A)
Tj = 25°C
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
120
101
ESW(on)
7
5
4
3
2
ESW(off)
100
7
5
4
3
2
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
10–1
7
5
4
2
3 4 5 7 101
2
3 4 5 7 102
2
COLLECTOR CURRENT IC (A)
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM100CLA060
102
VD = 15V
7
5
4
3
2
101
7
5
4
3
2
100
Tj = 25°C
Tj = 125°C
0
0.5
1
1.5
2
7
5
4
3
Irr
2
7
5
4
3
2
10–1
trr
7
5
4
3
101
7
5
4
3
2
10–2
2.5
2
3 4 5 7 101
VCC = 300V
VD = 15V
Tj = 25°C
2
Tj = 125°C
Inductive load
100
2 3 4 5 7 102
2 3
EMITTER-COLLECTOR VOLTAGE VEC (V)
COLLECTOR RECOVERY CURRENT –IC (A)
ID VS. fc CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(INVERTER PART)
100
VD = 15V
Tj = 25°C
40
N-side
30
20
P-side
10
0
0
5
10
15
fc (kHz)
20
25
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
50
ID (mA)
DIODE REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
100
102
REVERSE RECOVERY CURRENT lrr (A)
DIODE FORWARD CHARACTERISTICS
(INVERTER PART · TYPICAL)
REVERSE RECOVERY TIME trr (µs)
COLLECTOR RECOVERY CURRENT –IC (A)
FLAT-BASE TYPE
INSULATED PACKAGE
7
5
3
2
10–1
7
5
3
2
10–2 Single Pulse
7
5 IGBT Part;
Per unit base = Rth(j – c)Q = 0.27°C/ W
3
FWDi Part;
2
Per unit base = Rth(j – c)F = 0.43°C/ W
10–3 –5
10 2 3 5 710–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
May 2005