HITACHI HD667A66R

HD66766R
Rev. 1.0-1 / September 2002
HD66766R
(132 x 176-dot Graphics LCD Controller/Driver for 65K Colors)
Rev.1.0-1
September, 2002
Description
The HD66766R, color-graphics LCD controller and driver LSI, displays 132-by-176-dot graphics for 65K
STN colors. A 16-bit high-speed bus interface and high-speed RAM write function enable efficient data
transfer and high-speed rewriting of data to the graphics RAM.
The HD66766R has various functions for reducing the power consumption of a LCD system, such as
low-voltage operation of 2.2 V/min., a step-up circuit to generate a maximum of 12-times the LCD drive
voltage from the supplied voltage, and voltage-followers to decrease the direct current flow in the LCD
drive bleeder-resistors. Combining these hardware functions with software functions, such as a partial
display with low-duty drive and standby and sleep modes, allows precise power control. The HD66766R
is suitable for any mid-sized or small portable battery-driven product requiring long-term driving
capabilities, such as digital cellular phones supporting a WWW browser, bi-directional pagers, and small
PDAs.
Features
•
•
•
•
•
•
132RGB x 176-dot graphics display LCD controller/driver for 65K STN colors
low voltage drive and flickerless PWM grayscale drive
16-/8-bit high-speed bus interface and Clock Synchronized Serial Interface ( SPI )
High-speed burst-RAM write function
Writing to a window-RAM address area by using a window-address function
Bit-operation functions for graphics processing:
- Write-data mask function in bit units.
- Logical operation in pixel unit and conditional write function.
1
HD66766R
Rev. 1.0-1 / September 2002
•
Various color-display control functions
- 65K out of 140K possible colors can be displayed at the same time (grayscale palette
incorporated)
- Vertical scroll display function in raster-row units
- Partial LCD drive of two screens in any position
•
Low-power operation supports:
- Vcc = 2.2 to 3.6 V (low-voltage)
- Common driving voltage = 8 to 44 V
- Segment driving voltage = 2 to 4 V
- VOUT power voltage = 4.0V to 5.75 V
- Power-save functions such as the standby mode and sleep mode
- Internal power supply circuit
- Programmable drive duty ratios (1/8–1/176) and bias values (1/2–1/13) displayed on LCD
- Maximum 12-times step-up circuit for liquid crystal drives voltage and voltage inverting circuit
- 128-step contrast adjuster and voltage followers to decrease direct current flow in the LCD drive
bleeder-resistors
•
Internal RAM capacity: 46,464 bytes
•
396-segment × 176-common liquid crystal display driver
•
n-raster-row AC liquid-crystal drive (C-pattern waveform drive)
•
Internal oscillation and hardware reset
•
Shift change of segment and common drivers
•
COM positioned on both sides in one chip for COG
Type Name
Types
HCD667A66RBP
HCD667B66RBP
External Dimensions
Au-bumped chip straight bump
Au-bumped chip laced bump
Difference between HCD667x66R and HCD667x66
Table 1
Difference
Pad arrangement
HCD667x66R
Pad No.
Pad Name
63
Vcc
63
Vcc
64
Vcc
66
Vcc
67
AVcc
68
AVcc
69
AVcc
70
AVcc
2
HCD667x66
Pad No.
Pad Name
63
Vcc
63
Vcc
64
Vcc
66
Vcc
67
Vcc
68
Vcc
69
Vcc
70
Vcc
HD66766R
Rev. 1.0-1 / September 2002
DUMMY1
(2) 23µm × 140µm
COM1 ~ COM176
SEG1 ~ SEG396
100µm
50
30
40
30
50µm
(2-b) Coordinate (X, Y) = (9094, 1145)
50µm
(3-a) Coordinate (X, Y) = (-9004, 1145)
25
10 5
25
25
80µm
70µm
5 10
80µm
(3-b) Coordinate (X, Y) = (9004, 1145)
25
25
10
10
25
70µm
25
10
10
70µm
DUMMY11 □
NO.145
COM107
COM109
COM111
COM113
□
□
□
□
□
□
□
□
COM169
COM171
COM173
COM175
SEG1
SEG2
SEG3
SEG4
TypeCode
HD667A66R
Straight
(Top View)
Y
X
DUMMY9 □
VREFL □
VREFL □
BIASC □
BIASC □
VREFM □
VREFM □
VM □
C12- □
C12- □
C12- □
C12- □
C11+ □
C11+ □
C11+ □
C11+ □
C11- □
C11- □
C11- □
C11- □
VCIOUT □
VCIOUT □
VCIOUT □
VCIOUT □
VCI1 □
VCI1 □
VCI1 □
VCI1 □
VCCDUM3 □
VCCDUM4 □
RESET3* □
DUMMY10 □
70µm
□
□
□
□
□
□
□
□
□
□
COM114
COM112
COM110
COM108
□
DUMMY12
□
□
□ □ □ □
□ □ □ □
SEG393
SEG394
SEG395
SEG396
COM176
COM174
COM172
COM170
□
□
COM100
COM102
COM104
COM106
25
10 5
5 10
DUMMY13
□
COM2
COM4
COM6
COM8
100µm
50
(2-a) Coordinate (X, Y) = (-9094, 1145)
NO.666
□
□
GNDDUM4 □
DB15 □
DB14 □
DB13 □
DB12 □
DB11 □
DB10 □
DB9 □
DB8 □
GNDDUM5 □
DB7 □
DB6 □
DB5 □
DB4 □
DB3 □
DB2 □
DB1/SDO □
DB0/SDI □
GNDDUM6 □
RW/RD* □
E/WR*/SCL □
GNDDUM7 □
RS □
CS* □
VCC □
VCC □
VCC □
VCC □
AVCC □
AVCC □
AVCC □
AVCC □
AGND □
AGND □
GND □
GND □
GND □
GND □
AGND □
AGND □
RESET2* □
OSC2 □
OSC1 □
GNDDUM8 □
IM2 □
VCCDUM1 □
IM1 □
GNDDUM9 □
IM0/ID □
VCCDUM2 □
TEST2 □
TEST1 □
GNDDUM10 □
DUMMY3 □
30
20
□ □ □ □
HD667A66R
nAu bump pitch: Refer to pad coordinate
nAu bump hight: 15µm(typ.)
n Numbers in the figure corresponds to
the number of pad coordinate.
n Alignment mark
(1) Arrangement: Two places
Coordinate (X, Y) = (±9000, -1121)
40
□ □ □ □
DUMMY2 □
RESET1* □
CEP □
CEP □
CEM □
CEM □
VCL □
VCL □
VCL □
VCL □
VCH □
VCH □
VCH □
VCH □
C24+ □
C24+ □
C24- □
C24- □
C23+ □
C23+ □
C23- □
C23- □
C22+ □
C22+ □
C22- □
C22- □
C21+ □
C21+ □
C21- □
C21- □
VCI2 □
VCI2 □
VCI2 □
VCI2 □
GNDDUM1 □
nAu bump size:
(1) 80µm × 80µm
DUMMY1, DUMMY2, RESET1*~
∼RESET3*, DUMMY10, DUMMY11
DUMMY12, DUMMY13
30
□
COM99
COM101
COM103
COM105
NO.1
nChip size: 18.65mm×2.63mm
nChip thickness: 400um (typ.)
nPad coordinate: Pad center
nCoordinate origin: Chip center
COM1
COM3
COM5
COM7
g HD66766R PAD Arrangement (Straight Output Arrangement)
NO.199
Figure 1 PAD arrangement (Straight)
3
HD66766R
Rev. 1.0-1 / September 2002
Table 2
HD66766R PAD Coordinate (Straight)(No.1)
No. pad name
X
Y
No. pad name
1 DUMMY1
-9193 -1168
81 OSC1
2 DUMMY2
-8835 -1168
82 GNDDUM8
3 RESET1*
-8678 -1168
83 IM2
4 CEP
-8498 -1168
84 VCCDUM1
5 CEP
-8398 -1168
85 IM1
6 CEM
-8298 -1168
86 GNDDUM9
7 CEM
-8198 -1168
87 IM0/ID
8 VCL
-8018 -1168
88 VCCDUM2
9 VCL
-7918 -1168
89 TEST2
10 VCL
-7818 -1168
90 TEST1
11 VCL
-7718 -1168
91 GNDDUM10
12 VCH
-7538 -1168
92 DUMMY3
13 VCH
-7438 -1168
93 DUMMY4
14 VCH
-7338 -1168
94 DUMMY5
15 VCH
-7237 -1168
95 DUMMY6
16 C24+
-7057 -1168
96 DUMMY7
17 C24+
-6957 -1168
97 DUMMY8
18 C24-6857 -1168
98 DUMMY9
19 C24-6757 -1168
99 VREFL
20 C23+
-6657 -1168 100 VREFL
21 C23+
-6557 -1168 101 BIASC
22 C23-6457 -1168 102 BIASC
23 C23-6357 -1168 103 VREFM
24 C22+
-6257 -1168 104 VREFM
25 C22+
-6157 -1168 105 VM
26 C22-6057 -1168 106 VM
27 C22-5957 -1168 107 VM
28 C21+
-5856 -1168 108 VM
29 C21+
-5756 -1168 109 VSH
30 C21-5576 -1168 110 VSH
31 C21-5476 -1168 111 VSH
32 VCI2
-5376 -1168 112 VSH
33 VCI2
-5276 -1168 113 VOUT
34 VCI2
-5176 -1168 114 VOUT
35 VCI2
-5076 -1168 115 VOUT
36 GNDDUM1 -4896 -1168 116 VOUT
37 GNDDUM2 -4796 -1168 117 C12+
38 GNDDUM3 -4696 -1168 118 C12+
39 GNDDUM4 -4596 -1168 119 C12+
40 DB15
-4416 -1168 120 C12+
41 DB14
-4259 -1168 121 C1242 DB13
-4103 -1168 122 C1243 DB12
-3946 -1168 123 C1244 DB11
-3789 -1168 124 C1245 DB10
-3633 -1168 125 C11+
46 DB9
-3476 -1168 126 C11+
47 DB8
-3320 -1168 127 C11+
48 GNDDUM5 -3163 -1168 128 C11+
49 DB7
-3006 -1168 129 C1150 DB6
-2850 -1168 130 C1151 DB5
-2693 -1168 131 C1152 DB4
-2537 -1168 132 C1153 DB3
-2380 -1168 133 VCIOUT
54 DB2
-2223 -1168 134 VCIOUT
55 DB1/SDO
-2067 -1168 135 VCIOUT
56 DB0/SDI
-1910 -1168 136 VCIOUT
57 GNDDUM6 -1754 -1168 137 VCI1
58 RW/RD*
-1597 -1168 138 VCI1
59 E/WR*/SCL -1440 -1168 139 VCI1
60 GNDDUM7 -1284 -1168 140 VCI1
61 RS
-1127 -1168 141 VCCDUM3
62 CS*
-971 -1168 142 VCCDUM4
63 VCC
-791 -1168 143 RESET3*
64 VCC
-690 -1168 144 DUMMY10
65 VCC
-590 -1168 145 DUMMY11
66 VCC
-490 -1168 146 COM2
67 AVCC
-390 -1168 147 COM4
68 AVCC
-290 -1168 148 COM6
69 AVCC
-190 -1168 149 COM8
70 AVCC
-90 -1168 150 COM10
71 AGND
90 -1168 151 COM12
72 AGND
190 -1168 152 COM14
73 GND
290 -1168 153 COM16
74 GND
390 -1168 154 COM18
75 GND
490 -1168 155 COM20
76 GND
590 -1168 156 COM22
77 AGND
690 -1168 157 COM24
78 AGND
791 -1168 158 COM26
79 RESET2*
971 -1168 159 COM28
80 OSC2
1127 -1168 160 COM30
X
1284
1440
1597
1754
1910
2067
2223
2380
2537
2693
2850
3030
3130
3230
3330
3430
3530
3630
3810
3910
4010
4110
4211
4311
4411
4511
4611
4711
4811
4911
5011
5111
5291
5391
5491
5592
5772
5872
5972
6072
6172
6272
6372
6472
6572
6672
6772
6872
6972
7073
7173
7273
7453
7553
7653
7753
7933
8033
8133
8233
8413
8513
8693
8850
9193
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
Y
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-981
-943
-905
-867
-829
-791
-753
-715
-677
-639
-601
-563
-525
-487
-449
No.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
pad name
COM32
COM34
COM36
COM38
COM40
COM42
COM44
COM46
COM48
COM50
COM52
COM54
COM56
COM58
COM60
COM62
COM64
COM66
COM68
COM70
COM72
COM74
COM76
COM78
COM80
COM82
COM84
COM86
COM88
COM90
COM92
COM94
COM96
COM98
COM100
COM102
COM104
COM106
DUMMY12
COM108
COM110
COM112
COM114
COM116
COM118
COM120
COM122
COM124
COM126
COM128
COM130
COM132
COM134
COM136
COM138
COM140
COM142
COM144
COM146
COM148
COM150
COM152
COM154
COM156
COM158
COM160
COM162
COM164
COM166
COM168
COM170
COM172
COM174
COM176
SEG396
SEG395
SEG394
SEG393
SEG392
SEG391
4
X
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9155
9193
8892
8854
8816
8778
8740
8702
8664
8626
8588
8550
8512
8474
8436
8398
8360
8322
8284
8246
8208
8170
8132
8094
8056
8018
7980
7942
7904
7866
7828
7790
7752
7714
7676
7638
7600
7524
7486
7448
7410
7372
7334
Y
-411
-373
-335
-297
-259
-221
-183
-145
-107
-69
-31
7
45
83
121
159
197
235
273
311
349
387
425
463
501
539
577
615
653
691
729
767
805
843
881
919
957
995
1183
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
No.
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
pad name
SEG390
SEG389
SEG388
SEG387
SEG386
SEG385
SEG384
SEG383
SEG382
SEG381
SEG380
SEG379
SEG378
SEG377
SEG376
SEG375
SEG374
SEG373
SEG372
SEG371
SEG370
SEG369
SEG368
SEG367
SEG366
SEG365
SEG364
SEG363
SEG362
SEG361
SEG360
SEG359
SEG358
SEG357
SEG356
SEG355
SEG354
SEG353
SEG352
SEG351
SEG350
SEG349
SEG348
SEG347
SEG346
SEG345
SEG344
SEG343
SEG342
SEG341
SEG340
SEG339
SEG338
SEG337
SEG336
SEG335
SEG334
SEG333
SEG332
SEG331
SEG330
SEG329
SEG328
SEG327
SEG326
SEG325
SEG324
SEG323
SEG322
SEG321
SEG320
SEG319
SEG318
SEG317
SEG316
SEG315
SEG314
SEG313
SEG312
SEG311
X
7296
7258
7220
7182
7144
7106
7068
7030
6992
6954
6916
6878
6840
6802
6764
6726
6688
6650
6612
6574
6536
6498
6460
6422
6384
6346
6308
6270
6232
6194
6156
6118
6080
6042
6004
5966
5928
5890
5852
5814
5776
5738
5700
5662
5624
5586
5548
5510
5472
5434
5396
5358
5320
5282
5244
5206
5168
5130
5092
5054
5016
4978
4940
4902
4864
4826
4788
4750
4712
4674
4636
4598
4560
4522
4484
4446
4408
4370
4332
4294
Y
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
No.
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
pad name
SEG310
SEG309
SEG308
SEG307
SEG306
SEG305
SEG304
SEG303
SEG302
SEG301
SEG300
SEG299
SEG298
SEG297
SEG296
SEG295
SEG294
SEG293
SEG292
SEG291
SEG290
SEG289
SEG288
SEG287
SEG286
SEG285
SEG284
SEG283
SEG282
SEG281
SEG280
SEG279
SEG278
SEG277
SEG276
SEG275
SEG274
SEG273
SEG272
SEG271
SEG270
SEG269
SEG268
SEG267
SEG266
SEG265
SEG264
SEG263
SEG262
SEG261
SEG260
SEG259
SEG258
SEG257
SEG256
SEG255
SEG254
SEG253
SEG252
SEG251
SEG250
SEG249
SEG248
SEG247
SEG246
SEG245
SEG244
SEG243
SEG242
SEG241
SEG240
SEG239
SEG238
SEG237
SEG236
SEG235
SEG234
SEG233
SEG232
SEG231
X
4256
4218
4180
4142
4104
4066
4028
3990
3952
3914
3876
3838
3800
3762
3724
3686
3648
3610
3572
3534
3496
3458
3420
3382
3344
3306
3268
3230
3192
3154
3116
3078
3040
3002
2964
2926
2888
2850
2812
2774
2736
2698
2660
2622
2584
2546
2508
2470
2432
2394
2356
2318
2280
2242
2204
2166
2128
2090
2052
2014
1976
1938
1900
1862
1824
1786
1748
1710
1672
1634
1596
1558
1520
1482
1444
1406
1368
1330
1292
1254
Y
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
HD66766R
Rev. 1.0-1 / September 2002
Table 2 cont.
HD66766R PAD Coordinate (Straight)(No.2)
No. pad name
X
Y
No. pad name
401 SEG230
1216 1145 481 SEG150
402 SEG229
1178 1145 482 SEG149
403 SEG228
1140 1145 483 SEG148
404 SEG227
1102 1145 484 SEG147
405 SEG226
1064 1145 485 SEG146
406 SEG225
1026 1145 486 SEG145
407 SEG224
988 1145 487 SEG144
408 SEG223
950 1145 488 SEG143
409 SEG222
912 1145 489 SEG142
410 SEG221
874 1145 490 SEG141
411 SEG220
836 1145 491 SEG140
412 SEG219
798 1145 492 SEG139
413 SEG218
760 1145 493 SEG138
414 SEG217
722 1145 494 SEG137
415 SEG216
684 1145 495 SEG136
416 SEG215
646 1145 496 SEG135
417 SEG214
608 1145 497 SEG134
418 SEG213
570 1145 498 SEG133
419 SEG212
532 1145 499 SEG132
420 SEG211
494 1145 500 SEG131
421 SEG210
456 1145 501 SEG130
422 SEG209
418 1145 502 SEG129
423 SEG208
380 1145 503 SEG128
424 SEG207
342 1145 504 SEG127
425 SEG206
304 1145 505 SEG126
426 SEG205
266 1145 506 SEG125
427 SEG204
228 1145 507 SEG124
428 SEG203
190 1145 508 SEG123
429 SEG202
152 1145 509 SEG122
430 SEG201
114 1145 510 SEG121
431 SEG200
76 1145 511 SEG120
432 SEG199
38 1145 512 SEG119
433 SEG198
-38 1145 513 SEG118
434 SEG197
-76 1145 514 SEG117
435 SEG196
-114 1145 515 SEG116
436 SEG195
-152 1145 516 SEG115
437 SEG194
-190 1145 517 SEG114
438 SEG193
-228 1145 518 SEG113
439 SEG192
-266 1145 519 SEG112
440 SEG191
-304 1145 520 SEG111
441 SEG190
-342 1145 521 SEG110
442 SEG189
-380 1145 522 SEG109
443 SEG188
-418 1145 523 SEG108
444 SEG187
-456 1145 524 SEG107
445 SEG186
-494 1145 525 SEG106
446 SEG185
-532 1145 526 SEG105
447 SEG184
-570 1145 527 SEG104
448 SEG183
-608 1145 528 SEG103
449 SEG182
-646 1145 529 SEG102
450 SEG181
-684 1145 530 SEG101
451 SEG180
-722 1145 531 SEG100
452 SEG179
-760 1145 532 SEG99
453 SEG178
-798 1145 533 SEG98
454 SEG177
-836 1145 534 SEG97
455 SEG176
-874 1145 535 SEG96
456 SEG175
-912 1145 536 SEG95
457 SEG174
-950 1145 537 SEG94
458 SEG173
-988 1145 538 SEG93
459 SEG172
-1026 1145 539 SEG92
460 SEG171
-1064 1145 540 SEG91
461 SEG170
-1102 1145 541 SEG90
462 SEG169
-1140 1145 542 SEG89
463 SEG168
-1178 1145 543 SEG88
464 SEG167
-1216 1145 544 SEG87
465 SEG166
-1254 1145 545 SEG86
466 SEG165
-1292 1145 546 SEG85
467 SEG164
-1330 1145 547 SEG84
468 SEG163
-1368 1145 548 SEG83
469 SEG162
-1406 1145 549 SEG82
470 SEG161
-1444 1145 550 SEG81
471 SEG160
-1482 1145 551 SEG80
472 SEG159
-1520 1145 552 SEG79
473 SEG158
-1558 1145 553 SEG78
474 SEG157
-1596 1145 554 SEG77
475 SEG156
-1634 1145 555 SEG76
476 SEG155
-1672 1145 556 SEG75
477 SEG154
-1710 1145 557 SEG74
478 SEG153
-1748 1145 558 SEG73
479 SEG152
-1786 1145 559 SEG72
480 SEG151
-1824 1145 560 SEG71
X
-1862
-1900
-1938
-1976
-2014
-2052
-2090
-2128
-2166
-2204
-2242
-2280
-2318
-2356
-2394
-2432
-2470
-2508
-2546
-2584
-2622
-2660
-2698
-2736
-2774
-2812
-2850
-2888
-2926
-2964
-3002
-3040
-3078
-3116
-3154
-3192
-3230
-3268
-3306
-3344
-3382
-3420
-3458
-3496
-3534
-3572
-3610
-3648
-3686
-3724
-3762
-3800
-3838
-3876
-3914
-3952
-3990
-4028
-4066
-4104
-4142
-4180
-4218
-4256
-4294
-4332
-4370
-4408
-4446
-4484
-4522
-4560
-4598
-4636
-4674
-4712
-4750
-4788
-4826
-4864
Y
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
No.
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
pad name
SEG70
SEG69
SEG68
SEG67
SEG66
SEG65
SEG64
SEG63
SEG62
SEG61
SEG60
SEG59
SEG58
SEG57
SEG56
SEG55
SEG54
SEG53
SEG52
SEG51
SEG50
SEG49
SEG48
SEG47
SEG46
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
COM175
COM173
COM171
COM169
COM167
COM165
COM163
COM161
COM159
COM157
5
X
-4902
-4940
-4978
-5016
-5054
-5092
-5130
-5168
-5206
-5244
-5282
-5320
-5358
-5396
-5434
-5472
-5510
-5548
-5586
-5624
-5662
-5700
-5738
-5776
-5814
-5852
-5890
-5928
-5966
-6004
-6042
-6080
-6118
-6156
-6194
-6232
-6270
-6308
-6346
-6384
-6422
-6460
-6498
-6536
-6574
-6612
-6650
-6688
-6726
-6764
-6802
-6840
-6878
-6916
-6954
-6992
-7030
-7068
-7106
-7144
-7182
-7220
-7258
-7296
-7334
-7372
-7410
-7448
-7486
-7524
-7600
-7638
-7676
-7714
-7752
-7790
-7828
-7866
-7904
-7942
Y
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
No.
