FREESCALE MRF7S38040HR3

Freescale Semiconductor
Technical Data
Document Number: MRF7S38040H
Rev. 0, 8/2007
RF Power Field Effect Transistors
MRF7S38040HR3
MRF7S38040HSR3
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for WiMAX base station applications with frequencies up to
3800 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class
AB and Class C amplifier applications.
• Typical WiMAX Performance: VDD = 30 Volts, IDQ = 450 mA, Pout =
8 Watts Avg., f = 3400 - 3600 MHz, 802.16d, 64 QAM 3/4, 4 bursts, 7 MHz
Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on
CCDF.
Power Gain — 14 dB
Drain Efficiency — 15.6%
Device Output Signal PAR — 8.4 dB @ 0.01% Probability on CCDF
ACPR @ 5.25 MHz Offset — - 49 dBc in 0.5 MHz Channel Bandwidth
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 3500 MHz, 40 Watts CW
Peak Tuned Output Power
• Pout @ 1 dB Compression Point w 40 Watts CW
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Integrated ESD Protection
• Greater Negative Gate - Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units per 32 mm, 13 inch Reel.
3400 - 3600 MHz, 8 W AVG., 30 V
WiMAX
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 465I - 02, STYLE 1
NI - 400 - 240
MRF7S38040HR3
CASE 465J - 02, STYLE 1
NI - 400S - 240
MRF7S38040HSR3
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain - Source Voltage
VDS
- 0.5, +65
Vdc
Gate - Source Voltage
VGS
- 6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
TC
150
°C
TJ
225
°C
Symbol
Value (2,3)
Unit
Case Operating Temperature
Operating Junction Temperature
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 96°C, 39 W CW
Case Temperature 75°C, 8 W CW
RθJC
0.78
0.83
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2007. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF7S38040HR3 MRF7S38040HSR3
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1C (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 124 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 450 mAdc, Measured in Functional Test)
VGS(Q)
2
2.7
3.5
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 1.15 Adc)
VDS(on)
0.1
0.21
0.3
Vdc
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.4
—
pF
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
229
—
pF
Input Capacitance
(VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
268
—
pF
Characteristic
Off Characteristics
On Characteristics
Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 450 mA, Pout = 8 W Avg., f = 3400 MHz and f =
3600 MHz, WiMAX Signal, 802.16d, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR
measured in 0.5 MHz Channel Bandwidth @ ±5.25 MHz Offset.
Power Gain
Gps
12
14
16
dB
Drain Efficiency
ηD
14
15.6
24
%
PAR
7.3
8.4
—
dB
ACPR
—
- 49
- 46
dBc
IRL
—
- 10
-5
dB
Output Peak - to - Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
1. Part internally matched both on input and output.
(continued)
MRF7S38040HR3 MRF7S38040HSR3
2
RF Device Data
Freescale Semiconductor
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances OFDM Signal (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 450 mA, Pout = 8 W Avg.,
f = 3400 MHz and f = 3600 MHz, WiMAX Signal, OFDM Single - Carrier, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @
0.01% Probability on CCDF.
Mask System Type G @ Pout = 8 W Avg.
Mask
Point B at 3.5 MHz Offset
Point C at 5 MHz Offset
Point D at 7.4 MHz Offset
Point E at 14 MHz Offset
Point F at 17.5 MHz Offset
dBc
—
—
—
—
—
- 27
- 38
- 42
- 60
- 60
—
—
—
—
—
Relative Constellation Error @ Pout = 8 W Avg. (1)
RCE
—
- 34
—
dB
(1)
EVM
—
2.0
—
% rms
Error Vector Magnitude
(Typical EVM Performance @ Pout = 8 W Avg. with OFDM 802.16d
Signal Call)
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 450 mA, 3400 - 3600 MHz Bandwidth
Video Bandwidth @ 44 W PEP Pout where IM3 = - 30 dBc
VBW
(Tone Spacing from 100 kHz to VBW)
—
30
—
ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both
sidebands)
MHz
Gain Flatness in 200 MHz Bandwidth @ Pout = 8 W Avg.
