MITSUBISHI <INTELLIGENT POWER MODULES> PM25RLB120 FLAT-BASE TYPE INSULATED PACKAGE PM25RLB120 FEATURE a) Adopting new 5th generation IGBT (CSTBT) chip, which performance is improved by 1µm fine rule process. For example, typical Vce(sat)=1.9V @Tj=125°C b) I adopt the over-temperature conservation by Tj detection of CSTBT chip, and error output is possible from all each conservation upper and lower arm of IPM. c) Current rating of brake part increased. 60% for the current rating of inverter part. • 3φ 25A, 1200V Current-sense IGBT type inverter • 15A, 1200V Current-sense regenerative brake IGBT • Monolithic gate drive & protection logic • Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-Fo available from upper arm devices) • Acoustic noise-less 3.7kW class inverter application • UL Recognized Yellow Card No.E80276(N) File No.E80271 APPLICATION General purpose inverter, servo drives and other motor controls PACKAGE OUTLINES Dimensions in mm 120 106 ±0.25 7 19.75 66.5 17 16 3.25 16 16 15.25 16 2-φ5.5 3-2 6-2 MOUNTING HOLES 1 5 9 13 2-φ2.5 35 55 N 25.75 4 4 3 1.5 1 3-2 1.5 3-2 19 4 4 25 P U V W 1 B 4 4 4 4 4- φ2 . 9.5 5 19.5 23 23 Terminal code 98.25 19-■0.5 27.5 23 9.5 22 7.75 4 4 11.5 2.5 4 4 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. VUPC UFO UP VUP1 VVPC VFO VP VVP1 VWPC WFO 11. 12. 13. 14. 15. 16. 17. 18. 19. WP VWP1 VNC VN1 Br UN VN WN Fo May 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM25RLB120 FLAT-BASE TYPE INSULATED PACKAGE INTERNAL FUNCTIONS BLOCK DIAGRAM Br Fo VNC WN VN1 WP VWP1 VWPC WFO UN VN 1.5k Gnd In Gnd 1.5k Fo Vcc Si Out VP VVPC OT Gnd In Gnd Fo Vcc Si Out OT Gnd In Gnd B Fo Vcc Si Out OT Gnd In Gnd Fo Vcc Si Out OT N Gnd In Gnd UP VUPC VUP1 UFO 1.5k Fo Vcc Si Out VVP1 VFO OT Gnd In Gnd W V 1.5k Fo Vcc Si Out Gnd In OT Gnd Fo Vcc Si Out U OT P MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCES ±IC ±ICP PC Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation Junction Temperature Condition VD = 15V, VCIN = 15V TC = 25°C TC = 25°C TC = 25°C (Note-1) Ratings 1200 25 50 150 –20 ~ +150 Unit V A A W °C Ratings 1200 15 30 130 1200 15 –20 ~ +150 Unit V A A W V A °C Ratings Unit 20 V 20 V 20 V 20 mA BRAKE PART Symbol VCES IC ICP PC VR(DC) IF Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation FWDi Rated DC Reverse Voltage FWDi Forward Current Junction Temperature Condition VD = 15V, VCIN = 15V TC = 25°C TC = 25°C TC = 25°C TC = 25°C TC = 25°C (Note-1) CONTROL PART Symbol Parameter VD Supply Voltage VCIN Input Voltage VFO Fault Output Supply Voltage IFO Fault Output Current Condition Applied between : VUP1-VUPC VVP1-VVPC, VWP1-VWPC, VN1-VNC Applied between : UP-VUPC, VP-VVPC WP-VWPC, UN • VN • WN • Br-VNC Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC FO-VNC Sink current at UFO, VFO, WFO, FO terminals May 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM25RLB120 FLAT-BASE TYPE INSULATED PACKAGE TOTAL SYSTEM Symbol Parameter Supply Voltage Protected by VCC(PROT) SC VCC(surge) Supply Voltage (Surge) Storage Temperature Tstg Isolation Voltage Viso Ratings Condition VD = 13.5 ~ 16.5V, Inverter Part, Tj = +125°C Start Applied between : P-N, Surge value 60Hz, Sinusoidal, Charged part to Base, AC 1 min. Unit 800 V 1000 –40 ~ +125 2500 V °C Vrms THERMAL RESISTANCES Symbol Condition Parameter Rth(j-c)Q Rth(j-c)F Rth(j-c)Q Rth(j-c)F Junction to case Thermal Resistances Rth(c-f) Contact Thermal Resistance Inverter IGBT (per 1 element) Inverter FWDi (per 1 element) Brake IGBT Brake FWDi Case to fin, (per 1 module) Thermal grease applied (Note-1) (Note-1) (Note-1) (Note-1) (Note-1) Min. — — — — Limits Typ. — — — — Max. 0.83* 1.36* 0.96* 1.82* — — 0.038 Unit °C/W * If you use this value, Rth(f-a) should be measured just under the chips. (Unit : mm) (Note-1) TC (under the chip) measurement point is below. arm axis X Y UP IGBT FWDi 29.0 29.3 –7.1 1.5 VP IGBT FWDi 65.0 65.5 –7.1 2.0 WP IGBT FWDi 85.6 85.9 –7.1 2.0 UN IGBT FWDi 37.8 37.5 5.1 –4.5 VN IGBT FWDi 55.2 55.7 5.1 –4.5 WN IGBT FWDi 75.8 75.3 5.1 –4.5 Br IGBT 19.0 –7.3 FWDi 22.3 6.6 Bottom view ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCE(sat) VEC ton trr tc(on) toff tc(off) ICES Parameter Condition Collector-Emitter Saturation Voltage FWDi Forward Voltage VD = 15V, IC = 25A (Fig. 1) VCIN = 0V –IC = 25A, VD = 15V, VCIN = 15V Switching Time VD = 15V, VCIN = 0V↔15V VCC = 600V, IC = 25A Tj = 125°C Inductive Load Collector-Emitter Cutoff Current VCE = VCES, VCIN = 15V Tj = 25°C Tj = 125°C (Fig. 2) (Fig. 3,4) (Fig. 5) Tj = 25°C Tj = 125°C Min. — — — 0.5 — — — — — — Limits Typ. 1.8 1.9 2.5 1.0 0.5 0.4 2.0 0.7 — — Max. 2.3 2.4 3.5 2.5 0.8 1.0 3.0 1.2 1 10 Unit V V µs mA May 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM25RLB120 FLAT-BASE TYPE INSULATED PACKAGE BRAKE PART Symbol VCE(sat) VFM ICES Condition Parameter Collector-Emitter Saturation Voltage FWDi Forward Voltage Collector-Emitter Cutoff Current VD = 15V, IC = 15A VCIN = 0V IF = 15A (Fig. 1) VCE = VCES, VCIN = 15V (Fig. 5) Tj = 25°C Tj = 125°C (Fig. 2) Tj = 25°C Tj = 125°C Min. — — — — — Limits Typ. 1.8 1.9 2.5 — — Max. 2.3 2.4 3.5 1 10 Min. — — 1.2 1.7 50 30 Limits Typ. 20 5 1.5 2.0 — — Max. 30 10 1.8 2.3 — — Unit V V mA CONTROL PART Symbol Parameter Condition VN1-VNC V*P1-V*PC ID Circuit Current VD = 15V, VCIN = 15V Vth(ON) Vth(OFF) Input ON Threshold Voltage Input OFF Threshold Voltage SC Short Circuit Trip Level Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN • Br-VNC Inverter part –20 ≤ Tj ≤ 125°C, VD = 15V (Fig. 3,6) Brake part toff(SC) Short Circuit Current Delay Time VD = 15V Over Temperature Protection VD = 15V Detect Tj of IGBT chip Supply Circuit Under-Voltage Protection –20 ≤ Tj ≤ 125°C Fault Output Current VD = 15V, VFO = 15V (Note-2) Minimum Fault Output Pulse Width VD = 15V (Note-2) OT OTr UV UVr IFO(H) IFO(L) tFO (Fig. 3,6) Trip level Reset level Trip level Reset level Unit mA V A — 0.2 — µs 135 — 11.5 — — — 145 125 12.0 12.5 — 10 — — 12.5 — 0.01 15 °C 1.0 1.8 — V mA ms (Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to protect it. MECHANICAL RATINGS AND CHARACTERISTICS Symbol — — Condition Parameter Mounting torque Weight Mounting part screw : M5 — Min. 2.5 — Limits Typ. 3.0 340 Max. 3.5 — Unit N•m g RECOMMENDED CONDITIONS FOR USE Symbol VCC Parameter Supply Voltage VD Control Supply Voltage VCIN(ON) VCIN(OFF) fPWM Input ON Voltage Input OFF Voltage PWM Input Frequency Arm Shoot-through Blocking Time tdead Condition Applied across P-N