HD66766R Rev. 1.0-1 / September 2002 HD66766R (132 x 176-dot Graphics LCD Controller/Driver for 65K Colors) Rev.1.0-1 September, 2002 Description The HD66766R, color-graphics LCD controller and driver LSI, displays 132-by-176-dot graphics for 65K STN colors. A 16-bit high-speed bus interface and high-speed RAM write function enable efficient data transfer and high-speed rewriting of data to the graphics RAM. The HD66766R has various functions for reducing the power consumption of a LCD system, such as low-voltage operation of 2.2 V/min., a step-up circuit to generate a maximum of 12-times the LCD drive voltage from the supplied voltage, and voltage-followers to decrease the direct current flow in the LCD drive bleeder-resistors. Combining these hardware functions with software functions, such as a partial display with low-duty drive and standby and sleep modes, allows precise power control. The HD66766R is suitable for any mid-sized or small portable battery-driven product requiring long-term driving capabilities, such as digital cellular phones supporting a WWW browser, bi-directional pagers, and small PDAs. Features • • • • • • 132RGB x 176-dot graphics display LCD controller/driver for 65K STN colors low voltage drive and flickerless PWM grayscale drive 16-/8-bit high-speed bus interface and Clock Synchronized Serial Interface ( SPI ) High-speed burst-RAM write function Writing to a window-RAM address area by using a window-address function Bit-operation functions for graphics processing: - Write-data mask function in bit units. - Logical operation in pixel unit and conditional write function. 1 HD66766R Rev. 1.0-1 / September 2002 • Various color-display control functions - 65K out of 140K possible colors can be displayed at the same time (grayscale palette incorporated) - Vertical scroll display function in raster-row units - Partial LCD drive of two screens in any position • Low-power operation supports: - Vcc = 2.2 to 3.6 V (low-voltage) - Common driving voltage = 8 to 44 V - Segment driving voltage = 2 to 4 V - VOUT power voltage = 4.0V to 5.75 V - Power-save functions such as the standby mode and sleep mode - Internal power supply circuit - Programmable drive duty ratios (1/8–1/176) and bias values (1/2–1/13) displayed on LCD - Maximum 12-times step-up circuit for liquid crystal drives voltage and voltage inverting circuit - 128-step contrast adjuster and voltage followers to decrease direct current flow in the LCD drive bleeder-resistors • Internal RAM capacity: 46,464 bytes • 396-segment × 176-common liquid crystal display driver • n-raster-row AC liquid-crystal drive (C-pattern waveform drive) • Internal oscillation and hardware reset • Shift change of segment and common drivers • COM positioned on both sides in one chip for COG Type Name Types HCD667A66RBP HCD667B66RBP External Dimensions Au-bumped chip straight bump Au-bumped chip laced bump Difference between HCD667x66R and HCD667x66 Table 1 Difference Pad arrangement HCD667x66R Pad No. Pad Name 63 Vcc 63 Vcc 64 Vcc 66 Vcc 67 AVcc 68 AVcc 69 AVcc 70 AVcc 2 HCD667x66 Pad No. Pad Name 63 Vcc 63 Vcc 64 Vcc 66 Vcc 67 Vcc 68 Vcc 69 Vcc 70 Vcc HD66766R Rev. 1.0-1 / September 2002 DUMMY1 (2) 23µm × 140µm COM1 ~ COM176 SEG1 ~ SEG396 100µm 50 30 40 30 50µm (2-b) Coordinate (X, Y) = (9094, 1145) 50µm (3-a) Coordinate (X, Y) = (-9004, 1145) 25 10 5 25 25 80µm 70µm 5 10 80µm (3-b) Coordinate (X, Y) = (9004, 1145) 25 25 10 10 25 70µm 25 10 10 70µm DUMMY11 □ NO.145 COM107 COM109 COM111 COM113 □ □ □ □ □ □ □ □ COM169 COM171 COM173 COM175 SEG1 SEG2 SEG3 SEG4 TypeCode HD667A66R Straight (Top View) Y X DUMMY9 □ VREFL □ VREFL □ BIASC □ BIASC □ VREFM □ VREFM □ VM □ C12- □ C12- □ C12- □ C12- □ C11+ □ C11+ □ C11+ □ C11+ □ C11- □ C11- □ C11- □ C11- □ VCIOUT □ VCIOUT □ VCIOUT □ VCIOUT □ VCI1 □ VCI1 □ VCI1 □ VCI1 □ VCCDUM3 □ VCCDUM4 □ RESET3* □ DUMMY10 □ 70µm □ □ □ □ □ □ □ □ □ □ COM114 COM112 COM110 COM108 □ DUMMY12 □ □ □ □ □ □ □ □ □ □ SEG393 SEG394 SEG395 SEG396 COM176 COM174 COM172 COM170 □ □ COM100 COM102 COM104 COM106 25 10 5 5 10 DUMMY13 □ COM2 COM4 COM6 COM8 100µm 50 (2-a) Coordinate (X, Y) = (-9094, 1145) NO.666 □ □ GNDDUM4 □ DB15 □ DB14 □ DB13 □ DB12 □ DB11 □ DB10 □ DB9 □ DB8 □ GNDDUM5 □ DB7 □ DB6 □ DB5 □ DB4 □ DB3 □ DB2 □ DB1/SDO □ DB0/SDI □ GNDDUM6 □ RW/RD* □ E/WR*/SCL □ GNDDUM7 □ RS □ CS* □ VCC □ VCC □ VCC □ VCC □ AVCC □ AVCC □ AVCC □ AVCC □ AGND □ AGND □ GND □ GND □ GND □ GND □ AGND □ AGND □ RESET2* □ OSC2 □ OSC1 □ GNDDUM8 □ IM2 □ VCCDUM1 □ IM1 □ GNDDUM9 □ IM0/ID □ VCCDUM2 □ TEST2 □ TEST1 □ GNDDUM10 □ DUMMY3 □ 30 20 □ □ □ □ HD667A66R nAu bump pitch: Refer to pad coordinate nAu bump hight: 15µm(typ.) n Numbers in the figure corresponds to the number of pad coordinate. n Alignment mark (1) Arrangement: Two places Coordinate (X, Y) = (±9000, -1121) 40 □ □ □ □ DUMMY2 □ RESET1* □ CEP □ CEP □ CEM □ CEM □ VCL □ VCL □ VCL □ VCL □ VCH □ VCH □ VCH □ VCH □ C24+ □ C24+ □ C24- □ C24- □ C23+ □ C23+ □ C23- □ C23- □ C22+ □ C22+ □ C22- □ C22- □ C21+ □ C21+ □ C21- □ C21- □ VCI2 □ VCI2 □ VCI2 □ VCI2 □ GNDDUM1 □ nAu bump size: (1) 80µm × 80µm DUMMY1, DUMMY2, RESET1*~ ∼RESET3*, DUMMY10, DUMMY11 DUMMY12, DUMMY13 30 □ COM99 COM101 COM103 COM105 NO.1 nChip size: 18.65mm×2.63mm nChip thickness: 400um (typ.) nPad coordinate: Pad center nCoordinate origin: Chip center COM1 COM3 COM5 COM7 g HD66766R PAD Arrangement (Straight Output Arrangement) NO.199 Figure 1 PAD arrangement (Straight) 3 HD66766R Rev. 1.0-1 / September 2002 Table 2 HD66766R PAD Coordinate (Straight)(No.1) No. pad name X Y No. pad name 1 DUMMY1 -9193 -1168 81 OSC1 2 DUMMY2 -8835 -1168 82 GNDDUM8 3 RESET1* -8678 -1168 83 IM2 4 CEP -8498 -1168 84 VCCDUM1 5 CEP -8398 -1168 85 IM1 6 CEM -8298 -1168 86 GNDDUM9 7 CEM -8198 -1168 87 IM0/ID 8 VCL -8018 -1168 88 VCCDUM2 9 VCL -7918 -1168 89 TEST2 10 VCL -7818 -1168 90 TEST1 11 VCL -7718 -1168 91 GNDDUM10 12 VCH -7538 -1168 92 DUMMY3 13 VCH -7438 -1168 93 DUMMY4 14 VCH -7338 -1168 94 DUMMY5 15 VCH -7237 -1168 95 DUMMY6 16 C24+ -7057 -1168 96 DUMMY7 17 C24+ -6957 -1168 97 DUMMY8 18 C24-6857 -1168 98 DUMMY9 19 C24-6757 -1168 99 VREFL 20 C23+ -6657 -1168 100 VREFL 21 C23+ -6557 -1168 101 BIASC 22 C23-6457 -1168 102 BIASC 23 C23-6357 -1168 103 VREFM 24 C22+ -6257 -1168 104 VREFM 25 C22+ -6157 -1168 105 VM 26 C22-6057 -1168 106 VM 27 C22-5957 -1168 107 VM 28 C21+ -5856 -1168 108 VM 29 C21+ -5756 -1168 109 VSH 30 C21-5576 -1168 110 VSH 31 C21-5476 -1168 111 VSH 32 VCI2 -5376 -1168 112 VSH 33 VCI2 -5276 -1168 113 VOUT 34 VCI2 -5176 -1168 114 VOUT 35 VCI2 -5076 -1168 115 VOUT 36 GNDDUM1 -4896 -1168 116 VOUT 37 GNDDUM2 -4796 -1168 117 C12+ 38 GNDDUM3 -4696 -1168 118 C12+ 39 GNDDUM4 -4596 -1168 119 C12+ 40 DB15 -4416 -1168 120 C12+ 41 DB14 -4259 -1168 121 C1242 DB13 -4103 -1168 122 C1243 DB12 -3946 -1168 123 C1244 DB11 -3789 -1168 124 C1245 DB10 -3633 -1168 125 C11+ 46 DB9 -3476 -1168 126 C11+ 47 DB8 -3320 -1168 127 C11+ 48 GNDDUM5 -3163 -1168 128 C11+ 49 DB7 -3006 -1168 129 C1150 DB6 -2850 -1168 130 C1151 DB5 -2693 -1168 131 C1152 DB4 -2537 -1168 132 C1153 DB3 -2380 -1168 133 VCIOUT 54 DB2 -2223 -1168 134 VCIOUT 55 DB1/SDO -2067 -1168 135 VCIOUT 56 DB0/SDI -1910 -1168 136 VCIOUT 57 GNDDUM6 -1754 -1168 137 VCI1 58 RW/RD* -1597 -1168 138 VCI1 59 E/WR*/SCL -1440 -1168 139 VCI1 60 GNDDUM7 -1284 -1168 140 VCI1 61 RS -1127 -1168 141 VCCDUM3 62 CS* -971 -1168 142 VCCDUM4 63 VCC -791 -1168 143 RESET3* 64 VCC -690 -1168 144 DUMMY10 65 VCC -590 -1168 145 DUMMY11 66 VCC -490 -1168 146 COM2 67 AVCC -390 -1168 147 COM4 68 AVCC -290 -1168 148 COM6 69 AVCC -190 -1168 149 COM8 70 AVCC -90 -1168 150 COM10 71 AGND 90 -1168 151 COM12 72 AGND 190 -1168 152 COM14 73 GND 290 -1168 153 COM16 74 GND 390 -1168 154 COM18 75 GND 490 -1168 155 COM20 76 GND 590 -1168 156 COM22 77 AGND 690 -1168 157 COM24 78 AGND 791 -1168 158 COM26 79 RESET2* 971 -1168 159 COM28 80 OSC2 1127 -1168 160 COM30 X 1284 1440 1597 1754 1910 2067 2223 2380 2537 2693 2850 3030 3130 3230 3330 3430 3530 3630 3810 3910 4010 4110 4211 4311 4411 4511 4611 4711 4811 4911 5011 5111 5291 5391 5491 5592 5772 5872 5972 6072 6172 6272 6372 6472 6572 6672 6772 6872 6972 7073 7173 7273 7453 7553 7653 7753 7933 8033 8133 8233 8413 8513 8693 8850 9193 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 Y -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -981 -943 -905 -867 -829 -791 -753 -715 -677 -639 -601 -563 -525 -487 -449 No. 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 pad name COM32 COM34 COM36 COM38 COM40 COM42 COM44 COM46 COM48 COM50 COM52 COM54 COM56 COM58 COM60 COM62 COM64 COM66 COM68 COM70 COM72 COM74 COM76 COM78 COM80 COM82 COM84 COM86 COM88 COM90 COM92 COM94 COM96 COM98 COM100 COM102 COM104 COM106 DUMMY12 COM108 COM110 COM112 COM114 COM116 COM118 COM120 COM122 COM124 COM126 COM128 COM130 COM132 COM134 COM136 COM138 COM140 COM142 COM144 COM146 COM148 COM150 COM152 COM154 COM156 COM158 COM160 COM162 COM164 COM166 COM168 COM170 COM172 COM174 COM176 SEG396 SEG395 SEG394 SEG393 SEG392 SEG391 4 X 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9155 9193 8892 8854 8816 8778 8740 8702 8664 8626 8588 8550 8512 8474 8436 8398 8360 8322 8284 8246 8208 8170 8132 8094 8056 8018 7980 7942 7904 7866 7828 7790 7752 7714 7676 7638 7600 7524 7486 7448 7410 7372 7334 Y -411 -373 -335 -297 -259 -221 -183 -145 -107 -69 -31 7 45 83 121 159 197 235 273 311 349 387 425 463 501 539 577 615 653 691 729 767 805 843 881 919 957 995 1183 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 No. 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 pad name SEG390 SEG389 SEG388 SEG387 SEG386 SEG385 SEG384 SEG383 SEG382 SEG381 SEG380 SEG379 SEG378 SEG377 SEG376 SEG375 SEG374 SEG373 SEG372 SEG371 SEG370 SEG369 SEG368 SEG367 SEG366 SEG365 SEG364 SEG363 SEG362 SEG361 SEG360 SEG359 SEG358 SEG357 SEG356 SEG355 SEG354 SEG353 SEG352 SEG351 SEG350 SEG349 SEG348 SEG347 SEG346 SEG345 SEG344 SEG343 SEG342 SEG341 SEG340 SEG339 SEG338 SEG337 SEG336 SEG335 SEG334 SEG333 SEG332 SEG331 SEG330 SEG329 SEG328 SEG327 SEG326 SEG325 SEG324 SEG323 SEG322 SEG321 SEG320 SEG319 SEG318 SEG317 SEG316 SEG315 SEG314 SEG313 SEG312 SEG311 X 7296 7258 7220 7182 7144 7106 7068 7030 6992 6954 6916 6878 6840 6802 6764 6726 6688 6650 6612 6574 6536 6498 6460 6422 6384 6346 6308 6270 6232 6194 6156 6118 6080 6042 6004 5966 5928 5890 5852 5814 5776 5738 5700 5662 5624 5586 5548 5510 5472 5434 5396 5358 5320 5282 5244 5206 5168 5130 5092 5054 5016 4978 4940 4902 4864 4826 4788 4750 4712 4674 4636 4598 4560 4522 4484 4446 4408 4370 4332 4294 Y 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 No. 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 pad name SEG310 SEG309 SEG308 SEG307 SEG306 SEG305 SEG304 SEG303 SEG302 SEG301 SEG300 SEG299 SEG298 SEG297 SEG296 SEG295 SEG294 SEG293 SEG292 SEG291 SEG290 SEG289 SEG288 SEG287 SEG286 SEG285 SEG284 SEG283 SEG282 SEG281 SEG280 SEG279 SEG278 SEG277 SEG276 SEG275 SEG274 SEG273 SEG272 SEG271 SEG270 SEG269 SEG268 SEG267 SEG266 SEG265 SEG264 SEG263 SEG262 SEG261 SEG260 SEG259 SEG258 SEG257 SEG256 SEG255 SEG254 SEG253 SEG252 SEG251 SEG250 SEG249 SEG248 SEG247 SEG246 SEG245 SEG244 SEG243 SEG242 SEG241 SEG240 SEG239 SEG238 SEG237 SEG236 SEG235 SEG234 SEG233 SEG232 SEG231 X 4256 4218 4180 4142 4104 4066 4028 3990 3952 3914 3876 3838 3800 3762 3724 3686 3648 3610 3572 3534 3496 3458 3420 3382 3344 3306 3268 3230 3192 3154 3116 3078 3040 3002 2964 2926 2888 2850 2812 2774 2736 2698 2660 2622 2584 2546 2508 2470 2432 2394 2356 2318 2280 2242 2204 2166 2128 2090 2052 2014 1976 1938 1900 1862 1824 1786 1748 1710 1672 1634 1596 1558 1520 1482 1444 1406 1368 1330 1292 1254 Y 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 HD66766R Rev. 1.0-1 / September 2002 Table 2 cont. HD66766R PAD Coordinate (Straight)(No.2) No. pad name X Y No. pad name 401 SEG230 1216 1145 481 SEG150 402 SEG229 1178 1145 482 SEG149 403 SEG228 1140 1145 483 SEG148 404 SEG227 1102 1145 484 SEG147 405 SEG226 1064 1145 485 SEG146 406 SEG225 1026 1145 486 SEG145 407 SEG224 988 1145 487 SEG144 408 SEG223 950 1145 488 SEG143 409 SEG222 912 1145 489 SEG142 410 SEG221 874 1145 490 SEG141 411 SEG220 836 1145 491 SEG140 412 SEG219 798 1145 492 SEG139 413 SEG218 760 1145 493 SEG138 414 SEG217 722 1145 494 SEG137 415 SEG216 684 1145 495 SEG136 416 SEG215 646 1145 496 SEG135 417 SEG214 608 1145 497 SEG134 418 SEG213 570 1145 498 SEG133 419 SEG212 532 1145 499 SEG132 420 SEG211 494 1145 500 SEG131 421 SEG210 456 1145 501 SEG130 422 SEG209 418 1145 502 SEG129 423 SEG208 380 1145 503 SEG128 424 SEG207 342 1145 504 SEG127 425 SEG206 304 1145 505 SEG126 426 SEG205 266 1145 506 SEG125 427 SEG204 228 1145 507 SEG124 428 SEG203 190 1145 508 SEG123 429 SEG202 152 1145 509 SEG122 430 SEG201 114 1145 510 SEG121 431 SEG200 76 1145 511 SEG120 432 SEG199 38 1145 512 SEG119 433 SEG198 -38 1145 513 SEG118 434 SEG197 -76 1145 514 SEG117 435 SEG196 -114 1145 515 SEG116 436 SEG195 -152 1145 516 SEG115 437 SEG194 -190 1145 517 SEG114 438 SEG193 -228 1145 518 SEG113 439 SEG192 -266 1145 519 SEG112 440 SEG191 -304 1145 520 SEG111 441 SEG190 -342 1145 521 SEG110 442 SEG189 -380 1145 522 SEG109 443 SEG188 -418 1145 523 SEG108 444 SEG187 -456 1145 524 SEG107 445 SEG186 -494 1145 525 SEG106 446 SEG185 -532 1145 526 SEG105 447 SEG184 -570 1145 527 SEG104 448 SEG183 -608 1145 528 SEG103 449 SEG182 -646 1145 529 SEG102 450 SEG181 -684 1145 530 SEG101 451 SEG180 -722 1145 531 SEG100 452 SEG179 -760 1145 532 SEG99 453 SEG178 -798 1145 533 SEG98 454 SEG177 -836 1145 534 SEG97 455 SEG176 -874 1145 535 SEG96 456 SEG175 -912 1145 536 SEG95 457 SEG174 -950 1145 537 SEG94 458 SEG173 -988 1145 538 SEG93 459 SEG172 -1026 1145 539 SEG92 460 SEG171 -1064 1145 540 SEG91 461 SEG170 -1102 1145 541 SEG90 462 SEG169 -1140 1145 542 SEG89 463 SEG168 -1178 1145 543 SEG88 464 SEG167 -1216 1145 544 SEG87 465 SEG166 -1254 1145 545 SEG86 466 SEG165 -1292 1145 546 SEG85 467 SEG164 -1330 1145 547 SEG84 468 SEG163 -1368 1145 548 SEG83 469 SEG162 -1406 1145 549 SEG82 470 SEG161 -1444 1145 550 SEG81 471 SEG160 -1482 1145 551 SEG80 472 SEG159 -1520 1145 552 SEG79 473 SEG158 -1558 1145 553 SEG78 474 SEG157 -1596 1145 554 SEG77 475 SEG156 -1634 1145 555 SEG76 476 SEG155 -1672 1145 556 SEG75 477 SEG154 -1710 1145 557 SEG74 478 SEG153 -1748 1145 558 SEG73 479 SEG152 -1786 1145 559 SEG72 480 SEG151 -1824 1145 560 SEG71 X -1862 -1900 -1938 -1976 -2014 -2052 -2090 -2128 -2166 -2204 -2242 -2280 -2318 -2356 -2394 -2432 -2470 -2508 -2546 -2584 -2622 -2660 -2698 -2736 -2774 -2812 -2850 -2888 -2926 -2964 -3002 -3040 -3078 -3116 -3154 -3192 -3230 -3268 -3306 -3344 -3382 -3420 -3458 -3496 -3534 -3572 -3610 -3648 -3686 -3724 -3762 -3800 -3838 -3876 -3914 -3952 -3990 -4028 -4066 -4104 -4142 -4180 -4218 -4256 -4294 -4332 -4370 -4408 -4446 -4484 -4522 -4560 -4598 -4636 -4674 -4712 -4750 -4788 -4826 -4864 Y 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 No. 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 pad name SEG70 SEG69 SEG68 SEG67 SEG66 SEG65 SEG64 SEG63 SEG62 SEG61 SEG60 SEG59 SEG58 SEG57 SEG56 SEG55 SEG54 SEG53 SEG52 SEG51 SEG50 SEG49 SEG48 SEG47 SEG46 SEG45 SEG44 SEG43 SEG42 SEG41 SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 SEG32 SEG31 SEG30 SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 COM175 COM173 COM171 COM169 COM167 COM165 COM163 COM161 COM159 COM157 5 X -4902 -4940 -4978 -5016 -5054 -5092 -5130 -5168 -5206 -5244 -5282 -5320 -5358 -5396 -5434 -5472 -5510 -5548 -5586 -5624 -5662 -5700 -5738 -5776 -5814 -5852 -5890 -5928 -5966 -6004 -6042 -6080 -6118 -6156 -6194 -6232 -6270 -6308 -6346 -6384 -6422 -6460 -6498 -6536 -6574 -6612 -6650 -6688 -6726 -6764 -6802 -6840 -6878 -6916 -6954 -6992 -7030 -7068 -7106 -7144 -7182 -7220 -7258 -7296 -7334 -7372 -7410 -7448 -7486 -7524 -7600 -7638 -7676 -7714 -7752 -7790 -7828 -7866 -7904 -7942 Y 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 No. 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 pad name COM155 COM153 COM151 COM149 COM147 COM145 COM143 COM141 COM139 COM137 COM135 COM133 COM131 COM129 COM127 COM125 COM123 COM121 COM119 COM117 COM115 COM113 COM111 COM109 COM107 DUMMY13 COM105 COM103 COM101 COM99 COM97 COM95 COM93 COM91 COM89 COM87 COM85 COM83 COM81 COM79 COM77 COM75 COM73 COM71 COM69 COM67 COM65 COM63 COM61 COM59 COM57 COM55 COM53 COM51 COM49 COM47 COM45 COM43 COM41 COM39 COM37 COM35 COM33 COM31 COM29 COM27 COM25 COM23 COM21 COM19 COM17 COM15 COM13 COM11 COM9 COM7 COM5 COM3 COM1 X -7980 -8018 -8056 -8094 -8132 -8170 -8208 -8246 -8284 -8322 -8360 -8398 -8436 -8474 -8512 -8550 -8588 -8626 -8664 -8702 -8740 -8778 -8816 -8854 -8892 -9193 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 -9155 Y X Y Alignment mark 1145 -9000 -1121 Cross 1145 9000 -1121 1145 Circle(Positive) -9094 1145 1145 Circle(Negative) 9094 1145 1145 L (Positive) -9004 1145 1145 9004 1145 L (Negative) 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1145 1183 995 957 919 881 843 805 767 729 691 653 615 577 539 501 463 425 387 349 311 273 235 197 159 121 83 45 7 -31 -69 -107 -145 -183 -221 -259 -297 -335 -373 -411 -449 -487 -525 -563 -601 -639 -677 -715 -753 -791 -829 -867 -905 -943 -981 HD66766R Rev. 1.0-1 / September 2002 DUMMY1 □ 30 40 30 50µm (2-b) Coordinate (X, Y) = (9094, 1145) 50µm (3-a) Coordinate (X, Y) = (-9004, 1145) (3-b) Coordinate (X, Y) = (9004, 1145) 25 25 10 10 25 70µm 25 10 10 70µm □ NO.145 COM107 COM109 COM111 COM113 □ □ □ □ □ □ □ COM169 COM171 COM173 COM175 SEG1 SEG2 SEG3 SEG4 TypeCode HD667B66R Laced (Top View) Y X □ □ □ □ □ □ □ □ COM114 COM112 COM110 COM108 □ DUMMY12 □ □ □ □ □ □ SEG393 SEG394 SEG395 SEG396 COM176 COM174 COM172 COM170 □ □ □ DUMMY11 DUMMY13 □ □ □ □ □ COM100 COM102 COM104 COM106 25 5 10 25 80µm 70µm 70µm 80µm □ □ DUMMY9 □ VREFL □ VREFL □ BIASC □ BIASC □ VREFM □ VREFM □ VM □ VM □ VM □ VM □ VSH □ VSH □ VSH □ VSH □ VOUT □ VOUT □ VOUT □ VOUT □ OSC0 □ OSC1 □ GNDDUM9 □ C12+ □ C12- □ C12- □ C12- □ C12- □ C11+ □ C11+ □ C11+ □ C11+ □ C11- □ C11- □ C11- □ C11- □ VCIOUT □ VCIOUT □ VCIOUT □ VCIOUT □ VCI1 □ VCI1 □ VCI1 □ VCI1 □ VCCDUM3 □ VCCDUM4 □ RESET3* □ DUMMY10 □ 10 5 10 5 25 □ □ □ COM2 COM4 COM6 COM8 100 µm 50 30 (2-a) Coordinate (X, Y) = (-9094, 1145) 25 □ NO.666 □ GNDDUM4 □ DB15 □ DB14 □ DB13 □ DB12 □ DB11 □ DB10 □ DB9 □ DB8 □ GNDDUM5 □ DB7 □ DB6 □ DB5 □ DB4 □ DB3 □ DB2 □ DB1/SDO □ DB0/SDI □ GNDDUM6 □ RW/RD* □ E/WR*/SCL □ GNDDUM7 □ RS □ CS* □ VCC □ VCC □ VCC □ VCC □ AVCC □ AVCC □ AVCC □ AVCC □ AGND □ AGND □ GND □ GND □ GND □ GND □ AGND □ AGND □ RESET2* □ OSC2 □ OSC1 □ GNDDUM8 □ IM2 □ VCCDUM1 □ IM1 □ GNDDUM9 □ IM0/ID □ VCCDUM2 □ TEST2 □ TEST1 □ GNDDUM10 □ DUMMY3 □ 100µm 50 5 10 □ □ HD667B66R n Au bump pitch: Refer to pad coordinate n Au bump hight: 15µm(typ.) n Numbers in the figure correspond to the number of pad coordinate. n Alignment mark (1) Arrangement: Two places Coordinate (X, Y) = (±9000, -1121) 20 □ □ (2) 38µm×63µm COM1~COM176 SEG1~SEG396 40 □ DUMMY2 □ RESET1* □ CEP □ CEP □ CEM □ CEM □ VCL □ VCL □ VCL □ VCL □ VCH □ VCH □ VCH □ VCH □ C24+ □ C24+ □ C24- □ C24- □ C23+ □ C23+ □ C23- □ C23- □ C22+ □ C22+ □ C22- □ C22- □ C21+ □ C21+ □ C21- □ C21- □ VCI2 □ VCI2 □ VCI2 □ VCI2 □ GNDDUM1 □ n Au bump size: (1) 80µm×80µm DUMMY1, DUMMY2, RESET1*~ ∼RESET3*, DUMMY10, DUMMY11 DUMMY12, DUMMY13 30 COM1 COM3 COM5 COM7 NO.1 n Chip size: 18.65mm×2.63mm n Chip thickness: 400µm (typ.) n Pad coordinate: Pad center n Coordinate origin: Chip center COM99 COM101 COM103 COM105 g HD66766R PAD Arrangement (LacedOutput Arrangement) NO.199 Figure 2 PAD arrangement (Laced) 6 HD66766R Rev. 1.0-1 / September 2002 Table 3 HD66766R PAD Coordinate (Laced)(No.1) No. pad name X Y No. pad name 1 DUMMY1 -9193 -1168 81 OSC1 2 DUMMY2 -8835 -1168 82 GNDDUM8 3 RESET1* -8678 -1168 83 IM2 4 CEP -8498 -1168 84 VCCDUM1 5 CEP -8398 -1168 85 IM1 6 CEM -8298 -1168 86 GNDDUM9 7 CEM -8198 -1168 87 IM0/ID 8 VCL -8018 -1168 88 VCCDUM2 9 VCL -7918 -1168 89 TEST2 10 VCL -7818 -1168 90 TEST1 11 VCL -7718 -1168 91 GNDDUM10 12 VCH -7538 -1168 92 DUMMY3 13 VCH -7438 -1168 93 DUMMY4 14 VCH -7338 -1168 94 DUMMY5 15 VCH -7237 -1168 95 DUMMY6 16 C24+ -7057 -1168 96 DUMMY7 17 C24+ -6957 -1168 97 DUMMY8 18 C24-6857 -1168 98 DUMMY9 19 C24-6757 -1168 99 VREFL 20 C23+ -6657 -1168 100 VREFL 21 C23+ -6557 -1168 101 BIASC 22 C23-6457 -1168 102 BIASC 23 C23-6357 -1168 103 VREFM 24 C22+ -6257 -1168 104 VREFM 25 C22+ -6157 -1168 105 VM 26 C22-6057 -1168 106 VM 27 C22-5957 -1168 107 VM 28 C21+ -5856 -1168 108 VM 29 C21+ -5756 -1168 109 VSH 30 C21-5576 -1168 110 VSH 31 C21-5476 -1168 111 VSH 32 VCI2 -5376 -1168 112 VSH 33 VCI2 -5276 -1168 113 VOUT 34 VCI2 -5176 -1168 114 VOUT 35 VCI2 -5076 -1168 115 VOUT 36 GNDDUM1 -4896 -1168 116 VOUT 37 GNDDUM2 -4796 -1168 117 C12+ 38 GNDDUM3 -4696 -1168 118 C12+ 39 GNDDUM4 -4596 -1168 119 C12+ 40 DB15 -4416 -1168 120 C12+ 41 DB14 -4259 -1168 121 C1242 DB13 -4103 -1168 122 C1243 DB12 -3946 -1168 123 C1244 DB11 -3789 -1168 124 C1245 DB10 -3633 -1168 125 C11+ 46 DB9 -3476 -1168 126 C11+ 47 DB8 -3320 -1168 127 C11+ 48 GNDDUM5 -3163 -1168 128 C11+ 49 DB7 -3006 -1168 129 C1150 DB6 -2850 -1168 130 C1151 DB5 -2693 -1168 131 C1152 DB4 -2537 -1168 132 C1153 DB3 -2380 -1168 133 VCIOUT 54 DB2 -2223 -1168 134 VCIOUT 55 DB1/SDO -2067 -1168 135 VCIOUT 56 DB0/SDI -1910 -1168 136 VCIOUT 57 GNDDUM6 -1754 -1168 137 VCI1 58 RW/RD* -1597 -1168 138 VCI1 59 E/WR*/SCL -1440 -1168 139 VCI1 60 GNDDUM7 -1284 -1168 140 VCI1 61 RS -1127 -1168 141 VCCDUM3 62 CS* -971 -1168 142 VCCDUM4 63 VCC -791 -1168 143 RESET3* 64 VCC -690 -1168 144 DUMMY10 65 VCC -590 -1168 145 DUMMY11 66 VCC -490 -1168 146 COM2 67 AVCC -390 -1168 147 COM4 68 AVCC -290 -1168 148 COM6 69 AVCC -190 -1168 149 COM8 70 AVCC -90 -1168 150 COM10 71 AGND 90 -1168 151 COM12 72 AGND 190 -1168 152 COM14 73 GND 290 -1168 153 COM16 74 GND 390 -1168 154 COM18 75 GND 490 -1168 155 COM20 76 GND 590 -1168 156 COM22 77 AGND 690 -1168 157 COM24 78 AGND 791 -1168 158 COM26 79 RESET2* 971 -1168 159 COM28 80 OSC2 1127 -1168 160 COM30 X 1284 1440 1597 1754 1910 2067 2223 2380 2537 2693 2850 3030 3130 3230 3330 3430 3530 3630 3810 3910 4010 4110 4211 4311 4411 4511 4611 4711 4811 4911 5011 5111 5291 5391 5491 5592 5772 5872 5972 6072 6172 6272 6372 6472 6572 6672 6772 6872 6972 7073 7173 7273 7453 7553 7653 7753 7933 8033 8133 8233 8413 8513 8693 8850 9193 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 Y -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -1168 -981 -943 -905 -867 -829 -791 -753 -715 -677 -639 -601 -563 -525 -487 -449 No. 