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
pad name
COM155
COM153
COM151
COM149
COM147
COM145
COM143
COM141
COM139
COM137
COM135
COM133
COM131
COM129
COM127
COM125
COM123
COM121
COM119
COM117
COM115
COM113
COM111
COM109
COM107
DUMMY13
COM105
COM103
COM101
COM99
COM97
COM95
COM93
COM91
COM89
COM87
COM85
COM83
COM81
COM79
COM77
COM75
COM73
COM71
COM69
COM67
COM65
COM63
COM61
COM59
COM57
COM55
COM53
COM51
COM49
COM47
COM45
COM43
COM41
COM39
COM37
COM35
COM33
COM31
COM29
COM27
COM25
COM23
COM21
COM19
COM17
COM15
COM13
COM11
COM9
COM7
COM5
COM3
COM1
X
-7980
-8018
-8056
-8094
-8132
-8170
-8208
-8246
-8284
-8322
-8360
-8398
-8436
-8474
-8512
-8550
-8588
-8626
-8664
-8702
-8740
-8778
-8816
-8854
-8892
-9193
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
-9155
Y
X
Y
Alignment mark
1145
-9000 -1121
Cross
1145
9000 -1121
1145 Circle(Positive) -9094 1145
1145 Circle(Negative) 9094 1145
1145
L (Positive) -9004 1145
1145
9004 1145
L (Negative)
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1145
1183
995
957
919
881
843
805
767
729
691
653
615
577
539
501
463
425
387
349
311
273
235
197
159
121
83
45
7
-31
-69
-107
-145
-183
-221
-259
-297
-335
-373
-411
-449
-487
-525
-563
-601
-639
-677
-715
-753
-791
-829
-867
-905
-943
-981
HD66766R
Rev. 1.0-1 / September 2002
DUMMY1 □
30
40
30
50µm
(2-b) Coordinate (X, Y) = (9094, 1145)
50µm
(3-a) Coordinate (X, Y) = (-9004, 1145)
(3-b) Coordinate (X, Y) = (9004, 1145)
25
25
10
10
25
70µm
25
10
10
70µm
□
NO.145
COM107
COM109
COM111
COM113
□
□
□
□
□
□
□
COM169
COM171
COM173
COM175
SEG1
SEG2
SEG3
SEG4
TypeCode
HD667B66R
Laced
(Top View)
Y
X
□
□
□
□
□
□
□
□
COM114
COM112
COM110
COM108
□
DUMMY12
□
□
□
□
□
□
SEG393
SEG394
SEG395
SEG396
COM176
COM174
COM172
COM170
□
□
□
DUMMY11
DUMMY13
□
□
□
□
□
COM100
COM102
COM104
COM106
25
5 10
25
80µm
70µm
70µm
80µm
□
□
DUMMY9 □
VREFL □
VREFL □
BIASC □
BIASC □
VREFM □
VREFM □
VM □
VM □
VM □
VM □
VSH □
VSH □
VSH □
VSH □
VOUT □
VOUT □
VOUT □
VOUT □
OSC0 □
OSC1 □
GNDDUM9 □
C12+ □
C12- □
C12- □
C12- □
C12- □
C11+ □
C11+ □
C11+ □
C11+ □
C11- □
C11- □
C11- □
C11- □
VCIOUT □
VCIOUT □
VCIOUT □
VCIOUT □
VCI1 □
VCI1 □
VCI1 □
VCI1 □
VCCDUM3 □
VCCDUM4 □
RESET3* □
DUMMY10 □
10 5
10 5
25
□
□
□
COM2
COM4
COM6
COM8
100 µm
50
30
(2-a) Coordinate (X, Y) = (-9094, 1145)
25
□
NO.666
□
GNDDUM4 □
DB15 □
DB14 □
DB13 □
DB12 □
DB11 □
DB10 □
DB9 □
DB8 □
GNDDUM5 □
DB7 □
DB6 □
DB5 □
DB4 □
DB3 □
DB2 □
DB1/SDO □
DB0/SDI □
GNDDUM6 □
RW/RD* □
E/WR*/SCL □
GNDDUM7 □
RS □
CS* □
VCC □
VCC □
VCC □
VCC □
AVCC □
AVCC □
AVCC □
AVCC □
AGND □
AGND □
GND □
GND □
GND □
GND □
AGND □
AGND □
RESET2* □
OSC2 □
OSC1 □
GNDDUM8 □
IM2 □
VCCDUM1 □
IM1 □
GNDDUM9 □
IM0/ID □
VCCDUM2 □
TEST2 □
TEST1 □
GNDDUM10 □
DUMMY3 □
100µm
50
5 10
□
□
HD667B66R
n Au bump pitch: Refer to pad coordinate
n Au bump hight: 15µm(typ.)
n Numbers in the figure correspond to
the number of pad coordinate.
n Alignment mark
(1) Arrangement: Two places
Coordinate (X, Y) = (±9000, -1121)
20
□
□
(2) 38µm×63µm
COM1~COM176
SEG1~SEG396
40
□
DUMMY2 □
RESET1* □
CEP □
CEP □
CEM □
CEM □
VCL □
VCL □
VCL □
VCL □
VCH □
VCH □
VCH □
VCH □
C24+ □
C24+ □
C24- □
C24- □
C23+ □
C23+ □
C23- □
C23- □
C22+ □
C22+ □
C22- □
C22- □
C21+ □
C21+ □
C21- □
C21- □
VCI2 □
VCI2 □
VCI2 □
VCI2 □
GNDDUM1 □
n Au bump size:
(1) 80µm×80µm
DUMMY1, DUMMY2, RESET1*~
∼RESET3*, DUMMY10, DUMMY11
DUMMY12, DUMMY13
30
COM1
COM3
COM5
COM7
NO.1
n Chip size: 18.65mm×2.63mm
n Chip thickness: 400µm (typ.)
n Pad coordinate: Pad center
n Coordinate origin: Chip center
COM99
COM101
COM103
COM105
g HD66766R PAD Arrangement (LacedOutput Arrangement)
NO.199
Figure 2 PAD arrangement (Laced)
6
HD66766R
Rev. 1.0-1 / September 2002
Table 3
HD66766R PAD Coordinate (Laced)(No.1)
No. pad name
X
Y
No. pad name
1 DUMMY1
-9193 -1168
81 OSC1
2 DUMMY2
-8835 -1168
82 GNDDUM8
3 RESET1*
-8678 -1168
83 IM2
4 CEP
-8498 -1168
84 VCCDUM1
5 CEP
-8398 -1168
85 IM1
6 CEM
-8298 -1168
86 GNDDUM9
7 CEM
-8198 -1168
87 IM0/ID
8 VCL
-8018 -1168
88 VCCDUM2
9 VCL
-7918 -1168
89 TEST2
10 VCL
-7818 -1168
90 TEST1
11 VCL
-7718 -1168
91 GNDDUM10
12 VCH
-7538 -1168
92 DUMMY3
13 VCH
-7438 -1168
93 DUMMY4
14 VCH
-7338 -1168
94 DUMMY5
15 VCH
-7237 -1168
95 DUMMY6
16 C24+
-7057 -1168
96 DUMMY7
17 C24+
-6957 -1168
97 DUMMY8
18 C24-6857 -1168
98 DUMMY9
19 C24-6757 -1168
99 VREFL
20 C23+
-6657 -1168 100 VREFL
21 C23+
-6557 -1168 101 BIASC
22 C23-6457 -1168 102 BIASC
23 C23-6357 -1168 103 VREFM
24 C22+
-6257 -1168 104 VREFM
25 C22+
-6157 -1168 105 VM
26 C22-6057 -1168 106 VM
27 C22-5957 -1168 107 VM
28 C21+
-5856 -1168 108 VM
29 C21+
-5756 -1168 109 VSH
30 C21-5576 -1168 110 VSH
31 C21-5476 -1168 111 VSH
32 VCI2
-5376 -1168 112 VSH
33 VCI2
-5276 -1168 113 VOUT
34 VCI2
-5176 -1168 114 VOUT
35 VCI2
-5076 -1168 115 VOUT
36 GNDDUM1
-4896 -1168 116 VOUT
37 GNDDUM2
-4796 -1168 117 C12+
38 GNDDUM3
-4696 -1168 118 C12+
39 GNDDUM4
-4596 -1168 119 C12+
40 DB15
-4416 -1168 120 C12+
41 DB14
-4259 -1168 121 C1242 DB13
-4103 -1168 122 C1243 DB12
-3946 -1168 123 C1244 DB11
-3789 -1168 124 C1245 DB10
-3633 -1168 125 C11+
46 DB9
-3476 -1168 126 C11+
47 DB8
-3320 -1168 127 C11+
48 GNDDUM5
-3163 -1168 128 C11+
49 DB7
-3006 -1168 129 C1150 DB6
-2850 -1168 130 C1151 DB5
-2693 -1168 131 C1152 DB4
-2537 -1168 132 C1153 DB3
-2380 -1168 133 VCIOUT
54 DB2
-2223 -1168 134 VCIOUT
55 DB1/SDO
-2067 -1168 135 VCIOUT
56 DB0/SDI
-1910 -1168 136 VCIOUT
57 GNDDUM6
-1754 -1168 137 VCI1
58 RW/RD*
-1597 -1168 138 VCI1
59 E/WR*/SCL -1440 -1168 139 VCI1
60 GNDDUM7
-1284 -1168 140 VCI1
61 RS
-1127 -1168 141 VCCDUM3
62 CS*
-971 -1168 142 VCCDUM4
63 VCC
-791 -1168 143 RESET3*
64 VCC
-690 -1168 144 DUMMY10
65 VCC
-590 -1168 145 DUMMY11
66 VCC
-490 -1168 146 COM2
67 AVCC
-390 -1168 147 COM4
68 AVCC
-290 -1168 148 COM6
69 AVCC
-190 -1168 149 COM8
70 AVCC
-90 -1168 150 COM10
71 AGND
90 -1168 151 COM12
72 AGND
190 -1168 152 COM14
73 GND
290 -1168 153 COM16
74 GND
390 -1168 154 COM18
75 GND
490 -1168 155 COM20
76 GND
590 -1168 156 COM22
77 AGND
690 -1168 157 COM24
78 AGND
791 -1168 158 COM26
79 RESET2*
971 -1168 159 COM28
80 OSC2
1127 -1168 160 COM30
X
1284
1440
1597
1754
1910
2067
2223
2380
2537
2693
2850
3030
3130
3230
3330
3430
3530
3630
3810
3910
4010
4110
4211
4311
4411
4511
4611
4711
4811
4911
5011
5111
5291
5391
5491
5592
5772
5872
5972
6072
6172
6272
6372
6472
6572
6672
6772
6872
6972
7073
7173
7273
7453
7553
7653
7753
7933
8033
8133
8233
8413
8513
8693
8850
9193
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
Y
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-1168
-981
-943
-905
-867
-829
-791
-753
-715
-677
-639
-601
-563
-525
-487
-449
No.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
pad name
COM32
COM34
COM36
COM38
COM40
COM42
COM44
COM46
COM48
COM50
COM52
COM54
COM56
COM58
COM60
COM62
COM64
COM66
COM68
COM70
COM72
COM74
COM76
COM78
COM80
COM82
COM84
COM86
COM88
COM90
COM92
COM94
COM96
COM98
COM100
COM102
COM104
COM106
DUMMY12
COM108
COM110
COM112
COM114
COM116
COM118
COM120
COM122
COM124
COM126
COM128
COM130
COM132
COM134
COM136
COM138
COM140
COM142
COM144
COM146
COM148
COM150
COM152
COM154
COM156
COM158
COM160
COM162
COM164
COM166
COM168
COM170
COM172
COM174
COM176
SEG396
SEG395
SEG394
SEG393
SEG392
SEG391
7
X
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9108
9201
9193
8892
8854
8816
8778
8740
8702
8664
8626
8588
8550
8512
8474
8436
8398
8360
8322
8284
8246
8208
8170
8132
8094
8056
8018
7980
7942
7904
7866
7828
7790
7752
7714
7676
7638
7600
7524
7486
7448
7410
7372
7334
Y
-411
-373
-335
-297
-259
-221
-183
-145
-107
-69
-31
7
45
83
121
159
197
235
273
311
349
387
425
463
501
539
577
615
653
691
729
767
805
843
881
919
957
995
1183
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
No.
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
pad name
SEG390
SEG389
SEG388
SEG387
SEG386
SEG385
SEG384
SEG383
SEG382
SEG381
SEG380
SEG379
SEG378
SEG377
SEG376
SEG375
SEG374
SEG373
SEG372
SEG371
SEG370
SEG369
SEG368
SEG367
SEG366
SEG365
SEG364
SEG363
SEG362
SEG361
SEG360
SEG359
SEG358
SEG357
SEG356
SEG355
SEG354
SEG353
SEG352
SEG351
SEG350
SEG349
SEG348
SEG347
SEG346
SEG345
SEG344
SEG343
SEG342
SEG341
SEG340
SEG339
SEG338
SEG337
SEG336
SEG335
SEG334
SEG333
SEG332
SEG331
SEG330
SEG329
SEG328
SEG327
SEG326
SEG325
SEG324
SEG323
SEG322
SEG321
SEG320
SEG319
SEG318
SEG317
SEG316
SEG315
SEG314
SEG313
SEG312
SEG311
X
7296
7258
7220
7182
7144
7106
7068
7030
6992
6954
6916
6878
6840
6802
6764
6726
6688
6650
6612
6574
6536
6498
6460
6422
6384
6346
6308
6270
6232
6194
6156
6118
6080
6042
6004
5966
5928
5890
5852
5814
5776
5738
5700
5662
5624
5586
5548
5510
5472
5434
5396
5358
5320
5282
5244
5206
5168
5130
5092
5054
5016
4978
4940
4902
4864
4826
4788
4750
4712
4674
4636
4598
4560
4522
4484
4446
4408
4370
4332
4294
Y
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
No.
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
pad name
SEG310
SEG309
SEG308
SEG307
SEG306
SEG305
SEG304
SEG303
SEG302
SEG301
SEG300
SEG299
SEG298
SEG297
SEG296
SEG295
SEG294
SEG293
SEG292
SEG291
SEG290
SEG289
SEG288
SEG287
SEG286
SEG285
SEG284
SEG283
SEG282
SEG281
SEG280
SEG279
SEG278
SEG277
SEG276
SEG275
SEG274
SEG273
SEG272
SEG271
SEG270
SEG269
SEG268
SEG267
SEG266
SEG265
SEG264
SEG263
SEG262
SEG261
SEG260
SEG259
SEG258
SEG257
SEG256
SEG255
SEG254
SEG253
SEG252
SEG251
SEG250
SEG249
SEG248
SEG247
SEG246
SEG245
SEG244
SEG243
SEG242
SEG241
SEG240
SEG239
SEG238
SEG237
SEG236
SEG235
SEG234
SEG233
SEG232
SEG231
X
4256
4218
4180
4142
4104
4066
4028
3990
3952
3914
3876
3838
3800
3762
3724
3686
3648
3610
3572
3534
3496
3458
3420
3382
3344
3306
3268
3230
3192
3154
3116
3078
3040
3002
2964
2926
2888
2850
2812
2774
2736
2698
2660
2622
2584
2546
2508
2470
2432
2394
2356
2318
2280
2242
2204
2166
2128
2090
2052
2014
1976
1938
1900
1862
1824
1786
1748
1710
1672
1634
1596
1558
1520
1482
1444
1406
1368
1330
1292
1254
Y
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
HD66766R
Rev. 1.0-1 / September 2002
Table 3 cont.
HD66766R PAD Coordinate
No. pad name
X
401 SEG230
1216
402 SEG229
1178
403 SEG228
1140
404 SEG227
1102
405 SEG226
1064
406 SEG225
1026
407 SEG224
988
408 SEG223
950
409 SEG222
912
410 SEG221
874
411 SEG220
836
412 SEG219
798
413 SEG218
760
414 SEG217
722
415 SEG216
684
416 SEG215
646
417 SEG214
608
418 SEG213
570
419 SEG212
532
420 SEG211
494
421 SEG210
456
422 SEG209
418
423 SEG208
380
424 SEG207
342
425 SEG206
304
426 SEG205
266
427 SEG204
228
428 SEG203
190
429 SEG202
152
430 SEG201
114
431 SEG200
76
432 SEG199
38
433 SEG198
-38
434 SEG197
-76
435 SEG196
-114
436 SEG195
-152
437 SEG194
-190
438 SEG193
-228
439 SEG192
-266
440 SEG191
-304
441 SEG190
-342
442 SEG189
-380
443 SEG188
-418
444 SEG187
-456
445 SEG186
-494
446 SEG185
-532
447 SEG184
-570
448 SEG183
-608
449 SEG182
-646
450 SEG181
-684
451 SEG180
-722
452 SEG179
-760
453 SEG178
-798
454 SEG177
-836
455 SEG176
-874
456 SEG175
-912
457 SEG174
-950
458 SEG173
-988
459 SEG172
-1026
460 SEG171
-1064
461 SEG170
-1102
462 SEG169
-1140
463 SEG168
-1178
464 SEG167
-1216
465 SEG166
-1254
466 SEG165
-1292
467 SEG164
-1330
468 SEG163
-1368
469 SEG162
-1406
470 SEG161
-1444
471 SEG160
-1482
472 SEG159
-1520
473 SEG158
-1558
474 SEG157
-1596
475 SEG156
-1634
476 SEG155
-1672
477 SEG154
-1710
478 SEG153
-1748
479 SEG152
-1786
480 SEG151
-1824
(Laced)(No.2)
Y
No. pad name
1098 481 SEG150
1191 482 SEG149
1098 483 SEG148
1191 484 SEG147
1098 485 SEG146
1191 486 SEG145
1098 487 SEG144
1191 488 SEG143
1098 489 SEG142
1191 490 SEG141
1098 491 SEG140
1191 492 SEG139
1098 493 SEG138
1191 494 SEG137
1098 495 SEG136
1191 496 SEG135
1098 497 SEG134
1191 498 SEG133
1098 499 SEG132
1191 500 SEG131
1098 501 SEG130
1191 502 SEG129
1098 503 SEG128
1191 504 SEG127
1098 505 SEG126
1191 506 SEG125
1098 507 SEG124
1191 508 SEG123
1098 509 SEG122
1191 510 SEG121
1098 511 SEG120
1191 512 SEG119
1098 513 SEG118
1191 514 SEG117
1098 515 SEG116
1191 516 SEG115
1098 517 SEG114
1191 518 SEG113
1098 519 SEG112
1191 520 SEG111
1098 521 SEG110
1191 522 SEG109
1098 523 SEG108
1191 524 SEG107
1098 525 SEG106
1191 526 SEG105
1098 527 SEG104
1191 528 SEG103
1098 529 SEG102
1191 530 SEG101
1098 531 SEG100
1191 532 SEG99
1098 533 SEG98
1191 534 SEG97
1098 535 SEG96
1191 536 SEG95
1098 537 SEG94
1191 538 SEG93
1098 539 SEG92
1191 540 SEG91
1098 541 SEG90
1191 542 SEG89
1098 543 SEG88
1191 544 SEG87
1098 545 SEG86
1191 546 SEG85
1098 547 SEG84
1191 548 SEG83
1098 549 SEG82
1191 550 SEG81
1098 551 SEG80
1191 552 SEG79
1098 553 SEG78
1191 554 SEG77
1098 555 SEG76
1191 556 SEG75
1098 557 SEG74
1191 558 SEG73
1098 559 SEG72
1191 560 SEG71
X
-1862
-1900
-1938
-1976
-2014
-2052
-2090
-2128
-2166
-2204
-2242
-2280
-2318
-2356
-2394
-2432
-2470
-2508
-2546
-2584
-2622
-2660
-2698
-2736
-2774
-2812
-2850
-2888
-2926
-2964
-3002
-3040
-3078
-3116
-3154
-3192
-3230
-3268
-3306
-3344
-3382
-3420
-3458
-3496
-3534
-3572
-3610
-3648
-3686
-3724
-3762
-3800
-3838
-3876
-3914
-3952
-3990
-4028
-4066
-4104
-4142
-4180
-4218
-4256
-4294
-4332
-4370
-4408
-4446
-4484
-4522
-4560
-4598
-4636
-4674
-4712
-4750
-4788
-4826
-4864
Y
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
No.
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
pad name
SEG70
SEG69
SEG68
SEG67
SEG66
SEG65
SEG64
SEG63
SEG62
SEG61
SEG60
SEG59
SEG58
SEG57
SEG56
SEG55
SEG54
SEG53
SEG52
SEG51
SEG50
SEG49
SEG48
SEG47
SEG46
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
COM175
COM173
COM171
COM169
COM167
COM165
COM163
COM161
COM159
COM157
8
X
-4902
-4940
-4978
-5016
-5054
-5092
-5130
-5168
-5206
-5244
-5282
-5320
-5358
-5396
-5434
-5472
-5510
-5548
-5586
-5624
-5662
-5700
-5738
-5776
-5814
-5852
-5890
-5928
-5966
-6004
-6042
-6080
-6118
-6156
-6194
-6232
-6270
-6308
-6346
-6384
-6422
-6460
-6498
-6536
-6574
-6612
-6650
-6688
-6726
-6764
-6802
-6840
-6878
-6916
-6954
-6992
-7030
-7068
-7106
-7144
-7182
-7220
-7258
-7296
-7334
-7372
-7410
-7448
-7486
-7524
-7600
-7638
-7676
-7714
-7752
-7790
-7828
-7866
-7904
-7942
Y
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
No.
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
pad name
COM155
COM153
COM151
COM149
COM147
COM145
COM143
COM141
COM139
COM137
COM135
COM133
COM131
COM129
COM127
COM125
COM123
COM121
COM119
COM117
COM115
COM113
COM111
COM109
COM107
DUMMY13
COM105
COM103
COM101
COM99
COM97
COM95
COM93
COM91
COM89
COM87
COM85
COM83
COM81
COM79
COM77
COM75
COM73
COM71
COM69
COM67
COM65
COM63
COM61
COM59
COM57
COM55
COM53
COM51
COM49
COM47
COM45
COM43
COM41
COM39
COM37
COM35
COM33
COM31
COM29
COM27
COM25
COM23
COM21
COM19
COM17
COM15
COM13
COM11
COM9
COM7
COM5
COM3
COM1
X
-7980
-8018
-8056
-8094
-8132
-8170
-8208
-8246
-8284
-8322
-8360
-8398
-8436
-8474
-8512
-8550
-8588
-8626
-8664
-8702
-8740
-8778
-8816
-8854
-8892
-9193
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
-9108
-9201
Y
X
Y
Alignment mark
1191
-9000 -1121
Cross
1098
9000 -1121
1191 Circle(Positive) -9094 1145
1098 Circle(Negative) 9094 1145
L (Positive)
1191
-9004 1145
1098
9004 1145
L (Negative)
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1098
1191
1183
995
957
919
881
843
805
767
729
691
653
615
577
539
501
463
425
387
349
311
273
235
197
159
121
83
45
7
-31
-69
-107
-145
-183
-221
-259
-297
-335
-373
-411
-449
-487
-525
-563
-601
-639
-677
-715
-753
-791
-829
-867
-905
-943
-981
HD66766R
Rev. 1.0-1 / September 2002
HD66766R Block Diagram Description
Vcc
AVcc
Control
Register
(CR)
Index Register
(IR)
7
IM2-1,
IM0/ID
Address Counter
( AC )
16
Palette
Register
(RK, GK, BK)
CS*
RS
E/WR*/SCL
Bit Operation
12
latch
48
16
Graphic RAM
(GRAM) 46,464 bytes
16
TEST1
TEST2
Latch Circuit
Write data
64
latch
Read data
Segment drivers
16
RESET *
VSL
16
16
Latch Circuit
DB0/SDI,
DB1/SDO,
to DB15
16
Grayscale selector circuit
RW/RD *
PWM Grayscale
Circuit
GND
System Interface
- 16 bit
- 8 bit
- Clock
synchoronized
- serial
SEG1 to
SEG396
OSC1
Timinig
generator
CPG
OSC2
generator circuit
VCL
VM
VCH
VSH
VREFM
VREFL
CE-
CE+
C21- to C24-
C21+ to C24+
Vci2
BIASC
VOUT
C11- to C12-
C11+ to C12+
Vci1
VciOUT
Figure 3 HD66766R Block Diagram Description
9
Scan data
LCD drive power supply circuit
Common
driver
COM1 to
COM176
HD66766R
Rev. 1.0-1 / September 2002
Pin Functions
Table 4
Pin Functional Description
Signals
IM2-1,
IM0/ID
Number of
Pins
I/O
Connected to
Functions
3
I
GND or VCC
Selects the MPU interface mode:
IM2
IM1
GND
GND
GND
GND
IM0/ID0
MPU Interface mode
GND
68 system 16-bit bus interface
GND
Vcc
68 system
Vcc
GND
80 system 16-bit bus interface
GND
Vcc
Vcc
80 system
Vcc
GND
ID
8-bit bus interface
8-bit bus interface
Clock synchronized serial interface
When a serial interface is selected, the IM0 pin is used as
the ID setting for a device code.
CS*
1
I
MPU
Selects the HD66766R:
Low: HD66766R is selected and can be accessed
High: HD66766R is not selected and cannot be accessed
Must be fixed at GND level when not in use.
RS
1
I
MPU
Selects the register.
Low: Index/status
High: Control
For a register or a synchronous clock interface, fixed to
the Vcc or GND level.
E/WR*/SCL
1
I
MPU
For a 68-system bus interface, serves as an enable signal
to activate data read/write operation.
For an 80-system bus interface, serves as a write strobe
signal and writes data at the low level.
For a synchronous clock interface, serves as the
synchronous clock signal.
RW/RD*
1
I
MPU
For a 68-system bus interface, serves as a signal to select
data read/write operation.
Low: Write
High: Read
For an 80-system bus interface, serves as a read strobe
signal and reads data at the low level.
For a synchronous clock interface, fixed to the Vcc or
GND level.
DB0/SDI
1
I/O
MPU
Serves as a 16-bit bi-directional data bus.
For an 8-bit bus interface, data transfer uses DB15-DB8;
fix unused DB7-DB0 to the Vcc or GND level.
For a clock-synchronous serial interface, serves as the
serial data input pin (SDI). The input level is read on the
rising edge of the SCL signal.
DB1/SDO
1
I/O
MPU
Serves as a 16-bit bi-directional data bus.
For an 8-bit bus interface, data transfer uses DB15-DB8; fix
unused DB7-DB0 to the Vcc or GND level.
For a clock-synchronous serial interface, serves as a serial
data output pin (SDO). Successive bit values are output on
the falling edge of the SCL signal.