terminals Applied between : VUP1-VUPC, VVP1-VVPC VWP1-VWPC, VN1-VNC (Note-3) Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN • Br-VNC Using Application Circuit of Fig. 8 For IPM’s each input signals Recommended value ≤ 800 Unit V 15.0 ± 1.5 V (Fig. 7) ≤ 0.8 ≥ 9.0 ≤ 20 kHz ≥ 2.5 µs V (Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak May 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM25RLB120 FLAT-BASE TYPE INSULATED PACKAGE PRECAUTIONS FOR TESTING 1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done. 2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device. (These test should not be done by using a curve tracer or its equivalent.) P, (U,V,W,B) IN Fo VCIN P, (U,V,W) Ic V IN Fo VCIN –Ic V (15V) (0V) U,V,W, (N) VD (all) U,V,W,B, (N) VD (all) Fig. 1 VCE(sat) Test Fig. 2 VEC, (VFM) Test a) Lower Arm Switching P VCIN (15V) Fo Signal input (Upper Arm) trr CS Ic Vcc Fo Signal input (Lower Arm) VCIN VCE Irr U,V,W 90% 90% N VD (all) b) Upper Arm Switching Ic 10% 10% 10% 10% P tc (on) Fo Signal input (Upper Arm) VCIN VCIN U,V,W CS VCIN (15V) tc (off) Vcc td (on) tr tf td (off) Fo Signal input (Lower Arm) (ton= td (on) + tr) (toff= td (off) + tf) N Ic VD (all) Fig. 3 Switching time and SC test circuit Fig. 4 Switching time test waveform VCIN Short Circuit Current P, (U,V,W,B) A VCIN (15V) Constant Current IN Fo SC Pulse VCE Ic VD (all) U,V,W, (N) Fo toff(SC) Fig. 5 ICES Test Fig. 6 SC test waveform IPM’ input signal VCIN (Upper Arm) 1.5V 0V IPM’ input signal VCIN (Lower Arm) 0V 2V tdead 2V 1.5V 1.5V tdead 2V t t tdead 1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value Fig. 7 Dead time measurement point example May 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM25RLB120 FLAT-BASE TYPE INSULATED PACKAGE P ≥10µ 20k VUP1 → VD UFo IF 1.5k Vcc Fo UP OT OUT VUPC + – Si In U GND GND ≥0.1µ VVP1 VFo VD 1.5k Fo VP 1.5k Vcc Fo WP M OT OUT Si W GND GND 20k Vcc ≥10µ IF V In VWPC → Si GND GND VWP1 VD OT OUT In VVPC WFo Vcc Fo UN OT OUT Si In GND GND ≥0.1µ N OT 20k → Vcc ≥10µ IF Fo VN OUT Si In GND GND ≥0.1µ 20k → VD IF Fo In Vcc Fo Br 1k Fo OT OUT Si GND GND VNC 4.7k IF 5V Vcc WN ≥0.1µ → VN1 ≥10µ In 1.5k B OT OUT Si GND GND : Interface which is the same as the U-phase Fig. 8 Application Example Circuit NOTES FOR STABLE AND SAFE OPERATION ; Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler. Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler. Fast switching opto-couplers: tPLH, tPHL ≤ 0.8µs, Use High CMR type. Slow switching opto-coupler: CTR > 100% Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply. Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal. Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line and improve noise immunity of the system. • • • • • • • May 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM25RLB120 FLAT-BASE TYPE INSULATED PACKAGE PERFORMANCE CURVES COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (INVERTER PART · TYPICAL) OUTPUT CHARACTERISTICS (INVERTER PART · TYPICAL) VD = 17V 13V 20 10 0 0.5 0 1 1.5 2 VD = 15V 1.5 1 0.5 Tj = 25°C Tj = 125°C 0 10 0 20 30 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (INVERTER PART · TYPICAL) 2 SWITCHING TIME CHARACTERISTICS (TYPICAL) 1.5 1 0.5 IC = 25A Tj = 25°C Tj = 125°C 0 12 13 14 15 16 17 101 7 VCC = 600V 5 VD = 15V Tj = 25°C 4 Tj = 125°C 3 2 Inductive load tc(off) 100 7 5 4 3 tc(on) 2 10–1 0 10 18 2 3 4 5 7 101 2 3 4 5 7 102 CONTROL SUPPLY VOLTAGE VD (V) COLLECTOR CURRENT IC (A) SWITCHING TIME CHARACTERISTICS (TYPICAL) SWITCHING LOSS CHARACTERISTICS (TYPICAL) 101 SWITCHING TIME ton, toff (µs) 2 COLLECTOR-EMITTER VOLTAGE VCE (V) SWITCHING TIME tc(on), tc(off) (µs) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 15V 7 5 4 3 2 toff 100 7 5 4 3 ton VCC = 600V VD = 15V Tj = 25°C Tj = 125°C Inductive load 2 10–1 0 10 2 3 4 5 7 101 2 3 4 5 7 102 COLLECTOR CURRENT IC (A) SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse) COLLECTOR CURRENT IC (A) Tj = 25°C COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 30 101 7 5 4 3 2 ESW(off) ESW(on) ESW(on) 100 ESW(off) ESW(on) 7 5 4 3 VCC = 600V VD = 15V Tj = 25°C Tj = 125°C Inductive load 2 10–1 0 10 ESW(off) 2 3 4 5 7 101 2 3 4 5 7 102 COLLECTOR CURRENT IC (A) May 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM25RLB120 102 VD = 15V 7 5 4 3 2 101 7 5 4 3 2 100 Tj = 25°C Tj = 125°C 0 0.5 1 1.5 2 7 5 4 3 2 2 Irr 10–1 101 Irr 7 5 4 3 VCC = 600V VD = 15V Tj = 25°C Tj = 125°C Inductive load 2 2 3 4 5 7 101 2 7 5 4 3 2 100 3 4 5 7 102 EMITTER-COLLECTOR VOLTAGE VEC (V) COLLECTOR RECOVERY CURRENT –IC (A) OUTPUT CHARACTERISTICS (BRAKE PART · TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (BRAKE PART · TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) Tj = 25°C VD = 17V 15 15V 13V 10 5 0 0 0.5 1 1.5 2 2.5 2 VD = 15V 1.5 1 0.5 Tj = 25°C Tj = 125°C 0 0 2 1.5 1 0.5 IC = 15A Tj = 25°C Tj = 125°C 0 12 13 14 15 16 17 18 CONTROL SUPPLY VOLTAGE VD (V) COLLECTOR RECOVERY CURRENT –IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (BRAKE PART · TYPICAL) 2.5 5 10 15 20 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 7 5 4 3 trr 10–2 0 10 2.5 20 COLLECTOR CURRENT IC (A) DIODE REVERSE RECOVERY CHARACTERISTICS (INVERTER PART · TYPICAL) 100 102 REVERSE RECOVERY CURRENT lrr (A) DIODE FORWARD CHARACTERISTICS (INVERTER PART · TYPICAL) REVERSE RECOVERY TIME trr (µs) COLLECTOR RECOVERY CURRENT –IC (A) FLAT-BASE TYPE INSULATED PACKAGE DIODE FORWARD CHARACTERISTICS (BRAKE PART · TYPICAL) 102 VD = 15V Tj = 25°C Tj = 125°C 7 5 4 3 2 101 7 5 4 3 2 100 0 0.5 1 1.5 2 2.5 EMITTER-COLLECTOR VOLTAGE VEC (V) May 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM25RLB120 FLAT-BASE TYPE INSULATED PACKAGE TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (INVERTER PART) ID VS. fc CHARACTERISTICS (TYPICAL) 100 VD = 15V Tj = 25°C ID (mA) 40 30 N-side 20 10 P-side 0 0 5 10 15 20 25 fc (kHz) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c) 50 7 5 3 2 10–1 7 5 3 2 10–2 Single Pulse 7 5 IGBT Part; Per unit base = Rth(j – c)Q = 0.83°C/W 3 FWDi Part; 2 Per unit base = Rth(j – c)F = 1.36°C/W 10–3 –5 10 2 3 5 710–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (BRAKE PART) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c) 100 7 5 3 2 10–1 7 5 3 2 10–2 Single Pulse 7 5 IGBT Part; Per unit base = Rth(j – c)Q = 0.96°C/W 3 FWDi Part; 2 Per unit base = Rth(j – c)F = 1.82°C/W 10–3 –5 10 2 3 5 710–4 2 3 5 710–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s) May 2005