GF
—
0.87
—
dB
Average Deviation from Linear Phase in 200 MHz Bandwidth
@ Pout = 40 W CW
Φ
—
1.62
—
°
Delay
—
1.65
—
ns
Part - to - Part Insertion Phase Variation @ Pout = 40 W CW,
f = 3500 MHz, Six Sigma Window
ΔΦ
—
22.9
—
°
Gain Variation over Temperature
( - 30°C to +85°C)
ΔG
—
0.027
—
dB/°C
ΔP1dB
—
0.121
—
dBm/°C
Average Group Delay @ Pout = 40 W CW, f = 3500 MHz
Output Power Variation over Temperature
( - 30°C to +85°C)
1. RCE = 20Log(EVM/100)
MRF7S38040HR3 MRF7S38040HSR3
RF Device Data
Freescale Semiconductor
3
VSUPPLY
B2
B1
VBIAS
C8
C9
+
+
+
C11
C12
C13
C10
+
R1
C6
C5
C4
C3
Z13
C2
Z14
Z12
RF
INPUT Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z15
Z16
Z17
RF
OUTPUT
C7
Z11
C1
Z18
DUT
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
0.822″
0.454″
0.950″
0.023″
0.400″
0.230″
0.100″
0.214″
0.050″
x 0.084″
x 0.386″
x 0.220″
x 0.358″
x 0.379″
x 0.358″
x 0.358″
x 0.104″
x 0.213″
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
x 0.104″ Taper
Microstrip
x 0.322″ Taper
Z10, Z11
Z12
Z13
Z14
Z15
Z16
Z17
Z18
PCB
0.061″ x 0.322″ Microstrip
0.694″ x 0.050″ Microstrip
0.268″ x 0.071″ Microstrip
0.095″ x 0.674″ Microstrip
0.359″ x 0.674″ Microstrip
0.640″ x 0.241″ Microstrip
0.410″ x 0.084″ Microstrip
0.726″ x 0.084″ Microstrip
Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55
Figure 1. MRF7S38040HR3(HSR3) Test Circuit Schematic
Table 5. MRF7S38040HR3(HSR3) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1, B2
Chip Ferrite Beads
2508051107Y0
Fair - Rite
C1, C2, C7, C8
2.7 pF Chip Capacitors
ATC100B2R7BT500XT
ATC
C3, C9
36 pF Chip Capacitors
ATC100B360BT500XT
ATC
C4, C10
0.01 μF, 100 V Chip Capacitors
C1825C103J1RAC
Kemet
C5
1K pF Chip Capacitor
ATC100B102BT50XT
ATC
C6
10 μF, 35 V Tantalum Capacitor
T491C106K035AT
Kemet
C11
22 μF, 35 V Tantalum Capacitor
T491C226K035AT
Kemet
C12
470 μF, 63 V Electrolytic Capacitor
EKME630ELL471MK25S
Multicomp
C13
100 μF, 50 V Electrolytic Capacitor
MCHT101M1HB - 1017 - RH
Multicomp
R1
180 KΩ, 1/4 W Chip Resistor
CRCW12061803FKEA
Vishay
MRF7S38040HR3 MRF7S38040HSR3
4
RF Device Data
Freescale Semiconductor
C12
C4
C3
C9
B1
B2
C10
C5
C8
C2
R1
C6
C11
C13
C7
CUT OUT AREA
C1
MRF7S38040 Rev. 3
Figure 2. MRF7S38040HR3(HSR3) Test Circuit Component Layout
MRF7S38040HR3 MRF7S38040HSR3
RF Device Data
Freescale Semiconductor
5
16
ηD
14.5
14
Gps
12
VDD = 30 Vdc, Pout = 8 W (Avg.)
IDQ = 450 mA, 802.16d, 64 QAM 3/4, 4 Bursts
7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB
@ 0.01% Probability on CCDF
14
13.5
10
13
ACPR−U
12.5
−47
−12
−49
−16
−51
ACPR −L
−53
12
11.5
3400
IRL
3425
3450
3475
3500
3525
3550
3575
ACPR (dBc)
Gps, POWER GAIN (dB)
15
−55
3600
−20
−24
−28
IRL, INPUT RETURN LOSS (dB)
15.5
ηD, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
f, FREQUENCY (MHz)
22
ηD
20
Gps
18
14
13.5
13
12.5
VDD = 30 Vdc, Pout = 14 W (Avg.)
IDQ = 450 mA, 802.16d, 64 QAM 3/4, 4 Bursts
7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB
@ 0.01% Probability on CCDF
16
ACPR−U
12
−38
−12
−40
−16
−42
ACPR −L
−44
11.5
ACPR (dBc)
Gps, POWER GAIN (dB)
14.5
−20
−24
IRL
11
3400
3425
3450
3475
3500
3525
3550
3575
−46
3600
−28
IRL, INPUT RETURN LOSS (dB)
15
ηD, DRAIN
EFFICIENCY (%)
Figure 3. WiMAX Broadband Performance @ Pout = 8 Watts Avg.
f, FREQUENCY (MHz)
Figure 4. WiMAX Broadband Performance @ Pout = 14 Watts Avg.
