Freescale Semiconductor Technical Data Document Number: MRF7S38040H Rev. 0, 8/2007 RF Power Field Effect Transistors MRF7S38040HR3 MRF7S38040HSR3 N - Channel Enhancement - Mode Lateral MOSFETs Designed for WiMAX base station applications with frequencies up to 3800 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class AB and Class C amplifier applications. • Typical WiMAX Performance: VDD = 30 Volts, IDQ = 450 mA, Pout = 8 Watts Avg., f = 3400 - 3600 MHz, 802.16d, 64 QAM 3/4, 4 bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain — 14 dB Drain Efficiency — 15.6% Device Output Signal PAR — 8.4 dB @ 0.01% Probability on CCDF ACPR @ 5.25 MHz Offset — - 49 dBc in 0.5 MHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 3500 MHz, 40 Watts CW Peak Tuned Output Power • Pout @ 1 dB Compression Point w 40 Watts CW Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 32 mm, 13 inch Reel. 3400 - 3600 MHz, 8 W AVG., 30 V WiMAX LATERAL N - CHANNEL RF POWER MOSFETs CASE 465I - 02, STYLE 1 NI - 400 - 240 MRF7S38040HR3 CASE 465J - 02, STYLE 1 NI - 400S - 240 MRF7S38040HSR3 Table 1. Maximum Ratings Rating Symbol Value Unit Drain - Source Voltage VDS - 0.5, +65 Vdc Gate - Source Voltage VGS - 6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg - 65 to +150 °C TC 150 °C TJ 225 °C Symbol Value (2,3) Unit Case Operating Temperature Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 96°C, 39 W CW Case Temperature 75°C, 8 W CW RθJC 0.78 0.83 °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2007. All rights reserved. RF Device Data Freescale Semiconductor MRF7S38040HR3 MRF7S38040HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1C (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 124 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, ID = 450 mAdc, Measured in Functional Test) VGS(Q) 2 2.7 3.5 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 1.15 Adc) VDS(on) 0.1 0.21 0.3 Vdc Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.4 — pF Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 229 — pF Input Capacitance (VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 268 — pF Characteristic Off Characteristics On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 450 mA, Pout = 8 W Avg., f = 3400 MHz and f = 3600 MHz, WiMAX Signal, 802.16d, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 0.5 MHz Channel Bandwidth @ ±5.25 MHz Offset. Power Gain Gps 12 14 16 dB Drain Efficiency ηD 14 15.6 24 % PAR 7.3 8.4 — dB ACPR — - 49 - 46 dBc IRL — - 10 -5 dB Output Peak - to - Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss 1. Part internally matched both on input and output. (continued) MRF7S38040HR3 MRF7S38040HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances OFDM Signal (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 450 mA, Pout = 8 W Avg., f = 3400 MHz and f = 3600 MHz, WiMAX Signal, OFDM Single - Carrier, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. Mask System Type G @ Pout = 8 W Avg. Mask Point B at 3.5 MHz Offset Point C at 5 MHz Offset Point D at 7.4 MHz Offset Point E at 14 MHz Offset Point F at 17.5 MHz Offset dBc — — — — — - 27 - 38 - 42 - 60 - 60 — — — — — Relative Constellation Error @ Pout = 8 W Avg. (1) RCE — - 34 — dB (1) EVM — 2.0 — % rms Error Vector Magnitude (Typical EVM Performance @ Pout = 8 W Avg. with OFDM 802.16d Signal Call) Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 450 mA, 3400 - 3600 MHz Bandwidth Video Bandwidth @ 44 W PEP Pout where IM3 = - 30 dBc VBW (Tone Spacing from 100 kHz to VBW) — 30 — ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands) MHz Gain Flatness in 200 MHz Bandwidth @ Pout = 8 W Avg. GF — 0.87 — dB Average Deviation from Linear Phase in 