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 pad name COM32 COM34 COM36 COM38 COM40 COM42 COM44 COM46 COM48 COM50 COM52 COM54 COM56 COM58 COM60 COM62 COM64 COM66 COM68 COM70 COM72 COM74 COM76 COM78 COM80 COM82 COM84 COM86 COM88 COM90 COM92 COM94 COM96 COM98 COM100 COM102 COM104 COM106 DUMMY12 COM108 COM110 COM112 COM114 COM116 COM118 COM120 COM122 COM124 COM126 COM128 COM130 COM132 COM134 COM136 COM138 COM140 COM142 COM144 COM146 COM148 COM150 COM152 COM154 COM156 COM158 COM160 COM162 COM164 COM166 COM168 COM170 COM172 COM174 COM176 SEG396 SEG395 SEG394 SEG393 SEG392 SEG391 7 X 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9108 9201 9193 8892 8854 8816 8778 8740 8702 8664 8626 8588 8550 8512 8474 8436 8398 8360 8322 8284 8246 8208 8170 8132 8094 8056 8018 7980 7942 7904 7866 7828 7790 7752 7714 7676 7638 7600 7524 7486 7448 7410 7372 7334 Y -411 -373 -335 -297 -259 -221 -183 -145 -107 -69 -31 7 45 83 121 159 197 235 273 311 349 387 425 463 501 539 577 615 653 691 729 767 805 843 881 919 957 995 1183 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 No. 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 pad name SEG390 SEG389 SEG388 SEG387 SEG386 SEG385 SEG384 SEG383 SEG382 SEG381 SEG380 SEG379 SEG378 SEG377 SEG376 SEG375 SEG374 SEG373 SEG372 SEG371 SEG370 SEG369 SEG368 SEG367 SEG366 SEG365 SEG364 SEG363 SEG362 SEG361 SEG360 SEG359 SEG358 SEG357 SEG356 SEG355 SEG354 SEG353 SEG352 SEG351 SEG350 SEG349 SEG348 SEG347 SEG346 SEG345 SEG344 SEG343 SEG342 SEG341 SEG340 SEG339 SEG338 SEG337 SEG336 SEG335 SEG334 SEG333 SEG332 SEG331 SEG330 SEG329 SEG328 SEG327 SEG326 SEG325 SEG324 SEG323 SEG322 SEG321 SEG320 SEG319 SEG318 SEG317 SEG316 SEG315 SEG314 SEG313 SEG312 SEG311 X 7296 7258 7220 7182 7144 7106 7068 7030 6992 6954 6916 6878 6840 6802 6764 6726 6688 6650 6612 6574 6536 6498 6460 6422 6384 6346 6308 6270 6232 6194 6156 6118 6080 6042 6004 5966 5928 5890 5852 5814 5776 5738 5700 5662 5624 5586 5548 5510 5472 5434 5396 5358 5320 5282 5244 5206 5168 5130 5092 5054 5016 4978 4940 4902 4864 4826 4788 4750 4712 4674 4636 4598 4560 4522 4484 4446 4408 4370 4332 4294 Y 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 No. 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 pad name SEG310 SEG309 SEG308 SEG307 SEG306 SEG305 SEG304 SEG303 SEG302 SEG301 SEG300 SEG299 SEG298 SEG297 SEG296 SEG295 SEG294 SEG293 SEG292 SEG291 SEG290 SEG289 SEG288 SEG287 SEG286 SEG285 SEG284 SEG283 SEG282 SEG281 SEG280 SEG279 SEG278 SEG277 SEG276 SEG275 SEG274 SEG273 SEG272 SEG271 SEG270 SEG269 SEG268 SEG267 SEG266 SEG265 SEG264 SEG263 SEG262 SEG261 SEG260 SEG259 SEG258 SEG257 SEG256 SEG255 SEG254 SEG253 SEG252 SEG251 SEG250 SEG249 SEG248 SEG247 SEG246 SEG245 SEG244 SEG243 SEG242 SEG241 SEG240 SEG239 SEG238 SEG237 SEG236 SEG235 SEG234 SEG233 SEG232 SEG231 X 4256 4218 4180 4142 4104 4066 4028 3990 3952 3914 3876 3838 3800 3762 3724 3686 3648 3610 3572 3534 3496 3458 3420 3382 3344 3306 3268 3230 3192 3154 3116 3078 3040 3002 2964 2926 2888 2850 2812 2774 2736 2698 2660 2622 2584 2546 2508 2470 2432 2394 2356 2318 2280 2242 2204 2166 2128 2090 2052 2014 1976 1938 1900 1862 1824 1786 1748 1710 1672 1634 1596 1558 1520 1482 1444 1406 1368 1330 1292 1254 Y 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 HD66766R Rev. 1.0-1 / September 2002 Table 3 cont. HD66766R PAD Coordinate No. pad name X 401 SEG230 1216 402 SEG229 1178 403 SEG228 1140 404 SEG227 1102 405 SEG226 1064 406 SEG225 1026 407 SEG224 988 408 SEG223 950 409 SEG222 912 410 SEG221 874 411 SEG220 836 412 SEG219 798 413 SEG218 760 414 SEG217 722 415 SEG216 684 416 SEG215 646 417 SEG214 608 418 SEG213 570 419 SEG212 532 420 SEG211 494 421 SEG210 456 422 SEG209 418 423 SEG208 380 424 SEG207 342 425 SEG206 304 426 SEG205 266 427 SEG204 228 428 SEG203 190 429 SEG202 152 430 SEG201 114 431 SEG200 76 432 SEG199 38 433 SEG198 -38 434 SEG197 -76 435 SEG196 -114 436 SEG195 -152 437 SEG194 -190 438 SEG193 -228 439 SEG192 -266 440 SEG191 -304 441 SEG190 -342 442 SEG189 -380 443 SEG188 -418 444 SEG187 -456 445 SEG186 -494 446 SEG185 -532 447 SEG184 -570 448 SEG183 -608 449 SEG182 -646 450 SEG181 -684 451 SEG180 -722 452 SEG179 -760 453 SEG178 -798 454 SEG177 -836 455 SEG176 -874 456 SEG175 -912 457 SEG174 -950 458 SEG173 -988 459 SEG172 -1026 460 SEG171 -1064 461 SEG170 -1102 462 SEG169 -1140 463 SEG168 -1178 464 SEG167 -1216 465 SEG166 -1254 466 SEG165 -1292 467 SEG164 -1330 468 SEG163 -1368 469 SEG162 -1406 470 SEG161 -1444 471 SEG160 -1482 472 SEG159 -1520 473 SEG158 -1558 474 SEG157 -1596 475 SEG156 -1634 476 SEG155 -1672 477 SEG154 -1710 478 SEG153 -1748 479 SEG152 -1786 480 SEG151 -1824 (Laced)(No.2) Y No. pad name 1098 481 SEG150 1191 482 SEG149 1098 483 SEG148 1191 484 SEG147 1098 485 SEG146 1191 486 SEG145 1098 487 SEG144 1191 488 SEG143 1098 489 SEG142 1191 490 SEG141 1098 491 SEG140 1191 492 SEG139 1098 493 SEG138 1191 494 SEG137 1098 495 SEG136 1191 496 SEG135 1098 497 SEG134 1191 498 SEG133 1098 499 SEG132 1191 500 SEG131 1098 501 SEG130 1191 502 SEG129 1098 503 SEG128 1191 504 SEG127 1098 505 SEG126 1191 506 SEG125 1098 507 SEG124 1191 508 SEG123 1098 509 SEG122 1191 510 SEG121 1098 511 SEG120 1191 512 SEG119 1098 513 SEG118 1191 514 SEG117 1098 515 SEG116 1191 516 SEG115 1098 517 SEG114 1191 518 SEG113 1098 519 SEG112 1191 520 SEG111 1098 521 SEG110 1191 522 SEG109 1098 523 SEG108 1191 524 SEG107 1098 525 SEG106 1191 526 SEG105 1098 527 SEG104 1191 528 SEG103 1098 529 SEG102 1191 530 SEG101 1098 531 SEG100 1191 532 SEG99 1098 533 SEG98 1191 534 SEG97 1098 535 SEG96 1191 536 SEG95 1098 537 SEG94 1191 538 SEG93 1098 539 SEG92 1191 540 SEG91 1098 541 SEG90 1191 542 SEG89 1098 543 SEG88 1191 544 SEG87 1098 545 SEG86 1191 546 SEG85 1098 547 SEG84 1191 548 SEG83 1098 549 SEG82 1191 550 SEG81 1098 551 SEG80 1191 552 SEG79 1098 553 SEG78 1191 554 SEG77 1098 555 SEG76 1191 556 SEG75 1098 557 SEG74 1191 558 SEG73 1098 559 SEG72 1191 560 SEG71 X -1862 -1900 -1938 -1976 -2014 -2052 -2090 -2128 -2166 -2204 -2242 -2280 -2318 -2356 -2394 -2432 -2470 -2508 -2546 -2584 -2622 -2660 -2698 -2736 -2774 -2812 -2850 -2888 -2926 -2964 -3002 -3040 -3078 -3116 -3154 -3192 -3230 -3268 -3306 -3344 -3382 -3420 -3458 -3496 -3534 -3572 -3610 -3648 -3686 -3724 -3762 -3800 -3838 -3876 -3914 -3952 -3990 -4028 -4066 -4104 -4142 -4180 -4218 -4256 -4294 -4332 -4370 -4408 -4446 -4484 -4522 -4560 -4598 -4636 -4674 -4712 -4750 -4788 -4826 -4864 Y 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 No. 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 pad name SEG70 SEG69 SEG68 SEG67 SEG66 SEG65 SEG64 SEG63 SEG62 SEG61 SEG60 SEG59 SEG58 SEG57 SEG56 SEG55 SEG54 SEG53 SEG52 SEG51 SEG50 SEG49 SEG48 SEG47 SEG46 SEG45 SEG44 SEG43 SEG42 SEG41 SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 SEG32 SEG31 SEG30 SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 COM175 COM173 COM171 COM169 COM167 COM165 COM163 COM161 COM159 COM157 8 X -4902 -4940 -4978 -5016 -5054 -5092 -5130 -5168 -5206 -5244 -5282 -5320 -5358 -5396 -5434 -5472 -5510 -5548 -5586 -5624 -5662 -5700 -5738 -5776 -5814 -5852 -5890 -5928 -5966 -6004 -6042 -6080 -6118 -6156 -6194 -6232 -6270 -6308 -6346 -6384 -6422 -6460 -6498 -6536 -6574 -6612 -6650 -6688 -6726 -6764 -6802 -6840 -6878 -6916 -6954 -6992 -7030 -7068 -7106 -7144 -7182 -7220 -7258 -7296 -7334 -7372 -7410 -7448 -7486 -7524 -7600 -7638 -7676 -7714 -7752 -7790 -7828 -7866 -7904 -7942 Y 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 No. 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 pad name COM155 COM153 COM151 COM149 COM147 COM145 COM143 COM141 COM139 COM137 COM135 COM133 COM131 COM129 COM127 COM125 COM123 COM121 COM119 COM117 COM115 COM113 COM111 COM109 COM107 DUMMY13 COM105 COM103 COM101 COM99 COM97 COM95 COM93 COM91 COM89 COM87 COM85 COM83 COM81 COM79 COM77 COM75 COM73 COM71 COM69 COM67 COM65 COM63 COM61 COM59 COM57 COM55 COM53 COM51 COM49 COM47 COM45 COM43 COM41 COM39 COM37 COM35 COM33 COM31 COM29 COM27 COM25 COM23 COM21 COM19 COM17 COM15 COM13 COM11 COM9 COM7 COM5 COM3 COM1 X -7980 -8018 -8056 -8094 -8132 -8170 -8208 -8246 -8284 -8322 -8360 -8398 -8436 -8474 -8512 -8550 -8588 -8626 -8664 -8702 -8740 -8778 -8816 -8854 -8892 -9193 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 -9108 -9201 Y X Y Alignment mark 1191 -9000 -1121 Cross 1098 9000 -1121 1191 Circle(Positive) -9094 1145 1098 Circle(Negative) 9094 1145 L (Positive) 1191 -9004 1145 1098 9004 1145 L (Negative) 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1098 1191 1183 995 957 919 881 843 805 767 729 691 653 615 577 539 501 463 425 387 349 311 273 235 197 159 121 83 45 7 -31 -69 -107 -145 -183 -221 -259 -297 -335 -373 -411 -449 -487 -525 -563 -601 -639 -677 -715 -753 -791 -829 -867 -905 -943 -981 HD66766R Rev. 1.0-1 / September 2002 HD66766R Block Diagram Description Vcc AVcc Control Register (CR) Index Register (IR) 7 IM2-1, IM0/ID Address Counter ( AC ) 16 Palette Register (RK, GK, BK) CS* RS E/WR*/SCL Bit Operation 12 latch 48 16 Graphic RAM (GRAM) 46,464 bytes 16 TEST1 TEST2 Latch Circuit Write data 64 latch Read data Segment drivers 16 RESET * VSL 16 16 Latch Circuit DB0/SDI, DB1/SDO, to DB15 16 Grayscale selector circuit RW/RD * PWM Grayscale Circuit GND System Interface - 16 bit - 8 bit - Clock synchoronized - serial SEG1 to SEG396 OSC1 Timinig generator CPG OSC2 generator circuit VCL VM VCH VSH VREFM VREFL CE- CE+ C21- to C24- C21+ to C24+ Vci2 BIASC VOUT C11- to C12- C11+ to C12+ Vci1 VciOUT Figure 3 HD66766R Block Diagram Description 9 Scan data LCD drive power supply circuit Common driver COM1 to COM176 HD66766R Rev. 1.0-1 / September 2002 Pin Functions Table 4 Pin Functional Description Signals IM2-1, IM0/ID Number of Pins I/O Connected to Functions 3 I GND or VCC Selects the MPU interface mode: IM2 IM1 GND GND GND GND IM0/ID0 MPU Interface mode GND 68 system 16-bit bus interface GND Vcc 68 system Vcc GND 80 system 16-bit bus interface GND Vcc Vcc 80 system Vcc GND ID 8-bit bus interface 8-bit bus interface Clock synchronized serial interface When a serial interface is selected, the IM0 pin is used as the ID setting for a device code. CS* 1 I MPU Selects the HD66766R: Low: HD66766R is selected and can be accessed High: HD66766R is not selected and cannot be accessed Must be fixed at GND level when not in use. RS 1 I MPU Selects the register. Low: Index/status High: Control For a register or a synchronous clock interface, fixed to the Vcc or GND level. E/WR*/SCL 1 I MPU For a 68-system bus interface, serves as an enable signal to activate data read/write operation. For an 80-system bus interface, serves as a write strobe signal and writes data at the low level. For a synchronous clock interface, serves as the synchronous clock signal. RW/RD* 1 I MPU For a 68-system bus interface, serves as a signal to select data read/write operation. Low: Write High: Read For an 80-system bus interface, serves as a read strobe signal and reads data at the low level. For a synchronous clock interface, fixed to the Vcc or GND level. DB0/SDI 1 I/O MPU Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level. For a clock-synchronous serial interface, serves as the serial data input pin (SDI). The input level is read on the rising edge of the SCL signal. DB1/SDO 1 I/O MPU Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level. For a clock-synchronous serial interface, serves as a serial data output pin (SDO). Successive bit values are output on the falling edge of the SCL signal. 10 HD66766R Rev. 1.0-1 / September 2002 Table 4 cont. Number of Pins Signals I/O Connected to DB2-DB15 14 I/O SEG1– SEG396 396 O COM1– COM176 176 O VCH, VCL 2 — VM 1 — VSH 1 — VciOUT 1 — Vci1 1 — VciOUT or power supply Vci2 1 — VOUT 1 — Capacitor for stabilization or open Step-up capacitance C11+, C11- 2 — Functions MPU Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level. For a synchronous clock interface or unused pins, fixed to the Vcc or GND level. LCD Output signals for segment drive. In the display-off period (D1–0 = 00, 01) or standby mode (STB = 1), all pins output GND level. The SGS bit can change the shift direction of the segment signal. For example, if SGS = 0, RAM address 0000 is output from SEG1. If SGS = 1, it is output from SEG396. SEG1, SEG4, SEG7, ... display red (R), SEG2, SEG5, SEG8, ... display green (G), and SEG3, SEG6, SEG9, ... display blue (B) (SGS = 0). LCD Output signals for common drive. In the display-off period (D1–0 = 00, 01) sleep mode (SLP = 1) or standby mode (STB = 1), all pins output GND level. The CMS bit can change the shift direction of the common signal. For example, if CMS = 0, driver outputs from COM1 to COM176. If CMS = 1, driver outputs COM176 to COM1. Note that start position of the common driver output is changed by screen diving position function. Capacitor for Selection level for the common signal. When internal power stabilization, supply is used, connect the capacitors for stabilization to shot key barrier VCH AND VCL, and shot key barrier diode to VCL. diode or external When internal power supply is not used, supply external power supply voltage. Capacitor for Non-selection level for the common signal. When internal stabilization or operational amplifier is used, it is output of the internal external power operational amplifier and connect the capacitors for supply stabilization. When internal operational amplifier is not used, supply external voltage. Capacitor for Selection level for the segment signal. When internal stabilization or operational amplifier is used, it is output of the internal external power operational amplifier and connect the capacitors for supply stabilization. When internal operational amplifier is not used, supply external voltage. Vci1 and Outputs a regulated voltage derived from Vcc. Connect a capacitor for stabilization. When this pin is not used, capacitor for stabilization or leave it open. open Step-up capacitance Voltage-input pin for step-up circuit 1. When the Vci adjuster is used, input the power supply from VciOUT. When not used, input the external power supply. Connect capacitor for stabilization. When the internal power supply circuit is not used, leave this pin open. A voltage that doubles or triples the voltage between Vci1 and GND is output here. The step-up factor can be set in an internal register. When step-up circuit is used, connect a step-up capacitor. 11 HD66766R Rev. 1.0-1 / September 2002 Table 4 cont. Number of Pins Signals I/O Connected to Functions C12+, C12- 2 — Step-up capacitance When step-up circuit is used, connect a step-up capacitor. C21+, C21- 2 — Step-up capacitance When step-up circuit is used, connect a step-up capacitor. C22+, C22- 2 — Step-up capacitance When step-up circuit is used, connect a step-up capacitor. C23+, C23- 2 — Step-up capacitance When step-up circuit is used, connect a step-up capacitor. C24+, C24- 2 — Step-up capacitance When step-up circuit is used, connect a step-up capacitor. CEP, CEM 2 — Step-up capacitance or open Connect a step-up capacitor to generate VCL level by VCH and VM. When step-up circuit is not used, leave this pin open. VREFL 1 — VCC or external power supply Inputs reference voltage for LCD drives power supply. Input lower level than Vcc. Since input current does not run, level input, which is divided by resistors, is also possible. VREFM 1 — Capacitor for stabilization or external power supply Connect capacitor for stabilization for internal power supply. When internal operational amplifier is not used, supply external voltage. BIASC 1 — Capacitor for stabilization or open Connect capacitor for stabilization for internal power supply. VCC, GND 2 — Power supply VCC: + 2.2 V to + 3.6 V; GND (logic): 0 V AVCC 1 — — VCC for power supply circuit. Input the same level of voltage as VCC. AGND 1 — OSC1, OSC2 2 I/O Oscillation-resistor Connect an external resistor for R-C oscillation. When providing clocks from outside, input clock to OCS1 and leave OSC2 open. RESET* 1 I MPU or external R-C circuit VccDUM 1 O Input pins Outputs the internal VCC level; shorting this pin sets the adjacent input pin to the VCC level. GNDDUM 1 O Input pins Outputs the internal GND level; shorting this pin sets the adjacent input pin to the GND level. Dummy 1 — — Dummy pad. Must be left disconnected. TEST1, TEST 2 2 I GND Test pin. Must be fixed at GND level. — Open unused pins GND for power supply circuit. Reset pin. Initializes the LSI when low. Must be reset after power-on. Since HCD66766RBP has three RESET pins, use one pin and open unused two pins. 12 HD66766R Rev. 1.0-1 / September 2002 Block Function Description System Interface The HD66766R has five high-speed system interfaces: an 80-system 16-bit/8-bit bus, a 68-system 16bit/8-bit bus, and a Clock synchronized serial interface. The IM2-0 pins select the interface mode. The HD66766R has three 16-bit registers: an index register (IR), a write data register (WDR), and a read data register (RDR). The IR stores index information from the control registers and the GRAM. The WDR temporarily stores data to be written into control registers and the GRAM, and the RDR temporarily stores data read from the GRAM. Data written into the GRAM from the MPU is first written into the WDR and then is automatically written into the GRAM by internal operation. Data is read through the RDR when reading from the GRAM, and the first read data is invalid and the second and the following data are normal. Execution time for instruction excluding oscillation start is 0-clock cycle and instructions can be written in succession. Table 5 Register Selection (8/16 Parallel Interface) 80-series Bus 68-series Bus WR RD R/W RS Operations 0 1 0 0 Writes indexes into IR 1 0 1 0 Reads internal status 0 1 0 1 Writes into control registers and GRAM through WDR 1 0 1 1 Reads from GRAM through RDR Table 6 Register Selection (Clock synchronized Serial Interface) Start bytes R/W Bit RS Bit Operations 0 0 Writes indexes into IR 1 0 Reads internal status 0 1 Writes into control registers and GRAM through WDR 1 1 Reads from GRAM through RDR Bit Operation The HD66766R supports the following functions. A write data mask function that selects data into the GRAM in bit units, and a logic operation function that performs logic operations or conditional determination on the display data set in the GRAM and writes into the GRAM. With the 16-bit bus interface, these functions can greatly reduce the processing lord of the MPU graphics software the display data in the GRAM at high speed. For details, see the Graphics Operation Function section. Address Counter (AC) The address counter (AC) assigns address to the GRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC. After writing into the GRAM, the AC is automatically incremented by 1 (or decrement by 1). After reading from the GRAM, the AC is not updated. 