MITSUBISHI PM25RLB120_05

MITSUBISHI <INTELLIGENT POWER MODULES>
PM25RLB120
FLAT-BASE TYPE
INSULATED PACKAGE
PM25RLB120
FEATURE
a) Adopting new 5th generation IGBT (CSTBT) chip, which
performance is improved by 1µm fine rule process.
For example, typical Vce(sat)=1.9V @Tj=125°C
b) I adopt the over-temperature conservation by Tj detection of
CSTBT chip, and error output is possible from all each conservation upper and lower arm of IPM.
c) Current rating of brake part increased.
60% for the current rating of inverter part.
• 3φ 25A, 1200V Current-sense IGBT type inverter
• 15A, 1200V Current-sense regenerative brake IGBT
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-Fo available
from upper arm devices)
• Acoustic noise-less 3.7kW class inverter application
• UL Recognized
Yellow Card No.E80276(N)
File No.E80271
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES
Dimensions in mm
120
106 ±0.25
7
19.75
66.5
17
16
3.25
16
16
15.25
16
2-φ5.5
3-2
6-2
MOUNTING HOLES
1
5
9
13
2-φ2.5
35
55
N
25.75
4 4
3
1.5
1
3-2
1.5
3-2
19
4 4
25
P
U
V
W
1
B
4 4
4 4
4-
φ2
.
9.5
5
19.5
23
23
Terminal code
98.25
19-■0.5
27.5
23
9.5
22
7.75
4 4
11.5
2.5
4 4
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
VUPC
UFO
UP
VUP1
VVPC
VFO
VP
VVP1
VWPC
WFO
11.
12.
13.
14.
15.
16.
17.
18.
19.
WP
VWP1
VNC
VN1
Br
UN
VN
WN
Fo
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM25RLB120
FLAT-BASE TYPE
INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
Br Fo
VNC WN
VN1
WP
VWP1
VWPC WFO
UN
VN
1.5k
Gnd In
Gnd
1.5k
Fo Vcc
Si Out
VP
VVPC
OT
Gnd In
Gnd
Fo Vcc
Si Out
OT
Gnd In
Gnd
B
Fo Vcc
Si Out
OT
Gnd In
Gnd
Fo Vcc
Si Out
OT
N
Gnd In
Gnd
UP
VUPC
VUP1
UFO
1.5k
Fo Vcc
Si Out
VVP1
VFO
OT
Gnd In
Gnd
W
V
1.5k
Fo Vcc
Si Out
Gnd In
OT
Gnd
Fo Vcc
Si Out
U
OT
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCES
±IC
±ICP
PC
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
Condition
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
(Note-1)
Ratings
1200
25
50
150
–20 ~ +150
Unit
V
A
A
W
°C
Ratings
1200
15
30
130
1200
15
–20 ~ +150
Unit
V
A
A
W
V
A
°C
Ratings
Unit
20
V
20
V
20
V
20
mA
BRAKE PART
Symbol
VCES
IC
ICP
PC
VR(DC)
IF
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
FWDi Rated DC Reverse Voltage
FWDi Forward Current
Junction Temperature
Condition
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
TC = 25°C
TC = 25°C
(Note-1)
CONTROL PART
Symbol
Parameter
VD
Supply Voltage
VCIN
Input Voltage
VFO
Fault Output Supply Voltage
IFO
Fault Output Current
Condition
Applied between : VUP1-VUPC
VVP1-VVPC, VWP1-VWPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC
WP-VWPC, UN • VN • WN • Br-VNC
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC
FO-VNC
Sink current at UFO, VFO, WFO, FO terminals
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM25RLB120
FLAT-BASE TYPE
INSULATED PACKAGE
TOTAL SYSTEM
Symbol
Parameter
Supply Voltage Protected by
VCC(PROT)
SC
VCC(surge) Supply Voltage (Surge)
Storage Temperature
Tstg
Isolation Voltage
Viso
Ratings
Condition
VD = 13.5 ~ 16.5V, Inverter Part,
Tj = +125°C Start
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
Unit
800
V
1000
–40 ~ +125
2500
V
°C
Vrms
THERMAL RESISTANCES
Symbol
Condition
Parameter
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)Q
Rth(j-c)F
Junction to case Thermal
Resistances
Rth(c-f)
Contact Thermal Resistance
Inverter IGBT (per 1 element)
Inverter FWDi (per 1 element)
Brake IGBT
Brake FWDi
Case to fin, (per 1 module)
Thermal grease applied
(Note-1)
(Note-1)
(Note-1)
(Note-1)
(Note-1)
Min.