10
HD66766R
Rev. 1.0-1 / September 2002
Table 4 cont.
Number of
Pins
Signals
I/O
Connected to
DB2-DB15
14
I/O
SEG1–
SEG396
396
O
COM1–
COM176
176
O
VCH, VCL
2
—
VM
1
—
VSH
1
—
VciOUT
1
—
Vci1
1
—
VciOUT or power
supply
Vci2
1
—
VOUT
1
—
Capacitor for
stabilization or
open
Step-up
capacitance
C11+, C11-
2
—
Functions
MPU
Serves as a 16-bit bi-directional data bus.
For an 8-bit bus interface, data transfer uses DB15-DB8; fix
unused DB7-DB0 to the Vcc or GND level.
For a synchronous clock interface or unused pins, fixed to
the Vcc or GND level.
LCD
Output signals for segment drive. In the display-off period
(D1–0 = 00, 01) or standby mode (STB = 1), all pins output
GND level.
The SGS bit can change the shift direction of the segment
signal. For example, if SGS = 0, RAM address 0000 is
output from SEG1. If SGS = 1, it is output from SEG396.
SEG1, SEG4, SEG7, ... display red (R), SEG2, SEG5,
SEG8, ... display green (G), and SEG3, SEG6, SEG9, ...
display blue (B) (SGS = 0).
LCD
Output signals for common drive. In the display-off period
(D1–0 = 00, 01) sleep mode (SLP = 1) or standby mode
(STB = 1), all pins output GND level.
The CMS bit can change the shift direction of the common
signal. For example, if CMS = 0, driver outputs from
COM1 to COM176. If CMS = 1, driver outputs COM176 to
COM1.
Note that start position of the common driver output is
changed by screen diving position function.
Capacitor for
Selection level for the common signal. When internal power
stabilization,
supply is used, connect the capacitors for stabilization to
shot key barrier VCH AND VCL, and shot key barrier diode to VCL.
diode or external When internal power supply is not used, supply external
power supply
voltage.
Capacitor for
Non-selection level for the common signal. When internal
stabilization or operational amplifier is used, it is output of the internal
external power operational amplifier and connect the capacitors for
supply
stabilization. When internal operational amplifier is not
used, supply external voltage.
Capacitor for
Selection level for the segment signal. When internal
stabilization or operational amplifier is used, it is output of the internal
external power operational amplifier and connect the capacitors for
supply
stabilization. When internal operational amplifier is not
used, supply external voltage.
Vci1 and
Outputs a regulated voltage derived from Vcc. Connect a
capacitor for stabilization. When this pin is not used,
capacitor for
stabilization or leave it open.
open
Step-up
capacitance
Voltage-input pin for step-up circuit 1. When the Vci
adjuster is used, input the power supply from VciOUT.
When not used, input the external power supply.
Connect capacitor for stabilization. When the internal
power supply circuit is not used, leave this pin open.
A voltage that doubles or triples the voltage between
Vci1 and GND is output here. The step-up factor can
be set in an internal register.
When step-up circuit is used, connect a step-up capacitor.
11
HD66766R
Rev. 1.0-1 / September 2002
Table 4 cont.
Number of
Pins
Signals
I/O
Connected to
Functions
C12+, C12-
2
—
Step-up
capacitance
When step-up circuit is used, connect a step-up capacitor.
C21+, C21-
2
—
Step-up
capacitance
When step-up circuit is used, connect a step-up capacitor.
C22+, C22-
2
—
Step-up
capacitance
When step-up circuit is used, connect a step-up capacitor.
C23+, C23-
2
—
Step-up
capacitance
When step-up circuit is used, connect a step-up capacitor.
C24+, C24-
2
—
Step-up
capacitance
When step-up circuit is used, connect a step-up capacitor.
CEP, CEM
2
—
Step-up
capacitance or
open
Connect a step-up capacitor to generate VCL level by
VCH and VM. When step-up circuit is not used, leave
this pin open.
VREFL
1
—
VCC or external
power supply
Inputs reference voltage for LCD drives power supply.
Input lower level than Vcc. Since input current does
not run, level input, which is divided by resistors, is also
possible.
VREFM
1
—
Capacitor for
stabilization or
external power
supply
Connect capacitor for stabilization for internal power
supply. When internal operational amplifier is not used,
supply external voltage.
BIASC
1
—
Capacitor for
stabilization or
open
Connect capacitor for stabilization for internal power
supply.
VCC, GND
2
—
Power supply
VCC: + 2.2 V to + 3.6 V; GND (logic): 0 V
AVCC
1
—
—
VCC for power supply circuit. Input the same level of
voltage as VCC.
AGND
1
—
OSC1,
OSC2
2
I/O
Oscillation-resistor Connect an external resistor for R-C oscillation. When
providing clocks from outside, input clock to OCS1 and
leave OSC2 open.
RESET*
1
I
MPU or external
R-C circuit
VccDUM
1
O
Input pins
Outputs the internal VCC level; shorting this pin sets the
adjacent input pin to the VCC level.
GNDDUM
1
O
Input pins
Outputs the internal GND level; shorting this pin sets the
adjacent input pin to the GND level.
Dummy
1
—
—
Dummy pad. Must be left disconnected.
TEST1,
TEST 2
2
I
GND
Test pin. Must be fixed at GND level.
—
Open unused pins
GND for power supply circuit.
Reset pin. Initializes the LSI when low. Must be reset
after power-on. Since HCD66766RBP has three
RESET pins, use one pin and open unused two pins.
12
HD66766R
Rev. 1.0-1 / September 2002
Block Function Description
System Interface
The HD66766R has five high-speed system interfaces: an 80-system 16-bit/8-bit bus, a 68-system 16bit/8-bit bus, and a Clock synchronized serial interface. The IM2-0 pins select the interface mode.
The HD66766R has three 16-bit registers: an index register (IR), a write data register (WDR), and a read
data register (RDR). The IR stores index information from the control registers and the GRAM. The
WDR temporarily stores data to be written into control registers and the GRAM, and the RDR
temporarily stores data read from the GRAM. Data written into the GRAM from the MPU is first written
into the WDR and then is automatically written into the GRAM by internal operation. Data is read
through the RDR when reading from the GRAM, and the first read data is invalid and the second and the
following data are normal.
Execution time for instruction excluding oscillation start is 0-clock cycle and instructions can be written
in succession.
Table 5
Register Selection (8/16 Parallel Interface)
80-series Bus
68-series Bus
WR
RD
R/W
RS
Operations
0
1
0
0
Writes indexes into IR
1
0
1
0
Reads internal status
0
1
0
1
Writes into control registers and GRAM through WDR
1
0
1
1
Reads from GRAM through RDR
Table 6
Register Selection (Clock synchronized Serial Interface)
Start bytes
R/W Bit
RS Bit
Operations
0
0
Writes indexes into IR
1
0
Reads internal status
0
1
Writes into control registers and GRAM through WDR
1
1
Reads from GRAM through RDR
Bit Operation
The HD66766R supports the following functions. A write data mask function that selects data into the
GRAM in bit units, and a logic operation function that performs logic operations or conditional
determination on the display data set in the GRAM and writes into the GRAM. With the 16-bit bus
interface, these functions can greatly reduce the processing lord of the MPU graphics software the display
data in the GRAM at high speed. For details, see the Graphics Operation Function section.
Address Counter (AC)
The address counter (AC) assigns address to the GRAM. When an address set instruction is written into
the IR, the address information is sent from the IR to the AC. After writing into the GRAM, the AC is
automatically incremented by 1 (or decrement by 1). After reading from the GRAM, the AC is not
updated.
13
HD66766R
Rev. 1.0-1 / September 2002
Graphics RAM (GRAM)
The graphics RAM (GRAM) has twelve bits/pixel and stores the bit-pattern data of 132 x 176 bytes.
PWM Grayscale Palette Circuit
The grayscale palette generates a PWM signal, which corresponds to specified grayscale level. Any 65K
out of the 140K possible colors can be displayed at the same time.
Grayscale Control Circuit
The grayscale control circuit performs 16-grayscale control with the pulse width modulation (PWM)
method for grayscale display for each color.
Timing Generator
The timing generator generates timing signals for the operation of internal circuits such as the GRAM.
The RAM read timing for display and internal operation timing by MPU access is generated separately to
avoid interference with one another.
Oscillation Circuit (OSC)
The HD66766R can provide R-C oscillation simply through the addition of an external oscillation-resistor
between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display
size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also
be supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be
reduced.
Liquid Crystal Display Driver Circuit
The liquid crystal display driver circuit consists of 176 common signal drivers (COM1 to COM176) and
396 segment signal drivers (SEG1 to SEG396).
Display pattern data from GRAM is latched to the 396-bit latch circuit. The latched data then enables the
segment signal drivers to generate drive waveform outputs. The common driver outputs one of the VCH,
VM or VCL voltage level. The SGS bit can change the shift direction of 396-bit data for the segment. The
CMS bit can also change the shift direction for the common by selecting an appropriate direction for the
device-mounting configuration.
When display is off, or during the standby or sleep mode, all the above common and segment signal
drivers output the GND level, halting the display.
LCD drive power supply circuit
LCD drive power supply circuit generates VCH, VSH, VM and VCL voltage level to drive LCD panel.
14
HD66766R
Rev. 1.0-1 / September 2002
GRAM ADDRESS DIAGRAM (HD66766R)
DB
15
DB
15
DB
0
DB
15
DB
0
DB DB
0 15
"0001"H
"0002"H
"0003"H
"0080"H
"0100"H
"0101"H
"0102"H
"0103"H
"0200"H
"0201"H
"0202"H
"0203"H
COM173
"0300"H
"0301"H "0302"H
COM5
COM6
COM172
"0400"H
"0401"H
COM171
COM7
COM8
DB DB
0 15
DB DB
0 15
S396
S395
S394
S393
S392
S391
S390
S389
S388
S386
DB
15
S387
S385
DB
15
S12
DB
0
S11
S8
S7
S6
S5
S4
S3
DB
0
S10
CMS=1
S9
CMS=0
COM1
S1
SEG/COM pins
S2
Table 7 Relationship between GRAM address and display position (SGS = “0”)
DB
0
"0082"H
"0083"H
"0180"H
"0081"H
"0181"H
"0182"H
"0183"H
"0280"H
"0281"H
"0282"H
"0283"H
"0303"H
"0380"H
"0381"H
"0382"H
"0383"H
"0402"H
"0403"H
"0480"H
"0481"H
"0483"H
"0500"H
"0501"H
"0502"H
"0503"H
"0580"H
"0581"H
"0482"H
"0582"H
COM170
"0600"H
"0601"H
"0602"H
"0603"H
"0680"H
"0681"H
"0682"H
"0683"H
COM169
"0700"H
"0701"H
"0702"H
"0703"H
"0780"H
"0781"H
"0782"H
"0783"H
COM9
COM168
"0800"H
"0801"H
"0803"H
"0880"H
"0881"H
"0882"H
"0883"H
COM10
COM167
"0900"H
"0901"H
"0802"H
"0902"H
"0903"H
"0980"H
"0981"H
"0982"H
"0983"H
COM11
COM166
"0A00"H
"0A01"H
"0A02"H
"0A03"H
"0A80"H
"0A81"H
"0A82"H "0A83"H
COM12
COM165
"0B00"H
"0B01"H
"0B80"H
"0B81"H
"0B82"H "0B83"H
COM13
COM164
"0B02"H "0B03"H
"0C00"H "0C01"H "0C02"H "0C03"H
"0C80"H
"0C81"H
"0C82"H "0C83"H
COM14
COM163
"0D80"H
"0D81"H
COM15
COM162
"0D00"H "0D01"H "0D02"H "0D03"H
"0E00"H "0E01"H "0E02"H "0E03"H
"0E80"H
"0E81"H
"0D82"H "0D83"H
"0E82"H "0E83"H
COM16
COM161
"0F00"H
COM176
COM2
COM175
COM3
COM174
COM4
"0000"H
"0F01"H
"0F02"H
"0F03"H
"0F80"H
"0F81"H
"0583"H
COM17
COM160
"1000"H
"1001"H
"1002"H
"1003"H
"1080"H
"1081"H
"0F82"H "0F83"H
"1082"H "1083"H
COM18
COM159
"1100"H
"1101"H
"1102"H
"1103"H
"1180"H
"1181"H
"1182"H
"1183"H
COM19
COM158
"1200"H
"1201"H
"1202"H
"1203"H
"1280"H
"1281"H
"1282"H
"1283"H
COM20
COM157
"1300"H
"1301"H
"1302"H
"1303"H
"1380"H
"1381"H
"1382"H
"1383"H
COM169
COM8
"A800"H
"A801"H
"A802"H "A803"H
"A880"H
"A881"H
"A980"H
"A981"H
"A882"H "A883"H
"A982"H "A983"H
"AA80"H
"AA81"H
"AA82"H "AA83"H
"AB80"H
"AB81"H
"AB82"H "AB83"H
COM170
COM7
"A900"H
"A901"H
"A902"H "A903"H
COM171
COM6
"AA00"H "AA01"H
COM172
COM5
"AB00"H "AB01"H
"AA02"H "AA03"H
"AB02"H "AB03"H
COM173
COM4
"AC80"H "AC81"H
COM174
COM3
"AC00"H "AC01"H "AC02"H "AC03"H
"AD00"H "AD01"H "AD02"H "AD03"H
"AD80"H "AD81"H
"AC82"H "AC83"H
"AD82"H "AD83"H
COM175
COM2
"AE00"H "AE01"H
"AE80"H "AE81"H
"AE82"H "AE83"H
COM176
COM1
"AF00"H "AF01"H
"AF80"H
"AF82"H "AF83"H
"AE02"H "AE03"H
"AF02"H "AF03"H
"AF81"H
Table 8 Relationship between GRAM data and output pin
GRAM DATA
Selected
palette
Output pin
DB
DB
15
14
DB
13
DB
12
PK palette
DB
11
DB
10
DB
9
DB
8
DB
7
DB
6
PK palette + FRC
SEG (3n+1)
DB
5
DB
4
DB
3
DB
2
DB
1
PK palette
SEG (3n+2)
SEG (3n+3)
Note: n = Lower 8 bits address (0 to 131)
15
DB
0
HD66766R
DB
15
DB
15
COM1
COM176 "0083"H "0082"H
"0081"H "0080"H
COM2
COM175 "0183"H "0182"H
COM174 "0283"H "0282"H
"0181"H "0180"H
"0281"H "0280"H
COM173 "0383"H "0382"H
COM172 "0483"H "0482"H
"0381"H "0380"H
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM171 "0583"H "0582"H
COM170 "0683"H "0682"H
COM169 "0783"H "0782"H
COM168 "0883"H "0882"H
DB
15
DB
0
DB
15
DB
0
S396
DB
15
S395
DB
0
S394
DB
0
DB
15
S392
S393
DB
0
S386
S387
S8
S9
S7
DB
0
S389
S390
S391
DB
0
S388
DB
15
S385
DB
0
S10
S11
S12
CMS=1
CMS=0
S5
S6
SEG/COM pins
S3
S4
Relationship between GRAM address and display position (SGS = “1”)
S1
S2
Table 9
Rev. 1.0-1 / September 2002
DB
15
"0003"H "0002"H
"0103"H "0102"H
"0001"H "0000"H
"0101"H "0100"H
"0203"H "0202"H
"0303"H "0302"H
"0201"H "0200"H
"0481"H "0480"H
"0581"H "0580"H
"0681"H "0680"H
"0781"H "0780"H
"0403"H "0402"H
"0503"H "0502"H
"0401"H "0400"H
"0501"H "0500"H
"0603"H "0602"H
"0703"H "0702"H
"0601"H "0600"H
"0701"H "0700"H
"0881"H "0880"H
"0981"H "0980"H
"08030"H "0802"H
"0801"H "0800"H
"0901"H "0900"H
COM10 COM167 "0983"H "0982"H
COM11 COM166 "0A83"H "0A82"H "0A81"H "0A80"H
COM12 COM165 "0B83"H "0B82"H "0B81"H "0B80"H
COM13 COM164 "0C83"H "0C82"H "0C81"H "0C80"H
"0903"H "0902"H
"0301"H "0300"H
"0A03"H "0A02"H "0A01"H "0A00"H
"0B03"H "0B02"H "0B01"H "0B00"H
"0C03"H "0C02"H "0C01"H "0C00"H
"0D03"H "0D02"H "0D01"H "0D00"H
"0E03"H "0E02"H "0E01"H "0E00"H
COM14 COM163 "0D83"H "0D82"H "0D81"H "0D80"H
COM15 COM162 "0E83"H "0E82"H "0E81"H "0E80"H
COM17 COM160 "1083"H "1082"H
COM18 COM159 "1183"H "1182"H
COM19 COM158 "1283"H "1282"H
"1081"H "1080"H
"1181"H "1180"H
"1281"H "1280"H
"0F03"H "0F02"H "0F01"H "0F00"H
"1003"H "1002"H "1001"H "1000"H
"1103"H "1102"H "1101"H "1100"H
"1203"H "1202"H "1201"H "1200"H
COM20 COM157 "1383"H "1382"H
"1381"H "1380"H
"1303"H "1302"H
COM16 COM161 "0F83"H "0F82"H "0F81"H "0F80"H
"1301"H "1300"H
COM7
"A883"H "A882"H "A881"H "A880"H
"A983"H "A982"H "A981"H "A980"H
"A803"H "A802"H "A801"H "A800"H
"A903"H "A902"H "A901"H "A900"H
COM171
COM6
"AA83"H "AA82"H "AA81"H "AA80"H
"AA03"H "AA02"H "AA01"H "AA00"H
COM172
COM5
"AB83"H "AB82"H "AB81"H "AB80"H
"AB03"H "AB02"H "AB01"H "AB00"H
COM173
COM4
COM174
COM3
"AC83"H "AC82"H "AC81"H "AC80"H
"AD83"H "AD82"H "AD81"H "AD80"H
"AC03"H "AC02"H "AC01"H "AC00"H
"AD03"H "AD02"H "AD01"H "AD00"H
COM175
COM2
COM1
"AE83"H "AE82"H "AE81"H "AE80"H
"AF83"H "AF82"H "AF81"H "AF80"H
"AE03"H "AE02"H "AE01"H "AE00"H
COM176
COM169
COM8
COM170
Table 10
GRAM DATA
Selected
palette
Output pin
"AF03"H "AF02"H "AF01"H "AF00"H
Relationship between GRAM data and output pin
DB
DB
15
14
DB
13
DB
12
PK palette
SEG (396-3n)
DB
11
DB
10
DB
9
DB
8
DB
7
DB
6
PK palette + FRC
DB
5
DB
4
DB
3
DB
2
DB
1
DB
0
PK palette
SEG (395-3n)
SEG (394-3n)
Note: n = Lower 8 bits address (0 to 131)
16
HD66766R
Rev. 1.0-1 / September 2002
Instructions
Outline
The HD66766R uses the 16-bit bus architecture. Before the internal operation of the HD66766R starts,
control information is temporarily stored in the registers described below to allow high-speed interfacing
with a high-performance microcomputer. The internal operation of the HD66766R is determined by
signals sent from the microcomputer. These signals, which include the register selection signal (RS), the
read/write signal (R/W), and the data bus signals (DB15 to DB0), make up the HD66766R instructions.
•
There are eight categories of instructions that:
•
Specify the index
•
•
Read the status
Control the display
•
Control power management
•
Process the graphics data
•
Set internal GRAM addresses
•
Transfer data to and from the internal GRAM
•
Set grayscale level for the internal grayscale palette table
Normally, instructions that write data are used the most. However, an auto-update of internal GRAM
addresses after each data write can lighten the microcomputer program load. Because instructions are
executed in 0 cycles, they can be written in succession.
17
HD66766R
Rev. 1.0-1 / September 2002
Instruction Descriptions
Index: IR
The index instruction specifies the RAM control indexes (R00h to R3Fh). It sets the register number in
the range of 000000 to 111001 in binary form. However, R40 to R44 are disabled since they are test
registers.
R/W
RS
W
0
DB15 DB14 DB13 DB12 DB11 DB10 DB9
*
*
*
*
*
*
DB8
DB7
*
*
*
Figure 4
DB6
DB5
ID6 ID5
DB4
DB3
DB2
DB1
DB0
ID4 ID3 ID2 ID1 ID0
Index Instruction
Status Read: SR
The status read instruction reads the internal status of the HD66766R.
L7–0: Indicate the driving raster-row position where the liquid crystal display is being driven.
C6–0: Read the contrast setting values (CT6-0)
R/W
RS
R
0
DB15 DB14
L7
DB13 DB12
L6
L5
L4
DB11 DB10
L3
Figure 5
DB9 DB8
L2
L1
L0
DB7 DB6 DB5
0
C6
DB4 DB3
C5 C4
DB2
C3
C2
DB1
C1
DB0
C0
Status Read Instruction
Start Oscillation (R00h)
The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After
issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction.
(See the Standby Mode section.)
If this register is read forcibly, “0766”H is read.
R/W
RS
DB15 DB14 DB13 DB12 DB11 DB10
w
1
*
*
*
R
1
0
0
0
*
0
Figure 6
*
0
DB9
DB8
*
*
*
1
1
1
DB7
*
0
DB6
DB4
*
*
*
1
1
0
Start Oscillation Instruction
18
DB5
DB3
*
0
DB2
DB1
DB0
*
*
1
1
1
0
HD66766R
Rev. 1.0-1 / September 2002
Driver Output Control (R01h)
R/W
RS
w
1
DB15 DB14 DB13 DB12 DB11 DB10
0
0
0
0
Figure 7
0
0
DB9
DB8
CMS SGS
DB7
DB6
DB5
0
0
0
DB4
NL4
DB3
DB2
NL3 NL2
DB1
DB0
NL1 NL0
Driver Output Control Instruction
CMS: Selects the output shift direction of a common driver. When CMS = 0, COM1 shifts to COM176.
When CMS = 1, COM176 shifts to COM1.
SGS: Selects the output shift direction of the segment driver. When SGS = 0, data are output SEG1 to
SEG396. When SGS = 1, data are output SEG396 to SEG1. When SGS = 0, SEG1 pin assigns the
color display to <R><G><B>. When SGS = 1, SEG396 pin assigns <R><G><B>. Re-write to the
RAM when intending to change the SGS bit.
NL4-0: Specify the LCD drive duty ratio. The duty ratio can be adjusted for every eight raster-rows.
GRAM address mapping does not depend on the setting value of the drive duty ratio.
19
HD66766R
Rev. 1.0-1 / September 2002
Table 11 NL Bits and Drive Duty
NL4 NL3 NL2 NL1
NL0
Display Size
LCD drive
duty cycle
Common driver used
CMS="0"
CMS="1"
Com176 - Com169
0
0
0
0
0
396 x 8 dots
1/8 Duty
Com1 - Com8
0
0
0
0
1
396 x 16 dots
1/16 Duty
Com1 - Com16
Com176 - Com161
0
0
0
1
0
396 x 24 dots
1/24 Duty
Com1 - Com24
Com176 - Com153
0
0
0
1
1
396 x 32 dots
1/32 Duty
Com1 - Com32
Com176 - Com145
0
0
1
0
0
396 x 40 dots
1/40 Duty
Com1 - Com40
Com176 - Com137
0
0
1
0
1
396 x 48 dots
1/48 Duty
Com1 - Com48
Com176 - Com129
0
0
1
1
0
396 x 56 dots
1/56 Duty
Com1 - Com56
Com176 - Com121
0
0
1
1
1
396 x 64 dots
1/64 Duty
Com1 - Com64
Com176 - Com113
0
1
0
0
0
396 x 72 dots
1/72 Duty
Com1 - Com72
Com176 - Com105
0
1
0
0
1
396 x 80 dots
1/80 Duty
Com1 - Com80
Com176 - Com97
0
1
0
1
0
396 x 88 dots
1/88 Duty
Com1 - Com88
Com176 - Com89
0
1
0
1
1
396 x 96 dots
1/96 Duty
Com1 - Com96
Com176 - Com81
0
1
1
0
0
396 x 104 dots
1/104 Duty
Com1 - Com104
Com176 - Com73
0
1
1
0
1
396 x 112 dots
1/112 Duty
Com1 - Com112
Com176 - Com65
0
1
1
1
0
396 x 120 dots
1/120 Duty
Com1 - Com120
Com176 - Com57
0
1
1
1
1
396 x 128 dots
1/128 Duty
Com1 - Com128
Com176 - Com49
1
0
0
0
0
396 x 136 dots
1/136 Duty
Com1 - Com136
Com176 - Com41
1
0
0
0
1
396 x 144 dots
1/144 Duty
Com1 - Com144
Com176 - Com33
1
0
0
1
0
396 x 152 dots
1/152 Duty
Com1 - Com152
Com176 - Com25
1
0
0
1
1
396 x 160 dots
1/160 Duty
Com1 - Com160
Com176 - Com17
1
0
1
0
0
396 x 168 dots
1/168 Duty
Com1 - Com168
Com176 - Com9
1
0
1
0
1
396 x 176 dots
1/176 Duty
Com1 - Com176
Com176 - Com1
20
HD66766R
Rev. 1.0-1 / September 2002
LCD-Driving-Waveform Control (R02h)
R/W
RS
W
1
DB15 DB14 DB13 DB12 DB11 DB10
0
0
0
0
0
DB9
RST B/C
DB8
DB7
DB6
EOR
0
0
DB5
DB4
DB3
DB2
DB1
DB0
NW5 NW4 NW3 NW2 NW1 NW0
Figure 8 LCD-Driving-Waveform Control Instruction
B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive.