13 HD66766R Rev. 1.0-1 / September 2002 Graphics RAM (GRAM) The graphics RAM (GRAM) has twelve bits/pixel and stores the bit-pattern data of 132 x 176 bytes. PWM Grayscale Palette Circuit The grayscale palette generates a PWM signal, which corresponds to specified grayscale level. Any 65K out of the 140K possible colors can be displayed at the same time. Grayscale Control Circuit The grayscale control circuit performs 16-grayscale control with the pulse width modulation (PWM) method for grayscale display for each color. Timing Generator The timing generator generates timing signals for the operation of internal circuits such as the GRAM. The RAM read timing for display and internal operation timing by MPU access is generated separately to avoid interference with one another. Oscillation Circuit (OSC) The HD66766R can provide R-C oscillation simply through the addition of an external oscillation-resistor between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be reduced. Liquid Crystal Display Driver Circuit The liquid crystal display driver circuit consists of 176 common signal drivers (COM1 to COM176) and 396 segment signal drivers (SEG1 to SEG396). Display pattern data from GRAM is latched to the 396-bit latch circuit. The latched data then enables the segment signal drivers to generate drive waveform outputs. The common driver outputs one of the VCH, VM or VCL voltage level. The SGS bit can change the shift direction of 396-bit data for the segment. The CMS bit can also change the shift direction for the common by selecting an appropriate direction for the device-mounting configuration. When display is off, or during the standby or sleep mode, all the above common and segment signal drivers output the GND level, halting the display. LCD drive power supply circuit LCD drive power supply circuit generates VCH, VSH, VM and VCL voltage level to drive LCD panel. 14 HD66766R Rev. 1.0-1 / September 2002 GRAM ADDRESS DIAGRAM (HD66766R) DB 15 DB 15 DB 0 DB 15 DB 0 DB DB 0 15 "0001"H "0002"H "0003"H "0080"H "0100"H "0101"H "0102"H "0103"H "0200"H "0201"H "0202"H "0203"H COM173 "0300"H "0301"H "0302"H COM5 COM6 COM172 "0400"H "0401"H COM171 COM7 COM8 DB DB 0 15 DB DB 0 15 S396 S395 S394 S393 S392 S391 S390 S389 S388 S386 DB 15 S387 S385 DB 15 S12 DB 0 S11 S8 S7 S6 S5 S4 S3 DB 0 S10 CMS=1 S9 CMS=0 COM1 S1 SEG/COM pins S2 Table 7 Relationship between GRAM address and display position (SGS = “0”) DB 0 "0082"H "0083"H "0180"H "0081"H "0181"H "0182"H "0183"H "0280"H "0281"H "0282"H "0283"H "0303"H "0380"H "0381"H "0382"H "0383"H "0402"H "0403"H "0480"H "0481"H "0483"H "0500"H "0501"H "0502"H "0503"H "0580"H "0581"H "0482"H "0582"H COM170 "0600"H "0601"H "0602"H "0603"H "0680"H "0681"H "0682"H "0683"H COM169 "0700"H "0701"H "0702"H "0703"H "0780"H "0781"H "0782"H "0783"H COM9 COM168 "0800"H "0801"H "0803"H "0880"H "0881"H "0882"H "0883"H COM10 COM167 "0900"H "0901"H "0802"H "0902"H "0903"H "0980"H "0981"H "0982"H "0983"H COM11 COM166 "0A00"H "0A01"H "0A02"H "0A03"H "0A80"H "0A81"H "0A82"H "0A83"H COM12 COM165 "0B00"H "0B01"H "0B80"H "0B81"H "0B82"H "0B83"H COM13 COM164 "0B02"H "0B03"H "0C00"H "0C01"H "0C02"H "0C03"H "0C80"H "0C81"H "0C82"H "0C83"H COM14 COM163 "0D80"H "0D81"H COM15 COM162 "0D00"H "0D01"H "0D02"H "0D03"H "0E00"H "0E01"H "0E02"H "0E03"H "0E80"H "0E81"H "0D82"H "0D83"H "0E82"H "0E83"H COM16 COM161 "0F00"H COM176 COM2 COM175 COM3 COM174 COM4 "0000"H "0F01"H "0F02"H "0F03"H "0F80"H "0F81"H "0583"H COM17 COM160 "1000"H "1001"H "1002"H "1003"H "1080"H "1081"H "0F82"H "0F83"H "1082"H "1083"H COM18 COM159 "1100"H "1101"H "1102"H "1103"H "1180"H "1181"H "1182"H "1183"H COM19 COM158 "1200"H "1201"H "1202"H "1203"H "1280"H "1281"H "1282"H "1283"H COM20 COM157 "1300"H "1301"H "1302"H "1303"H "1380"H "1381"H "1382"H "1383"H COM169 COM8 "A800"H "A801"H "A802"H "A803"H "A880"H "A881"H "A980"H "A981"H "A882"H "A883"H "A982"H "A983"H "AA80"H "AA81"H "AA82"H "AA83"H "AB80"H "AB81"H "AB82"H "AB83"H COM170 COM7 "A900"H "A901"H "A902"H "A903"H COM171 COM6 "AA00"H "AA01"H COM172 COM5 "AB00"H "AB01"H "AA02"H "AA03"H "AB02"H "AB03"H COM173 COM4 "AC80"H "AC81"H COM174 COM3 "AC00"H "AC01"H "AC02"H "AC03"H "AD00"H "AD01"H "AD02"H "AD03"H "AD80"H "AD81"H "AC82"H "AC83"H "AD82"H "AD83"H COM175 COM2 "AE00"H "AE01"H "AE80"H "AE81"H "AE82"H "AE83"H COM176 COM1 "AF00"H "AF01"H "AF80"H "AF82"H "AF83"H "AE02"H "AE03"H "AF02"H "AF03"H "AF81"H Table 8 Relationship between GRAM data and output pin GRAM DATA Selected palette Output pin DB DB 15 14 DB 13 DB 12 PK palette DB 11 DB 10 DB 9 DB 8 DB 7 DB 6 PK palette + FRC SEG (3n+1) DB 5 DB 4 DB 3 DB 2 DB 1 PK palette SEG (3n+2) SEG (3n+3) Note: n = Lower 8 bits address (0 to 131) 15 DB 0 HD66766R DB 15 DB 15 COM1 COM176 "0083"H "0082"H "0081"H "0080"H COM2 COM175 "0183"H "0182"H COM174 "0283"H "0282"H "0181"H "0180"H "0281"H "0280"H COM173 "0383"H "0382"H COM172 "0483"H "0482"H "0381"H "0380"H COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM171 "0583"H "0582"H COM170 "0683"H "0682"H COM169 "0783"H "0782"H COM168 "0883"H "0882"H DB 15 DB 0 DB 15 DB 0 S396 DB 15 S395 DB 0 S394 DB 0 DB 15 S392 S393 DB 0 S386 S387 S8 S9 S7 DB 0 S389 S390 S391 DB 0 S388 DB 15 S385 DB 0 S10 S11 S12 CMS=1 CMS=0 S5 S6 SEG/COM pins S3 S4 Relationship between GRAM address and display position (SGS = “1”) S1 S2 Table 9 Rev. 1.0-1 / September 2002 DB 15 "0003"H "0002"H "0103"H "0102"H "0001"H "0000"H "0101"H "0100"H "0203"H "0202"H "0303"H "0302"H "0201"H "0200"H "0481"H "0480"H "0581"H "0580"H "0681"H "0680"H "0781"H "0780"H "0403"H "0402"H "0503"H "0502"H "0401"H "0400"H "0501"H "0500"H "0603"H "0602"H "0703"H "0702"H "0601"H "0600"H "0701"H "0700"H "0881"H "0880"H "0981"H "0980"H "08030"H "0802"H "0801"H "0800"H "0901"H "0900"H COM10 COM167 "0983"H "0982"H COM11 COM166 "0A83"H "0A82"H "0A81"H "0A80"H COM12 COM165 "0B83"H "0B82"H "0B81"H "0B80"H COM13 COM164 "0C83"H "0C82"H "0C81"H "0C80"H "0903"H "0902"H "0301"H "0300"H "0A03"H "0A02"H "0A01"H "0A00"H "0B03"H "0B02"H "0B01"H "0B00"H "0C03"H "0C02"H "0C01"H "0C00"H "0D03"H "0D02"H "0D01"H "0D00"H "0E03"H "0E02"H "0E01"H "0E00"H COM14 COM163 "0D83"H "0D82"H "0D81"H "0D80"H COM15 COM162 "0E83"H "0E82"H "0E81"H "0E80"H COM17 COM160 "1083"H "1082"H COM18 COM159 "1183"H "1182"H COM19 COM158 "1283"H "1282"H "1081"H "1080"H "1181"H "1180"H "1281"H "1280"H "0F03"H "0F02"H "0F01"H "0F00"H "1003"H "1002"H "1001"H "1000"H "1103"H "1102"H "1101"H "1100"H "1203"H "1202"H "1201"H "1200"H COM20 COM157 "1383"H "1382"H "1381"H "1380"H "1303"H "1302"H COM16 COM161 "0F83"H "0F82"H "0F81"H "0F80"H "1301"H "1300"H COM7 "A883"H "A882"H "A881"H "A880"H "A983"H "A982"H "A981"H "A980"H "A803"H "A802"H "A801"H "A800"H "A903"H "A902"H "A901"H "A900"H COM171 COM6 "AA83"H "AA82"H "AA81"H "AA80"H "AA03"H "AA02"H "AA01"H "AA00"H COM172 COM5 "AB83"H "AB82"H "AB81"H "AB80"H "AB03"H "AB02"H "AB01"H "AB00"H COM173 COM4 COM174 COM3 "AC83"H "AC82"H "AC81"H "AC80"H "AD83"H "AD82"H "AD81"H "AD80"H "AC03"H "AC02"H "AC01"H "AC00"H "AD03"H "AD02"H "AD01"H "AD00"H COM175 COM2 COM1 "AE83"H "AE82"H "AE81"H "AE80"H "AF83"H "AF82"H "AF81"H "AF80"H "AE03"H "AE02"H "AE01"H "AE00"H COM176 COM169 COM8 COM170 Table 10 GRAM DATA Selected palette Output pin "AF03"H "AF02"H "AF01"H "AF00"H Relationship between GRAM data and output pin DB DB 15 14 DB 13 DB 12 PK palette SEG (396-3n) DB 11 DB 10 DB 9 DB 8 DB 7 DB 6 PK palette + FRC DB 5 DB 4 DB 3 DB 2 DB 1 DB 0 PK palette SEG (395-3n) SEG (394-3n) Note: n = Lower 8 bits address (0 to 131) 16 HD66766R Rev. 1.0-1 / September 2002 Instructions Outline The HD66766R uses the 16-bit bus architecture. Before the internal operation of the HD66766R starts, control information is temporarily stored in the registers described below to allow high-speed interfacing with a high-performance microcomputer. The internal operation of the HD66766R is determined by signals sent from the microcomputer. These signals, which include the register selection signal (RS), the read/write signal (R/W), and the data bus signals (DB15 to DB0), make up the HD66766R instructions. • There are eight categories of instructions that: • Specify the index • • Read the status Control the display • Control power management • Process the graphics data • Set internal GRAM addresses • Transfer data to and from the internal GRAM • Set grayscale level for the internal grayscale palette table Normally, instructions that write data are used the most. However, an auto-update of internal GRAM addresses after each data write can lighten the microcomputer program load. Because instructions are executed in 0 cycles, they can be written in succession. 17 HD66766R Rev. 1.0-1 / September 2002 Instruction Descriptions Index: IR The index instruction specifies the RAM control indexes (R00h to R3Fh). It sets the register number in the range of 000000 to 111001 in binary form. However, R40 to R44 are disabled since they are test registers. R/W RS W 0 DB15 DB14 DB13 DB12 DB11 DB10 DB9 * * * * * * DB8 DB7 * * * Figure 4 DB6 DB5 ID6 ID5 DB4 DB3 DB2 DB1 DB0 ID4 ID3 ID2 ID1 ID0 Index Instruction Status Read: SR The status read instruction reads the internal status of the HD66766R. L7–0: Indicate the driving raster-row position where the liquid crystal display is being driven. C6–0: Read the contrast setting values (CT6-0) R/W RS R 0 DB15 DB14 L7 DB13 DB12 L6 L5 L4 DB11 DB10 L3 Figure 5 DB9 DB8 L2 L1 L0 DB7 DB6 DB5 0 C6 DB4 DB3 C5 C4 DB2 C3 C2 DB1 C1 DB0 C0 Status Read Instruction Start Oscillation (R00h) The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the Standby Mode section.) If this register is read forcibly, “0766”H is read. R/W RS DB15 DB14 DB13 DB12 DB11 DB10 w 1 * * * R 1 0 0 0 * 0 Figure 6 * 0 DB9 DB8 * * * 1 1 1 DB7 * 0 DB6 DB4 * * * 1 1 0 Start Oscillation Instruction 18 DB5 DB3 * 0 DB2 DB1 DB0 * * 1 1 1 0 HD66766R Rev. 1.0-1 / September 2002 Driver Output Control (R01h) R/W RS w 1 DB15 DB14 DB13 DB12 DB11 DB10 0 0 0 0 Figure 7 0 0 DB9 DB8 CMS SGS DB7 DB6 DB5 0 0 0 DB4 NL4 DB3 DB2 NL3 NL2 DB1 DB0 NL1 NL0 Driver Output Control Instruction CMS: Selects the output shift direction of a common driver. When CMS = 0, COM1 shifts to COM176. When CMS = 1, COM176 shifts to COM1. SGS: Selects the output shift direction of the segment driver. When SGS = 0, data are output SEG1 to SEG396. When SGS = 1, data are output SEG396 to SEG1. When SGS = 0, SEG1 pin assigns the color display to <R><G><B>. When SGS = 1, SEG396 pin assigns <R><G><B>. Re-write to the RAM when intending to change the SGS bit. NL4-0: Specify the LCD drive duty ratio. The duty ratio can be adjusted for every eight raster-rows. GRAM address mapping does not depend on the setting value of the drive duty ratio. 19 HD66766R Rev. 1.0-1 / September 2002 Table 11 NL Bits and Drive Duty NL4 NL3 NL2 NL1 NL0 Display Size LCD drive duty cycle Common driver used CMS="0" CMS="1" Com176 - Com169 0 0 0 0 0 396 x 8 dots 1/8 Duty Com1 - Com8 0 0 0 0 1 396 x 16 dots 1/16 Duty Com1 - Com16 Com176 - Com161 0 0 0 1 0 396 x 24 dots 1/24 Duty Com1 - Com24 Com176 - Com153 0 0 0 1 1 396 x 32 dots 1/32 Duty Com1 - Com32 Com176 - Com145 0 0 1 0 0 396 x 40 dots 1/40 Duty Com1 - Com40 Com176 - Com137 0 0 1 0 1 396 x 48 dots 1/48 Duty Com1 - Com48 Com176 - Com129 0 0 1 1 0 396 x 56 dots 1/56 Duty Com1 - Com56 Com176 - Com121 0 0 1 1 1 396 x 64 dots 1/64 Duty Com1 - Com64 Com176 - Com113 0 1 0 0 0 396 x 72 dots 1/72 Duty Com1 - Com72 Com176 - Com105 0 1 0 0 1 396 x 80 dots 1/80 Duty Com1 - Com80 Com176 - Com97 0 1 0 1 0 396 x 88 dots 1/88 Duty Com1 - Com88 Com176 - Com89 0 1 0 1 1 396 x 96 dots 1/96 Duty Com1 - Com96 Com176 - Com81 0 1 1 0 0 396 x 104 dots 1/104 Duty Com1 - Com104 Com176 - Com73 0 1 1 0 1 396 x 112 dots 1/112 Duty Com1 - Com112 Com176 - Com65 0 1 1 1 0 396 x 120 dots 1/120 Duty Com1 - Com120 Com176 - Com57 0 1 1 1 1 396 x 128 dots 1/128 Duty Com1 - Com128 Com176 - Com49 1 0 0 0 0 396 x 136 dots 1/136 Duty Com1 - Com136 Com176 - Com41 1 0 0 0 1 396 x 144 dots 1/144 Duty Com1 - Com144 Com176 - Com33 1 0 0 1 0 396 x 152 dots 1/152 Duty Com1 - Com152 Com176 - Com25 1 0 0 1 1 396 x 160 dots 1/160 Duty Com1 - Com160 Com176 - Com17 1 0 1 0 0 396 x 168 dots 1/168 Duty Com1 - Com168 Com176 - Com9 1 0 1 0 1 396 x 176 dots 1/176 Duty Com1 - Com176 Com176 - Com1 20 HD66766R Rev. 1.0-1 / September 2002 LCD-Driving-Waveform Control (R02h) R/W RS W 1 DB15 DB14 DB13 DB12 DB11 DB10 0 0 0 0 0 DB9 RST B/C DB8 DB7 DB6 EOR 0 0 DB5 DB4 DB3 DB2 DB1 DB0 NW5 NW4 NW3 NW2 NW1 NW0 Figure 8 LCD-Driving-Waveform Control Instruction B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive. When B/C = 1, a C-pattern waveform is generated and alternates in each raster-row specified by bits EOR and NW4–NW0 in the LCD-driving-waveform control register. For details, see the n-raster-row Reversed AC Drive section. EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the number of the LCD drive duty ratio and the n raster-row. For details, see the n-raster-row Reversed AC Drive section. RST: When RST = 1, software reset function is started. This function is the same as hardware RESET pin. It takes 10 clock cycle period. This bit is automatically cleared after reset function is completed. Therefore, before 10-clock cycle other instruction can not be issued. Do not set the RST bit during stand-by mode. NW5–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C = 1). NW5–NW0 alternate for every set value + 1 raster-row, and the first to the 64th raster-rows can be selected. Power Control 1 (R03h) Power Control 2 (R0Ch) R/W RS w 1 w 1 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 BS3 BS2 BS1 BS0 BT3 BT2 BT1 BT0 0 0 0 0 0 0 0 0 DB7 0 0 DB6 DB5 DB4 DB3 DB2 DB1 DB0 D C 2 D C 1 D C 0 A P 1 A P 2 S L P S TB 0 0 0 0 VC2 VC1 VC0 Figure 9 Power Control Instruction BS3-0: The LCD drive bias value is set. The LCD drive bias value can be selected according to its drive duty ratio and voltage. BT2–0: The output factor of step-up circuit is switched. The LCD drive voltage level can be selected according to its drive duty ratio and bias. Lower amplification of the step-up circuit consumes less current. BT3: Operation/halt of voltage inverting circuit is set. BT3=”0”: voltage-inverting circuit is halted. BT3=”1”: voltage-inverting circuit is operated. See the Power-on/off Sequence section to be activated. 21 HD66766R Rev. 1.0-1 / September 2002 DC2-0: The operating frequency in the step-up circuit is selected. When the step-up operating frequency is high, the driving ability of the step-up circuit becomes high, but the current consumption is increased. Adjust the frequency considering the step-up ability and the current consumption. AP1–0: The amount of fixed current from the fixed current source in the operational amplifier for the LCD is adjusted. When the amount of fixed current is large, the LCD driving ability and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption. During no display, when AP1-0 = “00”, the current consumption can be reduced by ending the operational amplifier and step-up circuit operation. VC2-0: Set an adjustment factor for the Vci1 voltage (VC2-0). SLP: When SLP = 1, the HD66766R enters the sleep mode, where the internal display operations are halted except for the R-C oscillator, thus reducing current consumption. Only the following instructions can be executed during the sleep mode. Power control (BS2–0, BT3-0, DC2–0, AP1–0, SLP, STB) During the sleep mode, the other GRAM data and instructions cannot be updated although they are retained. STB: When STB = 1, the HD66766R enters the standby mode, where display operation completely stops, halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses are supplied. For details, see the Standby Mode section. Only the following instructions can be executed during the standby mode. a. Standby mode cancel (STB = “0”) b. Start oscillation During the standby mode, the GRAM data and instructions may be lost. To prevent this, they must be set again after the standby mode is canceled. The VSH voltage should be controlled to be less than supply voltage or device proof voltage level since VCH voltage level is generated by bias amplifier ratio corresponding to LCD driving bias value and boosting ratio of the step-up circuit 2. 22 HD66766R Rev. 1.0-1 / September 2002 Table 12 Display bias setting table Determine the LCD drive bias according to its display duty, and select combination of boosting ratio of the step-up circuit 2 and bias amplifier ratio so as not to exceed voltage control of Vci2 and VCH. See the LCD Voltage Generation Circuit regarding how to determine the LCD drive bias, VCH voltage and contrast adjustment for the following settings. LCD driving bias 1/2 1/4 1/6 1/8 1/9 1/10 1/11 1/12 1/13 Booster ratio of the step-up circuit 2 (ND2) x2 x3 x4 x2 x3 x4 x2 x3 x4 x2 x3 x4 x2 x3 x4 x2 x3 x4 x2 x3 x4 x3 x4 x5 x3 x4 x5 BS3 BS2 BS1 BS0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 23 Bias ratio (NB) 0.75 N/A N/A 1.25 0.825 N/A 1.75 1.165 N/A N/A 1.50 1.125 N/A 1.675 1.25 N/A 1.825 1.375 N/A 2.00 1.50 N/A 1.625 1.3 N/A 1.75 1.4 Vci2 (Vci2≤VOU T-0.5V) 1.50 x VM 2.50 x VM 1.75 x VM 3.50 x VM 2.33 x VM 3.00 x VM 2.25 x VM 3.35 x VM 2.50 x VM 3.65 x VM 2.75 x VM 4.00 x VM 3.00 x VM 3.25 x VM 2.60 x VM 3.45 x VM 2.80 x VM VCH (VCH≤22V) Vci2 x 2 Vci2 x 2 Vci2 x 3 Vci2 x 2 Vci2 x 3 Vci2 x 3 Vci2 x 4 Vci2 x 3 Vci2 x 4 Vci2 x 3 Vci2 x 4 Vci2 x 3 Vci2 x 4 Vci2 x 4 Vci2 x 5 Vci2 x 4 Vci2 x 5 HD66766R Rev. 1.0-1 / September 2002 Table 13 Display bias setting table VC2 VC1 VC0 Vci1 control range 0 0 0 0.92 x Vcc 0 0 1 0.87 x Vcc 0 1 0 0.83 x Vcc 0 1 1 0.8 x Vcc 1 0 0 0.76 x Vcc 1 0 1 0.73 x Vcc 1 1 0 0.68 x Vcc 1 1 1 Vci1 control amplifier suspends. (Vci1 can be supplied externally.) Table 14 AP bits and amount of fixed current AP1 AP0 Amount of fixed current in the operational amplifier 0 0 Operational amplifier and booster do not operate. 