200 MHz Bandwidth @ Pout = 40 W CW Φ — 1.62 — ° Delay — 1.65 — ns Part - to - Part Insertion Phase Variation @ Pout = 40 W CW, f = 3500 MHz, Six Sigma Window ΔΦ — 22.9 — ° Gain Variation over Temperature ( - 30°C to +85°C) ΔG — 0.027 — dB/°C ΔP1dB — 0.121 — dBm/°C Average Group Delay @ Pout = 40 W CW, f = 3500 MHz Output Power Variation over Temperature ( - 30°C to +85°C) 1. RCE = 20Log(EVM/100) MRF7S38040HR3 MRF7S38040HSR3 RF Device Data Freescale Semiconductor 3 VSUPPLY B2 B1 VBIAS C8 C9 + + + C11 C12 C13 C10 + R1 C6 C5 C4 C3 Z13 C2 Z14 Z12 RF INPUT Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z15 Z16 Z17 RF OUTPUT C7 Z11 C1 Z18 DUT Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 0.822″ 0.454″ 0.950″ 0.023″ 0.400″ 0.230″ 0.100″ 0.214″ 0.050″ x 0.084″ x 0.386″ x 0.220″ x 0.358″ x 0.379″ x 0.358″ x 0.358″ x 0.104″ x 0.213″ Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip x 0.104″ Taper Microstrip x 0.322″ Taper Z10, Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18 PCB 0.061″ x 0.322″ Microstrip 0.694″ x 0.050″ Microstrip 0.268″ x 0.071″ Microstrip 0.095″ x 0.674″ Microstrip 0.359″ x 0.674″ Microstrip 0.640″ x 0.241″ Microstrip 0.410″ x 0.084″ Microstrip 0.726″ x 0.084″ Microstrip Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55 Figure 1. MRF7S38040HR3(HSR3) Test Circuit Schematic Table 5. MRF7S38040HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1, B2 Chip Ferrite Beads 2508051107Y0 Fair - Rite C1, C2, C7, C8 2.7 pF Chip Capacitors ATC100B2R7BT500XT ATC C3, C9 36 pF Chip Capacitors ATC100B360BT500XT ATC C4, C10 0.01 μF, 100 V Chip Capacitors C1825C103J1RAC Kemet C5 1K pF Chip Capacitor ATC100B102BT50XT ATC C6 10 μF, 35 V Tantalum Capacitor T491C106K035AT Kemet C11 22 μF, 35 V Tantalum Capacitor T491C226K035AT Kemet C12 470 μF, 63 V Electrolytic Capacitor EKME630ELL471MK25S Multicomp C13 100 μF, 50 V Electrolytic Capacitor MCHT101M1HB - 1017 - RH Multicomp R1 180 KΩ, 1/4 W Chip Resistor CRCW12061803FKEA Vishay MRF7S38040HR3 MRF7S38040HSR3 4 RF Device Data Freescale Semiconductor C12 C4 C3 C9 B1 B2 C10 C5 C8 C2 R1 C6 C11 C13 C7 CUT OUT AREA C1 MRF7S38040 Rev. 3 Figure 2. MRF7S38040HR3(HSR3) Test Circuit Component Layout MRF7S38040HR3 MRF7S38040HSR3 RF Device Data Freescale Semiconductor 5 16 ηD 14.5 14 Gps 12 VDD = 30 Vdc, Pout = 8 W (Avg.) IDQ = 450 mA, 802.16d, 64 QAM 3/4, 4 Bursts 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 14 13.5 10 13 ACPR−U 12.5 −47 −12 −49 −16 −51 ACPR −L −53 12 11.5 3400 IRL 3425 3450 3475 3500 3525 3550 3575 ACPR (dBc) Gps, POWER GAIN (dB) 15 −55 3600 −20 −24 −28 IRL, INPUT RETURN LOSS (dB) 15.5 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS f, FREQUENCY (MHz) 22 ηD 20 Gps 18 14 13.5 13 12.5 VDD = 30 Vdc, Pout = 14 W (Avg.) IDQ = 450 mA, 802.16d, 64 QAM 3/4, 4 Bursts 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 16 ACPR−U 12 −38 −12 −40 −16 −42 ACPR −L −44 11.5 ACPR (dBc) Gps, POWER GAIN (dB) 14.5 −20 −24 IRL 11 3400 3425 3450 3475 3500 3525 3550 3575 −46 3600 −28 IRL, INPUT RETURN LOSS (dB) 15 ηD, DRAIN EFFICIENCY (%) Figure 3. WiMAX Broadband Performance @ Pout = 8 Watts Avg. f, FREQUENCY (MHz) Figure 4. WiMAX Broadband Performance @ Pout = 14 Watts Avg. 16 −10 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IDQ = 675 mA Gps, POWER GAIN (dB) 15 562.5 mA 14 450 mA 13 337.5 mA 12 225 mA 11 VDD = 30 Vdc, IDQ = 450 mA f1 = 3495 MHz, f2 = 3505 MHz Two −Tone Measurements, 10 MHz Tone Spacing 10 9 VDD = 30 Vdc, IDQ = 450 mA f1 = 3495 MHz, f2 = 3505 MHz Two −Tone Measurements, 10 MHz Tone Spacing −20 IDQ = 225 mA −30 337.5 mA 675 mA −40 450 mA 562.5 mA −50 1 10 Pout, OUTPUT POWER (WATTS) PEP Figure 5. Two - Tone Power Gain versus Output Power 100 1 10 100 