When B/C = 1, a C-pattern waveform is generated and alternates in each raster-row specified by bits EOR
and NW4–NW0 in the LCD-driving-waveform control register. For details, see the n-raster-row
Reversed AC Drive section.
EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and
the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not
alternated by combining the set values of the number of the LCD drive duty ratio and the n raster-row.
For details, see the n-raster-row Reversed AC Drive section.
RST: When RST = 1, software reset function is started. This function is the same as hardware RESET
pin. It takes 10 clock cycle period. This bit is automatically cleared after reset function is completed.
Therefore, before 10-clock cycle other instruction can not be issued. Do not set the RST bit during
stand-by mode.
NW5–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C =
1). NW5–NW0 alternate for every set value + 1 raster-row, and the first to the 64th raster-rows can be
selected.
Power Control 1 (R03h)
Power Control 2 (R0Ch)
R/W
RS
w
1
w
1
DB15 DB14 DB13 DB12 DB11 DB10
DB9
DB8
BS3 BS2 BS1 BS0 BT3 BT2 BT1 BT0
0
0
0
0
0
0
0
0
DB7
0
0
DB6
DB5
DB4
DB3
DB2
DB1
DB0
D C 2 D C 1 D C 0 A P 1 A P 2 S L P S TB
0
0
0
0
VC2 VC1 VC0
Figure 9 Power Control Instruction
BS3-0: The LCD drive bias value is set. The LCD drive bias value can be selected according to its drive
duty ratio and voltage.
BT2–0: The output factor of step-up circuit is switched. The LCD drive voltage level can be selected
according to its drive duty ratio and bias. Lower amplification of the step-up circuit consumes less
current.
BT3: Operation/halt of voltage inverting circuit is set. BT3=”0”: voltage-inverting circuit is halted.
BT3=”1”: voltage-inverting circuit is operated. See the Power-on/off Sequence section to be activated.
21
HD66766R
Rev. 1.0-1 / September 2002
DC2-0: The operating frequency in the step-up circuit is selected. When the step-up operating
frequency is high, the driving ability of the step-up circuit becomes high, but the current consumption is
increased. Adjust the frequency considering the step-up ability and the current consumption.
AP1–0: The amount of fixed current from the fixed current source in the operational amplifier for the
LCD is adjusted. When the amount of fixed current is large, the LCD driving ability and the display
quality become high, but the current consumption is increased. Adjust the fixed current considering the
display quality and the current consumption. During no display, when AP1-0 = “00”, the current
consumption can be reduced by ending the operational amplifier and step-up circuit operation.
VC2-0: Set an adjustment factor for the Vci1 voltage (VC2-0).
SLP: When SLP = 1, the HD66766R enters the sleep mode, where the internal display operations are
halted except for the R-C oscillator, thus reducing current consumption. Only the following instructions
can be executed during the sleep mode.
Power control (BS2–0, BT3-0, DC2–0, AP1–0, SLP, STB)
During the sleep mode, the other GRAM data and instructions cannot be updated although they are
retained.
STB: When STB = 1, the HD66766R enters the standby mode, where display operation completely stops,
halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses
are supplied. For details, see the Standby Mode section. Only the following instructions can be
executed during the standby mode.
a. Standby mode cancel (STB = “0”)
b. Start oscillation
During the standby mode, the GRAM data and instructions may be lost. To prevent this, they must be
set again after the standby mode is canceled.
The VSH voltage should be controlled to be less than supply voltage or device proof voltage level since
VCH voltage level is generated by bias amplifier ratio corresponding to LCD driving bias value and
boosting ratio of the step-up circuit 2.
22
HD66766R
Rev. 1.0-1 / September 2002
Table 12 Display bias setting table
Determine the LCD drive bias according to its display duty, and select combination of boosting ratio of
the step-up circuit 2 and bias amplifier ratio so as not to exceed voltage control of Vci2 and VCH. See
the LCD Voltage Generation Circuit regarding how to determine the LCD drive bias, VCH voltage and
contrast adjustment for the following settings.
LCD
driving
bias
1/2
1/4
1/6
1/8
1/9
1/10
1/11
1/12
1/13
Booster ratio of
the step-up
circuit 2 (ND2)
x2
x3
x4
x2
x3
x4
x2
x3
x4
x2
x3
x4
x2
x3
x4
x2
x3
x4
x2
x3
x4
x3
x4
x5
x3
x4
x5
BS3
BS2
BS1
BS0
0
0
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
1
0
1
0
0
0
1
1
0
1
1
0
0
1
0
0
0
0
1
1
0
0
1
1
1
0
0
0
0
0
0
1
0
1
1
1
1
23
Bias
ratio
(NB)
0.75
N/A
N/A
1.25
0.825
N/A
1.75
1.165
N/A
N/A
1.50
1.125
N/A
1.675
1.25
N/A
1.825
1.375
N/A
2.00
1.50
N/A
1.625
1.3
N/A
1.75
1.4
Vci2
(Vci2≤VOU
T-0.5V)
1.50 x VM
2.50 x VM
1.75 x VM
3.50 x VM
2.33 x VM
3.00 x VM
2.25 x VM
3.35 x VM
2.50 x VM
3.65 x VM
2.75 x VM
4.00 x VM
3.00 x VM
3.25 x VM
2.60 x VM
3.45 x VM
2.80 x VM
VCH
(VCH≤22V)
Vci2 x 2
Vci2 x 2
Vci2 x 3
Vci2 x 2
Vci2 x 3
Vci2 x 3
Vci2 x 4
Vci2 x 3
Vci2 x 4
Vci2 x 3
Vci2 x 4
Vci2 x 3
Vci2 x 4
Vci2 x 4
Vci2 x 5
Vci2 x 4
Vci2 x 5
HD66766R
Rev. 1.0-1 / September 2002
Table 13 Display bias setting table
VC2
VC1
VC0
Vci1 control range
0
0
0
0.92 x Vcc
0
0
1
0.87 x Vcc
0
1
0
0.83 x Vcc
0
1
1
0.8 x Vcc
1
0
0
0.76 x Vcc
1
0
1
0.73 x Vcc
1
1
0
0.68 x Vcc
1
1
1
Vci1 control amplifier suspends.
(Vci1 can be supplied externally.)
Table 14 AP bits and amount of fixed current
AP1
AP0
Amount of fixed current in the operational amplifier
0
0
Operational amplifier and booster do not operate.
0
1
Small
1
0
Middle
1
1
Large
Table 15 Output voltage ratio of the booster 1 and 2
VOUT output of the booster 1
VCH output of the booster 2
(Use VOUT within the range of 4.0 to 5.75V.)
(Set VCH lower than 22.0V.)
0
2 x Vci1
2 x Vci2
0
1
3 x Vci1
2 x Vci2
0
1
0
2 x Vci1
3 x Vci2
0
1
1
3 x Vci1
3 x Vci2
1
0
0
2 x Vci1
4 x Vci2
1
0
1
3 x Vci1
4 x Vci2
1
1
0
2 x Vci1
5 x Vci2
1
1
1
3 x Vci1
5 x Vci2
BT2
BT1
BT0
0
0
0
Set the factor of the booster 2 according to voltage of Vci2 and VCH.
When the factor is set low, current consumption can be lowered.
24
HD66766R
Rev. 1.0-1 / September 2002
Table 16 Operating clock frequency of the Booster 1 and 2
DC2
DC1
DC0
Operating clock frequency in
the booster 1
Operating clock frequency in the voltage
inverting circuit and the booster 2
0
0
0
32-divided clock
32-divided clock
0
0
1
64-divided clock
32-divided clock
0
1
0
32-divided clock
64-divided clock
0
1
1
64-divided clock
64-divided clock
1
0
0
32-divided clock
96-divided clock
1
0
1
64-divided clock
96-divided clock
1
1
0
32-divided clock
128-divided clock
1
1
1
64-divided clock
128-divided clock
Operation of voltage inverting circuit
Table 17
BT3
0
1
VCL output of the voltage inverting circuit
(Set VCL no lower than –22.0V.)
Halt boosting
Output voltage between VCH and VM by inverting
Set activation of voltage inverting circuit with output of the booster 2 stable. *See the Power-on/off
Sequence section.
DB 15 Contrast Control (R04h)
R/W
RS
W
1
DB15 DB14
0
DB13
0
0
DB12 DB11 DB10
0
0
DB9 DB8
DB7
VR2 VR1 VR0
0
DB6
DB5
CT6–0: These bits control the LCD drive voltage to adjust 128-step contrast.
Table 18 Contrast control
CT6
CT5
CT4
CT3
CT2
CT1
CT0
0
0
0
0
0
0
0
1.016R (Minimum)
0
0
0
0
0
0
1
1.008R
0
0
0
0
0
1
0
1.000R
0
0
0
0
0
1
1
0.992R
0
0
0
0
1
0
0
0.984R
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Contrast
1
1
1
1
1
1
0
0.008R
1
1
1
1
1
1
1
0.000R (Maximum)
25
DB2
DB1
DB0
CT6 CT5 CT4 CT3 CT2 CT1 CT0
Figure 10 Contrast Control Instruction
:
DB4 DB3
HD66766R
Rev. 1.0-1 / September 2002
VR2–0: These bits amplifies 1.1 to 3.4 times the VREFL as output voltage VREFM of LCD drive
reference voltage generation circuit. The VREFM should be smaller than VOUT level.
Table 19 Contrast control
VR2
VR1
VR0
VREFM voltage
0
0
0
VREFL x 1.1
0
0
1
VREFL x 1.3
0
1
0
VREFL x 1.4
0
1
1
VREFL x 1.5
1
0
0
VREFL x 1.7
1
0
1
VREFL x 1.8
1
1
0
VREFL x 3.4
26
HD66766R
Rev. 1.0-1 / September 2002
Entry Mode (R05h )
Compare resister (R06h)
The write data sent from the microcomputer is modified in the HD66766R and written to the GRAM. The
display data in the GRAM can be quickly rewritten to reduce the load of the microcomputer software
processing. For detail, see the Graphics Operation Function section.
R/W
RS
W
1
W
1
DB15 DB14 DB13 DB12 DB11 DB10
SPR
0
0
0
0
0
DB9
DB8
DB7
DB6
HWM
0
0
0
DB5
DB4
I/D1 I/D0
DB3
DB2
DB1
DB0
AM LG2 LG1 LG0
CP15 CP14 CP13 CP12 CP11 CP10 CP9 CP8 CP7 CP6 CP5 CP4 CP3 CP2 CP1 CP0
Figure 11 Compare Resister Instruction
HWM: When HWM=1, data can be written to the GRAM at high speed. In high-speed write mode, four
words of data are written to the GRAM in a single operation after the writing to RAM four times. Write to
RAM four times, otherwise the four words cannot be written to the GRAM. Thus, set the lower 2 bits to 0
when setting the RAM address. For details, see the High-Speed RAM Write Mode section.
I/D1-0: When I/D1-0 = “1”, the address counter (AC) is automatically incremented by 1 after the data is
written to the GRAM. When I/D1-0 = “0”, the AC is automatically decremented by 1 after the data is
written to the GRAM. The increment/decrement setting of the address counter by I/D1-0 is done
independently for the upper (AD15-8) and lower (AD7-0) addresses. The AM bit sets the direction of
moving through the addresses when the GRAM is written to.
AM set the automatic update method of the AC after the data is written to the GRAM. When AM= “0”,
the data is continuously written in parallel. When AM = “1”, the data is continuously written vertically.
When window address range is specified, the GRAM in the window address range can be written to
according to the I/D1-0 and AM settings.
SPR: When SPR=1, 4096colors are displayed. 12 bit (DB11-DB0) are used for this display. Refer to
“4096 color display function” in page 57 for details.
I/D1-0="00"
I/D1-0="01"
I/D1-0="10"
I/D1-0="11"
Horizontal: decrement
Vertical: decrement
Horizontal: increment
Vertical: decrement
Horizontal: decrement
Vertical: increment
Horizontal: increment
Vertical: increment
0000h
0000h
0000h
0000h
AM="0"
Horizontal
AF83h
AF83h
0000h
0000h
AF83h
0000h
AF83h
0000h
AM="1"
Vertical
AF83h
AF83h
AF83h
AF83h
Note: When a window address range has been set the GRAM can only be written to within that range.
Figure 12
Address Direction Settings
27
HD66766R
Rev. 1.0-1 / September 2002
LG2-0: Compare the data read from the GRAM by the microcomputer with the compare resisters (CP150) by a compare/logical operation and writes the results to GRAM. For details, see the Logical/Compare
Operation Function.
CP15-0: Set the compare resister for the compare operation with the data read from the GRAM or written
by the microcomputer.
DB15 DB14 DB13 DB12 DB11 DB10 DB9
Write data sent
from the
microcomputer
(DB15-0)
Logical/compare
operation
(LG2 - 0)
Write data mask *
(WM15 - 0)
0
0
0
0
0
0
0
DB8
DB7
1
1
DB6
1
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
0
Logical operation (with compare resister)
LG2-0 = "110”: Replacement of matched write data
LG2-0 = "111”: Replacement of unmatched writes data
Write data mask (WM15-0)
GRAM
Note: The write data mask ( WM15-0 ) is set by the resister in the (20) RAM Write Data Mask section.
Figure 13 Logical/Compare Operation for the GRAM
28
HD66766R
Rev. 1.0-1 / September 2002
Display Control (R07h)
R/W
RS
W
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9
DB8
VLE2 VLE1
SPT
0
0
0
0
0
DB7
DB6
DB5
0
0
0
DB4
0
DB3
DB2
B/W REV
DB1
DB0
D1
D0
Figure 14 Display Control
VLE2–1: When VLE1 = 1, a vertical scroll is performed in the 1st screen. When VLE2 = “1”, a vertical
scroll is performed in the 2nd screen. Vertical scrolling on the two screens can be independently
controlled.
SPT: When SPT = 1, the 2-division LCD drive is performed. For details, see the Screen-division
Driving Function section.
B/W: When B/W = “1”, displayed data can be “all” or “all off” regardless GRAM contents. (B/W = “1”,
REV = “0”: all pixel on, B/W = “1”, REV = “1”: all pixel off) When B/W = “1”, grayscale palette has to
be default value.
REV: Displays all character and graphics display sections with reversal when REV = 1. For details, see
the Reversed Display Function section. Since the grayscale level can be reversed, display of the same
data is enabled on normally-white and normally-black panels.
D1–0: Display is on when D1 = “1” and off when D1 = 0. When off, the display data remains in the
GRAM, and can be displayed instantly by setting D1 = “1”. When D1 is “0”, the display is off with all
of the SEG/COM pin outputs set to the GND level. Because of this, the HD66766R can control the
charging current for the LCD with AC driving.
When D1–0 = “01”, the internal display of the HD66766R is performed although the display is off.
When D1-0 = “00”, the internal display operation halts and the display is off.
Table 20 D Bits and Operation
D1
D0
SEG/COM Output
HD66766R Internal Display
Operation
0
0
GND
Halt
0
1
GND
Operate
1
0
Unlit display
Operate
1
1
Display
Operate
Notes: 1. Writing from the microcomputer to the GRAM is independent from the state of D1–0.
2. In the sleep and standby modes, D1–0 = 00. However, the register contents of D1–0 are not modified.
29
HD66766R
Rev. 1.0-1 / September 2002
Frame Cycle Control (R0Bh)
R/W
RS
W
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9
0
0
0
0
0
0
DB8
DIV1 DIV0
DB7
DB6
DB5
0
0
0
DB4
DB3
DB2
DB1
DB0
0 RTN3 RTN2 RTN1 RTN0
Figure 15
RTN3-0: Set the line retrace period (RTN3-0) to be added to raster-row cycles.
becomes long according to the number of clocks set at RTN3-0.
The raster-row cycle
DIV1-0: Set the division ratio of clocks for internal operation (DIV1-0). Internal operations are driven
by clocks which are frequency divided according to the DIV1-0 setting. Frame frequency can be
adjusted along with the line retrace period (RTN3-0). When changing the drive-duty, adjust the frame
frequency. For details, see the Frame Frequency Adjustment Function section.
Table 21 RTN Bits and Clock Cycles
RTN3 RTN2 RTN1 RTN1
Line retrace period
Clock Cycles per
(Clock Cycles)
one raster-row
0
0
0
0
0 clock
26 clock
0
0
0
1
1 clock
27 clock
0
0
1
0
2 clock
0
0
1
1
3 clock
28 clock
29 clock
:
:
:
:
:
:
1
1
1
0
14 clock
40 clock
1
1
1
1
15 clock
41 clock
Table 22 DIV Bits and Clock Frequency
Division ratio
Internal Operation
Clock Frequency
DIV1
DIV0
0
0
1
fosc / 1
0
1
2
fosc / 2
1
0
4
fosc / 4
1
1
8
fosc / 8
* fosc=R-C oscillation frequency
Formula for the frame frequency
fosc
Frame frequency =
Clock cycles per raster-row xdivision ratio x 1/duty cycle
fosc: RC oscillation frequency
Duty: Drive duty (NL bit)
Division ratio: DI V bit
Clock cycles per raster-row: (RTN+26) clock
30
[Hz]
HD66766R
Rev. 1.0-1 / September 2002
Vertical Scroll Control (R11h)
R/W
RS
DB15 DB14 DB13 DB12 DB11 DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
W
1
VL27 VL26 VL25 VL24 VL23 VL22 VL21 VL20 VL17 VL16 VL15 VL14 VL13 VL12 VL11 VL10
Figure 16 Vertical Scroll Control Instruction
VL17-10: Specify the display-start raster-row at the 1st screen display for vertical smooth scrolling. Any
raster-row from the first to 176th can be selected. After the 176th raster-row is displayed, the display
restarts from the first raster-row. The display-start raster-row (VL17-10) is valid only when VLE1 = “1”.
The raster-row display is fixed when VLE1 = “0”. (VLE1 is the 1st-screen vertical-scroll enable bit.)
VL27-20: Specify the display-start raster-row at the 2nd screen display. The display-start raster-row
(VL27-20) is valid only when VLE2 = “1”. The raster-row display is fixed when VLE2 = “0”. (VLE2
is the 1st-screen vertical-scroll enable bit.)
Table 23
VL27 VL26 VL25 VL24 VL23 VL22 VL21 VL20
VL17 VL16 VL15 VL14 VL13 VL12 VL11 VL10
Display start line
0
0
0
0
0
0
0
0
1'st raster - row
0
0
0
0
0
0
1
2'nd raster - row
0
0
0
0
0
0
0
1
0
3'rd raster - row
:
:
:
:
:
:
:
:
1
0
1
0
1
1
1
0
1
0
1
0
1
1
1
1
Note: Do not set over the 176th ("AF"H)
raster - row
31
:
175'th raster
row
176'th raster
row
-
HD66766R
Rev. 1.0-1 / September 2002
1st Screen Driving Position (R14h)
2nd Screen Driving Position (R15h)
R/W
RS
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2
DB1 DB0
W
1
SE17 SE16 SE15 SE14 SE13 SE12 SE11 SE10 SS17 SS16 SS15 SS14 SS13 SS12 SS11 SS10
W
1
SE27 SE26 SE25 SE24 SE23 SE22 SE21 SE20 SS27 SS26 SS25 SS24 SS23 SS22 SS21 SS20
Figure 17
SS17–0: Specify the driving start position for the first screen in a line unit. The LCD driving starts from
the 'set value + 1' common driver.
SE17–0: Specify the driving end position for the first screen in a line unit. The LCD driving is performed
to the 'set value + 1' common driver. For instance, when SS17–10 = “07”H and SE17–10 = “10”H are
set, the LCD driving is performed from COM8 to COM17, and non-selection driving is performed from
COM1 to COM7, COM18 and others. Ensure that SS17–10 ≤ SE17–10 ≤ “AF”H. For details, see the
Screen-division Driving Function section.
SS27–0: Specify the driving start position for the second screen in a line unit. The LCD driving starts
from the 'set value + 1' common driver. The second screen is driven when SPT = “1”.
SE27–0: Specify the driving end position for the second screen in a line unit. The LCD driving is
performed to the 'set value + 1' common driver. For instance, when SPT = “1”, SS27–20 = “20”H, and
SE27–20 = “4F”H are set, the LCD driving is performed from COM33 to COM80. Ensure that SS17–
10 ≤ SE17–10 ≤ SS27–20 ≤ SE27–20 ≤ “AF”H. For details, see the Screen-division Driving Function
section.
Horizontal RAM Address Position (R16h)
Vertical RAM Address Position (R17h)
R/W RS
DB15
DB14
DB13
DB12 DB11
DB10
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
W
1
HEA7 HEA6 HEA5 HEA4 HEA3 HEA2 HEA1 HEA0 HSA7 HSA6 HSA5 HSA4 HSA3 HSA2 HSA1 HSA0
W
1
VEA7 VEA6 VEA5 VEA4 VEA3 VEA2 VEA1 VEA0 VSA7 VSA6 VSA5 VSA4 VSA3 VSA2 VSA1 VSA0
Figure 18 Horizontal/Vertical RAM Address Position Instruction
HSA5-0/HEA5-0: Specify the horizontal start/end positions of a window for access in memory. Data can
be written to the GRAM from the address specified by HEA7-0 from the address specified by HSA5-0.
Note that an address must be set before RAM is written to. Ensure 00h ≤ HSA7-0 ≤ HEA7-0 ≤ 83h
VSA7-0/VEA7-0: Specify the vertical start/end positions of a window for access in memory. Data can be
written to the GRAM from the address specified by VEA7-0 from the address specified by VSA7-0. Note
that an address must be set before RAM is written to. Ensure “00”h ≤ VSA7-0 ≤ VEA7-0 ≤ “AF”h.
32
HD66766R
Rev. 1.0-1 / September 2002
HSA
HEA
0000h
VSA
Window address setting range:
"00"h
HSA7-0
HEA7-0
"00"h
VSA7-0
VEA7-0
Window Address
"83"h
"AF"h
VEA
GRAM Address space
AF83h
Figure 19 Window Address Setting Range
Note:
1. Ensure that the window address area is within the GRAM address space.
2. In high-speed write mode, data are written to GRAM in four-words.
Thus, dummy write operations should be inserted depending on the window address
area. For details, see the High-Speed Burst RAM Write Function section.
RAM Write Data Mask (R20h)
R/W
RS
W
1
DB15 DB14 DB13 DB12
DB11 DB10 DB9
DB8
WM15 WM14 WM13 WM12 WM11 WM10 WM9 WM8
DB7
DB6
DB5
DB DB3
DB2
DB1
DB0
WM7 WM6 WM5 WM4 WM3 WM2
WM1
WM0
Figure 20 RAM Write Data Mask Instruction
WM15–0: In writing to the GRAM, these bits mask writing in a bit unit. When WM15 = “1”, this bit
masks the write data of DB11 and does not write to the GRAM. Similarly, the WM10 to 0 bits mask the
write data of DB15 to 0 in a bit unit. When HDZ = “1”, mask processing is performed for 12-bit data
after dither processing. For details, see the Write Data Mask Function section.
RAM Address Set (R21h)
R/W
W
RS
DB15 DB14 DB13 DB12 DB11 DB10 DB9
DB8
DB7
DB6
DB5
DB4
1
AD15 AD14 AD13 AD12 AD11 AD10 AD9
AD8
AD7
AD6
AD5
AD4
DB3
AD3
DB2
AD2
DB1
AD1
DB0
AD0
Figure 21 RAM Address Set Instruction
AD15–0: Initially set GRAM addresses to the address counter (AC). Once the GRAM data is written,
the AC is automatically updated according to the AM and I/D bit settings. This allows consecutive
accesses without resetting addresses. Once the GRAM data is read, the AC is not automatically updated.
33
HD66766R
Rev. 1.0-1 / September 2002
GRAM address setting is not allowed in the standby mode. Ensure that the address is set within the
specified window address.