0 1 Small 1 0 Middle 1 1 Large Table 15 Output voltage ratio of the booster 1 and 2 VOUT output of the booster 1 VCH output of the booster 2 (Use VOUT within the range of 4.0 to 5.75V.) (Set VCH lower than 22.0V.) 0 2 x Vci1 2 x Vci2 0 1 3 x Vci1 2 x Vci2 0 1 0 2 x Vci1 3 x Vci2 0 1 1 3 x Vci1 3 x Vci2 1 0 0 2 x Vci1 4 x Vci2 1 0 1 3 x Vci1 4 x Vci2 1 1 0 2 x Vci1 5 x Vci2 1 1 1 3 x Vci1 5 x Vci2 BT2 BT1 BT0 0 0 0 Set the factor of the booster 2 according to voltage of Vci2 and VCH. When the factor is set low, current consumption can be lowered. 24 HD66766R Rev. 1.0-1 / September 2002 Table 16 Operating clock frequency of the Booster 1 and 2 DC2 DC1 DC0 Operating clock frequency in the booster 1 Operating clock frequency in the voltage inverting circuit and the booster 2 0 0 0 32-divided clock 32-divided clock 0 0 1 64-divided clock 32-divided clock 0 1 0 32-divided clock 64-divided clock 0 1 1 64-divided clock 64-divided clock 1 0 0 32-divided clock 96-divided clock 1 0 1 64-divided clock 96-divided clock 1 1 0 32-divided clock 128-divided clock 1 1 1 64-divided clock 128-divided clock Operation of voltage inverting circuit Table 17 BT3 0 1 VCL output of the voltage inverting circuit (Set VCL no lower than –22.0V.) Halt boosting Output voltage between VCH and VM by inverting Set activation of voltage inverting circuit with output of the booster 2 stable. *See the Power-on/off Sequence section. DB 15 Contrast Control (R04h) R/W RS W 1 DB15 DB14 0 DB13 0 0 DB12 DB11 DB10 0 0 DB9 DB8 DB7 VR2 VR1 VR0 0 DB6 DB5 CT6–0: These bits control the LCD drive voltage to adjust 128-step contrast. Table 18 Contrast control CT6 CT5 CT4 CT3 CT2 CT1 CT0 0 0 0 0 0 0 0 1.016R (Minimum) 0 0 0 0 0 0 1 1.008R 0 0 0 0 0 1 0 1.000R 0 0 0 0 0 1 1 0.992R 0 0 0 0 1 0 0 0.984R : : : : : : : : : : : : : : Contrast 1 1 1 1 1 1 0 0.008R 1 1 1 1 1 1 1 0.000R (Maximum) 25 DB2 DB1 DB0 CT6 CT5 CT4 CT3 CT2 CT1 CT0 Figure 10 Contrast Control Instruction : DB4 DB3 HD66766R Rev. 1.0-1 / September 2002 VR2–0: These bits amplifies 1.1 to 3.4 times the VREFL as output voltage VREFM of LCD drive reference voltage generation circuit. The VREFM should be smaller than VOUT level. Table 19 Contrast control VR2 VR1 VR0 VREFM voltage 0 0 0 VREFL x 1.1 0 0 1 VREFL x 1.3 0 1 0 VREFL x 1.4 0 1 1 VREFL x 1.5 1 0 0 VREFL x 1.7 1 0 1 VREFL x 1.8 1 1 0 VREFL x 3.4 26 HD66766R Rev. 1.0-1 / September 2002 Entry Mode (R05h ) Compare resister (R06h) The write data sent from the microcomputer is modified in the HD66766R and written to the GRAM. The display data in the GRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For detail, see the Graphics Operation Function section. R/W RS W 1 W 1 DB15 DB14 DB13 DB12 DB11 DB10 SPR 0 0 0 0 0 DB9 DB8 DB7 DB6 HWM 0 0 0 DB5 DB4 I/D1 I/D0 DB3 DB2 DB1 DB0 AM LG2 LG1 LG0 CP15 CP14 CP13 CP12 CP11 CP10 CP9 CP8 CP7 CP6 CP5 CP4 CP3 CP2 CP1 CP0 Figure 11 Compare Resister Instruction HWM: When HWM=1, data can be written to the GRAM at high speed. In high-speed write mode, four words of data are written to the GRAM in a single operation after the writing to RAM four times. Write to RAM four times, otherwise the four words cannot be written to the GRAM. Thus, set the lower 2 bits to 0 when setting the RAM address. For details, see the High-Speed RAM Write Mode section. I/D1-0: When I/D1-0 = “1”, the address counter (AC) is automatically incremented by 1 after the data is written to the GRAM. When I/D1-0 = “0”, the AC is automatically decremented by 1 after the data is written to the GRAM. The increment/decrement setting of the address counter by I/D1-0 is done independently for the upper (AD15-8) and lower (AD7-0) addresses. The AM bit sets the direction of moving through the addresses when the GRAM is written to. AM set the automatic update method of the AC after the data is written to the GRAM. When AM= “0”, the data is continuously written in parallel. When AM = “1”, the data is continuously written vertically. When window address range is specified, the GRAM in the window address range can be written to according to the I/D1-0 and AM settings. SPR: When SPR=1, 4096colors are displayed. 12 bit (DB11-DB0) are used for this display. Refer to “4096 color display function” in page 57 for details. I/D1-0="00" I/D1-0="01" I/D1-0="10" I/D1-0="11" Horizontal: decrement Vertical: decrement Horizontal: increment Vertical: decrement Horizontal: decrement Vertical: increment Horizontal: increment Vertical: increment 0000h 0000h 0000h 0000h AM="0" Horizontal AF83h AF83h 0000h 0000h AF83h 0000h AF83h 0000h AM="1" Vertical AF83h AF83h AF83h AF83h Note: When a window address range has been set the GRAM can only be written to within that range. Figure 12 Address Direction Settings 27 HD66766R Rev. 1.0-1 / September 2002 LG2-0: Compare the data read from the GRAM by the microcomputer with the compare resisters (CP150) by a compare/logical operation and writes the results to GRAM. For details, see the Logical/Compare Operation Function. CP15-0: Set the compare resister for the compare operation with the data read from the GRAM or written by the microcomputer. DB15 DB14 DB13 DB12 DB11 DB10 DB9 Write data sent from the microcomputer (DB15-0) Logical/compare operation (LG2 - 0) Write data mask * (WM15 - 0) 0 0 0 0 0 0 0 DB8 DB7 1 1 DB6 1 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 1 1 0 Logical operation (with compare resister) LG2-0 = "110”: Replacement of matched write data LG2-0 = "111”: Replacement of unmatched writes data Write data mask (WM15-0) GRAM Note: The write data mask ( WM15-0 ) is set by the resister in the (20) RAM Write Data Mask section. Figure 13 Logical/Compare Operation for the GRAM 28 HD66766R Rev. 1.0-1 / September 2002 Display Control (R07h) R/W RS W 1 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 VLE2 VLE1 SPT 0 0 0 0 0 DB7 DB6 DB5 0 0 0 DB4 0 DB3 DB2 B/W REV DB1 DB0 D1 D0 Figure 14 Display Control VLE2–1: When VLE1 = 1, a vertical scroll is performed in the 1st screen. When VLE2 = “1”, a vertical scroll is performed in the 2nd screen. Vertical scrolling on the two screens can be independently controlled. SPT: When SPT = 1, the 2-division LCD drive is performed. For details, see the Screen-division Driving Function section. B/W: When B/W = “1”, displayed data can be “all” or “all off” regardless GRAM contents. (B/W = “1”, REV = “0”: all pixel on, B/W = “1”, REV = “1”: all pixel off) When B/W = “1”, grayscale palette has to be default value. REV: Displays all character and graphics display sections with reversal when REV = 1. For details, see the Reversed Display Function section. Since the grayscale level can be reversed, display of the same data is enabled on normally-white and normally-black panels. D1–0: Display is on when D1 = “1” and off when D1 = 0. When off, the display data remains in the GRAM, and can be displayed instantly by setting D1 = “1”. When D1 is “0”, the display is off with all of the SEG/COM pin outputs set to the GND level. Because of this, the HD66766R can control the charging current for the LCD with AC driving. When D1–0 = “01”, the internal display of the HD66766R is performed although the display is off. When D1-0 = “00”, the internal display operation halts and the display is off. Table 20 D Bits and Operation D1 D0 SEG/COM Output HD66766R Internal Display Operation 0 0 GND Halt 0 1 GND Operate 1 0 Unlit display Operate 1 1 Display Operate Notes: 1. Writing from the microcomputer to the GRAM is independent from the state of D1–0. 2. In the sleep and standby modes, D1–0 = 00. However, the register contents of D1–0 are not modified. 29 HD66766R Rev. 1.0-1 / September 2002 Frame Cycle Control (R0Bh) R/W RS W 1 DB15 DB14 DB13 DB12 DB11 DB10 DB9 0 0 0 0 0 0 DB8 DIV1 DIV0 DB7 DB6 DB5 0 0 0 DB4 DB3 DB2 DB1 DB0 0 RTN3 RTN2 RTN1 RTN0 Figure 15 RTN3-0: Set the line retrace period (RTN3-0) to be added to raster-row cycles. becomes long according to the number of clocks set at RTN3-0. The raster-row cycle DIV1-0: Set the division ratio of clocks for internal operation (DIV1-0). Internal operations are driven by clocks which are frequency divided according to the DIV1-0 setting. Frame frequency can be adjusted along with the line retrace period (RTN3-0). When changing the drive-duty, adjust the frame frequency. For details, see the Frame Frequency Adjustment Function section. Table 21 RTN Bits and Clock Cycles RTN3 RTN2 RTN1 RTN1 Line retrace period Clock Cycles per (Clock Cycles) one raster-row 0 0 0 0 0 clock 26 clock 0 0 0 1 1 clock 27 clock 0 0 1 0 2 clock 0 0 1 1 3 clock 28 clock 29 clock : : : : : : 1 1 1 0 14 clock 40 clock 1 1 1 1 15 clock 41 clock Table 22 DIV Bits and Clock Frequency Division ratio Internal Operation Clock Frequency DIV1 DIV0 0 0 1 fosc / 1 0 1 2 fosc / 2 1 0 4 fosc / 4 1 1 8 fosc / 8 * fosc=R-C oscillation frequency Formula for the frame frequency fosc Frame frequency = Clock cycles per raster-row xdivision ratio x 1/duty cycle fosc: RC oscillation frequency Duty: Drive duty (NL bit) Division ratio: DI V bit Clock cycles per raster-row: (RTN+26) clock 30 [Hz] HD66766R Rev. 1.0-1 / September 2002 Vertical Scroll Control (R11h) R/W RS DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 W 1 VL27 VL26 VL25 VL24 VL23 VL22 VL21 VL20 VL17 VL16 VL15 VL14 VL13 VL12 VL11 VL10 Figure 16 Vertical Scroll Control Instruction VL17-10: Specify the display-start raster-row at the 1st screen display for vertical smooth scrolling. Any raster-row from the first to 176th can be selected. After the 176th raster-row is displayed, the display restarts from the first raster-row. The display-start raster-row (VL17-10) is valid only when VLE1 = “1”. The raster-row display is fixed when VLE1 = “0”. (VLE1 is the 1st-screen vertical-scroll enable bit.) VL27-20: Specify the display-start raster-row at the 2nd screen display. The display-start raster-row (VL27-20) is valid only when VLE2 = “1”. The raster-row display is fixed when VLE2 = “0”. (VLE2 is the 1st-screen vertical-scroll enable bit.) Table 23 VL27 VL26 VL25 VL24 VL23 VL22 VL21 VL20 VL17 VL16 VL15 VL14 VL13 VL12 VL11 VL10 Display start line 0 0 0 0 0 0 0 0 1'st raster - row 0 0 0 0 0 0 1 2'nd raster - row 0 0 0 0 0 0 0 1 0 3'rd raster - row : : : : : : : : 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 Note: Do not set over the 176th ("AF"H) raster - row 31 : 175'th raster row 176'th raster row - HD66766R Rev. 1.0-1 / September 2002 1st Screen Driving Position (R14h) 2nd Screen Driving Position (R15h) R/W RS DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 W 1 SE17 SE16 SE15 SE14 SE13 SE12 SE11 SE10 SS17 SS16 SS15 SS14 SS13 SS12 SS11 SS10 W 1 SE27 SE26 SE25 SE24 SE23 SE22 SE21 SE20 SS27 SS26 SS25 SS24 SS23 SS22 SS21 SS20 Figure 17 SS17–0: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the 'set value + 1' common driver. SE17–0: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the 'set value + 1' common driver. For instance, when SS17–10 = “07”H and SE17–10 = “10”H are set, the LCD driving is performed from COM8 to COM17, and non-selection driving is performed from COM1 to COM7, COM18 and others. Ensure that SS17–10 ≤ SE17–10 ≤ “AF”H. For details, see the Screen-division Driving Function section. SS27–0: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the 'set value + 1' common driver. The second screen is driven when SPT = “1”. SE27–0: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the 'set value + 1' common driver. For instance, when SPT = “1”, SS27–20 = “20”H, and SE27–20 = “4F”H are set, the LCD driving is performed from COM33 to COM80. Ensure that SS17– 10 ≤ SE17–10 ≤ SS27–20 ≤ SE27–20 ≤ “AF”H. For details, see the Screen-division Driving Function section. Horizontal RAM Address Position (R16h) Vertical RAM Address Position (R17h) R/W RS DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 W 1 HEA7 HEA6 HEA5 HEA4 HEA3 HEA2 HEA1 HEA0 HSA7 HSA6 HSA5 HSA4 HSA3 HSA2 HSA1 HSA0 W 1 VEA7 VEA6 VEA5 VEA4 VEA3 VEA2 VEA1 VEA0 VSA7 VSA6 VSA5 VSA4 VSA3 VSA2 VSA1 VSA0 Figure 18 Horizontal/Vertical RAM Address Position Instruction HSA5-0/HEA5-0: Specify the horizontal start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by HEA7-0 from the address specified by HSA5-0. Note that an address must be set before RAM is written to. Ensure 00h ≤ HSA7-0 ≤ HEA7-0 ≤ 83h VSA7-0/VEA7-0: Specify the vertical start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by VEA7-0 from the address specified by VSA7-0. Note that an address must be set before RAM is written to. Ensure “00”h ≤ VSA7-0 ≤ VEA7-0 ≤ “AF”h. 32 HD66766R Rev. 1.0-1 / September 2002 HSA HEA 0000h VSA Window address setting range: "00"h HSA7-0 HEA7-0 "00"h VSA7-0 VEA7-0 Window Address "83"h "AF"h VEA GRAM Address space AF83h Figure 19 Window Address Setting Range Note: 1. Ensure that the window address area is within the GRAM address space. 2. In high-speed write mode, data are written to GRAM in four-words. Thus, dummy write operations should be inserted depending on the window address area. For details, see the High-Speed Burst RAM Write Function section. RAM Write Data Mask (R20h) R/W RS W 1 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 WM15 WM14 WM13 WM12 WM11 WM10 WM9 WM8 DB7 DB6 DB5 DB DB3 DB2 DB1 DB0 WM7 WM6 WM5 WM4 WM3 WM2 WM1 WM0 Figure 20 RAM Write Data Mask Instruction WM15–0: In writing to the GRAM, these bits mask writing in a bit unit. When WM15 = “1”, this bit masks the write data of DB11 and does not write to the GRAM. Similarly, the WM10 to 0 bits mask the write data of DB15 to 0 in a bit unit. When HDZ = “1”, mask processing is performed for 12-bit data after dither processing. For details, see the Write Data Mask Function section. RAM Address Set (R21h) R/W W RS DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 1 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 DB3 AD3 DB2 AD2 DB1 AD1 DB0 AD0 Figure 21 RAM Address Set Instruction AD15–0: Initially set GRAM addresses to the address counter (AC). Once the GRAM data is written, the AC is automatically updated according to the AM and I/D bit settings. This allows consecutive accesses without resetting addresses. Once the GRAM data is read, the AC is not automatically updated. 33 HD66766R Rev. 1.0-1 / September 2002 GRAM address setting is not allowed in the standby mode. Ensure that the address is set within the specified window address. Table 24 GRAM Address Range AD15 to AD0 GRAM Setting "0000"H to “0083"H Bitmap data for COM1 "0100"H to "0183"H Bitmap data for COM2 "0200”H to "0283"H Bitmap data for COM3 "0300"H to "0383"H Bitmap data for COM4 "AC00"H to "AC83"H Bitmap data for COM173 "AD00"H to "AD83"H Bitmap data for COM174 "AE00"H to "AE83"H Bitmap data for COM175 "AF00"H to "AF83"H Bitmap data for COM176 Write Data to GRAM (R22h) R/W RS W 1 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 WD 15 WD 8 WD 7 WD 6 WD 5 WD 4 WD 3 WD 2 WD 1 WD 0 WD 14 WD 13 WD 12 WD 11 WD 10 WD 9 Figure 22 Write Data to GRAM Instrction WD15–0 : Write 16-bit data to the GRAM; This data calls each grayscale palette. After a write, the address is automatically updated according to the AM and I/D bit settings. During the stand by mode, the GRAM cannot be accessed. GRAM write data during normal mode DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 WD15 WD14 WD13 WD12 WD11 WD10 WD9 WD8 WD7 R4 R3 R2 R1 R0 G5 G4 G3 G2 DB6 DB5 DB4 WD6 WD5 WD4 G1 G0 1 pixcel Figure 23 34 B4 DB3 DB2 WD3 WD2 B3 B2 DB1 DB0 WD1 WD0 B1 B0 HD66766R Rev. 1.0-1 / September 2002 Table 25 GRAM data setting R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 B4 B3 B2 B1 B0 0 0 0 0 0 0 PK05 PK04 PK03 PK02 PK01 PK00 0 0 0 0 1 0 PK15 PK14 PK13 PK12 PK11 PK10 0 0 0 1 0 0 PK25 PK24 PK23 PK22 PK21 PK20 0 0 0 1 1 0 PK35 PK34 PK33 PK32 PK31 PK30 0 0 1 0 0 0 PK45 PK44 PK43 PK42 PK41 PK40 0 0 1 0 1 0 PK55 PK54 PK53 PK52 PK51 PK50 0 0 1 1 0 0 PK65 PK64 PK63 PK62 PK61 PK60 0 0 1 1 1 0 PK75 PK74 PK73 PK72 PK71 PK70 0 1 0 0 0 0 PK85 PK84 PK83 PK82 PK81 PK80 0 1 0 0 1 0 PK95 PK94 PK93 PK92 PK91 PK90 0 1 0 1 0 0 PK105 PK104 PK103 PK102 PK101 PK100 0 1 0 1 1 0 PK115 PK114 PK113 PK112 PK111 PK110 0 1 1 0 0 0 PK125 PK124 PK123 PK122 PK121 PK120 0 1 1 0 1 0 PK135 PK134 PK133 PK132 PK131 PK130 0 1 1 1 0 0 PK145 PK144 PK143 PK142 PK141 PK140 0 1 1 1 1 0 PK155 PK154 PK153 PK152 PK151 PK150 1 0 0 0 0 0 PK165 PK164 PK163 PK162 PK161 PK160 1 0 0 0 1 0 PK175 PK174 PK173 PK172 PK171 PK170 1 0 0 1 0 0 PK185 PK184 PK183 PK182 PK181 PK180 1 0 0 1 1 0 PK195 PK194 PK193 PK192 PK191 PK190 1 0 1 0 0 0 PK205 PK204 PK203 PK202 PK201 PK200 1 0 1 0 1 0 PK215 PK214 PK213 PK212 PK211 PK210 1 0 1 1 0 0 PK225 PK224 PK223 PK222 PK221 PK220 1 0 1 1 1 0 PK235 PK234 PK233 PK232 PK231 PK230 1 1 0 0 0 0 PK245 PK244 PK243 PK242 PK241 PK240 1 1 0 0 1 0 PK255 PK254 PK253 PK252 PK251 PK250 1 1 0 1 0 0 PK265 PK264 PK263 PK262 PK261 PK260 1 1 0 1 1 0 PK275 PK274 PK273 PK272 PK271 PK270 1 1 1 0 0 0 PK285 PK284 PK283 PK282 PK281 PK280 1 1 1 0 1 0 PK295 PK294 PK293 PK292 PK291 PK290 1 1 1 1 0 0 PK305 PK304 PK303 PK302 PK301 PK300 G0 Grayscale palette 1 1 1 1 1 0 PK315 PK314 PK313 PK312 PK311 PK310 Note: When G0 = 1, selective grayscale for G pixel is the middle grayscale between the upper grayscale and the selective grayscale. 35 HD66766R Rev. 1.0-1 / September 2002 Read Data from GRAM (R22h) R/W RS R 1 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 DB1 DB0 RD1 RD0 Figure 24 Read Data from GRAM Instruction RD15–0: Read 16-bit data from the GRAM. When the data is read to the microcomputer, the first-word read immediately after the GRAM address setting is latched from the GRAM to the internal read-data latch. The data on the data bus (DB15–0) becomes invalid and the second-word read is normal. Sets the I/D, AM, HSA/HSE, VSA/VEA Sets the I/D, AM, HSA/HSE, VSA/VEA Address: N set First word Dummy read (invalid data) GRAM => Read data latch Second words Read (data of address N) Read-data latch => DB11-0 Address: N set First word Second words Dummy read (invalid data) GRAM => Read data latch Write (data of address N) DB11-0 = > GRAM Automatic address update: N+ Address: M set First word Dummy read (invalid data) GRAM => Read data latch First word Second words Read (data of address N) Read-data latch => DB11-0 Second words i) Data read to the microcomputer Figure 25 GRAM Read Sequence 36 Dummy read (invalid data) GRAM => Read data latch Write (data of address N) DB11-0 => GRAM ii) Logical operation processing in the HD66766R HD66766R Rev. 1.0-1 / September 2002 Gray Scale Palette Control (R30h to R3Fh) Table 26 Grayscale Palette Control Instruction R/W RS DB15 DB14 DB13 R30 W 1 0 0 PK 15 R31 W 1 0 0 PK 35 R32 W 1 0 0 R33 W 1 0 R34 W 1 R35 W R36 DB12 DB11 DB10 DB9 DB8 PK 14 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 PK 13 PK 12 PK 11 PK 10 0 0 PK 05 PK 04 PK 03 PK 02 PK 01 PK 00 PK 34 PK 33 PK 32 PK 31 PK 30 0 0 PK 25 PK 24 PK 23 PK 22 PK 21 PK 20 PK 55 PK 54 PK 53 PK 52 PK 51 PK 50 0 0 PK 45 PK 44 PK 43 PK 42 PK 41 PK 40 0 PK 75 PK 74 PK 73 PK 72 PK 71 PK 70 0 0 PK 65 PK 64 PK 63 PK 62 PK 61 PK 60 0 0 PK 95 PK 94 PK 93 PK 92 PK 91 PK 90 0 0 PK 85 PK 84 PK 83 PK 82 PK 81 PK 80 1 0 0 PK 115 PK 114 PK 113 PK 112 PK 111 PK 110 0 0 PK 105 PK 104 PK 103 PK 102 PK 101 PK 100 W 1 0 0 PK 135 PK 134 PK 133 PK 132 PK 131 PK 130 0 0 PK 125 PK 124 PK 123 PK 122 PK 121 PK 120 R37 W 1 0 0 PK 155 PK 154 PK 153 PK 152 PK 151 PK 150 0 0 PK 145 PK 144 PK 143 PK 142 PK 141 PK 140 R38 W 1 0 0 PK 175 PK 174 PK 173 PK 172 PK 171 PK 170 0 0 PK 165 PK 164 PK 163 PK 162 PK 161 PK 160 R39 W 1 0 0 PK 195 PK 194 PK 193 PK 192 PK 191 PK 190 0 0 PK 185 PK 184 PK 183 PK 182 PK 181 R3A W 1 0 0 PK 215 PK 214 PK 213 PK 212 PK 211 PK 210 0 0 PK 205 PK 204 PK 203 PK 202 PK 201 PK 180 PK 200 W 1 0 0 PK 235 PK 234 PK 233 PK 232 PK 231 PK 230 0 0 PK 225 PK 224 PK 223 PK 222 PK 221 PK 220 R3C W 1 0 0 PK 255 PK 254 PK 253 PK 252 PK 251 PK 250 0 0 PK 245 PK 244 PK 243 PK 242 PK 241 PK 240 R3D W 1 0 0 PK 275 PK 274 PK 273 PK 272 PK 271 PK 270 0 0 PK 265 PK 264 PK 263 PK 262 PK 261 PK 260 R3E W 1 0 0 PK 295 PK 294 PK 292 PK 291 PK 290 0 0 PK 285 PK 284 PK 283 PK 282 PK 281 PK 280 R3F W 1 0 0 PK 315 PK 314 PK 293 4 PK 313 PK 312 PK 311 PK 310 0 0 PK 305 PK 304 PK 303 PK 302 PK 301 PK 300 R3B PK31–0: Specify the grayscale level for thirty-two palettes from the 52-grayscale level. the Grayscale Palette and the Grayscale Palette Table sections. 