Pout, OUTPUT POWER (WATTS) PEP Figure 6. Third Order Intermodulation Distortion versus Output Power MRF7S38040HR3 MRF7S38040HSR3 6 RF Device Data Freescale Semiconductor −10 IMD, INTERMODULATION DISTORTION (dBc) VDD = 30 Vdc, IDQ = 450 mA f1 = 3495 MHz, f2 = 3505 MHz Two −Tone Measurements, 10 MHz Tone Spacing −20 −30 3rd Order −40 5th Order −50 7th Order −60 1 10 −10 −20 VDD = 30 Vdc, Pout = 44 W (PEP), IDQ = 450 mA Two −Tone Measurements (f1 + f2)/2 = Center Frequency of 3500 MHz −30 IM3 −L IM3 −U IM5 −U −40 IM5 −L −50 IM7 −U IM7 −L −60 1 100 10 100 TWO −TONE SPACING (MHz) Figure 8. Intermodulation Distortion Products versus Tone Spacing ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) PEP Figure 7. Intermodulation Distortion Products versus Output Power 40 −15 VDD = 30 Vdc, IDQ = 450 mA f = 3500 MHz, 802.16d, 64 QAM 3/4 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 35 30 −30_C 85_C −25 −30_C 25_C −30 85_C −35 25 20 Gps 15 10 −20 25_C ηD TC = −30_C −40 25_C −45 85_C 5 ACPR −50 −55 100 0 1 ACPR (dBc) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS 10 Pout, OUTPUT POWER (WATTS) AVG. WiMAX Figure 9. WiMAX, ACPR, Power Gain and Drain Efficiency versus Output Power 14 25_C 13 85_C 12 20 11 15 10 10 ηD VDD = 30 Vdc IDQ = 450 mA f = 3500 MHz 9 8 1 10 IDQ = 450 mA f = 3500 MHz 14 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) −30_C 35 25_C 30 85_C 25 TC = −30_C 15 15 40 Gps ηD, DRAIN EFFICIENCY (%) 16 13 12 32 V 11 30 V VDD = 28 V 5 0 100 10 0 10 20 30 40 50 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 10. Power Gain and Drain Efficiency versus CW Output Power Figure 11. Power Gain versus Output Power 60 MRF7S38040HR3 MRF7S38040HSR3 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 30 Vdc, Pout = 8 W Avg., and ηD = 15.6%. MTTF calculator available at http:/www.freescale.com/rf. Select Tools/ Software/Application Software/Calculators to access the MTTF calcu− lators by product. Figure 12. MTTF versus Junction Temperature WIMAX TEST SIGNAL 100 −10 7 MHz Channel BW −20 10 −40 −50 0.1 (dB) PROBABILITY (%) Compressed Output Signal @ 8 W Avg. Pout 1 System Type G −30 Input Signal 0.01 −70 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 0 2 4 −60 −80 Point B Point C −90 6 8 PEAK −TO−AVERAGE (dB) Figure 13. OFDM 802.16d Test Signal 10 Point B Point C −100 Point D Point D −110 −9 −7.2 −5.4 −3.6 −1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) Figure 14. WiMAX Spectrum Mask Specifications MRF7S38040HR3 MRF7S38040HSR3 8 RF Device Data Freescale Semiconductor Zo = 25 Ω f = 3600 MHz Zsource Zload f = 3400 MHz f = 3600 MHz f = 3400 MHz VDD = 30 Vdc, IDQ = 450 mA, Pout = 8 W Avg. f MHz Zsource W Zload W 3400 19.57 - j9.98 10.66 - j6.30 3425 20.02 - j9.03 10.41 - j6.55 3450 20.33 - j8.18 9.85 - j6.83 3475 20.45 - j7.42 9.06 - j6.91 3500 20.78 - j6.65 8.30 - j6.84 3525 21.07 - j5.79 7.57 - j6.64 3550 21.45 - j4.55 6.91 - j6.31 3575 22.03 - j3.26 6.39 - j5.92 3600 22.73 - j2.06 5.97 - j5.48 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance MRF7S38040HR3 MRF7S38040HSR3 RF Device Data Freescale Semiconductor 9 PACKAGE DIMENSIONS MRF7S38040HR3 MRF7S38040HSR3 10 RF Device Data Freescale Semiconductor MRF7S38040HR3 MRF7S38040HSR3 RF Device Data Freescale Semiconductor 11 MRF7S38040HR3 MRF7S38040HSR3 12 RF Device Data Freescale Semiconductor MRF7S38040HR3 MRF7S38040HSR3 RF Device Data Freescale Semiconductor 13 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Aug. 2007 Description • Initial Release of Data Sheet MRF7S38040HR3 MRF7S38040HSR3 14 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved. MRF7S38040HR3 MRF7S38040HSR3 Document RF DeviceNumber: Data MRF7S38040H Rev. 0, 8/2007 Freescale Semiconductor 15