Table 24 GRAM Address Range
AD15 to AD0
GRAM Setting
"0000"H to “0083"H
Bitmap data for COM1
"0100"H to "0183"H
Bitmap data for COM2
"0200”H to "0283"H
Bitmap data for COM3
"0300"H to "0383"H
Bitmap data for COM4
"AC00"H to "AC83"H
Bitmap data for COM173
"AD00"H to "AD83"H
Bitmap data for COM174
"AE00"H to "AE83"H
Bitmap data for COM175
"AF00"H to "AF83"H
Bitmap data for COM176
Write Data to GRAM (R22h)
R/W
RS
W
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
WD
15
WD
8
WD
7
WD
6
WD
5
WD
4
WD
3
WD
2
WD
1
WD
0
WD
14
WD
13
WD
12
WD
11
WD
10
WD
9
Figure 22 Write Data to GRAM Instrction
WD15–0 : Write 16-bit data to the GRAM; This data calls each grayscale palette. After a write, the
address is automatically updated according to the AM and I/D bit settings. During the stand by mode, the
GRAM cannot be accessed.
GRAM write data during normal mode
DB15 DB14 DB13 DB12 DB11 DB10 DB9
DB8
DB7
WD15 WD14 WD13 WD12 WD11 WD10 WD9 WD8 WD7
R4
R3
R2
R1
R0
G5
G4
G3
G2
DB6
DB5
DB4
WD6 WD5
WD4
G1
G0
1 pixcel
Figure 23
34
B4
DB3
DB2
WD3 WD2
B3
B2
DB1
DB0
WD1 WD0
B1
B0
HD66766R
Rev. 1.0-1 / September 2002
Table 25
GRAM data setting
R4
R3
R2
R1
R0
G5
G4
G3
G2
G1
B4
B3
B2
B1
B0
0
0
0
0
0
0
PK05
PK04
PK03
PK02
PK01
PK00
0
0
0
0
1
0
PK15
PK14
PK13
PK12
PK11
PK10
0
0
0
1
0
0
PK25
PK24
PK23
PK22
PK21
PK20
0
0
0
1
1
0
PK35
PK34
PK33
PK32
PK31
PK30
0
0
1
0
0
0
PK45
PK44
PK43
PK42
PK41
PK40
0
0
1
0
1
0
PK55
PK54
PK53
PK52
PK51
PK50
0
0
1
1
0
0
PK65
PK64
PK63
PK62
PK61
PK60
0
0
1
1
1
0
PK75
PK74
PK73
PK72
PK71
PK70
0
1
0
0
0
0
PK85
PK84
PK83
PK82
PK81
PK80
0
1
0
0
1
0
PK95
PK94
PK93
PK92
PK91
PK90
0
1
0
1
0
0
PK105
PK104
PK103
PK102
PK101
PK100
0
1
0
1
1
0
PK115
PK114
PK113
PK112
PK111
PK110
0
1
1
0
0
0
PK125
PK124
PK123
PK122
PK121
PK120
0
1
1
0
1
0
PK135
PK134
PK133
PK132
PK131
PK130
0
1
1
1
0
0
PK145
PK144
PK143
PK142
PK141
PK140
0
1
1
1
1
0
PK155
PK154
PK153
PK152
PK151
PK150
1
0
0
0
0
0
PK165
PK164
PK163
PK162
PK161
PK160
1
0
0
0
1
0
PK175
PK174
PK173
PK172
PK171
PK170
1
0
0
1
0
0
PK185
PK184
PK183
PK182
PK181
PK180
1
0
0
1
1
0
PK195
PK194
PK193
PK192
PK191
PK190
1
0
1
0
0
0
PK205
PK204
PK203
PK202
PK201
PK200
1
0
1
0
1
0
PK215
PK214
PK213
PK212
PK211
PK210
1
0
1
1
0
0
PK225
PK224
PK223
PK222
PK221
PK220
1
0
1
1
1
0
PK235
PK234
PK233
PK232
PK231
PK230
1
1
0
0
0
0
PK245
PK244
PK243
PK242
PK241
PK240
1
1
0
0
1
0
PK255
PK254
PK253
PK252
PK251
PK250
1
1
0
1
0
0
PK265
PK264
PK263
PK262
PK261
PK260
1
1
0
1
1
0
PK275
PK274
PK273
PK272
PK271
PK270
1
1
1
0
0
0
PK285
PK284
PK283
PK282
PK281
PK280
1
1
1
0
1
0
PK295
PK294
PK293
PK292
PK291
PK290
1
1
1
1
0
0
PK305
PK304
PK303
PK302
PK301
PK300
G0
Grayscale palette
1
1
1
1
1
0
PK315
PK314
PK313
PK312
PK311
PK310
Note: When G0 = 1, selective grayscale for G pixel is the middle grayscale between the upper
grayscale and the selective grayscale.
35
HD66766R
Rev. 1.0-1 / September 2002
Read Data from GRAM (R22h)
R/W
RS
R
1
DB15 DB14 DB13 DB12 DB11 DB10 DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2
DB1
DB0
RD1 RD0
Figure 24 Read Data from GRAM Instruction
RD15–0: Read 16-bit data from the GRAM. When the data is read to the microcomputer, the first-word
read immediately after the GRAM address setting is latched from the GRAM to the internal read-data
latch. The data on the data bus (DB15–0) becomes invalid and the second-word read is normal.
Sets the I/D, AM,
HSA/HSE, VSA/VEA
Sets the I/D, AM,
HSA/HSE, VSA/VEA
Address: N set
First word
Dummy read (invalid data)
GRAM => Read data latch
Second words
Read (data of address N)
Read-data latch => DB11-0
Address: N set
First word
Second words
Dummy read (invalid data)
GRAM => Read data latch
Write (data of address N)
DB11-0 = > GRAM
Automatic address update: N+
Address: M set
First word
Dummy read (invalid data)
GRAM => Read data latch
First word
Second words
Read (data of address N)
Read-data latch => DB11-0
Second words
i) Data read to the microcomputer
Figure 25 GRAM Read Sequence
36
Dummy read (invalid data)
GRAM => Read data latch
Write (data of address N)
DB11-0 => GRAM
ii) Logical operation processing
in the HD66766R
HD66766R
Rev. 1.0-1 / September 2002
Gray Scale Palette Control (R30h to R3Fh)
Table 26 Grayscale Palette Control Instruction
R/W
RS
DB15
DB14 DB13
R30
W
1
0
0
PK
15
R31
W
1
0
0
PK
35
R32
W
1
0
0
R33
W
1
0
R34
W
1
R35
W
R36
DB12 DB11 DB10 DB9
DB8
PK
14
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
PK
13
PK
12
PK
11
PK
10
0
0
PK
05
PK
04
PK
03
PK
02
PK
01
PK
00
PK
34
PK
33
PK
32
PK
31
PK
30
0
0
PK
25
PK
24
PK
23
PK
22
PK
21
PK
20
PK
55
PK
54
PK
53
PK
52
PK
51
PK
50
0
0
PK
45
PK
44
PK
43
PK
42
PK
41
PK
40
0
PK
75
PK
74
PK
73
PK
72
PK
71
PK
70
0
0
PK
65
PK
64
PK
63
PK
62
PK
61
PK
60
0
0
PK
95
PK
94
PK
93
PK
92
PK
91
PK
90
0
0
PK
85
PK
84
PK
83
PK
82
PK
81
PK
80
1
0
0
PK
115
PK
114
PK
113
PK
112
PK
111
PK
110
0
0
PK
105
PK
104
PK
103
PK
102
PK
101
PK
100
W
1
0
0
PK
135
PK
134
PK
133
PK
132
PK
131
PK
130
0
0
PK
125
PK
124
PK
123
PK
122
PK
121
PK
120
R37
W
1
0
0
PK
155
PK
154
PK
153
PK
152
PK
151
PK
150
0
0
PK
145
PK
144
PK
143
PK
142
PK
141
PK
140
R38
W
1
0
0
PK
175
PK
174
PK
173
PK
172
PK
171
PK
170
0
0
PK
165
PK
164
PK
163
PK
162
PK
161
PK
160
R39
W
1
0
0
PK
195
PK
194
PK
193
PK
192
PK
191
PK
190
0
0
PK
185
PK
184
PK
183
PK
182
PK
181
R3A
W
1
0
0
PK
215
PK
214
PK
213
PK
212
PK
211
PK
210
0
0
PK
205
PK
204
PK
203
PK
202
PK
201
PK
180
PK
200
W
1
0
0
PK
235
PK
234
PK
233
PK
232
PK
231
PK
230
0
0
PK
225
PK
224
PK
223
PK
222
PK
221
PK
220
R3C
W
1
0
0
PK
255
PK
254
PK
253
PK
252
PK
251
PK
250
0
0
PK
245
PK
244
PK
243
PK
242
PK
241
PK
240
R3D
W
1
0
0
PK
275
PK
274
PK
273
PK
272
PK
271
PK
270
0
0
PK
265
PK
264
PK
263
PK
262
PK
261
PK
260
R3E
W
1
0
0
PK
295
PK
294
PK
292
PK
291
PK
290
0
0
PK
285
PK
284
PK
283
PK
282
PK
281
PK
280
R3F
W
1
0
0
PK
315
PK
314
PK
293
4
PK
313
PK
312
PK
311
PK
310
0
0
PK
305
PK
304
PK
303
PK
302
PK
301
PK
300
R3B
PK31–0: Specify the grayscale level for thirty-two palettes from the 52-grayscale level.
the Grayscale Palette and the Grayscale Palette Table sections.
37
For details, see
HD66766R
Rev. 1.0-1 / September 2002
Instruction List (HD66766R)
Table 27
Upper Code
Reg.
No.
Register
Name
IR
SR
Lower Code
DB DB DB
15 14 13
DB DB DB DB DB DB
12 11 10
9
8
7
DB DB DB DB DB DB
6
5
4
3
2
1
DB
0 Description
Exe
cution
Cyc
le
R/
W
RS
Index
0
0
*
*
*
*
*
*
*
*
*
ID6
ID5
ID4
ID3
ID2
ID1
ID0
Sets the index register value.
0
Status read
1
0
L7
L6
L5
L4
L3
L2
L1
L0
0
C6
C5
C4
C3
C2
C1
C0
Reads the driving raster-row
position (L7–0) and contrast setting
(C6–0).
0
R00h Start
oscillation
0
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
Starts the oscillation mode.
10
ms
1
1
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
Reads 0766H.
0
R01h Driver
output
control
0
1
0
0
0
0
0
0
CM
S
SGS
0
0
0
NL4
NL3
NL2
NL1
NL0 Sets the common driver shift
direction (CMS), segment driver
shift direction (SGS) and driving
duty ratio (NL4–0).
R02h LCDdrivingwaveform
control
0
1
0
0
0
0
0
RST
B/C
EOR
0
0
NW
5
NW
4
NW
3
NW
2
NW
1
NW
0
R03h Power
control 1
0
1
BS3
BS2
BS1
BS0
BT3
BT2
BT1
BT0
0
DC2 DC1 DC0 AP1
AP0
SLP
STB Sets the sleep mode (SLP), standby
mode (STB), LCD power on (AP1–
0), boosting cycle (DC2–0),
boosting output multiplying factor
(BT2–0), operation of voltage
inverting circuit (BT3) and LCD
drive bias value (BS3–0).
R04h Contrast
control
0
1
0
0
0
0
0
VR2 VR1 VR0
0
CT6
CT5
CT4
CT3
CT2
CT1
CT0 Sets the regulator adjustment (VR2– 0
0) and contrast adjustment (CT6–0).
R05h Entry mode
0
1
SPR
0
0
0
0
0
HWM
0
0
0
I/D1
I/D0
AM
LG2
LG1
LG0 Specifies AC counter mode (AM),
increment/decrement mode (I/D1–
0), high-speed write mode (HWM).
0
R06h Compare
0
1
CP1
5
CP1
4
CP1
3
CP1
2
CP1
1
CP1
0
CP9
CP8
CP7
CP6
CP5
CP4
CP3
CP2
CP1
CP0 Specifies the compare resister
(CP15-0),
0
R07h Display
control
0
1
0
0
0
0
0
VLE2
VLE1
SPT
0
0
0
0
B/W REV
D1
D0
Specifies display on (D1-0), blackand-white reversed display (REV),
pixel on/off mode (ALB), screen
division driving (SPT) and vertical
scroll .(VLE2-1)
0
R0Bh Frame
frequency
control
0
1
0
0
0
0
0
0
DIV
1
DIV
0
0
0
0
0
RTN RTN RTN RTN Specifies the line retrace period
3
2
1
0
(RTN3–0) and operating clock
frequency division ratio (DIV1–0).
0
R0Ch Power
control 2
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
R11h Vertical
scroll
control
0
1
VL2
7
VL2
6
VL2
5
VL2
4
VL2
3
VL2
2
VL2
1
VL2
0
VL1
7
VL1
6
VL1
5
VL1
4
VL1
3
VL1
2
VL1
1
VL1
0
R14h 1st screen
driving
position
0
1
SE
17
SE
16
SE
15
SE
14
SE
13
SE
12
SE
11
SE
10
SS
17
SS
16
SS
15
SS
14
SS
13
SS
12
SS
11
R15h 2nd screen
driving
position
0
1
SE
27
SE
26
SE
25
SE
24
SE
23
SE
22
SE
21
SE
20
SS
27
SS
26
SS
25
SS
24
SS
23
SS
22
SS
21
R16h Horizontal
RAM
address
position
0
1
HE
A7
R17h Vertical
RAM
address
position
0
1
VEA VEA VEA VEA VEA VEA VEA VEA VSA VSA VSA VSA VSA VSA VSA VSA Sets start (VSA7–0) and end
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
(VEA7–0) of the vertical RAM
address range.
0
R20h RAM write
data mask
0
1
WM
15
0
Device
code read
Resister
WM
13
WM
12
VC2 VC1 VC0 Sets the adjustment factor for the
Vci voltage (VC2–0).
WM
WM
WM
WM
WM
WM
WM
WM
WM
WM
WM
11
10
9
8
7
6
5
4
3
2
1
38
Note1
0
0
Sets LCD drive AC waveform
(B/C), and EOR output (EOR) or the
number of n-raster-rows (NW5–0)
at C-pattern AC drive.
0
0
Sets the 1 st screen display start
raster- row (VL17-10) and 2nd
screen display start raster-row
(VL27-20).
0
SS
10
Sets the 1st screen driving start
position (SS17–10) and 1 st screen
driving end position (SE17–10).
0
SS
20
Sets 2 nd screen driving start position
(SS27–20) and 2 nd screen driving
end position (SE27–20).
0
HEA HEA HEA HEA HEA HEA HEA HSA HSA HSA HSA HSA HSA HSA HSA Sets start (HSA7–0) and end
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
(HEA7–0) of the horizontal RAM
address range.
WM
14
Note1
WM Specifies write data mask (WM15–
0) at RAM write.
0
0
Note2
HD66766R
Rev. 1.0-1 / September 2002
Instruction List (cont.)
Upper Code
Reg.
No.
Register
Name
DB
15
DB
14
Lower Code
DB
13
DB
12
DB
11
DB
10
DB
9
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
DB
0 Description
Execution
Cycle
R/
W
RS
R21h RAM
address set
0
1
AD15–8 (upper)
R22
RAM data
write
0
1
Write data (upper)
RAM data
read
1
1
Read data (upper)
R30h Grayscale
palette
control (1)
0
1
0
0
PK15 PK14 PK13 PK12 PK11 PK10
0
0
PK05 PK04 PK03 PK02 PK01 PK00 Specifies the grayscale palette.
0
R31h Grayscale
palette
control (2)
0
1
0
0
PK35 PK34 PK33 PK32 PK31 PK30
0
0
PK25 PK24 PK23 PK22 PK21 PK20 Specifies the grayscale palette.
0
R32h Grayscale
palette
control (3)
0
1
0
0
PK55 PK54 PK53 PK52 PK51 PK50
0
0
PK45 PK44 PK43 PK42 PK41 PK40 Specifies the grayscale palette.
0
R33h Grayscale
palette
control (4)
0
1
0
0
PK75 PK74 PK73 PK72 PK71 PK70
0
0
PK65 PK64 PK63 PK62 PK61 PK60 Specifies the grayscale palette.
0
R34h Grayscale
palette
control (5)
0
1
0
0
PK95 PK94 PK93 PK92 PK91 PK90
0
0
PK85 PK84 PK83 PK82 PK81 PK80 Specifies the grayscale palette.
0
R35h Grayscale
palette
control (6)
0
1
0
0
0
0
R36h Grayscale
palette
control (7)
0
R37h Grayscale
palette
control (8)
0
R38h Grayscale
palette
control (9)
0
R39h Grayscale
palette
control (10)
0
R3Ah Grayscale
palette
control (11)
0
R3Bh Grayscale
palette
control (12)
0
R3Ch Grayscale
palette
control (13)
0
R3Dh Grayscale
palette
control (14)
0
R3Eh Grayscale
palette
control (15)
0
R3Fh Grayscale
palette
control (16)
0
Note:
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AD6–0 (lower)
PK
PK
PK
PK
PK
PK
115
114
113
112
111
110
PK
PK
PK
PK
PK
PK
135
134
133
132
131
130
PK
PK
PK
PK
PK
PK
155
154
153
152
151
150
PK
PK
PK
PK
PK
PK
175
174
173
172
171
170
PK
PK
PK
PK
PK
PK
195
194
193
192
191
190
PK
PK
PK
PK
PK
PK
215
214
213
212
211
210
PK
PK
PK
PK
PK
PK
235
234
233
232
231
230
PK
PK
PK
PK
PK
PK
255
254
253
252
251
250
PK
PK
PK
PK
PK
PK
275
274
273
272
271
270
PK
PK
PK
PK
PK
PK
295
294
293
292
291
290
PK
PK
PK
PK
PK
PK
315
314
313
312
311
310
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Initially set the RAM address to the
address counter (AC).
0
Write data (lower)
Writes data to the RAM.
0
Read data (lower)
Reads data from the RAM.
0
PK
PK
PK
PK
PK
PK
105
104
103
102
101
100
PK
PK
PK
PK
PK
PK
125
124
123
122
121
120
PK
PK
PK
PK
PK
PK
145
144
143
142
141
140
PK
PK
PK
PK
PK
PK
165
164
163
162
161
160
PK
PK
PK
PK
PK
PK
185
184
183
182
181
180
PK
PK
PK
PK
PK
PK
205
204
203
202
201
200
PK
PK
PK
PK
PK
PK
225
224
223
222
221
220
PK
PK
PK
PK
PK
PK
255
244
243
242
241
240
PK
PK
PK
PK
PK
PK
265
264
263
262
261
260
PK
PK
PK
PK
PK
PK
285
284
283
282
281
280
PK
PK
PK
PK
PK
PK
305
304
303
302
301
300
1. “*” means doesn’t matter.
2. High-speed write mode is available only for the RAM writing.
39
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
Specifies the grayscale palette.
0
HD66766R
Rev. 1.0-1 / September 2002
Reset Function
The HD66766R is internally initialized by RESET input. Reset the gate driver/Power supply IC as its
settings are not automatically reinitialized when the HD66766R is reset. The reset input must be held
for at least 200 ms. Do not access the GRAM or initially set the instructions until the R-C oscillation
frequency is stable after power has been supplied (10 ms).
Instruction Set Initialization:
1.
2.
3.
4.
Start oscillation executed
Driver output control (NL4–0 = “10101”, SGS = “0”, CMS = “0”)
B-pattern waveform AC drive (B/C = “0”, EOR = “0”, NW5–0 = “000000”)
Power control 1 (DC2–0 = “000”, AP1–0 = “00”: LCD power off, STB = “0”: Standby mode off,
SLP = “0”, BS2-0 = “000”, BT2-0 = “000”)
5. Contrast control (Weak contrast VR3-0 = “0000”, CT6-0 = “0000000”)
6. Entry mode set ( SPR= “0” , HWM = “0”, I/D1-0 = “11”: Increment by 1, AM = “0”: Horizontal
move, LG2-0=”000”:Replace mode )
7. Compare resister : (CP15-0 = “0000000000000000”
8. Display control (VLE2–1 = “00”: No vertical scroll, SPT = “0”, REV = “0”, D1–0 = “00”: Display
off)
9. Frame cycle control (DIV1-0 = “00”: 1-divided clock, RTN3-0: No line retrace period)
10. Power control 2 (VC2-0 = “000”)
11. Vertical scroll (VL27–20 = “00000000”, VL17–10 = “00000000”)
12. 1st screen division (SE17-10 = “11111111”, SS17-10 = “00000000”)
13. 2nd screen division (SE27-20 = “11111111”, SS27-20 = “00000000”)
14. Horizontal RAM address position (HEA7-0 = “10000011”, HSA7-0 = “00000000”)
15. Vertical RAM address position (VEA7-0 = “10101111”, VSA7-0 = “00000000”)
16. RAM write data mask (WM11–0 = “000”H: No mask)
17. RAM address set (AD15–0 = “0000”H)
18. Grayscale Palette
(PK0 = “000000”, RK1= “000011”, PK2= “000110”, PK3= “001000 ”,
PK4= “001010”, PK5= “001100”, PK6= “001110”, PK7= “001111”,
PK8= “010000”, PK9= “010001”, PK10= “010010”, PK11= “010011”,
PK12= “010100”, PK13= “010101”, PK14= “010110”, PK15= “010111”,
PK16 = “011000”, PK17= “011001”, PK18= “011010”, PK19= “011011”,
PK20= “011100”, PK21= “011101”, PK22= “011110”, PK23= “100000”,
PK24= “100010”, PK25= “100100”, PK26= “100110”, PK27= “101000” ,
PK28 = “101011”, PK29= “101110”, PK30= “110001”, PK31= “110100”,)
GRAM Data Initialization:
This is not automatically initialized by reset input but must be initialized by software while display is off
(D1–0 = “00”).
Output Pin Initialization:
1. LCD driver output pins (SEG/COM): Output GND level
2. Oscillator output pin (OSC2): Output oscillation signal
40
HD66766R
Rev. 1.0-1 / September 2002
Parallel Data Transfer
16-bit Bus Interface
Setting the IM2/1/0 (interface mode) to the “GND”/“GND”/“GND” level allows 68-system E-clocksynchronized 16-bit parallel data transfer. Setting the IM2/1/0 to the “GND”/”Vcc”/”GND” level allows
80-system 16-bit parallel data transfer. When the number of buses or the mounting area is limited, use an
8-bit bus interface.
H8/2245
CS*
RS
WR*
(RD*)
CSn*
A1
HWR*
(RD*)
HD66766
DB15 - DB0
D15 - D0
16
Figure 26 Interface to 16-bit Microcomputer
8-bit Bus Interface
Setting the IM2/1/0 (interface mode) to the “GND”/”GND” /”Vcc” level allows 68-system E-clocksynchronized 8-bit parallel data transfer using DB15–DB8 pins. Setting the IM2/1/0 to the
“GND”/”Vcc”/”Vcc” level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and
RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix
unused pins DB7–DB0 to the ”Vcc” or “GND” level. Note that the upper bytes must also be written
when the index register is written to.
CS*
CSn*
A1
H8/2245 HWR*
(RD*)
D15 - D8
RS
WR*
HD66766
(RD*)
DB15 - DB8
DB7 - 0
8
8
GND
Figure 27 Interface to 8-bit Microcomputer
41
HD66766R
Note:
Rev. 1.0-1 / September 2002
Transfer synchronization function for an 8-bit bus interface
The HD66766R supports the transfer synchronization function which resets the upper/lower
counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer
mismatch between the eight upper and lower bits can be corrected by a reset triggered by
consecutively writing a “00”H instruction four times. The next transfer starts from the upper
eight bits. Executing synchronization function periodically can recover any runaway in the display
system
RS
R/W
E
DB15 to
DB8
Upper or
lower
"00"H
"00"H
"00"H
"00"H
Upper
(1)
(2)
(3)
Lower
(4)
8-bit transfer synchronization
Figure 28 8-bit Transfer Synchronization
42
HD66766R
Rev. 1.0-1 / September 2002
Serial Data Transfer
Setting the IM2 pin to the “Vcc” level and the IM1 pin to the “GND” level allows standard clocksynchronized serial data transfer, using the chip select line (CS*), serial transfer clock line (SCL), serial
input data line (SDI), and serial output data line (SDO). For a serial interface, the IM0/ID pin function
uses an ID pin. If the chip is set up for serial interface, the DB15-2 pins which are not used must be
fixed at “Vcc” or “GND”.
The HD66766R initiates serial data transfer by transferring the start byte at the falling edge of CS* input.
It ends serial data transfer at the rising edge of CS* input.