37 For details, see HD66766R Rev. 1.0-1 / September 2002 Instruction List (HD66766R) Table 27 Upper Code Reg. No. Register Name IR SR Lower Code DB DB DB 15 14 13 DB DB DB DB DB DB 12 11 10 9 8 7 DB DB DB DB DB DB 6 5 4 3 2 1 DB 0 Description Exe cution Cyc le R/ W RS Index 0 0 * * * * * * * * * ID6 ID5 ID4 ID3 ID2 ID1 ID0 Sets the index register value. 0 Status read 1 0 L7 L6 L5 L4 L3 L2 L1 L0 0 C6 C5 C4 C3 C2 C1 C0 Reads the driving raster-row position (L7–0) and contrast setting (C6–0). 0 R00h Start oscillation 0 1 * * * * * * * * * * * * * * * 1 Starts the oscillation mode. 10 ms 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 Reads 0766H. 0 R01h Driver output control 0 1 0 0 0 0 0 0 CM S SGS 0 0 0 NL4 NL3 NL2 NL1 NL0 Sets the common driver shift direction (CMS), segment driver shift direction (SGS) and driving duty ratio (NL4–0). R02h LCDdrivingwaveform control 0 1 0 0 0 0 0 RST B/C EOR 0 0 NW 5 NW 4 NW 3 NW 2 NW 1 NW 0 R03h Power control 1 0 1 BS3 BS2 BS1 BS0 BT3 BT2 BT1 BT0 0 DC2 DC1 DC0 AP1 AP0 SLP STB Sets the sleep mode (SLP), standby mode (STB), LCD power on (AP1– 0), boosting cycle (DC2–0), boosting output multiplying factor (BT2–0), operation of voltage inverting circuit (BT3) and LCD drive bias value (BS3–0). R04h Contrast control 0 1 0 0 0 0 0 VR2 VR1 VR0 0 CT6 CT5 CT4 CT3 CT2 CT1 CT0 Sets the regulator adjustment (VR2– 0 0) and contrast adjustment (CT6–0). R05h Entry mode 0 1 SPR 0 0 0 0 0 HWM 0 0 0 I/D1 I/D0 AM LG2 LG1 LG0 Specifies AC counter mode (AM), increment/decrement mode (I/D1– 0), high-speed write mode (HWM). 0 R06h Compare 0 1 CP1 5 CP1 4 CP1 3 CP1 2 CP1 1 CP1 0 CP9 CP8 CP7 CP6 CP5 CP4 CP3 CP2 CP1 CP0 Specifies the compare resister (CP15-0), 0 R07h Display control 0 1 0 0 0 0 0 VLE2 VLE1 SPT 0 0 0 0 B/W REV D1 D0 Specifies display on (D1-0), blackand-white reversed display (REV), pixel on/off mode (ALB), screen division driving (SPT) and vertical scroll .(VLE2-1) 0 R0Bh Frame frequency control 0 1 0 0 0 0 0 0 DIV 1 DIV 0 0 0 0 0 RTN RTN RTN RTN Specifies the line retrace period 3 2 1 0 (RTN3–0) and operating clock frequency division ratio (DIV1–0). 0 R0Ch Power control 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 R11h Vertical scroll control 0 1 VL2 7 VL2 6 VL2 5 VL2 4 VL2 3 VL2 2 VL2 1 VL2 0 VL1 7 VL1 6 VL1 5 VL1 4 VL1 3 VL1 2 VL1 1 VL1 0 R14h 1st screen driving position 0 1 SE 17 SE 16 SE 15 SE 14 SE 13 SE 12 SE 11 SE 10 SS 17 SS 16 SS 15 SS 14 SS 13 SS 12 SS 11 R15h 2nd screen driving position 0 1 SE 27 SE 26 SE 25 SE 24 SE 23 SE 22 SE 21 SE 20 SS 27 SS 26 SS 25 SS 24 SS 23 SS 22 SS 21 R16h Horizontal RAM address position 0 1 HE A7 R17h Vertical RAM address position 0 1 VEA VEA VEA VEA VEA VEA VEA VEA VSA VSA VSA VSA VSA VSA VSA VSA Sets start (VSA7–0) and end 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 (VEA7–0) of the vertical RAM address range. 0 R20h RAM write data mask 0 1 WM 15 0 Device code read Resister WM 13 WM 12 VC2 VC1 VC0 Sets the adjustment factor for the Vci voltage (VC2–0). WM WM WM WM WM WM WM WM WM WM WM 11 10 9 8 7 6 5 4 3 2 1 38 Note1 0 0 Sets LCD drive AC waveform (B/C), and EOR output (EOR) or the number of n-raster-rows (NW5–0) at C-pattern AC drive. 0 0 Sets the 1 st screen display start raster- row (VL17-10) and 2nd screen display start raster-row (VL27-20). 0 SS 10 Sets the 1st screen driving start position (SS17–10) and 1 st screen driving end position (SE17–10). 0 SS 20 Sets 2 nd screen driving start position (SS27–20) and 2 nd screen driving end position (SE27–20). 0 HEA HEA HEA HEA HEA HEA HEA HSA HSA HSA HSA HSA HSA HSA HSA Sets start (HSA7–0) and end 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 (HEA7–0) of the horizontal RAM address range. WM 14 Note1 WM Specifies write data mask (WM15– 0) at RAM write. 0 0 Note2 HD66766R Rev. 1.0-1 / September 2002 Instruction List (cont.) Upper Code Reg. No. Register Name DB 15 DB 14 Lower Code DB 13 DB 12 DB 11 DB 10 DB 9 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 DB 0 Description Execution Cycle R/ W RS R21h RAM address set 0 1 AD15–8 (upper) R22 RAM data write 0 1 Write data (upper) RAM data read 1 1 Read data (upper) R30h Grayscale palette control (1) 0 1 0 0 PK15 PK14 PK13 PK12 PK11 PK10 0 0 PK05 PK04 PK03 PK02 PK01 PK00 Specifies the grayscale palette. 0 R31h Grayscale palette control (2) 0 1 0 0 PK35 PK34 PK33 PK32 PK31 PK30 0 0 PK25 PK24 PK23 PK22 PK21 PK20 Specifies the grayscale palette. 0 R32h Grayscale palette control (3) 0 1 0 0 PK55 PK54 PK53 PK52 PK51 PK50 0 0 PK45 PK44 PK43 PK42 PK41 PK40 Specifies the grayscale palette. 0 R33h Grayscale palette control (4) 0 1 0 0 PK75 PK74 PK73 PK72 PK71 PK70 0 0 PK65 PK64 PK63 PK62 PK61 PK60 Specifies the grayscale palette. 0 R34h Grayscale palette control (5) 0 1 0 0 PK95 PK94 PK93 PK92 PK91 PK90 0 0 PK85 PK84 PK83 PK82 PK81 PK80 Specifies the grayscale palette. 0 R35h Grayscale palette control (6) 0 1 0 0 0 0 R36h Grayscale palette control (7) 0 R37h Grayscale palette control (8) 0 R38h Grayscale palette control (9) 0 R39h Grayscale palette control (10) 0 R3Ah Grayscale palette control (11) 0 R3Bh Grayscale palette control (12) 0 R3Ch Grayscale palette control (13) 0 R3Dh Grayscale palette control (14) 0 R3Eh Grayscale palette control (15) 0 R3Fh Grayscale palette control (16) 0 Note: 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AD6–0 (lower) PK PK PK PK PK PK 115 114 113 112 111 110 PK PK PK PK PK PK 135 134 133 132 131 130 PK PK PK PK PK PK 155 154 153 152 151 150 PK PK PK PK PK PK 175 174 173 172 171 170 PK PK PK PK PK PK 195 194 193 192 191 190 PK PK PK PK PK PK 215 214 213 212 211 210 PK PK PK PK PK PK 235 234 233 232 231 230 PK PK PK PK PK PK 255 254 253 252 251 250 PK PK PK PK PK PK 275 274 273 272 271 270 PK PK PK PK PK PK 295 294 293 292 291 290 PK PK PK PK PK PK 315 314 313 312 311 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Initially set the RAM address to the address counter (AC). 0 Write data (lower) Writes data to the RAM. 0 Read data (lower) Reads data from the RAM. 0 PK PK PK PK PK PK 105 104 103 102 101 100 PK PK PK PK PK PK 125 124 123 122 121 120 PK PK PK PK PK PK 145 144 143 142 141 140 PK PK PK PK PK PK 165 164 163 162 161 160 PK PK PK PK PK PK 185 184 183 182 181 180 PK PK PK PK PK PK 205 204 203 202 201 200 PK PK PK PK PK PK 225 224 223 222 221 220 PK PK PK PK PK PK 255 244 243 242 241 240 PK PK PK PK PK PK 265 264 263 262 261 260 PK PK PK PK PK PK 285 284 283 282 281 280 PK PK PK PK PK PK 305 304 303 302 301 300 1. “*” means doesn’t matter. 2. High-speed write mode is available only for the RAM writing. 39 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 Specifies the grayscale palette. 0 HD66766R Rev. 1.0-1 / September 2002 Reset Function The HD66766R is internally initialized by RESET input. Reset the gate driver/Power supply IC as its settings are not automatically reinitialized when the HD66766R is reset. The reset input must be held for at least 200 ms. Do not access the GRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied (10 ms). Instruction Set Initialization: 1. 2. 3. 4. Start oscillation executed Driver output control (NL4–0 = “10101”, SGS = “0”, CMS = “0”) B-pattern waveform AC drive (B/C = “0”, EOR = “0”, NW5–0 = “000000”) Power control 1 (DC2–0 = “000”, AP1–0 = “00”: LCD power off, STB = “0”: Standby mode off, SLP = “0”, BS2-0 = “000”, BT2-0 = “000”) 5. Contrast control (Weak contrast VR3-0 = “0000”, CT6-0 = “0000000”) 6. Entry mode set ( SPR= “0” , HWM = “0”, I/D1-0 = “11”: Increment by 1, AM = “0”: Horizontal move, LG2-0=”000”:Replace mode ) 7. Compare resister : (CP15-0 = “0000000000000000” 8. Display control (VLE2–1 = “00”: No vertical scroll, SPT = “0”, REV = “0”, D1–0 = “00”: Display off) 9. Frame cycle control (DIV1-0 = “00”: 1-divided clock, RTN3-0: No line retrace period) 10. Power control 2 (VC2-0 = “000”) 11. Vertical scroll (VL27–20 = “00000000”, VL17–10 = “00000000”) 12. 1st screen division (SE17-10 = “11111111”, SS17-10 = “00000000”) 13. 2nd screen division (SE27-20 = “11111111”, SS27-20 = “00000000”) 14. Horizontal RAM address position (HEA7-0 = “10000011”, HSA7-0 = “00000000”) 15. Vertical RAM address position (VEA7-0 = “10101111”, VSA7-0 = “00000000”) 16. RAM write data mask (WM11–0 = “000”H: No mask) 17. RAM address set (AD15–0 = “0000”H) 18. Grayscale Palette (PK0 = “000000”, RK1= “000011”, PK2= “000110”, PK3= “001000 ”, PK4= “001010”, PK5= “001100”, PK6= “001110”, PK7= “001111”, PK8= “010000”, PK9= “010001”, PK10= “010010”, PK11= “010011”, PK12= “010100”, PK13= “010101”, PK14= “010110”, PK15= “010111”, PK16 = “011000”, PK17= “011001”, PK18= “011010”, PK19= “011011”, PK20= “011100”, PK21= “011101”, PK22= “011110”, PK23= “100000”, PK24= “100010”, PK25= “100100”, PK26= “100110”, PK27= “101000” , PK28 = “101011”, PK29= “101110”, PK30= “110001”, PK31= “110100”,) GRAM Data Initialization: This is not automatically initialized by reset input but must be initialized by software while display is off (D1–0 = “00”). Output Pin Initialization: 1. LCD driver output pins (SEG/COM): Output GND level 2. Oscillator output pin (OSC2): Output oscillation signal 40 HD66766R Rev. 1.0-1 / September 2002 Parallel Data Transfer 16-bit Bus Interface Setting the IM2/1/0 (interface mode) to the “GND”/“GND”/“GND” level allows 68-system E-clocksynchronized 16-bit parallel data transfer. Setting the IM2/1/0 to the “GND”/”Vcc”/”GND” level allows 80-system 16-bit parallel data transfer. When the number of buses or the mounting area is limited, use an 8-bit bus interface. H8/2245 CS* RS WR* (RD*) CSn* A1 HWR* (RD*) HD66766 DB15 - DB0 D15 - D0 16 Figure 26 Interface to 16-bit Microcomputer 8-bit Bus Interface Setting the IM2/1/0 (interface mode) to the “GND”/”GND” /”Vcc” level allows 68-system E-clocksynchronized 8-bit parallel data transfer using DB15–DB8 pins. Setting the IM2/1/0 to the “GND”/”Vcc”/”Vcc” level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB7–DB0 to the ”Vcc” or “GND” level. Note that the upper bytes must also be written when the index register is written to. CS* CSn* A1 H8/2245 HWR* (RD*) D15 - D8 RS WR* HD66766 (RD*) DB15 - DB8 DB7 - 0 8 8 GND Figure 27 Interface to 8-bit Microcomputer 41 HD66766R Note: Rev. 1.0-1 / September 2002 Transfer synchronization function for an 8-bit bus interface The HD66766R supports the transfer synchronization function which resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a “00”H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system RS R/W E DB15 to DB8 Upper or lower "00"H "00"H "00"H "00"H Upper (1) (2) (3) Lower (4) 8-bit transfer synchronization Figure 28 8-bit Transfer Synchronization 42 HD66766R Rev. 1.0-1 / September 2002 Serial Data Transfer Setting the IM2 pin to the “Vcc” level and the IM1 pin to the “GND” level allows standard clocksynchronized serial data transfer, using the chip select line (CS*), serial transfer clock line (SCL), serial input data line (SDI), and serial output data line (SDO). For a serial interface, the IM0/ID pin function uses an ID pin. If the chip is set up for serial interface, the DB15-2 pins which are not used must be fixed at “Vcc” or “GND”. The HD66766R initiates serial data transfer by transferring the start byte at the falling edge of CS* input. It ends serial data transfer at the rising edge of CS* input. The HD66766R is selected when the 6-bit chip address in the start byte transferred from the transmitting device matches the 6-bit device identification code assigned to the HD66766R. The HD66766R, when selected, receives the subsequent data string. The least significant bit of the identification code can be determined by the ID pin. The five upper bits must be “01110”. Two different chip addresses must be assigned to a single HD66766R because the seventh bit of the start byte is used as a register select bit (RS): that is, when RS = “0”, data can be written to the index register or status can be read, and when RS = “1”, an instruction can be issued or data can be written to or read from RAM. Read or write is selected according to the eighth bit of the start byte (R/W bit). The data is received when the R/W bit is “0”, and is transmitted when the R/W bit is “1”. After receiving the start byte, the HD66766R receives or transmits the subsequent data byte-by-byte. The data is transferred with the MSB first. All HD66766R instructions are 16 bits. Two bytes are received with the MSB first (DB15 to 0), then the instructions are internally executed. After the start byte has been received, the first byte is fetched internally as the upper eight bits of the instruction and the second byte is fetched internally as the lower eight bits of the instruction. Five bytes of RAM read data after the start byte are invalid. data from the sixth byte. The HD66766R starts to read correct RAM Table 28 Start Byte Format Transfer Bit Start byte format Note: S Transfer start 1 2 0 1 Table 29 RS and R/W Bit Function R/W Function 0 0 Sets index register 0 1 Reads status 1 0 Writes instruction or RAM data 1 1 Reads RAM data 4 5 6 0 ID Device ID code The IM0/ID pin selects ID bit. RS 3 43 1 1 7 8 RS R/W HD66766R Rev. 1.0-1 / September 2002 a) Timing of basic data-transfer through clock synchronized serial interface Transfer end Transfer start CS* (input) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 LSB MSB SDI (input) "0" "1" "1" "1" "0" D DB DB DB DB DB DB DB DB DB DB DB DB DB DB RS RW DB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Device D DB 0 RS RW code index register instruction / GRAM write data Start byte SDO (output) DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DB 0 Status read / Ram read Figure 29 Procedure for transfer through the clock synchronized serial inrface (a) b) Timing of consecutive data transfer through clock synchronized serial interface CS (input) 1 2 3 4 5 6 7 8 SCL 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930 31 32 Instruction(1) upper 8-bit Instruction(1) lower 8-bit Instruction(2) upper 8-bit (input) SDI Start byte (input) Instruction (1) execution time Start "End" The first byte after start byte must be upper 8-bit. Instruction is not executed. Figure 30 Procedure for transfer through the clock synchronized serial interface (b) 44 HD66766R Rev. 1.0-1 / September 2002 C) Transfer data read from GRAM CS* (input) SCL (input) SDI (input) Start byte RS="1" R/W="1" Dummy read (1) SDO (output) "Start" Dummy read (2) Dummy read (3) Dummy read (4) Dummy read (5) RAM read upper 8-bit RAM read lower 8-bit Five bytes invalid dummy data are read after start byte. 6th data is valid from GRAM. Figure 31 Procedure for transfer through the clock synchronized serial interface (c) d) Status Read / Instruction Read CS* (input) SCL (input) SDI (input) Start byte RS="0" R/W="1" Dummy read (1) SDO (output) Status read upper 8-bit "Start" Status read lower 8-bit "End" One byte invalid dummy data are read after start byte. 2nd data is valid from GRAM. Figure 32 Procedure for transfer through the clock synchronized serial interface (d) 45 "End" HD66766R Rev. 1.0-1 / September 2002 High-Speed Burst RAM Write Function The HD66766R has a high-speed burst RAM-write function that can be used to write data to RAM in one-fourth the access time required for an equivalent standard RAM-write operation. This function is especially suitable for applications that require the high-speed rewriting of the display data, for example, display of color animations, etc. When the high-speed RAM-write mode (HWM) is selected, data for writing to RAM is once stored to the HD66766R internal register. When data is selected four times per word, all data is written to the on-chip RAM. While this is taking place, the next data can be written to an internal register so that high-speed and consecutive RAM writing can be executed for animated displays, etc. Microcomputer 16 Address counter (AC) Resistor 1 Resistor 2 Resistor 3 Resistor 4 48 16 "0001"H "0000"H "0002"H "0003"H GRAM Figure 33 Flow of Operation in High-Speed Consecutive Writing to RAM CS* (input) 1 DB15-0 (input / output) Index (R22) 2 3 4 1 2 3 4 1 2 3 4 Index (R22) RAM RAM R4M RAM RAM RAM RAM RAM RAM RAM RAM RAM data data data data data data data data data data data data (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) RAM write execution time RAM write data (48 bit) RAM address (AC15 to 0) RAM data 1 to 4 “0000”H RAM write execution time RAM write execution time * RAM data 5 to 8 RAM data 9 to 12 “0004”H “0008”H “000A”H * The lower two bits of the address must be set in the following way in high-speed write mode. When D0 becomes 0, the lower two bits of the address must be set to “11”. Wen D1 becomes 1, the lower two bits of the address must be set to “00”. Note: When a high-speed RAM write is canceled, the next instruction must only be executed after the RAM write execution time has elapsed. Figure 34 Example of the Operation of High-Speed Consecutive Writing to RAM 46 HD66766R Rev. 1.0-1 / September 2002 Note the following when using high-speed RAM write mode. Notes: 1. The logical and compare operation cannot be used. 2. Data is written to RAM each four words. When an address is set, the lower two bits in the address must be set to the following values. *When I/D0=0, the lower two bits in the address must be set to “11” and be written to RAM. *When I/D0=1, the lower two bits in the address must be set to “00” and be written to RAM. 3. Data is written to RAM each four words. If less than four words of data is written to RAM, the last data will not be written to RAM. 4. When the index register and RAM data write (“22”H) have been selected, the data is always written first. RAM cannot be written to and read from at the same time. HWM must be set to “0” while RAM is being read. 5. High-speed and normal RAM write operations cannot be executed at the same time. The mode must be switched and the address must then be set. 6. When high-speed RAM write is used with a window address-range specified, dummy write operation may be required to suit the window address range-specification. Refer to the HighSpeed RAM Write in the Window Address section. Table 30 Comparison between Normal and High-Speed RAM Write Operations Logical operation function Compare operation function Write mask function Normal RAM Write (HWM=0) Can be used Can be used Can be used RAM address set Can be specified by word RAM read Can be read by word RAM write Can be written by word Window address Can be set by word 47 High-Speed RAM Write (HWM=1) Cannot be used Cannot be used Can be used ID0 bit=0: Set the lower two bits to 11 ID0 bit=1: Set the lower two bits to 00 Cannot be used Dummy write operations may have to be inserted according to a window addressrange specification Can be set by four words HD66766R Rev. 1.0-1 / September 2002 High-Speed RAM Write in the Window Address When a window address range is specified, RAM data which is in an optional window area can be rewritten consecutively and quickly by inserting dummy write operations so that RAM access counts become 4N as shown in the tables below. Dummy write operations may have to be inserted as the first or last operations for a row of data, depending on the horizontal window-address range specification bits (HSA1 to 0, HEA1 to 0). The number of dummy write operations of a row must be 4N. Table 31 Number of Dummy Write Operations in High-Speed RAM Write (HSA Bits) HSA1 HSA0 Number of Dummy Write Operations