16
−10
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
IDQ = 675 mA
Gps, POWER GAIN (dB)
15
562.5 mA
14
450 mA
13
337.5 mA
12
225 mA
11
VDD = 30 Vdc, IDQ = 450 mA
f1 = 3495 MHz, f2 = 3505 MHz
Two −Tone Measurements, 10 MHz Tone Spacing
10
9
VDD = 30 Vdc, IDQ = 450 mA
f1 = 3495 MHz, f2 = 3505 MHz
Two −Tone Measurements, 10 MHz Tone Spacing
−20
IDQ = 225 mA
−30
337.5 mA
675 mA
−40
450 mA
562.5 mA
−50
1
10
Pout, OUTPUT POWER (WATTS) PEP
Figure 5. Two - Tone Power Gain versus
Output Power
100
1
10
100
Pout, OUTPUT POWER (WATTS) PEP
Figure 6. Third Order Intermodulation Distortion
versus Output Power
MRF7S38040HR3 MRF7S38040HSR3
6
RF Device Data
Freescale Semiconductor
−10
IMD, INTERMODULATION DISTORTION (dBc)
VDD = 30 Vdc, IDQ = 450 mA
f1 = 3495 MHz, f2 = 3505 MHz
Two −Tone Measurements, 10 MHz Tone Spacing
−20
−30
3rd Order
−40
5th Order
−50
7th Order
−60
1
10
−10
−20
VDD = 30 Vdc, Pout = 44 W (PEP), IDQ = 450 mA
Two −Tone Measurements
(f1 + f2)/2 = Center Frequency of 3500 MHz
−30
IM3 −L
IM3 −U
IM5 −U
−40
IM5 −L
−50
IM7 −U
IM7 −L
−60
1
100
10
100
TWO −TONE SPACING (MHz)
Figure 8. Intermodulation Distortion Products
versus Tone Spacing
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS) PEP
Figure 7. Intermodulation Distortion Products
versus Output Power
40
−15
VDD = 30 Vdc, IDQ = 450 mA
f = 3500 MHz, 802.16d, 64 QAM 3/4
4 Bursts, 7 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB
@ 0.01% Probability on CCDF
35
30
−30_C
85_C
−25
−30_C
25_C −30
85_C
−35
25
20
Gps
15
10
−20
25_C
ηD
TC = −30_C
−40
25_C
−45
85_C
5
ACPR
−50
−55
100
0
1
ACPR (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
10
Pout, OUTPUT POWER (WATTS) AVG. WiMAX
Figure 9. WiMAX, ACPR, Power Gain and Drain
Efficiency versus Output Power
14
25_C
13
85_C
12
20
11
15
10
10
ηD
VDD = 30 Vdc
IDQ = 450 mA
f = 3500 MHz
9
8
1
10
IDQ = 450 mA
f = 3500 MHz
14
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
−30_C 35
25_C
30
85_C
25
TC = −30_C
15
15
40
Gps
ηD, DRAIN EFFICIENCY (%)
16
13
12
32 V
11
30 V
VDD = 28 V
5
0
100
10
0
10
20
30
40
50
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 10. Power Gain and Drain Efficiency
versus CW Output Power
Figure 11. Power Gain versus Output Power
60
MRF7S38040HR3 MRF7S38040HSR3
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 30 Vdc, Pout = 8 W Avg., and ηD = 15.6%.
MTTF calculator available at http:/www.freescale.com/rf. Select Tools/
Software/Application Software/Calculators to access the MTTF calcu−
lators by product.
Figure 12. MTTF versus Junction Temperature
WIMAX TEST SIGNAL
100
−10
7 MHz
Channel BW
−20
10
−40
−50
0.1
(dB)
PROBABILITY (%)
Compressed Output
Signal @ 8 W Avg. Pout
1
System Type G
−30
Input Signal
0.01
−70
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz
Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability
on CCDF
0.001
0.0001
0
2
4
−60
−80
Point B
Point C
−90
6
8
PEAK −TO−AVERAGE (dB)
Figure 13. OFDM 802.16d Test Signal
10
Point B
Point C
−100 Point D
Point D
−110
−9
−7.2 −5.4
−3.6 −1.8
0
1.8
3.6
5.4
7.2
9
f, FREQUENCY (MHz)
Figure 14. WiMAX Spectrum Mask Specifications
MRF7S38040HR3 MRF7S38040HSR3
8
RF Device Data
Freescale Semiconductor
Zo = 25 Ω
f = 3600 MHz
Zsource
Zload
f = 3400 MHz
f = 3600 MHz
f = 3400 MHz
VDD = 30 Vdc, IDQ = 450 mA, Pout = 8 W Avg.
f
MHz
Zsource
W
Zload
W
3400
19.57 - j9.98
10.66 - j6.30
3425
20.02 - j9.03
10.41 - j6.55
3450
20.33 - j8.18
9.85 - j6.83
3475
20.45 - j7.42
9.06 - j6.91
3500
20.78 - j6.65
8.30 - j6.84
3525
21.07 - j5.79
7.57 - j6.64
3550
21.45 - j4.55
6.91 - j6.31
3575
22.03 - j3.26
6.39 - j5.92
3600
22.73 - j2.06
5.97 - j5.48
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance
MRF7S38040HR3 MRF7S38040HSR3
RF Device Data
Freescale Semiconductor
9
PACKAGE DIMENSIONS
MRF7S38040HR3 MRF7S38040HSR3
10
RF Device Data
Freescale Semiconductor
MRF7S38040HR3 MRF7S38040HSR3
RF Device Data
Freescale Semiconductor
11
MRF7S38040HR3 MRF7S38040HSR3
12
RF Device Data
Freescale Semiconductor
MRF7S38040HR3 MRF7S38040HSR3
RF Device Data
Freescale Semiconductor
13
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Aug. 2007
Description
• Initial Release of Data Sheet
MRF7S38040HR3 MRF7S38040HSR3
14
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or 303 - 675 - 2140
Fax: 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.
MRF7S38040HR3 MRF7S38040HSR3
Document
RF
DeviceNumber:
Data MRF7S38040H
Rev. 0, 8/2007
Freescale
Semiconductor
15