The HD66766R is selected when the 6-bit chip address in the start byte transferred from the transmitting
device matches the 6-bit device identification code assigned to the HD66766R. The HD66766R, when
selected, receives the subsequent data string. The least significant bit of the identification code can be
determined by the ID pin. The five upper bits must be “01110”. Two different chip addresses must be
assigned to a single HD66766R because the seventh bit of the start byte is used as a register select bit
(RS): that is, when RS = “0”, data can be written to the index register or status can be read, and when RS
= “1”, an instruction can be issued or data can be written to or read from RAM. Read or write is selected
according to the eighth bit of the start byte (R/W bit). The data is received when the R/W bit is “0”, and is
transmitted when the R/W bit is “1”.
After receiving the start byte, the HD66766R receives or transmits the subsequent data byte-by-byte.
The data is transferred with the MSB first. All HD66766R instructions are 16 bits. Two bytes are received
with the MSB first (DB15 to 0), then the instructions are internally executed. After the start byte has been
received, the first byte is fetched internally as the upper eight bits of the instruction and the second byte is
fetched internally as the lower eight bits of the instruction.
Five bytes of RAM read data after the start byte are invalid.
data from the sixth byte.
The HD66766R starts to read correct RAM
Table 28 Start Byte Format
Transfer Bit
Start byte format
Note:
S
Transfer start
1
2
0
1
Table 29 RS and R/W Bit Function
R/W
Function
0
0
Sets index register
0
1
Reads status
1
0
Writes instruction or RAM data
1
1
Reads RAM data
4
5
6
0
ID
Device ID code
The IM0/ID pin selects ID bit.
RS
3
43
1
1
7
8
RS
R/W
HD66766R
Rev. 1.0-1 / September 2002
a) Timing of basic data-transfer through clock synchronized serial interface
Transfer end
Transfer start
CS*
(input)
1 2 3 4
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
LSB
MSB
SDI
(input)
"0"
"1" "1" "1" "0" D
DB DB DB DB DB DB DB DB DB DB DB DB DB DB
RS RW DB
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1
Device D
DB
0
RS RW
code
index register
instruction / GRAM write data
Start byte
SDO
(output)
DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1
DB
0
Status read / Ram read
Figure 29 Procedure for transfer through the clock synchronized serial inrface (a)
b) Timing of consecutive data transfer through clock synchronized serial interface
CS
(input)
1 2 3 4 5 6 7 8
SCL
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 2930 31 32
Instruction(1)
upper 8-bit
Instruction(1)
lower 8-bit
Instruction(2)
upper 8-bit
(input)
SDI
Start byte
(input)
Instruction (1)
execution time
Start
"End"
The first byte after start byte must be upper 8-bit.
Instruction is not executed.
Figure 30 Procedure for transfer through the clock synchronized serial interface (b)
44
HD66766R
Rev. 1.0-1 / September 2002
C) Transfer data read from GRAM
CS*
(input)
SCL
(input)
SDI
(input)
Start byte
RS="1"
R/W="1"
Dummy
read (1)
SDO
(output)
"Start"
Dummy
read (2)
Dummy
read (3)
Dummy
read (4)
Dummy
read (5)
RAM read
upper 8-bit
RAM read
lower 8-bit
Five bytes invalid dummy data are read after start byte.
6th data is valid from GRAM.
Figure 31 Procedure for transfer through the clock synchronized serial interface (c)
d) Status Read / Instruction Read
CS*
(input)
SCL
(input)
SDI
(input)
Start byte
RS="0"
R/W="1"
Dummy
read (1)
SDO
(output)
Status read
upper 8-bit
"Start"
Status read
lower 8-bit
"End"
One byte invalid dummy data are read after start byte.
2nd data is valid from GRAM.
Figure 32 Procedure for transfer through the clock synchronized serial interface (d)
45
"End"
HD66766R
Rev. 1.0-1 / September 2002
High-Speed Burst RAM Write Function
The HD66766R has a high-speed burst RAM-write function that can be used to write data to RAM in
one-fourth the access time required for an equivalent standard RAM-write operation. This function is
especially suitable for applications that require the high-speed rewriting of the display data, for example,
display of color animations, etc.
When the high-speed RAM-write mode (HWM) is selected, data for writing to RAM is once stored to the
HD66766R internal register. When data is selected four times per word, all data is written to the on-chip
RAM. While this is taking place, the next data can be written to an internal register so that high-speed
and consecutive RAM writing can be executed for animated displays, etc.
Microcomputer
16
Address
counter
(AC)
Resistor 1
Resistor 2
Resistor 3
Resistor 4
48
16
"0001"H
"0000"H
"0002"H
"0003"H
GRAM
Figure 33 Flow of Operation in High-Speed Consecutive Writing to RAM
CS*
(input)
1
DB15-0
(input / output)
Index
(R22)
2
3
4
1
2
3
4
1
2
3
4
Index
(R22)
RAM RAM R4M RAM RAM RAM RAM RAM RAM RAM RAM RAM
data data data data data data data data data data data data
(1) (2)
(3) (4)
(5)
(6)
(7) (8)
(9) (10) (11) (12)
RAM write
execution time
RAM write data
(48 bit)
RAM address
(AC15 to 0)
RAM data 1 to 4
“0000”H
RAM write
execution time
RAM write
execution time *
RAM data 5 to 8
RAM data 9 to 12
“0004”H
“0008”H
“000A”H
* The lower two bits of the address must be set in the following way in high-speed write mode.
When D0 becomes 0, the lower two bits of the address must be set to “11”.
Wen D1 becomes 1, the lower two bits of the address must be set to “00”.
Note: When a high-speed RAM write is canceled, the next instruction must only be
executed after the RAM write execution time has elapsed.
Figure 34 Example of the Operation of High-Speed Consecutive Writing to RAM
46
HD66766R
Rev. 1.0-1 / September 2002
Note the following when using high-speed RAM write mode.
Notes: 1. The logical and compare operation cannot be used.
2. Data is written to RAM each four words. When an address is set, the lower two bits in the
address must be set to the following values.
*When I/D0=0, the lower two bits in the address must be set to “11” and be written to RAM.
*When I/D0=1, the lower two bits in the address must be set to “00” and be written to RAM.
3. Data is written to RAM each four words. If less than four words of data is written to RAM,
the last data will not be written to RAM.
4. When the index register and RAM data write (“22”H) have been selected, the data is always
written first. RAM cannot be written to and read from at the same time. HWM must be set
to “0” while RAM is being read.
5. High-speed and normal RAM write operations cannot be executed at the same time. The
mode must be switched and the address must then be set.
6. When high-speed RAM write is used with a window address-range specified, dummy write
operation may be required to suit the window address range-specification. Refer to the HighSpeed RAM Write in the Window Address section.
Table 30 Comparison between Normal and High-Speed RAM Write Operations
Logical operation function
Compare operation function
Write mask function
Normal RAM Write
(HWM=0)
Can be used
Can be used
Can be used
RAM address set
Can be specified by word
RAM read
Can be read by word
RAM write
Can be written by word
Window address
Can be set by word
47
High-Speed RAM Write
(HWM=1)
Cannot be used
Cannot be used
Can be used
ID0 bit=0: Set the lower two bits to 11
ID0 bit=1: Set the lower two bits to 00
Cannot be used
Dummy write operations may have to be
inserted according to a window addressrange specification
Can be set by four words
HD66766R
Rev. 1.0-1 / September 2002
High-Speed RAM Write in the Window Address
When a window address range is specified, RAM data which is in an optional window area can be
rewritten consecutively and quickly by inserting dummy write operations so that RAM access counts
become 4N as shown in the tables below.
Dummy write operations may have to be inserted as the first or last operations for a row of data,
depending on the horizontal window-address range specification bits (HSA1 to 0, HEA1 to 0). The
number of dummy write operations of a row must be 4N.
Table 31 Number of Dummy Write Operations in High-Speed RAM Write (HSA Bits)
HSA1
HSA0
Number of Dummy Write Operations to
be Inserted at the Start of a Row
0
0
0
0
1
1
1
0
2
1
1
3
Table 32 Number of Dummy Write Operations in High-Speed RAM Write (HEA Bits)
HEA1
HEA0
Number of Dummy Write Operations to
be Inserted at the End of a Row
0
0
3
0
1
2
1
0
1
1
1
0
Each row of access must consist of 4 x N operations, including the dummy writes.
Horizontal access count = first dummy write count + write data count + last dummy write count = 4 x N
48
HD66766R
Rev. 1.0-1 / September 2002
An example of high-speed RAM write with a window address-range specified is shown below.
The window address-range can be rewritten to consecutively and quickly by inserting two dummy writes
at the start of a row and three dummy writes at the end of a row, as determined by using the window
address-range specification bits (HSA1 to 0= “10”, HEA1 to 0= “00”).
Writing in the horizontal
direction AM=0, I/D0=1
h0000
h0812
Window address-range setting
HSA=h12, HEA=h30
VSA=h08, VEA=hA0
Window address-range
specification (rewrite area)
High-speed RAM write mode
setting HWM=1
Address set
AD=h0810
GRAM address map
hA030
Note 1)
hAF83
Window address-range setting
HSA=h12, HEA=h30
VSA=h08, VEA=hA0
Dummy RAM write x 2
RAM write x 31
x 152
Dummy RAM write x 3
Note1) The address set for the high-speed RAM write must be 00 or 11 according to the value of I/D0 bit.
Only RAM in the speicfied window address-range will be overwritten.
Figure 35 Example of the High-Speed RAM write with a window address-range specification
49
HD66766R
Rev. 1.0-1 / September 2002
Window Address Function
When data is written to the on-chip GRAM, a window address-range which is specified by the horizontal
address register (start: HSA7-0, end: HEA7-0) or the vertical address register (start: VSA7-0, end: VEA70) can be written to consecutively.
Data is written to addresses in the direction specified by the AM bit (increment/decrement). When image
data, etc. is being written, data can be written consecutively without thinking a data wrap by doing this.
The window must be specified to be within the GRAM address area described below. Addresses must
be set within the window address.
[Restriction on window address-range settings]
(horizontal direction) “00”H ≤ HSA7-0 ≤ HEA7-0 ≤ “83”H
(vertical direction) “00”H ≤ VSA7-0 ≤ VEA7-0 ≤ “AF”H
[Restriction on address settings during the window address]
(RAM address) HSA7-0 ≤ AD7-0 ≤ HEA7-0
VSA7-0 ≤ AD15-8 ≤ VEA7-0
Note: In high-speed RAM-write mode, the lower two bits of the address must be set as shown below
according to the value of the ID0 bit.
ID0=0: The lower two bits of the address must be set to “11”.
ID0=1: The lower two bits of the address must be set to “00”
GRAM address map
0083H
0000H
Window address area
2010H
202FH
2110H
212FH
5F10H
5F2FH
AF83H
AF00H
Window address-range specification area
HSA5-0=10H, HSE5-0=2FH
VSA7-0=20H, VEA7-0=5FH
I/D0=1 (increment)
AM=0 (horizontal writing)
Figure 36 Example of Address Operation in the Window Address Specification
50
HD66766R
Rev. 1.0-1 / September 2002
Graphic Operation Function
The HD66766R can greatly reduce the load of the microcomputer graphics software processing through
the 16-bit bus architecture and internal graphics-bit operation function. This function supports the
following:
1.
A write data mask function that selectively rewrites some of the bits in the 16-bit write data.
2.
A conditional write function that compares the write data and compare-bit data and writes the data sent
from the microcomputer only when the conditions match. Even if the display size is large, the display
data in the graphics RAM ( GRAM ) can be quickly rewritten. The graphics bit operation can be
controlled by combining the entry mode resister. The bit set value of the RAM-write –data mask resister,
and the write from the microcomputer.
Bit Setting
Operation Mode
I/D
AM
LG2-0
Operation and Usage
Write mode 1
0 /1
0
000
Horizontal data replacement, horizontal - border drawing
Write mode 2
0 /1
1
000
Vertical data replacement, vertical - border drawing
Write mode 3
0 /1
0
110,111
Conditional horizontal data replacement, horisontal - border drawing
0 /1
1
110,111
Conditional vertical data replacement, vertical - border drawing
Write mode 4
Table 33 Graphics operation
Microcomputer
16
Write data latch
+1/-1
+ 256
Address
counter
( AC )
16
3
Logical / compare operation (LG2 - 0:)
000: replacement bit.
110: replacement with matched write,
Only
RAM in the
111: replacement with unmatched write
Logical operation bit
( LG2 - 0 )
16
Compare bit ( CP7 - 0 )
16
16
Write bit mask
16
Graphic RAM ( GRAM )
Figure 37 Graphics Operation flow
51
Write mask register
( WM15 - 0 )
HD66766R
Rev. 1.0-1 / September 2002
Write-data Mask Function
The HD66766R has a bit-wise write-data mask function that controls writing the 16-bit data from the
microcomputer to the GRAM. Bits that are “0” in the write-data mask register (WM15–0) cause the
corresponding DB bit to be written to the GRAM. Bits that are “1” prevent writing to the corresponding
GRAM bit to the GRAM; the data in the GRAM is retained. This function can be used when only onepixel data is rewritten or the particular display color is selectively rewritten.
DB15
Data written by the
microcomputer
DB0
R04 R03 R02
R01
R00
G05
G04
G03 G02
G01 G00
B04 B03
B02
B01
WM15
Write data
mask
1
WMO
1
1
1
1
*
*
*
*
0
0
0
0
0
1
1
1
1
0
G03
G02
G01
*
*
*
B02
B01
DB11
GRAM data
*
B00
0
DB0
G05 G04
Figure 38 Write-data Mask Function Operation
52
B00
HD66766R
Rev. 1.0-1 / September 2002
Graphics Operation Processing
1. Write mode 1: AM = 0, LG2-0 = “000”
This mode is used when the data is horizontally written at high speed. It can also be used to initialize
the graphics RAM ( GRAM ) or to draw borders. The write-data mask function ( WM15-0 ) are also
enabled in these operations. After writing, the address counter ( AC ) automatically increments by 1
( I/D = 1 ) or decrements by 1 ( I/D = 0 ) , and automatically jumps to the counter edge one-raster
below after it has reached the left or right edge of the GRAM.
Operation Examples:
1) I/D = "1", AM = "0", LG2-0 = "000"
2) WM15-0 = "07FF"H
3) AC = "0000"H
WM15
Write data mask:
0
WM0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
DB15
"Write mask for plane G and B.
DB0
Write data (1) :
1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0
Write data (2) :
1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
"0000"H
"0001"H
1 0 0 1 1 * * * * * * * * * * *
"0002"H
1 1 0 0 0 * * * * * * * * * * *
Write data (1)
Write data (2)
Note: The bits in the GRAM
indicated by (*) are not changed.
GRAM
Figure 39 Writing Operation of Write Mode 1
53
HD66766R
Rev. 1.0-1 / September 2002
2. Write mode 2: AM = 1, LG2-0 = “000”
This mode is used when the data is vertically written at high speed. It can also be used to initialize the
GRAM, develop the font pattern in the vertical direction, or draw borders. The write-data mask
function ( WM15-0 ) are also enabled in these operations. After writing, the address counter ( AC )
automatically increments by 256, and automatically jumps to the upper-right edge ( I/D =1 ) or upperleft egde ( I/D = 0 ) following the I/D bit after it has reached the lower edge of the GRAM.
Operation Examples:
1) I/D = "1" , AM = "1",
2) WM15-0 = "07FF"H
3) AC = "0000"H
WM15
0 0 0
Write- data mask:
LG2-0 = "000"
WM0
0 0 1 1 1 1 1 1 1 1 1 1 1
DB0
DB15
Write data (1):
1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0
Write data (2):
1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1
Write data (3):
"0000"H
1 0 0 1 1 * * * * * * * * * * *
Write data (1)
"0100"H
1 1 0 0 0 * * * * * * * * * * *
Write data (2)
"0200"H
0 1 1 1 1 * * * * * * * * * * *
Write data (3)
GRAM
Notes:
1. The bit area data in the GRAM indicated by (*) is not changed.
2. After writing to address "AF00"H the AC jumps to "0001"H.
Figure 40 Operation of Write Mode 2
54
HD66766R
Rev. 1.0-1 / September 2002
3. Write mode 3: AM = 0, LG2-0 = 110/111
This mode is used when the data is holizontally written by comparing the write data and the set value of
the compare resister ( CP7-0 ). When the result of the comparison in a byte unit satisfies the condition
write-data mask function ( WM15-0 ) are also enabled. After writing , the address counter ( AC )
automatically increments by 1 ( I/D =1 ) or decrements by 1 ( I/D = 0 ), and automatically jumps to the
counter edge one-raster-raw below after it has reached the left or right edge of the GRAM.
Operation Examples:
1) I/D = "1", AM = "0" ,
2) CP15-0 = "2860"H
2) WM15-0 = "0000"H
3) AC = "0000"H
LG2-0 = "110" ( Matched write )
WM15
Write - data mask :
WM0
0 0 0 0 0 0 0 0 0 00 0 00 0 0
CP15
Compare register :
CP0
Compare operation
0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0
DB15
Write data (1) :
(Matched)
Conditional replacement
DB0
0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0
C
R
0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0
Compare operation
Replacement
Conditional replacement
Write data (2) :
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
"0000"H
R
"0001"H
0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0
Matched
replacement of write
data (1)
C
* * * * * * * * * * * * * * * *
GRAM
Figure 41 Operation of Write Mode 3
55
* * * * * * * * * * * * * * * *
HD66766R
Rev. 1.0-1 / September 2002
4. Write mode 4: AM = 1, LG2-0 = 110/111
This mode is used when a vertical comparison is performed between the write data and the set value of
the compare resister ( CP15-0 ) to write the data . When the result by the comparison in a byte unit
satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this
operation, write data mask function ( WM15-0 ) are also enabled. After writing, the address counter
( AC ) automatically increments by 256, and automatically jumps to the upper-right edge ( I/D = 1) or
upper-left edge ( I/D = 0 ) following the I/D bit after it has reached the lower edge of the GRAM.
Operation Examples:
1) I/D = "1", AM = "1" ,
2) WM15-0 = "0000"H
LG2-0 = "111" ( Unmatched write )
2) CP15-0 = "2860"H
3) AC = "0000"H
WM0
WM15
Write - data mask :
0 0 0 0 0 0 0 00 0 0 00 0 0 0
CP15
Compare register :
Compare operation
0 0 1 0 1 0 0 00 1 1 0 0 0 0 0
DB15
Write data (1) :
CP0
( Unmatched )
DB0
1 0 0 1 1 0 0 11 0 0 1 1 1 1 1
Conditional replacement
R
C
1 0 0 1 1 0 0 11 0 0 1 1 1 1 1
Compare operation
( Unmatched )
Write data (2) :
Conditional replacement
0 0 1 0 1 0 0 00 1 1 0 0 0 0 0
"0000"H
C
R
* * * * * * * * * * * * * * * *
"0001"H
"0000"H
1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 Write data (1)
"0100"H
* * * * * * * * * * * * * * * * Write data (2)
GRAM
"AF00"H
Notes: 1. The bit area data in the GRAM indicated by (*) is not changed.
2. After writing to address "AF00"H the AC jumps to "0001"H.
Figure 42 Writing Operation of Write Mode 4
56
HD66766R
Rev. 1.0-1 / September 2002
4096 colors Display Function
HD66766R is equipped with 4096 colors display function. When setting SPR bit = 1, it operates 4096
color display function, and uses 16 bits instead of 12 bits. Upper 4 bits are invalid when operating 4096
colors display function. While operating 4096 colors display function, write mode 3 and 4 in graphic
operation are not usable.
GRAM
46,464 byte
RAM write data
65k format
DB15
RAM read data
65k format
RAM write
DB0
DB0
0
0
DB0
DB15
R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0
R4 R3 R2 R1 R0 G5 G 4 G3 G 2G 1G0 B4 B3 B2 B1 B0
DB15
RAM read
DB15
0
0 0 R3 R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0
DB0
0 0
0 R3 R2 R1 R0 G3 G2 G1 G0 B3 B2 B1 B0
Read data
4096 color format
Write data
4096 color format
Figure 43 4096 color display data write and read format
Table 34 4,096 color R, G, B data and selective grayscale palette
R, G, B data
0000
0001
0010
0011
0100
0101
0110
0111
Selective grayscale palette
PK0
PK2
PK4
PK6
PK8
PK10
PK12
PK14
R, G, B data
1000
1001
1010
1011
1100
1101
1110
1111
57
Selective grayscale palette
PK17
PK19
PK21
PK23
PK25
PK27
PK29
K31
HD66766R
Rev. 1.0-1 / September 2002
Grayscale Palette
The HD66766R incorporates a grayscale palette to simultaneously display 65K of the 140,608 possible
colors. The grayscales consist of 32 6-bit palettes. The 52-stage grayscale levels can be selected from
the 6-bit palette data.
For the display data, the four-bit data in the GRAM written from the microcomputer is used.
In this palette, a pulse-width control system (PWM) is used to eliminate flicker in the LCD display. The
time over which the LCDs are switched on is adjusted according to the level and grayscales are displayed
so that flicker is reduced and grayscales are clearly displayed.
Graphic RAM ( GRAM )
MSB
Display data
LSB
R4
R3
R2
PK0 (5∼0)
0
0
0
0
0
0
PK1 (5∼0)
"00001"
R0
0
0
"00010"
0
0
"00011"
0
0
0
0
1
PK2 (5∼0)
1
G3
0
0
1
1
0
1
0
0
0
"01110"
0
"01111"
1
0
1
0
0
1
1
0
0
PK6(5∼0)
"00110"
0
0
"00111"
0
0
"01000"
0
1
0
"01100"
0
PK3 (5∼0)
"10000"
"10001"
1
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
1
1
0
0
1
1
1
1
"10010"
0
1
1
0
0
"10011"
0
1
1
0
1
1
0
1
1
0
B2
B1
B0
1
0
1
1
1
0
0
PK18 (5∼0)
0
1
0
1
0
"11001"
1
0
0
1
0
0
"11101"
1
0
0
1
1
"11110"
1
0
0
0
0
0
0
1
"10100"
1
0
"10101"
0
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
1
0
0
0
PK28(5∼0)
1
0
1
0
1
1
1
0
0
0
1
1
0
PK29 (5∼0)
1
0
1
1
1
1
PK30 (5∼0)
PK20 (5∼0)
1
0
PK27 (5∼0)
PK19 (5∼0)
0
0
PK26 (5∼0)
"11100"
1
1
PK25 (5∼0)
"11011"
1
1
PK24 (5∼0)
"11010"
0
1
PK23 (5∼0)
"11000"
1
0
0
"10111"
0
1
PK22 (5∼0)
"10110"
0
PK17(5∼0)
1
0
1
1
PK16 (5∼0)
PK10 (5∼0)
0
0
PK15 (5∼0)
PK9 (5∼0)
"01010"
B3
5
PK14 (5∼0)
PK8 (5∼0)
"01001"
B4
G0
PK13 (5∼0)
1
0
G1
PK12 (5∼0)
1
PK7 (5∼0)
G2
PK11 (5∼0)
"01011"
"01101"
PK5 (5∼0)
"00101"
G4
6
PK4 (5∼0)
"00100"
G5
5
<RGB>
Palette
"00000"
R1
0
PK31 (5∼0)
"11111"
1
1
0
0
PK21 (5∼0)
0
1
1
1
Palette register
Initialized value
6
5
52 gray scale control
<R>
5
5
52 gray scale control
<G>
1
52 gray scale control
<B>
32
32
32
→ 64 gray scale
32
64
LCD Driver
R
LCD Driver
G
LCD
Figure 44 Grayscale Palette Control
58
LCD Driver
B
HD66766R
Rev. 1.0-1 / September 2002
Grayscale Palette Table
The grayscale register that is set for each palette register (PK) can be set to any level. 52-grayscale
lighting levels can be set according to palette values (“000000” to “110100”).