to be Inserted at the Start of a Row 0 0 0 0 1 1 1 0 2 1 1 3 Table 32 Number of Dummy Write Operations in High-Speed RAM Write (HEA Bits) HEA1 HEA0 Number of Dummy Write Operations to be Inserted at the End of a Row 0 0 3 0 1 2 1 0 1 1 1 0 Each row of access must consist of 4 x N operations, including the dummy writes. Horizontal access count = first dummy write count + write data count + last dummy write count = 4 x N 48 HD66766R Rev. 1.0-1 / September 2002 An example of high-speed RAM write with a window address-range specified is shown below. The window address-range can be rewritten to consecutively and quickly by inserting two dummy writes at the start of a row and three dummy writes at the end of a row, as determined by using the window address-range specification bits (HSA1 to 0= “10”, HEA1 to 0= “00”). Writing in the horizontal direction AM=0, I/D0=1 h0000 h0812 Window address-range setting HSA=h12, HEA=h30 VSA=h08, VEA=hA0 Window address-range specification (rewrite area) High-speed RAM write mode setting HWM=1 Address set AD=h0810 GRAM address map hA030 Note 1) hAF83 Window address-range setting HSA=h12, HEA=h30 VSA=h08, VEA=hA0 Dummy RAM write x 2 RAM write x 31 x 152 Dummy RAM write x 3 Note1) The address set for the high-speed RAM write must be 00 or 11 according to the value of I/D0 bit. Only RAM in the speicfied window address-range will be overwritten. Figure 35 Example of the High-Speed RAM write with a window address-range specification 49 HD66766R Rev. 1.0-1 / September 2002 Window Address Function When data is written to the on-chip GRAM, a window address-range which is specified by the horizontal address register (start: HSA7-0, end: HEA7-0) or the vertical address register (start: VSA7-0, end: VEA70) can be written to consecutively. Data is written to addresses in the direction specified by the AM bit (increment/decrement). When image data, etc. is being written, data can be written consecutively without thinking a data wrap by doing this. The window must be specified to be within the GRAM address area described below. Addresses must be set within the window address. [Restriction on window address-range settings] (horizontal direction) “00”H ≤ HSA7-0 ≤ HEA7-0 ≤ “83”H (vertical direction) “00”H ≤ VSA7-0 ≤ VEA7-0 ≤ “AF”H [Restriction on address settings during the window address] (RAM address) HSA7-0 ≤ AD7-0 ≤ HEA7-0 VSA7-0 ≤ AD15-8 ≤ VEA7-0 Note: In high-speed RAM-write mode, the lower two bits of the address must be set as shown below according to the value of the ID0 bit. ID0=0: The lower two bits of the address must be set to “11”. ID0=1: The lower two bits of the address must be set to “00” GRAM address map 0083H 0000H Window address area 2010H 202FH 2110H 212FH 5F10H 5F2FH AF83H AF00H Window address-range specification area HSA5-0=10H, HSE5-0=2FH VSA7-0=20H, VEA7-0=5FH I/D0=1 (increment) AM=0 (horizontal writing) Figure 36 Example of Address Operation in the Window Address Specification 50 HD66766R Rev. 1.0-1 / September 2002 Graphic Operation Function The HD66766R can greatly reduce the load of the microcomputer graphics software processing through the 16-bit bus architecture and internal graphics-bit operation function. This function supports the following: 1. A write data mask function that selectively rewrites some of the bits in the 16-bit write data. 2. A conditional write function that compares the write data and compare-bit data and writes the data sent from the microcomputer only when the conditions match. Even if the display size is large, the display data in the graphics RAM ( GRAM ) can be quickly rewritten. The graphics bit operation can be controlled by combining the entry mode resister. The bit set value of the RAM-write –data mask resister, and the write from the microcomputer. Bit Setting Operation Mode I/D AM LG2-0 Operation and Usage Write mode 1 0 /1 0 000 Horizontal data replacement, horizontal - border drawing Write mode 2 0 /1 1 000 Vertical data replacement, vertical - border drawing Write mode 3 0 /1 0 110,111 Conditional horizontal data replacement, horisontal - border drawing 0 /1 1 110,111 Conditional vertical data replacement, vertical - border drawing Write mode 4 Table 33 Graphics operation Microcomputer 16 Write data latch +1/-1 + 256 Address counter ( AC ) 16 3 Logical / compare operation (LG2 - 0:) 000: replacement bit. 110: replacement with matched write, Only RAM in the 111: replacement with unmatched write Logical operation bit ( LG2 - 0 ) 16 Compare bit ( CP7 - 0 ) 16 16 Write bit mask 16 Graphic RAM ( GRAM ) Figure 37 Graphics Operation flow 51 Write mask register ( WM15 - 0 ) HD66766R Rev. 1.0-1 / September 2002 Write-data Mask Function The HD66766R has a bit-wise write-data mask function that controls writing the 16-bit data from the microcomputer to the GRAM. Bits that are “0” in the write-data mask register (WM15–0) cause the corresponding DB bit to be written to the GRAM. Bits that are “1” prevent writing to the corresponding GRAM bit to the GRAM; the data in the GRAM is retained. This function can be used when only onepixel data is rewritten or the particular display color is selectively rewritten. DB15 Data written by the microcomputer DB0 R04 R03 R02 R01 R00 G05 G04 G03 G02 G01 G00 B04 B03 B02 B01 WM15 Write data mask 1 WMO 1 1 1 1 * * * * 0 0 0 0 0 1 1 1 1 0 G03 G02 G01 * * * B02 B01 DB11 GRAM data * B00 0 DB0 G05 G04 Figure 38 Write-data Mask Function Operation 52 B00 HD66766R Rev. 1.0-1 / September 2002 Graphics Operation Processing 1. Write mode 1: AM = 0, LG2-0 = “000” This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics RAM ( GRAM ) or to draw borders. The write-data mask function ( WM15-0 ) are also enabled in these operations. After writing, the address counter ( AC ) automatically increments by 1 ( I/D = 1 ) or decrements by 1 ( I/D = 0 ) , and automatically jumps to the counter edge one-raster below after it has reached the left or right edge of the GRAM. Operation Examples: 1) I/D = "1", AM = "0", LG2-0 = "000" 2) WM15-0 = "07FF"H 3) AC = "0000"H WM15 Write data mask: 0 WM0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 DB15 "Write mask for plane G and B. DB0 Write data (1) : 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 Write data (2) : 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 "0000"H "0001"H 1 0 0 1 1 * * * * * * * * * * * "0002"H 1 1 0 0 0 * * * * * * * * * * * Write data (1) Write data (2) Note: The bits in the GRAM indicated by (*) are not changed. GRAM Figure 39 Writing Operation of Write Mode 1 53 HD66766R Rev. 1.0-1 / September 2002 2. Write mode 2: AM = 1, LG2-0 = “000” This mode is used when the data is vertically written at high speed. It can also be used to initialize the GRAM, develop the font pattern in the vertical direction, or draw borders. The write-data mask function ( WM15-0 ) are also enabled in these operations. After writing, the address counter ( AC ) automatically increments by 256, and automatically jumps to the upper-right edge ( I/D =1 ) or upperleft egde ( I/D = 0 ) following the I/D bit after it has reached the lower edge of the GRAM. Operation Examples: 1) I/D = "1" , AM = "1", 2) WM15-0 = "07FF"H 3) AC = "0000"H WM15 0 0 0 Write- data mask: LG2-0 = "000" WM0 0 0 1 1 1 1 1 1 1 1 1 1 1 DB0 DB15 Write data (1): 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 Write data (2): 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 Write data (3): "0000"H 1 0 0 1 1 * * * * * * * * * * * Write data (1) "0100"H 1 1 0 0 0 * * * * * * * * * * * Write data (2) "0200"H 0 1 1 1 1 * * * * * * * * * * * Write data (3) GRAM Notes: 1. The bit area data in the GRAM indicated by (*) is not changed. 2. After writing to address "AF00"H the AC jumps to "0001"H. Figure 40 Operation of Write Mode 2 54 HD66766R Rev. 1.0-1 / September 2002 3. Write mode 3: AM = 0, LG2-0 = 110/111 This mode is used when the data is holizontally written by comparing the write data and the set value of the compare resister ( CP7-0 ). When the result of the comparison in a byte unit satisfies the condition write-data mask function ( WM15-0 ) are also enabled. After writing , the address counter ( AC ) automatically increments by 1 ( I/D =1 ) or decrements by 1 ( I/D = 0 ), and automatically jumps to the counter edge one-raster-raw below after it has reached the left or right edge of the GRAM. Operation Examples: 1) I/D = "1", AM = "0" , 2) CP15-0 = "2860"H 2) WM15-0 = "0000"H 3) AC = "0000"H LG2-0 = "110" ( Matched write ) WM15 Write - data mask : WM0 0 0 0 0 0 0 0 0 0 00 0 00 0 0 CP15 Compare register : CP0 Compare operation 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 DB15 Write data (1) : (Matched) Conditional replacement DB0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 C R 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 Compare operation Replacement Conditional replacement Write data (2) : 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 "0000"H R "0001"H 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 Matched replacement of write data (1) C * * * * * * * * * * * * * * * * GRAM Figure 41 Operation of Write Mode 3 55 * * * * * * * * * * * * * * * * HD66766R Rev. 1.0-1 / September 2002 4. Write mode 4: AM = 1, LG2-0 = 110/111 This mode is used when a vertical comparison is performed between the write data and the set value of the compare resister ( CP15-0 ) to write the data . When the result by the comparison in a byte unit satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, write data mask function ( WM15-0 ) are also enabled. After writing, the address counter ( AC ) automatically increments by 256, and automatically jumps to the upper-right edge ( I/D = 1) or upper-left edge ( I/D = 0 ) following the I/D bit after it has reached the lower edge of the GRAM. Operation Examples: 1) I/D = "1", AM = "1" , 2) WM15-0 = "0000"H LG2-0 = "111" ( Unmatched write ) 2) CP15-0 = "2860"H 3) AC = "0000"H WM0 WM15 Write - data mask : 0 0 0 0 0 0 0 00 0 0 00 0 0 0 CP15 Compare register : Compare operation 0 0 1 0 1 0 0 00 1 1 0 0 0 0 0 DB15 Write data (1) : CP0 ( Unmatched ) DB0 1 0 0 1 1 0 0 11 0 0 1 1 1 1 1 Conditional replacement R C 1 0 0 1 1 0 0 11 0 0 1 1 1 1 1 Compare operation ( Unmatched ) Write data (2) : Conditional replacement 0 0 1 0 1 0 0 00 1 1 0 0 0 0 0 "0000"H C R * * * * * * * * * * * * * * * * "0001"H "0000"H 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 Write data (1) "0100"H * * * * * * * * * * * * * * * * Write data (2) GRAM "AF00"H Notes: 1. The bit area data in the GRAM indicated by (*) is not changed. 2. After writing to address "AF00"H the AC jumps to "0001"H. Figure 42 Writing Operation of Write Mode 4 56 HD66766R Rev. 1.0-1 / September 2002 4096 colors Display Function HD66766R is equipped with 4096 colors display function. When setting SPR bit = 1, it operates 4096 color display function, and uses 16 bits instead of 12 bits. Upper 4 bits are invalid when operating 4096 colors display function. While operating 4096 colors display function, write mode 3 and 4 in graphic operation are not usable. GRAM 46,464 byte RAM write data 65k format DB15 RAM read data 65k format RAM write DB0 DB0 0 0 DB0 DB15 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0 R4 R3 R2 R1 R0 G5 G 4 G3 G 2G 1G0 B4 B3 B2 B1 B0 DB15 RAM read DB15 0 0 0 R3 R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0 DB0 0 0 0 R3 R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0 Read data 4096 color format Write data 4096 color format Figure 43 4096 color display data write and read format Table 34 4,096 color R, G, B data and selective grayscale palette R, G, B data 0000 0001 0010 0011 0100 0101 0110 0111 Selective grayscale palette PK0 PK2 PK4 PK6 PK8 PK10 PK12 PK14 R, G, B data 1000 1001 1010 1011 1100 1101 1110 1111 57 Selective grayscale palette PK17 PK19 PK21 PK23 PK25 PK27 PK29 K31 HD66766R Rev. 1.0-1 / September 2002 Grayscale Palette The HD66766R incorporates a grayscale palette to simultaneously display 65K of the 140,608 possible colors. The grayscales consist of 32 6-bit palettes. The 52-stage grayscale levels can be selected from the 6-bit palette data. For the display data, the four-bit data in the GRAM written from the microcomputer is used. In this palette, a pulse-width control system (PWM) is used to eliminate flicker in the LCD display. The time over which the LCDs are switched on is adjusted according to the level and grayscales are displayed so that flicker is reduced and grayscales are clearly displayed. Graphic RAM ( GRAM ) MSB Display data LSB R4 R3 R2 PK0 (5∼0) 0 0 0 0 0 0 PK1 (5∼0) "00001" R0 0 0 "00010" 0 0 "00011" 0 0 0 0 1 PK2 (5∼0) 1 G3 0 0 1 1 0 1 0 0 0 "01110" 0 "01111" 1 0 1 0 0 1 1 0 0 PK6(5∼0) "00110" 0 0 "00111" 0 0 "01000" 0 1 0 "01100" 0 PK3 (5∼0) "10000" "10001" 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 "10010" 0 1 1 0 0 "10011" 0 1 1 0 1 1 0 1 1 0 B2 B1 B0 1 0 1 1 1 0 0 PK18 (5∼0) 0 1 0 1 0 "11001" 1 0 0 1 0 0 "11101" 1 0 0 1 1 "11110" 1 0 0 0 0 0 0 1 "10100" 1 0 "10101" 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 PK28(5∼0) 1 0 1 0 1 1 1 0 0 0 1 1 0 PK29 (5∼0) 1 0 1 1 1 1 PK30 (5∼0) PK20 (5∼0) 1 0 PK27 (5∼0) PK19 (5∼0) 0 0 PK26 (5∼0) "11100" 1 1 PK25 (5∼0) "11011" 1 1 PK24 (5∼0) "11010" 0 1 PK23 (5∼0) "11000" 1 0 0 "10111" 0 1 PK22 (5∼0) "10110" 0 PK17(5∼0) 1 0 1 1 PK16 (5∼0) PK10 (5∼0) 0 0 PK15 (5∼0) PK9 (5∼0) "01010" B3 5 PK14 (5∼0) PK8 (5∼0) "01001" B4 G0 PK13 (5∼0) 1 0 G1 PK12 (5∼0) 1 PK7 (5∼0) G2 PK11 (5∼0) "01011" "01101" PK5 (5∼0) "00101" G4 6 PK4 (5∼0) "00100" G5 5 <RGB> Palette "00000" R1 0 PK31 (5∼0) "11111" 1 1 0 0 PK21 (5∼0) 0 1 1 1 Palette register Initialized value 6 5 52 gray scale control <R> 5 5 52 gray scale control <G> 1 52 gray scale control <B> 32 32 32 → 64 gray scale 32 64 LCD Driver R LCD Driver G LCD Figure 44 Grayscale Palette Control 58 LCD Driver B HD66766R Rev. 1.0-1 / September 2002 Grayscale Palette Table The grayscale register that is set for each palette register (PK) can be set to any level. 52-grayscale lighting levels can be set according to palette values (“000000” to “110100”). Table 35 Grayscale Control Level Grayscale Control Level Palette Register Value (PK) 0 0 0 0 0 0 Unlit level*1 0 0 0 0 0 1 1/52level 0 0 0 0 1 0 2/52level 0 0 0 0 1 1 3/52level 0 0 0 1 0 0 4/52level 0 0 0 1 0 1 5/52level 0 0 0 1 1 0 6/52level 0 0 0 1 1 1 7/52level 0 0 1 0 0 0 8/52level 0 0 1 0 0 1 9/52level 0 0 1 0 1 0 10/52level 0 0 1 0 1 1 11/52level 0 0 1 1 0 0 12/52level 0 0 1 1 0 1 13/52level 0 0 1 1 1 0 14/52level 0 0 1 1 1 1 15/52level 0 1 0 0 0 0 16/52level 0 1 0 0 0 1 17/52level 0 1 0 0 1 0 18/52level 0 1 0 0 1 1 19/52level 0 1 0 1 0 0 20/52level 0 1 0 1 0 1 21/52level 0 1 0 1 1 0 22/52level 0 1 0 1 1 1 23/52level 0 1 1 0 0 0 24/52level 0 1 1 0 0 1 25/52level 0 1 1 0 1 0 26/52level 0 1 1 0 1 1 27/52level 0 1 1 1 0 0 28/52level 0 1 1 1 0 1 29/52level 0 1 1 1 1 0 30/52level 0 1 1 1 1 1 31/52level 1 0 0 0 0 0 32/52level à Next Page continued 59 HD66766R Rev. 1.0-1 / September 2002 1 0 0 0 0 1 33/52level 1 0 0 0 1 0 34/52level 1 0 0 0 1 1 35/52level 1 0 0 1 0 0 36/52level 1 0 0 1 0 1 37/52level 1 0 0 1 1 0 38/52level 1 0 0 1 1 1 39/52level 1 0 1 0 0 0 40/52level 1 0 1 0 0 1 41/52level 1 0 1 0 1 0 42/52level 1 0 1 0 1 1 43/52level 1 0 1 1 0 0 44/52level 1 0 1 1 0 1 45/52level 1 0 1 1 1 0 46/52level 1 0 1 1 1 1 47/52level 1 1 0 0 0 0 48/52level 1 1 0 0 0 1 49/52level 1 1 0 0 1 0 50/52level 1 1 0 0 1 1 51/52level 1 1 0 1 0 0 All lit level*2 Notes: 1. The unlit level corresponds to a black display when a normally-black color-LCD panel is used, and a white display when a normally-white color-LCD panel is used. 2. The all-lit level corresponds to a white display when a normally-black color-LCD panel is used, and a black display when a normally-white color-LCD panel is used 60 HD66766R Rev. 1.0-1 / September 2002 RGB pixel data and Grayscale level Table 36 G pixel data and output level G pixel data Output level G pixel data Output level 000000 PK0 100000 PK16 000001 (PK0+PK1)/2 100001 (PK16+PK17)/2 000010 PK1 100010 PK17 000011 (PK1+PK2)/2 100011 (PK17+PK18)/2 000100 PK2 100100 PK18 000101 (PK2+PK3)/2 100101 (PK18+PK19)/2 000110 PK3 10110 PK19 0000111 (PK3+PK4)/2 100111 (PK19+PK20)/2 001000 PK4 101000 PK20 001001 (PK4+PK5)/2 101001 (PK20+PK21)/2 001010 PK5 101010 PK21 001011 (PK5+PK6)/2 101011 (PK21+PK22)/2 001100 PK6 101100 PK22 001101 (PK6+PK7)/2 101101 (PK22+PK23)/2 001110 PK7 101110 PK23 001111 (PK7+PK8)/2 101111 (PK23+PK24)/2 010000 PK8 110000 PK24 0100001 (PK8+PK9)/2 110001 (PK24+PK25)/2 010010 PK9 110010 PK25 010011 (PK9+PK10)/2 110011 (PK25+PK26)/2 010100 PK10 110100 PK26 010101 (PK10+PK11)/2 110101 (PK26+PK27)/2 010110 PK11 110110 PK27 010111 (PK11+PK12)/2 110111 (PK27+PK28)/2 011000 PK12 111000 PK28 011001 (PK12+PK13)/2 111001 (PK28+PK29)/2 011010 PK13 111010 PK29 011011 (PK13+PK14)/2 111011 (PK29+PK30)/2 011100 PK14 111100 PK30 011101 (PK14+PK15)/2 111101 (PK30+PK31)/2 011110 PK15 111110 PK31 011111 (PK15+PK16)/2 111111 PK31 61 HD66766R Rev. 1.0-1 / September 2002 Table 37 R, B pixel data and output level R, B pixel data Output level R, B pixel data Output level 00000 PK0 10000 PK16 00001 PK1 10001 PK17 00010 PK2 10010 PK18 00011 PK3 10011 PK19 00100 PK4 10100 PK20 00101 PK5 10101 PK21 00110 PK6 10110 PK22 00111 PK7 10111 PK23 01000 PK8 11000 PK24 01001 PK9 11001 PK25 01010 PK10 11010 PK26 01011 PK11 11011 PK27 01100 PK12 11100 PK28 01101 PK13 11101 PK29 01110 PK14 11110 PK30 01111 PK15 11111 PK31 62 HD66766R Rev. 1.0-1 / September 2002 Setting flow for low power consumption instruction Sleep Mode Setting the sleep mode bit (SLP) to “1” puts the HD66766R in the sleep mode, where the device stops all internal display operations, thus reducing current consumption. Specifically, LCD operation is completely halted. Here, all the SEG (SEG1 to SEG396) and COM (COM1 to COM176) pins output the “GND” level, resulting in no display. If the AP1-0 bits in the power control register are set to “00” in the sleep mode, the LCD drive power supply can be turned off, reducing the total current consumption of the LCD module. Table 38 Comparison of Sleep Mode and Standby Mode Function Sleep Mode (SLP = “1”) Standby Mode (STB = “1”) LCD control Turned off Turned off R-C oscillation circuit Operates normally Operation stopped Master/slave signal Operation stopped Operation stopped Standby Mode Setting the standby mode bit (STB) to “1” puts the HD66766R in the standby mode, where the device stops completely, halting all internal operations including the R-C oscillation circuit, thus further reducing current consumption compared to that in the sleep mode. Specifically, all the SEG (SEG1 to SEG396) and COM (COM1 to COM176) pins for the time-sharing drive output the GND level, resulting in no display. If the AP1-0 bits are set to “00” in the standby mode, the LCD drive power supply can bet turned off. During the standby mode, no instructions can be accepted other than the start-oscillation instruction. To cancel the standby mode, issue the start-oscillation instruction to stabilize R-C oscillation before setting the STB bit to “0”. When multi-chips are operated, be sure to be set to the standby mode from the slave level. Turn off the display: D1-0 = "01" Turn off the LCD power supply: AP1-0 = "00" Set stand-by mode: STB = "1" Stand-by mode Issue the start-oscillation instruction Wait at least 10 ms Cancel stand-by mode: STB = "0" Turn on the LCD power supply: AP0-1 = 01/10/11 Wait at least 150 ms See the power supply circuit setting. Turn on the display: D1-0 = "11" Procedure for Setting and Canceling Standby Mode Figure 45 Procedure for Setting and Canceling Standby Mode 63 HD66766R Rev. 1.0-1 / September 2002 Setting flow for power supply and display