—
—
—
—
Limits
Typ.
—
—
—
—
Max.
0.83*
1.36*
0.96*
1.82*
—
—
0.038
Unit
°C/W
* If you use this value, Rth(f-a) should be measured just under the chips.
(Unit : mm)
(Note-1) TC (under the chip) measurement point is below.
arm
axis
X
Y
UP
IGBT FWDi
29.0
29.3
–7.1
1.5
VP
IGBT FWDi
65.0
65.5
–7.1
2.0
WP
IGBT FWDi
85.6
85.9
–7.1
2.0
UN
IGBT FWDi
37.8
37.5
5.1
–4.5
VN
IGBT FWDi
55.2
55.7
5.1
–4.5
WN
IGBT FWDi
75.8
75.3
5.1
–4.5
Br
IGBT
19.0
–7.3
FWDi
22.3
6.6
Bottom view
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCE(sat)
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Parameter
Condition
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
VD = 15V, IC = 25A
(Fig. 1)
VCIN = 0V
–IC = 25A, VD = 15V, VCIN = 15V
Switching Time
VD = 15V, VCIN = 0V↔15V
VCC = 600V, IC = 25A
Tj = 125°C
Inductive Load
Collector-Emitter
Cutoff Current
VCE = VCES, VCIN = 15V
Tj = 25°C
Tj = 125°C
(Fig. 2)
(Fig. 3,4)
(Fig. 5)
Tj = 25°C
Tj = 125°C
Min.
—
—
—
0.5
—
—
—
—
—
—
Limits
Typ.
1.8
1.9
2.5
1.0
0.5
0.4
2.0
0.7
—
—
Max.
2.3
2.4
3.5
2.5
0.8
1.0
3.0
1.2
1
10
Unit
V
V
µs
mA
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM25RLB120
FLAT-BASE TYPE
INSULATED PACKAGE
BRAKE PART
Symbol
VCE(sat)
VFM
ICES
Condition
Parameter
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
Collector-Emitter
Cutoff Current
VD = 15V, IC = 15A
VCIN = 0V
IF = 15A
(Fig. 1)
VCE = VCES, VCIN = 15V
(Fig. 5)
Tj = 25°C
Tj = 125°C
(Fig. 2)
Tj = 25°C
Tj = 125°C
Min.
—
—
—
—
—
Limits
Typ.
1.8
1.9
2.5
—
—
Max.
2.3
2.4
3.5
1
10
Min.
—
—
1.2
1.7
50
30
Limits
Typ.
20
5
1.5
2.0
—
—
Max.
30
10
1.8
2.3
—
—
Unit
V
V
mA
CONTROL PART
Symbol
Parameter
Condition
VN1-VNC
V*P1-V*PC
ID
Circuit Current
VD = 15V, VCIN = 15V
Vth(ON)
Vth(OFF)
Input ON Threshold Voltage
Input OFF Threshold Voltage
SC
Short Circuit Trip Level
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Inverter part
–20 ≤ Tj ≤ 125°C, VD = 15V (Fig. 3,6)
Brake part
toff(SC)
Short Circuit Current Delay
Time
VD = 15V
Over Temperature Protection
VD = 15V
Detect Tj of IGBT chip
Supply Circuit Under-Voltage
Protection
–20 ≤ Tj ≤ 125°C
Fault Output Current
VD = 15V, VFO = 15V
(Note-2)
Minimum Fault Output Pulse
Width
VD = 15V
(Note-2)
OT
OTr
UV
UVr
IFO(H)
IFO(L)
tFO
(Fig. 3,6)
Trip level
Reset level
Trip level
Reset level
Unit
mA
V
A
—
0.2
—
µs
135
—
11.5
—
—
—
145
125
12.0
12.5
—
10
—
—
12.5
—
0.01
15
°C
1.0
1.8
—
V
mA
ms
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
—
—
Condition
Parameter
Mounting torque
Weight
Mounting part
screw : M5
—
Min.