Table 35 Grayscale Control Level
Grayscale
Control Level
Palette Register Value (PK)
0
0
0
0
0
0
Unlit level*1
0
0
0
0
0
1
1/52level
0
0
0
0
1
0
2/52level
0
0
0
0
1
1
3/52level
0
0
0
1
0
0
4/52level
0
0
0
1
0
1
5/52level
0
0
0
1
1
0
6/52level
0
0
0
1
1
1
7/52level
0
0
1
0
0
0
8/52level
0
0
1
0
0
1
9/52level
0
0
1
0
1
0
10/52level
0
0
1
0
1
1
11/52level
0
0
1
1
0
0
12/52level
0
0
1
1
0
1
13/52level
0
0
1
1
1
0
14/52level
0
0
1
1
1
1
15/52level
0
1
0
0
0
0
16/52level
0
1
0
0
0
1
17/52level
0
1
0
0
1
0
18/52level
0
1
0
0
1
1
19/52level
0
1
0
1
0
0
20/52level
0
1
0
1
0
1
21/52level
0
1
0
1
1
0
22/52level
0
1
0
1
1
1
23/52level
0
1
1
0
0
0
24/52level
0
1
1
0
0
1
25/52level
0
1
1
0
1
0
26/52level
0
1
1
0
1
1
27/52level
0
1
1
1
0
0
28/52level
0
1
1
1
0
1
29/52level
0
1
1
1
1
0
30/52level
0
1
1
1
1
1
31/52level
1
0
0
0
0
0
32/52level
à Next Page continued
59
HD66766R
Rev. 1.0-1 / September 2002
1
0
0
0
0
1
33/52level
1
0
0
0
1
0
34/52level
1
0
0
0
1
1
35/52level
1
0
0
1
0
0
36/52level
1
0
0
1
0
1
37/52level
1
0
0
1
1
0
38/52level
1
0
0
1
1
1
39/52level
1
0
1
0
0
0
40/52level
1
0
1
0
0
1
41/52level
1
0
1
0
1
0
42/52level
1
0
1
0
1
1
43/52level
1
0
1
1
0
0
44/52level
1
0
1
1
0
1
45/52level
1
0
1
1
1
0
46/52level
1
0
1
1
1
1
47/52level
1
1
0
0
0
0
48/52level
1
1
0
0
0
1
49/52level
1
1
0
0
1
0
50/52level
1
1
0
0
1
1
51/52level
1
1
0
1
0
0
All lit level*2
Notes: 1. The unlit level corresponds to a black display when a normally-black color-LCD panel is used, and a
white display when a normally-white color-LCD panel is used.
2. The all-lit level corresponds to a white display when a normally-black color-LCD panel is used, and a
black display when a normally-white color-LCD panel is used
60
HD66766R
Rev. 1.0-1 / September 2002
RGB pixel data and Grayscale level
Table 36 G pixel data and output level
G pixel data
Output level
G pixel data
Output level
000000
PK0
100000
PK16
000001
(PK0+PK1)/2
100001
(PK16+PK17)/2
000010
PK1
100010
PK17
000011
(PK1+PK2)/2
100011
(PK17+PK18)/2
000100
PK2
100100
PK18
000101
(PK2+PK3)/2
100101
(PK18+PK19)/2
000110
PK3
10110
PK19
0000111
(PK3+PK4)/2
100111
(PK19+PK20)/2
001000
PK4
101000
PK20
001001
(PK4+PK5)/2
101001
(PK20+PK21)/2
001010
PK5
101010
PK21
001011
(PK5+PK6)/2
101011
(PK21+PK22)/2
001100
PK6
101100
PK22
001101
(PK6+PK7)/2
101101
(PK22+PK23)/2
001110
PK7
101110
PK23
001111
(PK7+PK8)/2
101111
(PK23+PK24)/2
010000
PK8
110000
PK24
0100001
(PK8+PK9)/2
110001
(PK24+PK25)/2
010010
PK9
110010
PK25
010011
(PK9+PK10)/2
110011
(PK25+PK26)/2
010100
PK10
110100
PK26
010101
(PK10+PK11)/2
110101
(PK26+PK27)/2
010110
PK11
110110
PK27
010111
(PK11+PK12)/2
110111
(PK27+PK28)/2
011000
PK12
111000
PK28
011001
(PK12+PK13)/2
111001
(PK28+PK29)/2
011010
PK13
111010
PK29
011011
(PK13+PK14)/2
111011
(PK29+PK30)/2
011100
PK14
111100
PK30
011101
(PK14+PK15)/2
111101
(PK30+PK31)/2
011110
PK15
111110
PK31
011111
(PK15+PK16)/2
111111
PK31
61
HD66766R
Rev. 1.0-1 / September 2002
Table 37 R, B pixel data and output level
R, B pixel data
Output level
R, B pixel data
Output level
00000
PK0
10000
PK16
00001
PK1
10001
PK17
00010
PK2
10010
PK18
00011
PK3
10011
PK19
00100
PK4
10100
PK20
00101
PK5
10101
PK21
00110
PK6
10110
PK22
00111
PK7
10111
PK23
01000
PK8
11000
PK24
01001
PK9
11001
PK25
01010
PK10
11010
PK26
01011
PK11
11011
PK27
01100
PK12
11100
PK28
01101
PK13
11101
PK29
01110
PK14
11110
PK30
01111
PK15
11111
PK31
62
HD66766R
Rev. 1.0-1 / September 2002
Setting flow for low power consumption instruction
Sleep Mode
Setting the sleep mode bit (SLP) to “1” puts the HD66766R in the sleep mode, where the device stops all
internal display operations, thus reducing current consumption. Specifically, LCD operation is
completely halted. Here, all the SEG (SEG1 to SEG396) and COM (COM1 to COM176) pins output
the “GND” level, resulting in no display. If the AP1-0 bits in the power control register are set to “00”
in the sleep mode, the LCD drive power supply can be turned off, reducing the total current consumption
of the LCD module.
Table 38 Comparison of Sleep Mode and Standby Mode
Function
Sleep Mode (SLP = “1”)
Standby Mode (STB = “1”)
LCD control
Turned off
Turned off
R-C oscillation circuit
Operates normally
Operation stopped
Master/slave signal
Operation stopped
Operation stopped
Standby Mode
Setting the standby mode bit (STB) to “1” puts the HD66766R in the standby mode, where the device
stops completely, halting all internal operations including the R-C oscillation circuit, thus further reducing
current consumption compared to that in the sleep mode. Specifically, all the SEG (SEG1 to SEG396) and
COM (COM1 to COM176) pins for the time-sharing drive output the GND level, resulting in no display.
If the AP1-0 bits are set to “00” in the standby mode, the LCD drive power supply can bet turned off.
During the standby mode, no instructions can be accepted other than the start-oscillation instruction. To
cancel the standby mode, issue the start-oscillation instruction to stabilize R-C oscillation before setting
the STB bit to “0”. When multi-chips are operated, be sure to be set to the standby mode from the slave
level.
Turn off the display: D1-0 = "01"
Turn off the LCD power supply: AP1-0 = "00"
Set stand-by mode: STB = "1"
Stand-by mode
Issue the start-oscillation instruction
Wait at least 10 ms
Cancel stand-by mode: STB = "0"
Turn on the LCD power supply: AP0-1 = 01/10/11
Wait at least 150 ms
See the power supply
circuit setting.
Turn on the display: D1-0 = "11"
Procedure for Setting and Canceling Standby Mode
Figure 45 Procedure for Setting and Canceling Standby Mode
63
HD66766R
Rev. 1.0-1 / September 2002
Setting flow for power supply and display instruction
Power-on / off Sequence
To prevent pulse lighting of LCD screens at power-on/off, the power-on/off sequence is activated as
shown below. However, since the sequence depends on LCD materials to be used, confirm the conditions
by using your own system.
Power on the Vcc
1ms
Power on the Reset
more than 10ms (oscillation
circuit stabilization time)
Power on Initialized bits
Set BS3-0 bit
Set VR2-0 bit
Set CT6-0 bit
Set VC2-0 bit
Set BT2-0 bit
Set DC2-0 bit
Set AP1-0 bit
Issue use-state
instruction (1)
Normal display
Display off
sequence
Bits for display off
more than 50ms (set-up circuit
1, 2 stabilization time)
Display off
Issue use-state
instruction (2)
voltage polarity inverting circuit
operation starting bit
Set : BT3-1 = "1"
Power off setting bit
use-state instruction
more than 200ms (set-up circuit
2 / voltage inverting circuit
stabilization time)
D1-0="00"
Power supply circuit off
control set by AP1-0
Power off the Vcc
Issue other mode setting
instruction (3)
Display on
Sequence Note)
Bits for display on
Display on
D1-0="11"
Power On sequence
Power Off sequence
Figure 46 Power-on Sequence
Figure 47 Power-off Sequence
64
HD66766R
Rev. 1.0-1 / September 2002
Power-off sequence
Normal case
Turn off the display: D1-0 = 00
Issue LCD power instruction
Turn off the power voltages : Vcc
To the power on sequence
Emergency case
Turn off the power voltage: Vcc
RESET = "L"
Driver SEG/COM output: GND level
To the power on sequence
Power voltage
: Vcc
Vcc
Turn off the power voltage
GND
RESET
Vcc
RESET is input as soon as possible.
GND
Driver SEG/COM
output
V1OUT
GND
Note: When hardware reset is input during the power-off period, the D1-0 bits are cleared to "00" and
SEG/COM output is forcibly lowered to the GND levels.
Figure 48 Power-off sequence
65
HD66766R
Rev. 1.0-1 / September 2002
Partial Sequence Setting Flow
Normal display
Display OFF
Power supply
setting change
Display Duty
change
Frame frequency
adjustment
Display OFF
more than 200ms
Step-up circuit output
stabilizing time
Partial display
Display OFF
D1-0 =”00”
Display OFF
BT2-0 bit setting (Note)
BS3-0 bit setting
DC2-0 bit setting
VR2-0 bit setting
CT6-0 bit setting
Power supply
setting change
Display Duty
change
NL-4-0 bit setting
DIV, RTN bit setting
Frame frequency
adjustment
Display off
D1-0 = “01”
Display OFF
more than 200ms
Step-up circuit output
stabilizing time
Issue instruction for
other mode setting
BT2-0 bit setting (Note)
BS3-0 bit setting
DC2-0 bit setting
VR2-0 bit setting
CT6-0 bit setting
NL-4-0 bit setting
DIV, RTN bit setting
Display off
D1-0 = “01”
Issue instruction for
other mode setting
Display on
Display On
Display OFF
D1-0 =”00”
Display on
Display On
D1-0="11"
Partial display
D1-0="11"
Normal display
Note: Change only BT2-0 with BT3-0 = “1”
Figure 49 Normal to partial display
Figure 50 Partial to normal display
66
HD66766R
Rev. 1.0-1 / September 2002
Oscillation Circuit
The HD66766R can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an
external oscillation resistor. Note that in R-C oscillation, the oscillation frequency is changed according
to the external resistance value, wiring length, or operating power-supply voltage. If Rf is increased or
power supply voltage is decreased, the oscillation frequency decreases. For the relationship between Rf
resistor value and oscillation frequency, see the Electric Characteristics Notes section.
1) External clock mode
Clock
(264kHz)
OSC1
Damping resistance
(2kΩ)
OSC2
HD66766R
2) External resistance
oscillation mode
Note: The resistance must be located
near the OSC1/OSC2 pins.
OSC1
Rf
OSC2
HD66766R
Figure 51 Oscillation Circuits
The relationship between the SEG and COM output levels is as shown in the following figure. While the
display is off, SEG and COM outputs go to GND level.
M
VCH
COM waveform
SEG waveform
No lit
Lit
VS
VM
VSL (GND)
Lit
No lit
Lit
No lit
VCL
Figure 52 Relationship with SEG/COM Output Level
67
HD66766R
Rev. 1.0-1 / September 2002
Frame-Frequency Adjustment Function
The HD66766R has an on-chip frame-frequency adjustment function. The frame frequency can be
adjusted by the instruction setting (DIV, RTN) during the LCD drive as the oscillation frequency is
always the same. When the display duty is changed, the frame frequency can be adjusted to be the same.
If the oscillation frequency is set to high, an animation or a static image can be displayed in suitable ways
by changing the frame frequency. When a static image is displayed, the frame frequency can be set low
and the low-power consumption mode can be entered. When high-speed screen switching, for an
animated display, etc. is required, the frame frequency can be set high.
Relationship between LCD Drive Duty and Frame Frequency
The relationship between the LCD drive duty and the frame frequency is calculated by the following
expression. The frame frequency can be adjusted in the retrace-line period bit (RTN) and in the
operation clock division bit (DIV) by the instruction.
(Formula for the frame frequency)
fosc
Frame frequency =
[Hz]
Clock cycles per raster-row × division ratio × 1/duty cycle
fosc: R-C oscillation frequency
Duty: drive duty (NL bit)
Clock cycles per raster-row: (RTN + 26) clock cycles
Division ratio: DIV bit
Example Calculation 1
Setting the maximum frame frequency to 60 Hz
Display duty: 1/176
Retrace-line period: 0 clock (RTN3-0 = “0000”)
Operation clock division ratio: 1 division
fosc = 60 Hz × (0 + 26) clock × 1 division × 176 lines = 275 (kHz)
In this case, the R-C oscillation frequency becomes 275 kHz. The external resistance value of the R-C
oscillator must be adjusted to be 275 kHz. The display duty can be changed by the partial display, etc. and
the frame frequency can be the same by setting the RNT bit and DIV bit to achieve the following.
(Partial display): Display duty: 1/40
Retrace-line period: 1 clock (RTN3-0 = “0002”)
Operation clock division ratio: 3 division
Frame frequency = 275 kHz/ ((3 + 26) clock × 4 division × 40 lines) = 59.2 (Hz)
Example Calculation 2
Switching the frame frequency to suit animation/static image display
(Animation display): Frame frequency: 90 Hz
Display duty: 1/176
Retrace-line period: 0 clock (RTN3-0 = “0000”)
Operation clock division ratio: 1 division
fosc = 90 Hz × (0 + 26) clock × 1 division × 176 lines = 412 (kHz)
(Static image display): Frame frequency: 90 Hz
Display duty: 1/176
Retrace-line period: 1 clock (RTN3-0 = “1101”)
Operation clock division ratio: 1 division
Frame frequency: 412 kHz/ ((13 + 26) clock × 1 division × 176 lines) = 60.0 (Hz)
68
HD66766R
Rev. 1.0-1 / September 2002
n-raster-row Reversed AC Drive
The HD66766R supports not only the LCD reversed AC drive in a one-frame unit (B-pattern waveform)
but also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 64 rasterrows (C-pattern waveform). When a problem affecting display quality occurs, such as cross-talk at
high-duty driving of more than 1/64 duty, the n-raster-row reversed AC drive (C-pattern waveform) can
improve the quality.
Determine the number of raster-rows n (NW bit set value + 1) for alternating after confirmation of the
display quality with the actual LCD panel. However, if the number of AC raster-rows is reduced, the
LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased
in the LCD cells.
1 frame
1 frame
1 2 3 4
5 6
7 8 9 10 11 12 13
175176 1 2 3 4 5 6
7 8 9 10 11 12 13
175176 1 2 3
B-pattern waveform drive
-1/176 duty
C-pattern
-wave form drive
- 1/176 duty
- 11 raster-row reversal
- Without EORs
C-pattern waveform drive
- 1/176 duty
- 11 raster-row reversal
- With EORs
Notice : Specify the number of AC drive raster-rows and the necessity of EOR so that the DC bias is not generated to the LCD.
Figure 53 Example of an AC Signal under n-raster-row Reversed AC Drive
69
HD66766R
Rev. 1.0-1 / September 2002
Screen-division Driving Function
The HD66766R can select and drive two screens at any position with the screen-driving position registers
(R14h and R15h). Any two screens required for display are selectively driven and a duty ratio is lowered
by LCD-driving duty setting (NL4-0), thus reducing LCD-driving voltage and power consumption. For
the 1st division screen, start line (SS17-10) and end line (SE17-10) are specified by the 1st screen-driving
position register (R14h). For the 2nd division screen, start line (SS27-20) and end line (SE27-20) are
specified by the 2nd screen-driving position register (R15h). The 2nd screen control is effective when the
SPT bit is “1”. The total count of selection-driving lines for the 1st and 2nd screens must correspond to
the LCD-driving duty set value.
1/24 duty driving on 2 screen
COM1
1st screen:
7 raster-row
driving
COM7
COM26
Always applying
non-selection
level
COM42
2nd screen:
17 raster-row
driving
Always
applying
non-selection
level
-Driving duty: NL4-0 = "00010" (1/24 duty)
-1st screen setting: SS17-10 = "00"H, SE17-10 = "06" H
-2nd screen setting: SS27-20 = "19"H, SE27-20 = "29" H,
SPT = "1"
Figure 54 Display example in 2-screen division driving
70
HD66766R
Rev. 1.0-1 / September 2002
Restrictions on the 1st/2nd Screen Driving Position Register Settings
The following restrictions must be satisfied when setting the start line (SS17-10) and end line (SE17-10)
of the 1st screen driving position register (R14h) and the start line (SS27-20) and end line (SE27-20) of
the 2nd screen driving position register (R15h) for the HD66766R. Note that incorrect display may
occur if the restrictions are not satisfied.
Table 39 Restrictions on the 1st/2nd Screen Driving Position Register Settings
1st Screen Driving (SPT = 0)
2nd Screen Driving (SPT = 1)
Register setting
SS17-10 ≤SE17-0 ≤ “AF”H
SS17-10 ≤ SE17-10 < SS27-20
≤SE27-20 ≤ “AF”H
Display operation
• Time-sharing driving for COM pins
(SS1+1) to (SE1+1)
• Non-selection level driving for others
• Time-sharing driving for COM pins
(SS1+1) to (SE1+1) and (SS2+1) to
(SE2+1)
• Non-selection level driving for others
Notes: 1. When the total line count in screen division driving settings is less than the duty setting, non-selection
level driving is performed without the screen division driving setting range.
2. When the total line count in screen division driving settings is larger than the duty setting, the start line,
the duty-setting line and the lines between them are displayed and non-selection level driving is
performed for other lines.
3. For the 1st screen driving, the SS27-20 and SE27-20 settings are ignored.
71
HD66766R
Rev. 1.0-1 / September 2002
LCD Voltage Generation Circuit
Figure 58 shows a configuration of the HD66766R LCD drive voltage generation circuit. It consists of
step-up circuit 1 that doubles or triples the voltage that is applied to Vci1, step-up circuit 2 that multiplies
the voltage from step-up circuit 1 by two to five times, and polarity circuit that generates a VCL level by
inverting the VCH level centered around the VM level. These circuits generate VCH and VCL that are
power supply for COM outputs. The LCD driving level for SEG outputs (VSH and VM) are generated by
dividing resistance at the VREF level.
Vcc
+
VREFL
VREF Control
Amplifier
-
BIASC
bias
amplifier
+
+
-
Vci2
-
bias control
C21-
VREFM
Step - up
circuits 2
VciOUT Vci Control
Circuits
C11C11+
1.0µ F
C12C12+
C22-
1.0µF
C22+
C23-
1.0µF
C23+
Vci1
1.0µF
1.0µF
C21+
VCH
Generator
Vcc
1.0µF
1.0µF
C24VOUT
generator
Step - up
circuits 1
VOUT
1.0µF
C24+
VCH
Contrast
control
+
1.0µF
1.0µF
*
VSH
1.0µF
-
1.0MΩ
+
VM
1.0µF
AVcc
SEG driver
Vcc
1.0µF
VCL
GND
*
Shot-key
barrier diode
AGND
VCL
generator
Polarity
inverting
circuit
COM driver
HD66766R
CEM
CEP
Note:
Figure 55 Configuration of internal power circuit
72
*
0.47uF
1) Use condenser with character B.
2) Condensers with asterisk (*) need resist
pressure more than 25V.
3) Insert shot-key barrier diode.
(VF = 0.6V / 20mA, VR>=30V)
HD66766R
Rev. 1.0-1 / September 2002
Notes: 1. Generate an output voltage (VOUT) from step-up circuit 1 within the range from 4.0 to 5.75V.
2. Do not allow the output voltage (VCH) from step-up circuit 2 to exceed 22 V.
3. Do not allow the output from Vci2 to exceed VOUT voltage .
4. When capacitor with polarity is used, be sure that an inverted voltage is not applied to it in
any state of the system.
5. Vci1 is used as both the reference voltage input and power supply in the step-up circuit.
Keep sufficient LCD drive current.
6. Rated voltage of capacitors possible to be used are as described below. Required voltage
depends on used panels. When actual voltage is less than 16V, capacitors with 16V rated
voltage can be used.
6.3V: VREFM, VciOUT, C11, C12, VOUT, BIASC, Vci2, C21, C22, C23, VSH, VM
25V(16V): VCH, CE, VCL
LCD Drive Voltage
The required voltage can be calculated by applying the following expressions.
standard; generate a voltage to suit the panel to be used.
VSH-VM, VM-VSL
VCH-VM, VM-VCL
1
2 N
2
N
x Vth
Vth: Threshold voltage of the LCD panel to be used.
N: Display duty cycle.
-1
1
2N N
2
N
Drive voltages are
x Vth
-1
LCD Drive Bias
An optimal bias can be calculated by applying the following expression. The value that has been
calculated is theoretically optimal. If a lower bias value than the optimal value is used to drive the LCD,
contrast may be reduced depending on lighting conditions. However, the power consumption can be
reduced by lowering the drive voltage. Adjust the value according to the system to be used.
Bias value =
1
N
How to determine the VCH voltage
VCH = NB x ND2 x VSH
NB : Bias ratio
ND2 : Step-up factor of the step-up circuit 2
VCI2
step-up
circuit 2
VCH
VCI2=VM×NB
VCH=VM× NB × ND2
Contrast adjustment
RB : Contrast resistance (0.000R to 1.016R)
VSH = VREFM x 2R / (Rb + 2R)
VREFM
Table 40
CT setting value
CT6
CT5
CT4
CT3
CT2
CT1
CT0
Rb resist value
0
0
0
0
0
0
0
1.016R
Rb
0
0
0
0
0
0
1
1.008R
0
0
0
0
0
1
0
1.000R
0
0
0
0
0
1
1
0.992R
0
0
0
0
1
0
0
0.984R
Rb:
Resist for adjusting contrast
(0.000R∼1.016R)
VSH
R
VM
R
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0.008R
VSL
0.000R
Figrue 56
73
HD66766R
Rev. 1.0-1 / September 2002
How to determine the power setting value
1. Determine LCD drive bias
Determine LCD drive bias first. LCD drive bias is theoretically (1/SQRT (display duty)) optimal;
however, the total drive voltage can be reduced by lowering bias ratio. Consider the display quality, the
drive voltage and the current consumption.
2. Determine VOUT voltage
Determine factor of Vc1 regulator and step-up factor so as to set output voltage, VOUT of step-up circuit
1 4.0 to 5.75V, setting input voltage Vci2 of step-up circuit 2 more than +0.5V. Since the entire electric
power for driving LCD is supplied from step-up circuit, subsequent voltage fall need to be considered.
3. Segment drive voltage calculation
Segment output drive voltage is calculated by the following expression.
2xB
Vseg =
(B-1)
B
x VTH
: LCD drive bias ratio
Vth: LCD threshold voltage
4. Common drive voltage calculation
Common output drive voltage is calculated by the following expression.
Vcom =
Vseg
x (B+1)
2
B
: LCD drive bias ratio
5. Determine input voltage of step-up circuit 2
Determine input voltage of step-up circuit 2. This voltage is determined by dividing Vcom voltage by
step-up factor; lower factors are used for low current consumption. Vci2 voltage need to be less than
VOUT voltage (4.0 to 5.75 V)- 0.5V.
Example of register setting on power supply
Examples of register setting values on power supply are described below.