instruction Power-on / off Sequence To prevent pulse lighting of LCD screens at power-on/off, the power-on/off sequence is activated as shown below. However, since the sequence depends on LCD materials to be used, confirm the conditions by using your own system. Power on the Vcc 1ms Power on the Reset more than 10ms (oscillation circuit stabilization time) Power on Initialized bits Set BS3-0 bit Set VR2-0 bit Set CT6-0 bit Set VC2-0 bit Set BT2-0 bit Set DC2-0 bit Set AP1-0 bit Issue use-state instruction (1) Normal display Display off sequence Bits for display off more than 50ms (set-up circuit 1, 2 stabilization time) Display off Issue use-state instruction (2) voltage polarity inverting circuit operation starting bit Set : BT3-1 = "1" Power off setting bit use-state instruction more than 200ms (set-up circuit 2 / voltage inverting circuit stabilization time) D1-0="00" Power supply circuit off control set by AP1-0 Power off the Vcc Issue other mode setting instruction (3) Display on Sequence Note) Bits for display on Display on D1-0="11" Power On sequence Power Off sequence Figure 46 Power-on Sequence Figure 47 Power-off Sequence 64 HD66766R Rev. 1.0-1 / September 2002 Power-off sequence Normal case Turn off the display: D1-0 = 00 Issue LCD power instruction Turn off the power voltages : Vcc To the power on sequence Emergency case Turn off the power voltage: Vcc RESET = "L" Driver SEG/COM output: GND level To the power on sequence Power voltage : Vcc Vcc Turn off the power voltage GND RESET Vcc RESET is input as soon as possible. GND Driver SEG/COM output V1OUT GND Note: When hardware reset is input during the power-off period, the D1-0 bits are cleared to "00" and SEG/COM output is forcibly lowered to the GND levels. Figure 48 Power-off sequence 65 HD66766R Rev. 1.0-1 / September 2002 Partial Sequence Setting Flow Normal display Display OFF Power supply setting change Display Duty change Frame frequency adjustment Display OFF more than 200ms Step-up circuit output stabilizing time Partial display Display OFF D1-0 =”00” Display OFF BT2-0 bit setting (Note) BS3-0 bit setting DC2-0 bit setting VR2-0 bit setting CT6-0 bit setting Power supply setting change Display Duty change NL-4-0 bit setting DIV, RTN bit setting Frame frequency adjustment Display off D1-0 = “01” Display OFF more than 200ms Step-up circuit output stabilizing time Issue instruction for other mode setting BT2-0 bit setting (Note) BS3-0 bit setting DC2-0 bit setting VR2-0 bit setting CT6-0 bit setting NL-4-0 bit setting DIV, RTN bit setting Display off D1-0 = “01” Issue instruction for other mode setting Display on Display On Display OFF D1-0 =”00” Display on Display On D1-0="11" Partial display D1-0="11" Normal display Note: Change only BT2-0 with BT3-0 = “1” Figure 49 Normal to partial display Figure 50 Partial to normal display 66 HD66766R Rev. 1.0-1 / September 2002 Oscillation Circuit The HD66766R can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an external oscillation resistor. Note that in R-C oscillation, the oscillation frequency is changed according to the external resistance value, wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is decreased, the oscillation frequency decreases. For the relationship between Rf resistor value and oscillation frequency, see the Electric Characteristics Notes section. 1) External clock mode Clock (264kHz) OSC1 Damping resistance (2kΩ) OSC2 HD66766R 2) External resistance oscillation mode Note: The resistance must be located near the OSC1/OSC2 pins. OSC1 Rf OSC2 HD66766R Figure 51 Oscillation Circuits The relationship between the SEG and COM output levels is as shown in the following figure. While the display is off, SEG and COM outputs go to GND level. M VCH COM waveform SEG waveform No lit Lit VS VM VSL (GND) Lit No lit Lit No lit VCL Figure 52 Relationship with SEG/COM Output Level 67 HD66766R Rev. 1.0-1 / September 2002 Frame-Frequency Adjustment Function The HD66766R has an on-chip frame-frequency adjustment function. The frame frequency can be adjusted by the instruction setting (DIV, RTN) during the LCD drive as the oscillation frequency is always the same. When the display duty is changed, the frame frequency can be adjusted to be the same. If the oscillation frequency is set to high, an animation or a static image can be displayed in suitable ways by changing the frame frequency. When a static image is displayed, the frame frequency can be set low and the low-power consumption mode can be entered. When high-speed screen switching, for an animated display, etc. is required, the frame frequency can be set high. Relationship between LCD Drive Duty and Frame Frequency The relationship between the LCD drive duty and the frame frequency is calculated by the following expression. The frame frequency can be adjusted in the retrace-line period bit (RTN) and in the operation clock division bit (DIV) by the instruction. (Formula for the frame frequency) fosc Frame frequency = [Hz] Clock cycles per raster-row × division ratio × 1/duty cycle fosc: R-C oscillation frequency Duty: drive duty (NL bit) Clock cycles per raster-row: (RTN + 26) clock cycles Division ratio: DIV bit Example Calculation 1 Setting the maximum frame frequency to 60 Hz Display duty: 1/176 Retrace-line period: 0 clock (RTN3-0 = “0000”) Operation clock division ratio: 1 division fosc = 60 Hz × (0 + 26) clock × 1 division × 176 lines = 275 (kHz) In this case, the R-C oscillation frequency becomes 275 kHz. The external resistance value of the R-C oscillator must be adjusted to be 275 kHz. The display duty can be changed by the partial display, etc. and the frame frequency can be the same by setting the RNT bit and DIV bit to achieve the following. (Partial display): Display duty: 1/40 Retrace-line period: 1 clock (RTN3-0 = “0002”) Operation clock division ratio: 3 division Frame frequency = 275 kHz/ ((3 + 26) clock × 4 division × 40 lines) = 59.2 (Hz) Example Calculation 2 Switching the frame frequency to suit animation/static image display (Animation display): Frame frequency: 90 Hz Display duty: 1/176 Retrace-line period: 0 clock (RTN3-0 = “0000”) Operation clock division ratio: 1 division fosc = 90 Hz × (0 + 26) clock × 1 division × 176 lines = 412 (kHz) (Static image display): Frame frequency: 90 Hz Display duty: 1/176 Retrace-line period: 1 clock (RTN3-0 = “1101”) Operation clock division ratio: 1 division Frame frequency: 412 kHz/ ((13 + 26) clock × 1 division × 176 lines) = 60.0 (Hz) 68 HD66766R Rev. 1.0-1 / September 2002 n-raster-row Reversed AC Drive The HD66766R supports not only the LCD reversed AC drive in a one-frame unit (B-pattern waveform) but also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 64 rasterrows (C-pattern waveform). When a problem affecting display quality occurs, such as cross-talk at high-duty driving of more than 1/64 duty, the n-raster-row reversed AC drive (C-pattern waveform) can improve the quality. Determine the number of raster-rows n (NW bit set value + 1) for alternating after confirmation of the display quality with the actual LCD panel. However, if the number of AC raster-rows is reduced, the LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased in the LCD cells. 1 frame 1 frame 1 2 3 4 5 6 7 8 9 10 11 12 13 175176 1 2 3 4 5 6 7 8 9 10 11 12 13 175176 1 2 3 B-pattern waveform drive -1/176 duty C-pattern -wave form drive - 1/176 duty - 11 raster-row reversal - Without EORs C-pattern waveform drive - 1/176 duty - 11 raster-row reversal - With EORs Notice : Specify the number of AC drive raster-rows and the necessity of EOR so that the DC bias is not generated to the LCD. Figure 53 Example of an AC Signal under n-raster-row Reversed AC Drive 69 HD66766R Rev. 1.0-1 / September 2002 Screen-division Driving Function The HD66766R can select and drive two screens at any position with the screen-driving position registers (R14h and R15h). Any two screens required for display are selectively driven and a duty ratio is lowered by LCD-driving duty setting (NL4-0), thus reducing LCD-driving voltage and power consumption. For the 1st division screen, start line (SS17-10) and end line (SE17-10) are specified by the 1st screen-driving position register (R14h). For the 2nd division screen, start line (SS27-20) and end line (SE27-20) are specified by the 2nd screen-driving position register (R15h). The 2nd screen control is effective when the SPT bit is “1”. The total count of selection-driving lines for the 1st and 2nd screens must correspond to the LCD-driving duty set value. 1/24 duty driving on 2 screen COM1 1st screen: 7 raster-row driving COM7 COM26 Always applying non-selection level COM42 2nd screen: 17 raster-row driving Always applying non-selection level -Driving duty: NL4-0 = "00010" (1/24 duty) -1st screen setting: SS17-10 = "00"H, SE17-10 = "06" H -2nd screen setting: SS27-20 = "19"H, SE27-20 = "29" H, SPT = "1" Figure 54 Display example in 2-screen division driving 70 HD66766R Rev. 1.0-1 / September 2002 Restrictions on the 1st/2nd Screen Driving Position Register Settings The following restrictions must be satisfied when setting the start line (SS17-10) and end line (SE17-10) of the 1st screen driving position register (R14h) and the start line (SS27-20) and end line (SE27-20) of the 2nd screen driving position register (R15h) for the HD66766R. Note that incorrect display may occur if the restrictions are not satisfied. Table 39 Restrictions on the 1st/2nd Screen Driving Position Register Settings 1st Screen Driving (SPT = 0) 2nd Screen Driving (SPT = 1) Register setting SS17-10 ≤SE17-0 ≤ “AF”H SS17-10 ≤ SE17-10 < SS27-20 ≤SE27-20 ≤ “AF”H Display operation • Time-sharing driving for COM pins (SS1+1) to (SE1+1) • Non-selection level driving for others • Time-sharing driving for COM pins (SS1+1) to (SE1+1) and (SS2+1) to (SE2+1) • Non-selection level driving for others Notes: 1. When the total line count in screen division driving settings is less than the duty setting, non-selection level driving is performed without the screen division driving setting range. 2. When the total line count in screen division driving settings is larger than the duty setting, the start line, the duty-setting line and the lines between them are displayed and non-selection level driving is performed for other lines. 3. For the 1st screen driving, the SS27-20 and SE27-20 settings are ignored. 71 HD66766R Rev. 1.0-1 / September 2002 LCD Voltage Generation Circuit Figure 58 shows a configuration of the HD66766R LCD drive voltage generation circuit. It consists of step-up circuit 1 that doubles or triples the voltage that is applied to Vci1, step-up circuit 2 that multiplies the voltage from step-up circuit 1 by two to five times, and polarity circuit that generates a VCL level by inverting the VCH level centered around the VM level. These circuits generate VCH and VCL that are power supply for COM outputs. The LCD driving level for SEG outputs (VSH and VM) are generated by dividing resistance at the VREF level. Vcc + VREFL VREF Control Amplifier - BIASC bias amplifier + + - Vci2 - bias control C21- VREFM Step - up circuits 2 VciOUT Vci Control Circuits C11C11+ 1.0µ F C12C12+ C22- 1.0µF C22+ C23- 1.0µF C23+ Vci1 1.0µF 1.0µF C21+ VCH Generator Vcc 1.0µF 1.0µF C24VOUT generator Step - up circuits 1 VOUT 1.0µF C24+ VCH Contrast control + 1.0µF 1.0µF * VSH 1.0µF - 1.0MΩ + VM 1.0µF AVcc SEG driver Vcc 1.0µF VCL GND * Shot-key barrier diode AGND VCL generator Polarity inverting circuit COM driver HD66766R CEM CEP Note: Figure 55 Configuration of internal power circuit 72 * 0.47uF 1) Use condenser with character B. 2) Condensers with asterisk (*) need resist pressure more than 25V. 3) Insert shot-key barrier diode. (VF = 0.6V / 20mA, VR>=30V) HD66766R Rev. 1.0-1 / September 2002 Notes: 1. Generate an output voltage (VOUT) from step-up circuit 1 within the range from 4.0 to 5.75V. 2. Do not allow the output voltage (VCH) from step-up circuit 2 to exceed 22 V. 3. Do not allow the output from Vci2 to exceed VOUT voltage . 4. When capacitor with polarity is used, be sure that an inverted voltage is not applied to it in any state of the system. 5. Vci1 is used as both the reference voltage input and power supply in the step-up circuit. Keep sufficient LCD drive current. 6. Rated voltage of capacitors possible to be used are as described below. Required voltage depends on used panels. When actual voltage is less than 16V, capacitors with 16V rated voltage can be used. 6.3V: VREFM, VciOUT, C11, C12, VOUT, BIASC, Vci2, C21, C22, C23, VSH, VM 25V(16V): VCH, CE, VCL LCD Drive Voltage The required voltage can be calculated by applying the following expressions. standard; generate a voltage to suit the panel to be used. VSH-VM, VM-VSL VCH-VM, VM-VCL 1 2 N 2 N x Vth Vth: Threshold voltage of the LCD panel to be used. N: Display duty cycle. -1 1 2N N 2 N Drive voltages are x Vth -1 LCD Drive Bias An optimal bias can be calculated by applying the following expression. The value that has been calculated is theoretically optimal. If a lower bias value than the optimal value is used to drive the LCD, contrast may be reduced depending on lighting conditions. However, the power consumption can be reduced by lowering the drive voltage. Adjust the value according to the system to be used. Bias value = 1 N How to determine the VCH voltage VCH = NB x ND2 x VSH NB : Bias ratio ND2 : Step-up factor of the step-up circuit 2 VCI2 step-up circuit 2 VCH VCI2=VM×NB VCH=VM× NB × ND2 Contrast adjustment RB : Contrast resistance (0.000R to 1.016R) VSH = VREFM x 2R / (Rb + 2R) VREFM Table 40 CT setting value CT6 CT5 CT4 CT3 CT2 CT1 CT0 Rb resist value 0 0 0 0 0 0 0 1.016R Rb 0 0 0 0 0 0 1 1.008R 0 0 0 0 0 1 0 1.000R 0 0 0 0 0 1 1 0.992R 0 0 0 0 1 0 0 0.984R Rb: Resist for adjusting contrast (0.000R∼1.016R) VSH R VM R 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0.008R VSL 0.000R Figrue 56 73 HD66766R Rev. 1.0-1 / September 2002 How to determine the power setting value 1. Determine LCD drive bias Determine LCD drive bias first. LCD drive bias is theoretically (1/SQRT (display duty)) optimal; however, the total drive voltage can be reduced by lowering bias ratio. Consider the display quality, the drive voltage and the current consumption. 2. Determine VOUT voltage Determine factor of Vc1 regulator and step-up factor so as to set output voltage, VOUT of step-up circuit 1 4.0 to 5.75V, setting input voltage Vci2 of step-up circuit 2 more than +0.5V. Since the entire electric power for driving LCD is supplied from step-up circuit, subsequent voltage fall need to be considered. 3. Segment drive voltage calculation Segment output drive voltage is calculated by the following expression. 2xB Vseg = (B-1) B x VTH : LCD drive bias ratio Vth: LCD threshold voltage 4. Common drive voltage calculation Common output drive voltage is calculated by the following expression. Vcom = Vseg x (B+1) 2 B : LCD drive bias ratio 5. Determine input voltage of step-up circuit 2 Determine input voltage of step-up circuit 2. This voltage is determined by dividing Vcom voltage by step-up factor; lower factors are used for low current consumption. Vci2 voltage need to be less than VOUT voltage (4.0 to 5.75 V)- 0.5V. Example of register setting on power supply Examples of register setting values on power supply are described below. Example 1: 1/176 duty ratio, Vcc = VREFL = 3.0V, 1/13 bias BS3-0 = H’8 : bias adjustment 1.4 times BT2-0 = H’4 : step-up circuit 1 BT3 = H’1 : operate voltage inverting circuit DC2-0 = H’6 TBD 2 times step-up circuit 2 5 times step-up circuit 1 frequency 32 clocks step-up circuit 2 frequency 128 clocks AP1-0 = H’1 : low fixed current in the amplifier VC2-0 = H’0 : Vci1 = 0.92 x Vcc = 2.75V VR2-0 = H’0 : VREFM = 1.1 x VREFL CT6-0 : appropriate contrast setting values 74 HD66766R Rev. 1.0-1 / September 2002 Example 2: 1/176 duty ratio, Vcc = VREFL = 2.4V, Vci = 2.8V, 1/13 bias BS2-0 = H’8 : bias adjustment 1.4 times BT2-0 = H’4 : step-up circuit 1 BT3 : operate voltage inverting circuit = H’1 2 times step-up circuit 2 DC2-0 = H’6 TBD : step-up circuit 1 frequency 32 clocks AP1-0 = H’1 : low fixed current in the amplifier VC2-0 = H’4 : internal Vci1 regulator off VR3-0 = H’2 : VREFM = 1.4 x VREFL CT6-0 : appropriate contrast setting values 5 times step-up circuit 2 frequency 128 clocks 2.8V directly supplied to Vci1 Example 3: Partial display, 1/24 duty ratio, Vcc = 2.4V, Vci = 2.8V, 1/4 bias BS2-0 = H’0 : bias adjustment 1.25 times BT2-0 = H’0 : step-up circuit 1 BT3 : operate voltage inverting circuit = H’1 2 times step-up circuit 2 DC2-0 = H’6 TBD : step-up circuit 1 frequency 64 clocks AP1-0 = H’1 : low fixed current in the amplifier VC2-0 = H’4 : internal Vci1 regulator off VR3-0 = H’2 : VREG 1 = 1.4 x VREFL CT6-0 : appropriate contrast setting values 75 2 times step-up circuit 2 frequency 128 clocks HD66766R Rev. 1.0-1 / September 2002 HD66766R power supply level correlation VCH BT2-1 (2 to 5 times) VOUT (4.0 to 5.75 V) VREFM ( VOUT) Vcc Vci1 VREFL ( VC2-0 CT6-0 (0.92 to 0.68 times) (contrast adjustment) Vci2 BT0 VSH VM GND (2 to 3 times) VCC) GND BS3-0 (0.5 to 2.165 times) VR2-0 (1.1 to 3.4 times) Voltage polarity inversion between VCH and VM VCL Figure 57 HD66766R Power supply level correlation 76 HD66766R Rev. 1.0-1 / September 2002 Connection of condenser related to the magnification of step up circuit 1 (1) 2 times step-up circuit VciOUT 1.0 uF (2 x Vci1) (2) 3 times step-up circuit (3 x Vci1) Vc i adjusting circuit Vci1 Vci1 C11- C11- 1.0 u F C11+ C12- VOUT generating C12+ step-up circuit 1 1.0 uF 1.0 uF Vc i adjusting circuit VciOUT 1.0 uF C11+ VOUT generating C12- 1.0 uF C12+ step-up circuit 1 VOUT VOUT 1.0u F Figure 58 Figure 59 Connection of condenser related to the magnification of step up circuit 2 (2) 3 times step-up circuit (3 x Vci2) (1) 2 times step-up circuit (2 x Vci2) Vci2 C21- C21+ C21+ C22- 1.0 uF VCH generating C22+ C23- step-up circuit 2 step-up circuit 2 C23C23+ C24- C241.0 uF VCH VCH Figure 60 Figure 61 (4) 5times step-up circuit (5 x Vci2) (3) 4times step-up circuit (4 x Vci2) C21- 1.0 uF Vci2 1.0 uF C21- C21+ C22- step-up circuit 2 1.0 uF 1.0 uF C21+ 1.0uF C22- C22+ C23- 1.0 uF C24+ 1.0 uF Vci2 1.0 uF C22+ C23+ C24+ VCH generating 1.0 uF Vci2 C21- C22VCH generating 1.0 uF VCH generating 1.0 uF step-up circuit 2 C23+ C22+ C23- 1.0 uF C23+ C24- C24- C24+ C24+ VCH 1.0uF 1.0 uF VCH 1.0 uF 1.0 uF Figure 62 Figure 63 77 HD66766R Rev. 1.0-1 / September 2002 Absolute Maximum Ratings Table 41 Item Symbol Unit Value Notes* Power supply voltage (1) Vcc V -0.3 to + 4.6 1, 2 Power supply voltage (2) Power supply voltage (3) Vcil VCH –VCL Vt V V -0.3 to + 4.6 -0.3 to + 46 1, 3 1, 4 V -0.3 to Vcc + 0.3 1 Topr °C -40 to + 85 1, 5 Tstg °C -55 to + 110 1 Input voltage Operating temperature Storage temperature Notes: 1. If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limit is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability. 2. Vcc ≥ GND must be maintained 3. Vcil ≥ GND must be maintained. 4. VCH ≥ GND must be maintained GND ≥ VCL must be maintained 5. For die and wafer products, specified up to 85 °C. 78 HD66766R Rev. 1.0-1 / September 2002 DC Characteristics (VCC = 2.2 to 3.6 V, VCH-VCL=8V to 44V, Ta = –40 to +85°C*1) Table 42 Item Symbol Unit Test Condition Min Typ Max Notes Input high voltage VIH V VCC = 2.2 to 3.6 V 0.7 VCC — VCC 2, 3 Input low voltage VIL V VCC = 2.2 to 3.6 V –0.3 — 0.15VCC 2, 3 Output high voltage (1) (DB0-15 pins) VOH1 V IOH = –0.1 mA 0.75VCC — — 2 — 0.2 VCC 2 V VCC = 2.2 to 2.4 V, IOL = 0.1 mA — VOL1 VCC = 2.4 to 3.6 V, IOL = 0.1 mA — — 0.15VCC 2 Output low voltage (1) (DB0-15 pins) Driver ON resistance RSEG kΩ ±Id = 0.05 mA, VLCD = 3 V — 0.35 3 4 RCOM kΩ ±Id = 0.05 mA, VCH - VCL = 44 V — 0.90 3 4 I/O leakage current ILi µA Vin = 0 to VCC –1 — 1 5 Current consumption during normal operation (VCC – GND) IOP µA 480. 