2.5
—
Limits
Typ.
3.0
340
Max.
3.5
—
Unit
N•m
g
RECOMMENDED CONDITIONS FOR USE
Symbol
VCC
Parameter
Supply Voltage
VD
Control Supply Voltage
VCIN(ON)
VCIN(OFF)
fPWM
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through
Blocking Time
tdead
Condition
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
(Note-3)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Using Application Circuit of Fig. 8
For IPM’s each input signals
Recommended value
≤ 800
Unit
V
15.0 ± 1.5
V
(Fig. 7)
≤ 0.8
≥ 9.0
≤ 20
kHz
≥ 2.5
µs
V
(Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM25RLB120
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W,B)
IN
Fo
VCIN
P, (U,V,W)
Ic
V
IN
Fo
VCIN
–Ic
V
(15V)
(0V)
U,V,W, (N)
VD (all)
U,V,W,B, (N)
VD (all)
Fig. 1 VCE(sat) Test
Fig. 2 VEC, (VFM) Test
a) Lower Arm Switching
P
VCIN
(15V)
Fo
Signal input
(Upper Arm)
trr
CS
Ic
Vcc
Fo
Signal input
(Lower Arm)
VCIN
VCE
Irr
U,V,W
90%
90%
N
VD (all)
b) Upper Arm Switching
Ic
10%
10%
10%
10%
P
tc (on)
Fo
Signal input
(Upper Arm)
VCIN
VCIN
U,V,W
CS
VCIN
(15V)
tc (off)
Vcc
td (on)
tr
tf
td (off)
Fo
Signal input
(Lower Arm)
(ton= td (on) + tr)
(toff= td (off) + tf)
N
Ic
VD (all)
Fig. 3 Switching time and SC test circuit
Fig. 4 Switching time test waveform
VCIN
Short Circuit Current
P, (U,V,W,B)
A
VCIN
(15V)
Constant Current
IN
Fo
SC
Pulse VCE
Ic
VD (all)
U,V,W, (N)
Fo
toff(SC)
Fig. 5 ICES Test
Fig. 6 SC test waveform
IPM’ input signal VCIN
(Upper Arm)
1.5V
0V
IPM’ input signal VCIN
(Lower Arm)
0V
2V
tdead
2V
1.5V
1.5V
tdead
2V
t
t
tdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
Fig. 7 Dead time measurement point example
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM25RLB120
FLAT-BASE TYPE
INSULATED PACKAGE
P
≥10µ
20k
VUP1
→
VD
UFo
IF
1.5k
Vcc
Fo
UP
OT
OUT
VUPC
+
–
Si
In
U
GND GND
≥0.1µ
VVP1
VFo
VD
1.5k
Fo
VP
1.5k
Vcc
Fo
WP
M
OT
OUT
Si
W
GND GND
20k
Vcc
≥10µ
IF
V
In
VWPC
→
Si
GND GND
VWP1
VD
OT
OUT
In
VVPC
WFo
Vcc
Fo
UN
OT
OUT
Si
In
GND GND
≥0.1µ
N
OT
20k
→
Vcc
≥10µ
IF
Fo
VN
OUT
Si
In
GND GND
≥0.1µ
20k
→
VD
IF
Fo
In
Vcc
Fo
Br
1k
Fo
OT
OUT
Si
GND GND
VNC
4.7k
IF
5V
Vcc
WN
≥0.1µ
→
VN1
≥10µ
In
1.5k
B
OT
OUT
Si
GND GND
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL ≤ 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
•
•
•
•
•
•
•
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM25RLB120
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(INVERTER PART · TYPICAL)
OUTPUT CHARACTERISTICS
(INVERTER PART · TYPICAL)
VD = 17V
13V
20
10
0
0.5
0
1
1.5
2
VD = 15V
1.5
1
0.5
Tj = 25°C
Tj = 125°C
0
10
0
20
30
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(INVERTER PART · TYPICAL)
2
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
1.5
1
0.5
IC = 25A
Tj = 25°C
Tj = 125°C
0
12
13
14
15
16
17
101
7 VCC = 600V
5 VD = 15V
Tj = 25°C
4
Tj = 125°C
3
2 Inductive load
tc(off)
100
7
5
4
3
tc(on)
2
10–1 0
10
18
2
3 4 5 7 101
2
3 4 5 7 102
CONTROL SUPPLY VOLTAGE VD (V)