600 6 Current consumption during standby mode (VCC – GND) IST µA — R-C oscillation VCC = 3.0 V, VCH = 20V, VM = 1.6V, VCL = -16.8V,Ta = 25°C fOSC = 276 Khz (1/176 duty), 1/12 Bias CT minimum AP minimum, display all 0 Step-up 1 = two times Step-up 2 = five times VCI1 = 0.92 x VCC VCC = 3 V, Ta = 25°C — 0.1 5 Vcc = 3V, Ta = 85°C — — 50 VREFL input voltage VREFL V Vcc = 2.2V ∼ 3.6V — — Vcc VREFM output voltage VREFM V VOUT = 4.0V∼ 5.75V — — VOUT -0.5 Step up circuit 1 output voltage Step up circuit 2 output voltage VOUT V 4.0 — 5.75 VCI2 V — — VOUT – 0.5 (SEG pins) Driver ON resistance (COM pins) 79 HD66766R Rev. 1.0-1 / September 2002 Step up circuit characteristics Table 43 Item Terminal Unit Step up circuit 1 VOUT V Step up circuit 2 VCH V Step up circuit 3 VCL V Test Condition Min VCC = 3.0 [V] Vci step up factor = 0.92 Step up factor : two times 5.25 Step up cycle: 32 divided cycle Load voltage = 400 [µA] VCC = 3.0 [V] VOUT = 5.5 [V] VREFL = 3.0 [V] VREFM = 1.1 x VREFL Constant current of operation amplifier: small 21.2 Contrast adjustment value = 0.000R 1/12 bias Step up cycle of step up circuit 2: 96 divided cycle Step up factor: Five times Load current = 20 [uA] VCC = 3.0 [V] VOUT = 5.5 [V] VREFL = 3.0 [V] VREFM = 1.1 x VREFL Constant current of operation amplifier: small -21.0 Contrast adjustment value = 0.000R 1/12 bias Step up cycle of polarity inversion circuit: 96 divided cycle Step up factor: Five times Load current = 20 [uA] 80 Typ Max Notes 5.48 — — 21.3 — (9) -21.2 — (9) HD66766R Rev. 1.0-1 / September 2002 AC Characteristics (VCC = 2.2 to 3.6 V, Ta = –40 to +85°C*1) Table 44 Clock Characteristics (VCC = 2.2 to 3.6 V) Item Symbol Unit Test Condition Min Typ Max Notes External clock frequency fcp kHz VCC = 2.2 to 3.6 V 151 275 640 7 External clock duty ratio External clock rise time Duty trcp % µs VCC = 2.2 to 3.6 V VCC = 2.2 to 3.6 V 45 — 50 — 55 0.2 7 7 External clock fall time tfcp µs VCC = 2.2 to 3.6 V — — 0.2 7 R-C oscillation clock fOSC kHz Rf = 200kΩ, VCC = 3 V 220 275 330 8 68-system Bus Interface Timing Characteristics Table 45 Normal Write Mode (HWM=0) (Vcc = 2.2 to 2.4 V) Item Enable cycle time Write Symbol Unit tCYCE ns Test Condition Figure 1 600 Min Typ — Max — Read tCYCE ns Figure 1 800 — — Write Read Write Read PWEH PWEH PWEL PWEL ns ns ns ns Figure 1 Figure 1 Figure 1 Figure 1 90 350 300 400 — — — — — — — — Enable rise/fall time Set up time (RS, R/W to E, CS*) Address hold time tEr, tEf tASE tAHE ns ns ns Figure 1 Figure 1 Figure 1 — 10 5 — — — 25 — — Write data set up time Write data hold time tDSWE tHE ns ns Figure 1 Figure 1 60 15 — — — — Read data delay time Read data hold time tDDRE tDHRE ns ns Figure 1 Figure 1 — 5 — — 200 — Enable high-level pulse width Enable low-level pulse width Table 46 High-Speed Write Mode (HWM=1) (Vcc = 2.2 to 2.4 V) Item Symbol Unit Typ Max Write tCYCE ns Figure 1 Read Write Read tCYCE PWEH PWEH ns ns ns Figure 1 Figure 1 Figure 1 200 — — 800 90 350 — — — — — — Write PWEL ns Read PWEL tEr, tEf ns ns Figure 1 90 — — Figure 1 Figure 1 400 — — — — 25 Set up time (RS, R/W to E, CS*) tASE Address hold time tAHE ns Figure 1 10 — — ns Figure 1 5 — — Write data set up time Write data hold time tDSWE tHE ns ns Figure 1 Figure 1 60 15 — — — — Read data delay time tDDRE ns Figure 1 — — 200 Read data hold time tDHRE ns Figure 1 5 — — Enable cycle time Enable high-level pulse width Enable low-level pulse width Enable rise/fall time 81 Test Condition Min HD66766R Rev. 1.0-1 / September 2002 Normal Write Mode (HWM=0) Table 47 (Vcc = 2.4 to 3.6 V) Item Symbol Unit Test Condition Min Typ Max Note Write tCYCE ns Figure 1 200 — — — Read tCYCE ns Figure 1 300 — — — Write PWEH ns Figure 1 40 — — — Read PWEH ns Figure 1 150 — — — Write PWEL ns Figure 1 100 — — — Read PWEL ns Figure 1 100 — — — tEr, tEf ns Figure 1 — — 25 — Set up time (RS, R/W to E, CS*) tASE ns Figure 1 10 — — Using status read 0 — — Not using status read Address hold time tAHE ns Figure 1 2 — — — Write data set up time tDSWE ns Figure 1 60 — — — Write data hold time tHE ns Figure 1 2 — — — Read data delay time tDDRE ns Figure 1 — — 100 — Read data hold time tDHRE ns Figure 1 5 — — — Symbol Unit Write tCYCE ns Figure 1 Read tCYCE ns Write PWEH Read Enable cycle time Enable high-level pulse width Enable low-level pulse width Enable rise/fall time High-Speed Write Mode (HWM=1) Table 48 (Vcc = 2.4 V to 3.6 V) Item Enable cycle time Enable high-level pulse width Enable low-level pulse width Enable rise/fall time Test Min Condition Typ Max Note 100 — — — Figure 1 300 — — — ns Figure 1 40 — — — PWEH ns Figure 1 150 — — — Write PWEL ns Figure 1 40 — — — Read PWEL ns Figure 1 100 — — — tEr, tEf ns Figure 1 — — 25 — 10 — — Using status read 0 — — Not using status read Set up time (RS, R/W to E, CS*) tASE ns Figure 1 Address hold time tAHE ns Figure 1 2 — — — Write data set up time tDSWE ns Figure 1 60 — — — Write data hold time tHE ns Figure 1 2 — — — Read data delay time tDDRE ns Figure 1 — — 100 — 82 HD66766R Rev. 1.0-1 / September 2002 80-system Bus Interface Timing Characteristics Normal Write Mode (HWM=0) Table 49 (Vcc = 2.2 to 2.4 V) Item Symbol Unit Test Condition Min Typ Max Write tCYCW ns Figure 2 600 — — Read tCYCR ns Figure 2 800 — — Write low-level pulse width PWLW ns Figure 2 90 — — Read low-level pulse width PWLR ns Figure 2 350 — — Write high-level pulse width PWHW ns Figure 2 300 — — Read high-level pulse width PWHR ns Figure 2 400 — — tWRr, WRf ns Figure 2 — — 25 tAS ns Figure 2 10 — — Address hold time tAH ns Figure 2 5 — — Write data set up time tDSW ns Figure 2 60 — — Write data hold time tH ns Figure 2 15 — — Read data delay time tDDR ns Figure 2 — — 200 Read data hold time tDHR ns Figure 2 5 — — Symbol Unit Test Condition Min Typ Max Write tCYCW ns Figure 2 200 — — Read tCYCR ns Figure 2 800 — — Write low-level pulse width PWLW ns Figure 2 90 — — Read low-level pulse width PWLR ns Figure 2 350 — — Write high-level pulse width PWHW ns Figure 2 90 — — Read high-level pulse width PWHR ns Figure 2 400 — — tWRr, WRf ns Figure 2 — — 25 tAS ns Figure 2 10 — — Address hold time tAH ns Figure 2 5 — — Write data set up time tDSW ns Figure 2 60 — — Write data hold time tH ns Figure 2 15 — — Read data delay time tDDR ns Figure 2 — — 200 Read data hold time tDHR ns Figure 2 5 Bus cycle time Write/Read rise/fall time Setup time (RS to CS*, WR*, RD*) High-Speed Write Mode (HWM=1) Table 50 (Vcc = 2.2 to 2.4 V) Item Bus cycle time Write/Read rise/fall time Set up time (RS to CS*, WR*, RD*) 83 — — HD66766R Rev. 1.0-1 / September 2002 Normal Write Mode (HWM = 0) Table 51 (Vcc = 2.4 to 3.6 V) Item Symbol Unit Test Condition Min Typ Max Write tCYCW ns Figure 2 200 — — Read tCYCR ns Figure 2 300 — — Write low-level pulse width PWLW ns Figure 2 40 — — Read low-level pulse width PWLR ns Figure 2 150 — — Write high-level pulse width PWHW ns Figure 2 100 — — Read high-level pulse width PWHR ns Figure 2 100 — — tWRr, WRf ns Figure 2 — — 25 tAS ns Figure 2 10 — — Using status read 0 — — Not using status read Address hold time tAH ns Figure 2 2 — — Write data setup time tDSW ns Figure 2 60 — — Write data hold time tH ns Figure 2 2 — — Read data delay time tDDR ns Figure 2 — — 100 Read data hold time tDHR ns Figure 2 5 — — Symbol Unit Write tCYCW ns Figure 2 Read tCYCR ns Write low-level pulse width PWLw Read low-level pulse width Write high -level pulse width Bus cycle time Write/Read rise/fall time Set up time (RS to CS*, WR*, RD*) Note High-Speed Write Mode (HWM=1) Table 52 (Vcc = 2.4 to 3.6 V) Item Bus cycle time Read high -level pulse width Test Min Condition Typ Max 100 — — Figure 2 300 — — ns Figure 2 40 — — PWLR ns Figure 2 150 — — PWHW ns Figure 2 40 — — Note PWHR ns Figure 2 100 — — t WRr, WRf ns Figure 2 — — 25 tAS ns Figure 2 10 — — Using status read 0 — — Not using status read Address hold time tAH ns Figure 2 2 — — Write data set up time tDSW ns Figure 2 60 — — Write data hold time tH ns Figure 2 2 — — Read data delay time tDDR ns Figure 2 — — 100 Read data hold time tDHR ns Figure 2 5 — — Write/Read rise/fall time Set up time (RS to CS*, WR*, RD*) 84 HD66766R Rev. 1.0-1 / September 2002 Clock Synchronized Serial Interface Timing Characteristics Table 53 (Vcc = 2.2 to 2.4 V) Item Typ Max 0.1 — 20 Figure 3 0.25 — 20 ns Figure 3 40 — — tSCH ns Figure 3 120 — — tSCL ns Figure 3 40 — — tSCL ns Figure 3 120 — — tscr, scf tCSU tCH tSISU tSIH tSOD tSOH ns ns ns ns ns ns ns Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 — 20 60 30 30 — 5 — — — — — — — 20 — — — — 130 — Symbol Unit Test Condition Min Typ Max Write (received) Read (transmitted) tSCYC us Figure 3 0.076 — 20 tSCYC us Figure 3 0.15 — 20 Write (received) Serial clock high-level pulse width Read (transmitted) tSCH ns Figure 3 40 — — tSCH ns Figure 3 70 — — Write (received) tSCL ns Figure 3 35 — — Read (transmitted) tSCL ns Figure 3 70 — — tscr, scf tCSU tCH tSISU tSIH tSOD tSOH ns ns ns ns ns ns ns Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 — 20 60 30 30 — 5 — — — 20 — — — — 130 — — Serial clock cycle time Serial clock high-level pulse width Symbol Unit tSCYC us Figure 3 tSCYC us tSCH Read (transmitted) Write (received) Write (received) Read (transmitted) Write (received) Serial clock low-level pulse width Read (transmitted) Serial clock rise/fall time Chip select set up time Chip select hold time Serial input data set up time Serial input data hold time Serial input data delay time Serial input data hold time Test Condition Min Table 54 (Vcc = 2.4 to 3.6 V) Item Serial clock cycle time Serial clock low-level pulse width Serial clock rise/fall time Chip select set up time Chip select hold time Serial input data set up time Serial input data hold time Serial output data delay time Serial output data hold time 85 — — — HD66766R Rev. 1.0-1 / September 2002 Reset Timing Characteristics (VCC = 2.2 to 3.6 V) Table 55 Item Symbol Unit Test Condition Min Typ Max Reset low-level width tRES ms Figure 4 1 — — Reset rise time trRES ms Figure 4 — — 10 Electrical Characteristics Notes 1. For bare die and wafer products, specified up to 85°C. 2. The following three circuits are I pin, I/O pin, O pin configurations. Pins: RESET*, CS*, E/WR, RW/RD, RS, OSC1, IM2-1, IM0/ID, TEST1, TEST2 Pins: OSC2 Vcc Vcc PMOS PMOS NMOS NMOS GND GND Figure 64 Figure 65 Pins: DB15 -DB2, DB1/SD0, DB0/SD1 Vcc PMOS (Input circuit) NMOS Vcc (Tri-state output circuit) Output enable PMOS Output data NMOS GND Figure 66 I/O Pin Configuration 3. The TEST1, TEST2 pins must be grounded and the IM2/1 and IM0/ID pins must be grounded or connected to Vcc. 4. Applies to the resistor value (RSEG) between VSH, GND pins and segment signal pins. 5. This excludes the current flowing through output drive MOSs. 86 HD66766R Rev. 1.0-1 / September 2002 6. This excludes the current flowing through the input/output units. The input level must be fixed high or low because through current increases if the CMOS input is left floating. Even if the CS pin is low or high when an access with the interface pin is not performed, current consumption does not change. 7. Applies to the external clock input (figure ). Tl Th 2kΩ Oscillator OSC1 Open 0.7Vcc 0.5Vcc 0.3Vcc Duty = Th Th+ Tl x 100% OSC2 t rcp t fcp Figure 67 External Clock Supply 8. Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table). 9. Set VCI2 to maintain the relation VCI2 =< VOUT-0.5V. OSC1 Rf OSC2 Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance, the wiring length to these pins should be minimized. Figure 68 Internal Oscillation R-C Oscillation Frequency: fosc External Resistance (Rf) Vcc = 1.8V Vcc = 2.2 V Vcc = 2.4 V Vcc = 3.0 V Vcc = 3.6 V 75 kΩ 364 495 559 631 687 130 kΩ 263 345 381 421 453 180 kΩ 210 270 295 323 344 200 kΩ 193 245 266 290 307 240 kΩ 174 218 236 256 270 280 kΩ 156 194 210 226 238 360 kΩ 129 158 170 182 191 470 kΩ 102 122 129 137 142 Table 56 External Resistance Value and R-C Oscillation Frequency (Referential Data) 87 HD66766R Rev. 1.0-1 / September 2002 Step-up circuit loading characteristics (Reference data) (1) Step-up circuit 1 – loading characteristic Measureing condition Ta = 25C, VCC = 3.0 [V], Oscillation frequency = 250 [kHz] (2) Vci1 step-up magnification = 0.92, Step-up magnification two times 5.5 VOUT [V] 5.0 4.5 32 divided frequency 4.0 64 divided frequency 3.5 3.0 0 300 600 900 Load voltage [uA] 1200 1500 Figure 69 Step-up circuit 1- load characteristic (AP=01 amplifier constant voltage: small) 5.5 VOUT [V] 5.0 4.5 32 divided frequency 4.0 64 divided frequency 3.5 3.0 0 300 600 900 1200 1500 Load voltage [uA] Figure 70 Step-up circuit 1- load characteristic (AP=10 amplifier constant voltage: medium) 5.5 VOUT [V] 5.0 4.5 32 divided frequency 4.0 64 divided frequency 3.5 3.0 0 300 600 900 1200 1500 Load voltage [uA] Figure 71 Step-up circuit 1- load characteristic (AP=11 amplifier constant voltage: large) 88 HD66766R Rev. 1.0-1 / September 2002 (2) Step-up circuit 2 – loading characteristic Measureing condition Ta = 25C, VCC = 3.0 [V], Oscillation frequency = 250 [kHz] Vci1 step-up magnification = 0.92, Step-up circuit 1: step-up magnification two times 32 divided frequency, VREFM = 1.1 x VREFL, CT = 0.00R1/12 Bias Step-up circuit 2: Five times step-up 21.6 VCH [V] 21.5 32 divided frequency 21.4 64 divided frequency 21.3 96 divided frequency 21.2 128 divided frequency 21.1 0 10 20 30 40 50 Load voltage [uA] Figure 72 Step-up circuit 2- load characteristic (AP=01 amplifier constant voltage: small) VCH [V] 21.6 21.5 32 divided frequency 21.4 64 divided frequency 21.3 96 divided frequency 21.2 128 divided frequency 21.1 0 10 20 30 40 50 Load voltage [uA] Figure 73 Step-up circuit 2- load characteristic (AP=10 amplifier constant voltage: medium) 21.6 32 divided frequency VCH [V] 21.5 64 divided frequency 21.4 96 divided frequency 21.3 128 divided frequency 21.2 21.1 0 10 20 30 40 50 Load voltage [uA] Figure 74 Step-up circuit 2- load characteristic (AP=11 amplifier constant voltage: large) 89 HD66766R Rev. 1.0-1 / September 2002 (3) Polarity inversion circuit – loading characteristic Measureing condition Ta = 25C, VCC = 3.0 [V], Oscillation frequency = 250 [kHz] Vci1 step-up magnification = 0.92, Step-up circuit 1 step-up magnification two times 32 divided frequency, VREFM = 1.1 x VREFL, CT = 0.00R 1/12 Vias Step-up circuit 2: Five times 21.5 VCL [V] 21.3 32 divided frequency 21.1 64 divided frequency 20.9 96 divided frequency 20.7 128 divided frequency 20.5 0 10 20 30 40 50 Load voltage [uA] Figure 75 Polarity inversion circuit – Load characteristic (AP=01 amplifier constant current: small) VCL [V] 21.5 21.3 32 divided frequency 21.1 64 divided frequency 96 divided frequency 20.9 128 divided frequency 20.7 20.5 0 10 20 30 Load voltage [uA] 40 50 Figure 76 Polarity inversion circuit - Load characteristic (AP=10 amplifier constant current: medium) 21.5 VCL [V] 21.3 32 divided frequency 21.1 64 divided frequency 20.9 96 divided frequency 20.7 128 divided frequency 20.5 0 10 20 30 Load voltage [uA] 40 50 Figure 77 Polarity inversion circuit - Load characteristic (AP=11 amplifier constant current: large) 90 HD66766R Rev. 1.0-1 / September 2002 Load Circuits AC Characteristics Test Load Circuits Data bus: DB15 to DB0 Test point 50pF Figure 78 Load Circuit 91 HD66766R Rev. 1.0-1 / September 2002 Timing Characteristics 68-system Bus Operation RS R/W CS* VIH VIH VIL VIL tASE tAHE VIL VIL Note 1) PWEH VIH PWEL VIH E VIL VIL VIL tEf tEr t DSWE tCYCE tHE Note2) VIH VIL DB0 to DB15 Wrire data tDDRE VIH VIL tDHRE Note 2) VOH1 VOH1 DB0 to DB15 VOL1 Read data VOL1 Figure79 68-system Bus Timing Notes: 1) PWEH is specified in the overlapped period when CS* is low and E is high. 2) Parallel data transfer is enabled on the DB15-8 pins when the 8-bit bus interface is used. Fix the DB7-0 pins to Vcc or GND. 92 HD66766R Rev. 1.0-1 / September 2002 80-system Bus Operation RS VIH VIH VIL VIL tAS tAH VIH CS* VIL Note 1) PWLW, PWLR PWHW, PWHR VIH WR * VIL RD* tWRr VIH VIL tCYCW, tCYCR tDSW DB0 to DB15 VIH VIL Wrire data tDDR tWRf tHWR VIH VIL tDHR VOH1 Read data VOL1 DB0 to DB15 VOH1 VOL1 Figure 80 80-system Bus Timing Note1) PWLW and PWLR are specified in the overlapped period when CS* is low and WR* or RD* is low. Note2) Parallel data transfer is enabled on the DB15-0 pins when the 8-bit bus interface is used. Fix the DB7-0 pins to Vcc or GND. 93 HD66766R Rev. 1.0-1 / September 2002 Clock Synchronized Serial Interface Operation Start: S End: P CS* VIH VIL VIL tCSU tSCYC tscf tscr tSCL tSCH SCL VIH VIH VIH VIL VIL tCH VIH VIL VIL tSISU SDI VIH VIL tSIH Input data VIH VIL Input data tSOD tSOH SDO VOH1 Output data Output data VOL1 VOH1 VOL1 Figure 81 Clock Synchronized Serial Interface Timing Reset Operation trRES tRES VIH RESET* VIL VIL Figure 82 Reset Timin 94 HD66766R Rev. 1.0-1 / September 2002 Additional Issue HD66766R Contrast fluctuation on RAM access Hitachi one-chip driver; HD66766R has contrast fluctuation while accessing the internal RAM. This phenomenon occurs according to the structure of external circuit and the usage of HD66766R. Please have a clear understanding of the phenomenon and measures described below before using HD66766R. 1. Contrast fluctuation When HD66766R is mounted on glass, the grand terminal gets contact with resistance of ITO wiring. HD66766R has 8 GNDs, 4 AGNDs for power supply circuit, and another 4 GNDs for RAM and Logic. When all the GNDs are connected on glass with ITO, transferring display data to the internal RAM at high-speed causes high current consumption. And resistance of ITO wiring connected with GND terminal raises the voltage. The raised voltage is amplified with a step-up circuit, and it results in a decrease of VCH/VCL voltage causing contrast fluctuation on display. Figure 1 shows the mechanism of the phenomenon. Figure 2 shows decrease of VCH voltage according to RAM access frequency and resistance of ITO wiring. (The value shown in Figure 2 is the actual data of a typical sample of HD66766R measured by Hitachi’s jig.) 2. Measures ITO patterns on glass must be separated as shown in Figure 3. (Even if GND bumps are separated on LSI, if ITO patterns on glass are connected, GND level rises up in RAM circuit and Logic circuit.) Also, GND resistor should be designed to be less than 10 Ω, considering the decrease of VCH voltage caused by the raise of GND voltage. LCD HD66766R RAM RAM access current Voltage decrease Voltage generating circuit Resistance of ITO wiring GND Figure 1 Influence of ITO wiring resistance 95 VCH Voltage decrease HD66766R Rev. 1.0-1 / September 2002 0.6 VCH Voltage decrease (V) 0.5 RAM access frequency 0.4 1MHz 0.3 2MHz 3MHz 0.2 4MHz 0.1 0 0 5 10 15 Resistance of ITO wiring (Ω) Figure 2 VCH voltage decrease depending on RAM access frequency and Resistance of ITO wiring RAM, LOGIC Power Supply Circuit Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc AGND AGND ITO GND GND GND Power Supply Circuit GND ITO ITO AGND AGND RESET2* ITO Slit Figure 3 Recommended ITO Connection Pattern (HCD667X66) RAM, LOGIC Power Supply Circuit Vcc Vcc Vcc ITO Vcc AVcc AVcc AVcc AVcc AGND AGND ITO ITO GND GND GND Power Supply Circuit GND ITO Slit Figure 4 Recommended ITO Connection Pattern (HCD667X66R) 96 AGND AGND RESET2* ITO HD66766R Rev. 1.0-1 / September 2002 Maintenance history report Rev. 1.0 1.1 Date August 8, 2002 September 17, 2002 Contents First release P74 2.Determine VOUT voltage Line2 From “4.0 to 5.5V” to “4.0 to 5.75 V” P74 5.Determine input voltage of step-up circuit2 Line 3 From “4.5 to 5.75V)-0.5V” to “ (4.0 to 5.75V)-0.5V 97