COLLECTOR CURRENT IC (A)
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
101
SWITCHING TIME ton, toff (µs)
2
COLLECTOR-EMITTER VOLTAGE VCE (V)
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
15V
7
5
4
3
2
toff
100
7
5
4
3
ton
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
10–1 0
10
2
3 4 5 7 101
2
3 4 5 7 102
COLLECTOR CURRENT IC (A)
SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse)
COLLECTOR CURRENT IC (A)
Tj = 25°C
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
30
101
7
5
4
3
2
ESW(off)
ESW(on)
ESW(on)
100
ESW(off)
ESW(on)
7
5
4
3
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
10–1 0
10
ESW(off)
2
3 4 5 7 101
2
3 4 5 7 102
COLLECTOR CURRENT IC (A)
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM25RLB120
102
VD = 15V
7
5
4
3
2
101
7
5
4
3
2
100
Tj = 25°C
Tj = 125°C
0
0.5
1
1.5
2
7
5
4
3
2
2
Irr
10–1
101
Irr
7
5
4
3
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
2
3 4 5 7 101
2
7
5
4
3
2
100
3 4 5 7 102
EMITTER-COLLECTOR VOLTAGE VEC (V)
COLLECTOR RECOVERY CURRENT –IC (A)
OUTPUT CHARACTERISTICS
(BRAKE PART · TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(BRAKE PART · TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
Tj = 25°C
VD = 17V
15
15V
13V
10
5
0
0
0.5
1
1.5
2
2.5
2
VD = 15V
1.5
1
0.5
Tj = 25°C
Tj = 125°C
0
0
2
1.5
1
0.5
IC = 15A
Tj = 25°C
Tj = 125°C
0
12
13
14
15
16
17
18
CONTROL SUPPLY VOLTAGE VD (V)
COLLECTOR RECOVERY CURRENT –IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(BRAKE PART · TYPICAL)
2.5
5
10
15
20
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
7
5
4
3
trr
10–2 0
10
2.5
20
COLLECTOR CURRENT IC (A)
DIODE REVERSE RECOVERY CHARACTERISTICS
(INVERTER PART · TYPICAL)
100
102
REVERSE RECOVERY CURRENT lrr (A)
DIODE FORWARD CHARACTERISTICS
(INVERTER PART · TYPICAL)
REVERSE RECOVERY TIME trr (µs)
COLLECTOR RECOVERY CURRENT –IC (A)
FLAT-BASE TYPE
INSULATED PACKAGE
DIODE FORWARD CHARACTERISTICS
(BRAKE PART · TYPICAL)
102
VD = 15V
Tj = 25°C
Tj = 125°C
7
5
4
3
2
101
7
5
4
3
2
100
0
0.5
1
1.5
2
2.5
EMITTER-COLLECTOR VOLTAGE VEC (V)
May 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM25RLB120
FLAT-BASE TYPE
INSULATED PACKAGE
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(INVERTER PART)
ID VS. fc CHARACTERISTICS
(TYPICAL)
100
VD = 15V
Tj = 25°C
ID (mA)
40
30
N-side
20
10
P-side
0
0
5
10
15
20
25
fc (kHz)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
50
7
5
3
2
10–1
7
5
3
2
10–2 Single Pulse
7
5 IGBT Part;
Per unit base = Rth(j – c)Q = 0.83°C/W
3
FWDi Part;
2
Per unit base = Rth(j – c)F = 1.36°C/W
10–3 –5
10 2 3 5 710–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(BRAKE PART)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
100
7
5
3
2
10–1
7
5
3
2
10–2 Single Pulse
7
5 IGBT Part;
Per unit base = Rth(j – c)Q = 0.96°C/W
3
FWDi Part;
2
Per unit base = Rth(j – c)F = 1.82°C/W
10–3 –5
10 2 3 5 710–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
May 2005