Example 1: 1/176 duty ratio, Vcc = VREFL = 3.0V, 1/13 bias
BS3-0 = H’8
: bias adjustment 1.4 times
BT2-0 = H’4
: step-up circuit 1
BT3 = H’1
: operate voltage inverting circuit
DC2-0 = H’6
TBD
2 times
step-up circuit 2
5 times
step-up circuit 1 frequency 32 clocks step-up circuit 2 frequency 128 clocks
AP1-0 = H’1
: low fixed current in the amplifier
VC2-0 = H’0
: Vci1 = 0.92 x Vcc = 2.75V
VR2-0 = H’0
: VREFM = 1.1 x VREFL
CT6-0
: appropriate contrast setting values
74
HD66766R
Rev. 1.0-1 / September 2002
Example 2: 1/176 duty ratio, Vcc = VREFL = 2.4V, Vci = 2.8V, 1/13 bias
BS2-0 = H’8
: bias adjustment 1.4 times
BT2-0 = H’4
: step-up circuit 1
BT3
: operate voltage inverting circuit
= H’1
2 times
step-up circuit 2
DC2-0 = H’6
TBD
: step-up circuit 1 frequency 32 clocks
AP1-0 = H’1
: low fixed current in the amplifier
VC2-0 = H’4
: internal Vci1 regulator off
VR3-0 = H’2
: VREFM = 1.4 x VREFL
CT6-0
: appropriate contrast setting values
5 times
step-up circuit 2 frequency
128 clocks
2.8V directly supplied to Vci1
Example 3: Partial display, 1/24 duty ratio, Vcc = 2.4V, Vci = 2.8V, 1/4 bias
BS2-0 = H’0
: bias adjustment 1.25 times
BT2-0 = H’0
: step-up circuit 1
BT3
: operate voltage inverting circuit
= H’1
2 times
step-up circuit 2
DC2-0 = H’6
TBD
: step-up circuit 1 frequency 64 clocks
AP1-0 = H’1
: low fixed current in the amplifier
VC2-0 = H’4
: internal Vci1 regulator off
VR3-0 = H’2
: VREG 1 = 1.4 x VREFL
CT6-0
: appropriate contrast setting values
75
2 times
step-up circuit 2 frequency
128 clocks
HD66766R
Rev. 1.0-1 / September 2002
HD66766R power supply level correlation
VCH
BT2-1
(2 to 5 times)
VOUT (4.0 to 5.75 V)
VREFM ( VOUT)
Vcc
Vci1
VREFL (
VC2-0
CT6-0
(0.92 to 0.68 times)
(contrast adjustment)
Vci2
BT0
VSH
VM
GND
(2 to 3 times)
VCC)
GND
BS3-0
(0.5 to 2.165 times)
VR2-0
(1.1 to 3.4 times)
Voltage polarity
inversion between
VCH and VM
VCL
Figure 57 HD66766R Power supply level correlation
76
HD66766R
Rev. 1.0-1 / September 2002
Connection of condenser related to the magnification of step up circuit 1
(1) 2 times step-up circuit
VciOUT
1.0 uF
(2
x Vci1)
(2) 3 times step-up circuit (3 x Vci1)
Vc
i
adjusting
circuit
Vci1
Vci1
C11-
C11-
1.0 u F
C11+
C12-
VOUT
generating
C12+
step-up
circuit 1
1.0 uF
1.0 uF
Vc
i
adjusting
circuit
VciOUT
1.0 uF
C11+
VOUT
generating
C12-
1.0 uF
C12+
step-up
circuit 1
VOUT
VOUT
1.0u F
Figure 58
Figure 59
Connection of condenser related to the magnification of step up circuit 2
(2) 3 times step-up circuit (3 x Vci2)
(1) 2 times step-up circuit (2 x Vci2)
Vci2
C21-
C21+
C21+
C22-
1.0 uF
VCH
generating
C22+
C23-
step-up
circuit 2
step-up
circuit 2
C23C23+
C24-
C241.0 uF
VCH
VCH
Figure 60
Figure 61
(4) 5times step-up circuit (5 x Vci2)
(3) 4times step-up circuit (4 x Vci2)
C21-
1.0 uF
Vci2
1.0 uF
C21-
C21+
C22-
step-up
circuit 2
1.0 uF
1.0 uF
C21+
1.0uF
C22-
C22+
C23-
1.0 uF
C24+
1.0 uF
Vci2
1.0 uF
C22+
C23+
C24+
VCH
generating
1.0 uF
Vci2
C21-
C22VCH
generating
1.0 uF
VCH
generating
1.0 uF
step-up
circuit 2
C23+
C22+
C23-
1.0 uF
C23+
C24-
C24-
C24+
C24+
VCH
1.0uF
1.0 uF
VCH
1.0 uF
1.0 uF
Figure 62
Figure 63
77
HD66766R
Rev. 1.0-1 / September 2002
Absolute Maximum Ratings
Table 41
Item
Symbol
Unit
Value
Notes*
Power supply voltage (1)
Vcc
V
-0.3 to + 4.6
1, 2
Power supply voltage (2)
Power supply voltage (3)
Vcil
VCH –VCL
Vt
V
V
-0.3 to + 4.6
-0.3 to + 46
1, 3
1, 4
V
-0.3 to Vcc + 0.3
1
Topr
°C
-40 to + 85
1, 5
Tstg
°C
-55 to + 110
1
Input voltage
Operating temperature
Storage temperature
Notes: 1. If the LSI is used above these absolute maximum ratings, it may become permanently damaged.
Using the LSI within the following electrical characteristic limit is strongly recommended for
normal operation. If these electrical characteristic conditions are also exceeded, the LSI will
malfunction and cause poor reliability.
2. Vcc ≥ GND must be maintained
3. Vcil ≥ GND must be maintained.
4. VCH ≥ GND must be maintained
GND ≥ VCL must be maintained
5. For die and wafer products, specified up to 85 °C.
78
HD66766R
Rev. 1.0-1 / September 2002
DC Characteristics (VCC = 2.2 to 3.6 V, VCH-VCL=8V to 44V, Ta = –40 to +85°C*1)
Table 42
Item
Symbol Unit Test Condition
Min
Typ
Max
Notes
Input high voltage
VIH
V
VCC = 2.2 to 3.6 V
0.7 VCC
—
VCC
2, 3
Input low voltage
VIL
V
VCC = 2.2 to 3.6 V
–0.3
—
0.15VCC
2, 3
Output high voltage (1)
(DB0-15 pins)
VOH1
V
IOH = –0.1 mA
0.75VCC —
—
2
—
0.2 VCC
2
V
VCC = 2.2 to 2.4 V,
IOL = 0.1 mA
—
VOL1
VCC = 2.4 to 3.6 V,
IOL = 0.1 mA
—
—
0.15VCC
2
Output low voltage (1)
(DB0-15 pins)
Driver ON resistance
RSEG
kΩ
±Id = 0.05 mA,
VLCD = 3 V
—
0.35
3
4
RCOM
kΩ
±Id = 0.05 mA,
VCH - VCL = 44 V
—
0.90
3
4
I/O leakage current
ILi
µA
Vin = 0 to VCC
–1
—
1
5
Current consumption
during normal operation
(VCC – GND)
IOP
µA
480.
600
6
Current consumption
during standby mode
(VCC – GND)
IST
µA
—
R-C oscillation VCC = 3.0 V,
VCH = 20V, VM = 1.6V, VCL =
-16.8V,Ta = 25°C fOSC = 276
Khz (1/176 duty),
1/12 Bias CT minimum
AP minimum, display all 0
Step-up 1 = two times
Step-up 2 = five times
VCI1 = 0.92 x VCC
VCC = 3 V, Ta = 25°C
—
0.1
5
Vcc = 3V, Ta = 85°C
—
—
50
VREFL input voltage
VREFL V
Vcc = 2.2V ∼ 3.6V
—
—
Vcc
VREFM output voltage
VREFM V
VOUT = 4.0V∼ 5.75V
—
—
VOUT -0.5
Step up circuit 1
output voltage
Step up circuit 2
output voltage
VOUT
V
4.0
—
5.75
VCI2
V
—
—
VOUT – 0.5
(SEG pins)
Driver ON resistance
(COM pins)
79
HD66766R
Rev. 1.0-1 / September 2002
Step up circuit characteristics
Table 43
Item
Terminal
Unit
Step up
circuit 1
VOUT
V
Step up
circuit 2
VCH
V
Step up
circuit 3
VCL
V
Test Condition
Min
VCC = 3.0 [V]
Vci step up factor = 0.92
Step up factor : two times
5.25
Step up cycle: 32 divided cycle
Load voltage = 400 [µA]
VCC = 3.0 [V] VOUT = 5.5 [V]
VREFL = 3.0 [V]
VREFM = 1.1 x VREFL
Constant current of
operation amplifier: small
21.2
Contrast adjustment value = 0.000R
1/12 bias
Step up cycle of step up circuit 2: 96
divided cycle
Step up factor: Five times
Load current = 20 [uA]
VCC = 3.0 [V] VOUT = 5.5 [V]
VREFL = 3.0 [V]
VREFM = 1.1 x VREFL
Constant current of
operation amplifier: small
-21.0
Contrast adjustment value = 0.000R
1/12 bias
Step up cycle of polarity inversion
circuit: 96 divided cycle
Step up factor: Five times
Load current = 20 [uA]
80
Typ
Max
Notes
5.48
—
—
21.3
—
(9)
-21.2
—
(9)
HD66766R
Rev. 1.0-1 / September 2002
AC Characteristics (VCC = 2.2 to 3.6 V, Ta = –40 to +85°C*1)
Table 44 Clock Characteristics (VCC = 2.2 to 3.6 V)
Item
Symbol
Unit
Test Condition
Min
Typ
Max
Notes
External clock frequency
fcp
kHz
VCC = 2.2 to 3.6 V
151
275
640
7
External clock duty ratio
External clock rise time
Duty
trcp
%
µs
VCC = 2.2 to 3.6 V
VCC = 2.2 to 3.6 V
45
—
50
—
55
0.2
7
7
External clock fall time
tfcp
µs
VCC = 2.2 to 3.6 V
—
—
0.2
7
R-C oscillation clock
fOSC
kHz
Rf = 200kΩ,
VCC = 3 V
220
275
330
8
68-system Bus Interface Timing Characteristics
Table 45 Normal Write Mode (HWM=0)
(Vcc = 2.2 to 2.4 V)
Item
Enable cycle time
Write
Symbol
Unit
tCYCE
ns
Test Condition
Figure 1
600
Min
Typ
—
Max
—
Read
tCYCE
ns
Figure 1
800
—
—
Write
Read
Write
Read
PWEH
PWEH
PWEL
PWEL
ns
ns
ns
ns
Figure 1
Figure 1
Figure 1
Figure 1
90
350
300
400
—
—
—
—
—
—
—
—
Enable rise/fall time
Set up time (RS, R/W to E, CS*)
Address hold time
tEr, tEf
tASE
tAHE
ns
ns
ns
Figure 1
Figure 1
Figure 1
—
10
5
—
—
—
25
—
—
Write data set up time
Write data hold time
tDSWE
tHE
ns
ns
Figure 1
Figure 1
60
15
—
—
—
—
Read data delay time
Read data hold time
tDDRE
tDHRE
ns
ns
Figure 1
Figure 1
—
5
—
—
200
—
Enable high-level pulse width
Enable low-level pulse width
Table 46 High-Speed Write Mode (HWM=1)
(Vcc = 2.2 to 2.4 V)
Item
Symbol
Unit
Typ
Max
Write
tCYCE
ns
Figure 1
Read
Write
Read
tCYCE
PWEH
PWEH
ns
ns
ns
Figure 1
Figure 1
Figure 1
200
—
—
800
90
350
—
—
—
—
—
—
Write
PWEL
ns
Read
PWEL
tEr, tEf
ns
ns
Figure 1
90
—
—
Figure 1
Figure 1
400
—
—
—
—
25
Set up time (RS, R/W to E, CS*)
tASE
Address hold time
tAHE
ns
Figure 1
10
—
—
ns
Figure 1
5
—
—
Write data set up time
Write data hold time
tDSWE
tHE
ns
ns
Figure 1
Figure 1
60
15
—
—
—
—
Read data delay time
tDDRE
ns
Figure 1
—
—
200
Read data hold time
tDHRE
ns
Figure 1
5
—
—
Enable cycle time
Enable high-level pulse width
Enable low-level pulse width
Enable rise/fall time
81
Test Condition Min
HD66766R
Rev. 1.0-1 / September 2002
Normal Write Mode (HWM=0)
Table 47 (Vcc = 2.4 to 3.6 V)
Item
Symbol
Unit
Test
Condition
Min
Typ
Max
Note
Write
tCYCE
ns
Figure 1
200
—
—
—
Read
tCYCE
ns
Figure 1
300
—
—
—
Write
PWEH
ns
Figure 1
40
—
—
—
Read
PWEH
ns
Figure 1
150
—
—
—
Write
PWEL
ns
Figure 1
100
—
—
—
Read
PWEL
ns
Figure 1
100
—
—
—
tEr, tEf
ns
Figure 1
—
—
25
—
Set up time (RS, R/W to E, CS*)
tASE
ns
Figure 1
10
—
—
Using status read
0
—
—
Not using status read
Address hold time
tAHE
ns
Figure 1
2
—
—
—
Write data set up time
tDSWE
ns
Figure 1
60
—
—
—
Write data hold time
tHE
ns
Figure 1
2
—
—
—
Read data delay time
tDDRE
ns
Figure 1
—
—
100
—
Read data hold time
tDHRE
ns
Figure 1
5
—
—
—
Symbol
Unit
Write
tCYCE
ns
Figure 1
Read
tCYCE
ns
Write
PWEH
Read
Enable cycle time
Enable high-level pulse width
Enable low-level pulse width
Enable rise/fall time
High-Speed Write Mode (HWM=1)
Table 48 (Vcc = 2.4 V to 3.6 V)
Item
Enable cycle time
Enable high-level pulse width
Enable low-level pulse width
Enable rise/fall time
Test
Min
Condition
Typ
Max
Note
100
—
—
—
Figure 1
300
—
—
—
ns
Figure 1
40
—
—
—
PWEH
ns
Figure 1
150
—
—
—
Write
PWEL
ns
Figure 1
40
—
—
—
Read
PWEL
ns
Figure 1
100
—
—
—
tEr, tEf
ns
Figure 1
—
—
25
—
10
—
—
Using status read
0
—
—
Not using status read
Set up time (RS, R/W to E, CS*)
tASE
ns
Figure 1
Address hold time
tAHE
ns
Figure 1
2
—
—
—
Write data set up time
tDSWE
ns
Figure 1
60
—
—
—
Write data hold time
tHE
ns
Figure 1
2
—
—
—
Read data delay time
tDDRE
ns
Figure 1
—
—
100
—
82
HD66766R
Rev. 1.0-1 / September 2002
80-system Bus Interface Timing Characteristics
Normal Write Mode (HWM=0)
Table 49 (Vcc = 2.2 to 2.4 V)
Item
Symbol
Unit
Test
Condition
Min
Typ
Max
Write
tCYCW
ns
Figure 2
600
—
—
Read
tCYCR
ns
Figure 2
800
—
—
Write low-level pulse width
PWLW
ns
Figure 2
90
—
—
Read low-level pulse width
PWLR
ns
Figure 2
350
—
—
Write high-level pulse width
PWHW
ns
Figure 2
300
—
—
Read high-level pulse width
PWHR
ns
Figure 2
400
—
—
tWRr, WRf
ns
Figure 2
—
—
25
tAS
ns
Figure 2
10
—
—
Address hold time
tAH
ns
Figure 2
5
—
—
Write data set up time
tDSW
ns
Figure 2
60
—
—
Write data hold time
tH
ns
Figure 2
15
—
—
Read data delay time
tDDR
ns
Figure 2
—
—
200
Read data hold time
tDHR
ns
Figure 2
5
—
—
Symbol
Unit
Test
Condition
Min
Typ
Max
Write
tCYCW
ns
Figure 2
200
—
—
Read
tCYCR
ns
Figure 2
800
—
—
Write low-level pulse width
PWLW
ns
Figure 2
90
—
—
Read low-level pulse width
PWLR
ns
Figure 2
350
—
—
Write high-level pulse width
PWHW
ns
Figure 2
90
—
—
Read high-level pulse width
PWHR
ns
Figure 2
400
—
—
tWRr, WRf
ns
Figure 2
—
—
25
tAS
ns
Figure 2
10
—
—
Address hold time
tAH
ns
Figure 2
5
—
—
Write data set up time
tDSW
ns
Figure 2
60
—
—
Write data hold time
tH
ns
Figure 2
15
—
—
Read data delay time
tDDR
ns
Figure 2
—
—
200
Read data hold time
tDHR
ns
Figure 2
5
Bus cycle time
Write/Read rise/fall time
Setup time
(RS to CS*, WR*, RD*)
High-Speed Write Mode (HWM=1)
Table 50 (Vcc = 2.2 to 2.4 V)
Item
Bus cycle time
Write/Read rise/fall time
Set up time
(RS to CS*, WR*, RD*)
83
—
—
HD66766R
Rev. 1.0-1 / September 2002
Normal Write Mode (HWM = 0)
Table 51 (Vcc = 2.4 to 3.6 V)
Item
Symbol
Unit
Test
Condition
Min
Typ
Max
Write
tCYCW
ns
Figure 2
200
—
—
Read
tCYCR
ns
Figure 2
300
—
—
Write low-level pulse width
PWLW
ns
Figure 2
40
—
—
Read low-level pulse width
PWLR
ns
Figure 2
150
—
—
Write high-level pulse width
PWHW
ns
Figure 2
100
—
—
Read high-level pulse width
PWHR
ns
Figure 2
100
—
—
tWRr, WRf
ns
Figure 2
—
—
25
tAS
ns
Figure 2
10
—
—
Using status read
0
—
—
Not using status read
Address hold time
tAH
ns
Figure 2
2
—
—
Write data setup time
tDSW
ns
Figure 2
60
—
—
Write data hold time
tH
ns
Figure 2
2
—
—
Read data delay time
tDDR
ns
Figure 2
—
—
100
Read data hold time
tDHR
ns
Figure 2
5
—
—
Symbol
Unit
Write
tCYCW
ns
Figure 2
Read
tCYCR
ns
Write low-level pulse width
PWLw
Read low-level pulse width
Write high -level pulse width
Bus cycle time
Write/Read rise/fall time
Set up time
(RS to CS*, WR*, RD*)
Note
High-Speed Write Mode (HWM=1)
Table 52 (Vcc = 2.4 to 3.6 V)
Item
Bus cycle time
Read high -level pulse width
Test
Min
Condition
Typ
Max
100
—
—
Figure 2
300
—
—
ns
Figure 2
40
—
—
PWLR
ns
Figure 2
150
—
—
PWHW
ns
Figure 2
40
—
—
Note
PWHR
ns
Figure 2
100
—
—
t WRr, WRf
ns
Figure 2
—
—
25
tAS
ns
Figure 2
10
—
—
Using status read
0
—
—
Not using status read
Address hold time
tAH
ns
Figure 2
2
—
—
Write data set up time
tDSW
ns
Figure 2
60
—
—
Write data hold time
tH
ns
Figure 2
2
—
—
Read data delay time
tDDR
ns
Figure 2
—
—
100
Read data hold time
tDHR
ns
Figure 2
5
—
—
Write/Read rise/fall time
Set up time
(RS to CS*, WR*, RD*)
84
HD66766R
Rev. 1.0-1 / September 2002
Clock Synchronized Serial Interface Timing Characteristics
Table 53 (Vcc = 2.2 to 2.4 V)
Item
Typ
Max
0.1
—
20
Figure 3
0.25
—
20
ns
Figure 3
40
—
—
tSCH
ns
Figure 3
120
—
—
tSCL
ns
Figure 3
40
—
—
tSCL
ns
Figure 3
120
—
—
tscr, scf
tCSU
tCH
tSISU
tSIH
tSOD
tSOH
ns
ns
ns
ns
ns
ns
ns
Figure 3
Figure 3
Figure 3
Figure 3
Figure 3
Figure 3
Figure 3
—
20
60
30
30
—
5
—
—
—
—
—
—
—
20
—
—
—
—
130
—
Symbol
Unit
Test Condition
Min
Typ
Max
Write
(received)
Read
(transmitted)
tSCYC
us
Figure 3
0.076
—
20
tSCYC
us
Figure 3
0.15
—
20
Write
(received)
Serial clock high-level pulse width
Read
(transmitted)
tSCH
ns
Figure 3
40
—
—
tSCH
ns
Figure 3
70
—
—
Write
(received)
tSCL
ns
Figure 3
35
—
—
Read
(transmitted)
tSCL
ns
Figure 3
70
—
—
tscr, scf
tCSU
tCH
tSISU
tSIH
tSOD
tSOH
ns
ns
ns
ns
ns
ns
ns
Figure 3
Figure 3
Figure 3
Figure 3
Figure 3
Figure 3
Figure 3
—
20
60
30
30
—
5
—
—
—
20
—
—
—
—
130
—
—
Serial clock cycle time
Serial clock high-level pulse width
Symbol
Unit
tSCYC
us
Figure 3
tSCYC
us
tSCH
Read
(transmitted)
Write
(received)
Write
(received)
Read
(transmitted)
Write
(received)
Serial clock low-level pulse width
Read
(transmitted)
Serial clock rise/fall time
Chip select set up time
Chip select hold time
Serial input data set up time
Serial input data hold time
Serial input data delay time
Serial input data hold time
Test Condition
Min
Table 54 (Vcc = 2.4 to 3.6 V)
Item
Serial clock cycle time
Serial clock low-level pulse width
Serial clock rise/fall time
Chip select set up time
Chip select hold time
Serial input data set up time
Serial input data hold time
Serial output data delay time
Serial output data hold time
85
—
—
—
HD66766R
Rev. 1.0-1 / September 2002
Reset Timing Characteristics (VCC = 2.2 to 3.6 V)
Table 55
Item
Symbol
Unit
Test
Condition
Min
Typ
Max
Reset low-level width
tRES
ms
Figure 4
1
—
—
Reset rise time
trRES
ms
Figure 4
—
—
10
Electrical Characteristics Notes
1. For bare die and wafer products, specified up to 85°C.
2. The following three circuits are I pin, I/O pin, O pin configurations.
Pins: RESET*, CS*, E/WR, RW/RD, RS,
OSC1, IM2-1, IM0/ID, TEST1, TEST2
Pins: OSC2
Vcc
Vcc
PMOS
PMOS
NMOS
NMOS
GND
GND
Figure 64
Figure 65
Pins: DB15 -DB2,
DB1/SD0, DB0/SD1
Vcc
PMOS
(Input circuit)
NMOS
Vcc
(Tri-state output circuit)
Output enable
PMOS
Output data
NMOS
GND
Figure 66 I/O Pin Configuration
3. The TEST1, TEST2 pins must be grounded and the IM2/1 and IM0/ID pins must be grounded or
connected to Vcc.
4. Applies to the resistor value (RSEG) between VSH, GND pins and segment signal pins.
5. This excludes the current flowing through output drive MOSs.
86
HD66766R
Rev. 1.0-1 / September 2002
6. This excludes the current flowing through the input/output units. The input level must be fixed high
or low because through current increases if the CMOS input is left floating. Even if the CS pin is low
or high when an access with the interface pin is not performed, current consumption does not change.
7. Applies to the external clock input (figure ).
Tl
Th
2kΩ
Oscillator
OSC1
Open
0.7Vcc
0.5Vcc
0.3Vcc
Duty =
Th
Th+ Tl x 100%
OSC2
t rcp
t fcp
Figure 67 External Clock Supply
8. Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table).
9. Set VCI2 to maintain the relation VCI2 =< VOUT-0.5V.
OSC1
Rf
OSC2
Since the oscillation frequency varies depending on the OSC1 and OSC2 pin
capacitance, the wiring length to these pins should be minimized.
Figure 68 Internal Oscillation
R-C Oscillation Frequency: fosc
External
Resistance
(Rf)
Vcc = 1.8V
Vcc = 2.2 V
Vcc = 2.4 V
Vcc = 3.0 V
Vcc = 3.6 V
75 kΩ
364
495
559
631
687
130 kΩ
263
345
381
421
453
180 kΩ
210
270
295
323
344
200 kΩ
193
245
266
290
307
240 kΩ
174
218
236
256
270
280 kΩ
156
194
210
226
238
360 kΩ
129
158
170
182
191
470 kΩ
102
122
129
137
142
Table 56 External Resistance Value and R-C Oscillation Frequency (Referential Data)
87
HD66766R
Rev. 1.0-1 / September 2002
Step-up circuit loading characteristics
(Reference data)
(1) Step-up circuit 1 – loading characteristic
Measureing condition
Ta = 25C, VCC = 3.0 [V], Oscillation frequency = 250 [kHz]
(2) Vci1 step-up magnification = 0.92, Step-up magnification two times
5.5
VOUT [V]
5.0
4.5
32 divided frequency
4.0
64 divided frequency
3.5
3.0
0
300
600
900
Load voltage [uA]
1200
1500
Figure 69 Step-up circuit 1- load characteristic (AP=01 amplifier constant voltage: small)
5.5
VOUT [V]
5.0
4.5
32 divided frequency
4.0
64 divided frequency
3.5
3.0
0
300
600
900
1200
1500
Load voltage [uA]
Figure 70 Step-up circuit 1- load characteristic (AP=10 amplifier constant voltage: medium)
5.5
VOUT [V]
5.0
4.5
32 divided frequency
4.0
64 divided frequency
3.5
3.0
0
300
600
900
1200
1500
Load voltage [uA]
Figure 71 Step-up circuit 1- load characteristic (AP=11 amplifier constant voltage: large)
88
HD66766R
Rev. 1.0-1 / September 2002
(2) Step-up circuit 2 – loading characteristic
Measureing condition
Ta = 25C, VCC = 3.0 [V], Oscillation frequency = 250 [kHz]
Vci1 step-up magnification = 0.92, Step-up circuit 1: step-up magnification two times
32 divided frequency, VREFM = 1.1 x VREFL, CT = 0.00R1/12 Bias
Step-up circuit 2: Five times step-up
21.6
VCH [V]
21.5
32 divided frequency
21.4
64 divided frequency
21.3
96 divided frequency
21.2
128 divided frequency
21.1
0
10
20
30
40
50
Load voltage [uA]
Figure 72 Step-up circuit 2- load characteristic (AP=01 amplifier constant voltage: small)
VCH [V]
21.6
21.5
32 divided frequency
21.4
64 divided frequency
21.3
96 divided frequency
21.2
128 divided frequency
21.1
0
10
20
30
40
50
Load voltage [uA]
Figure 73 Step-up circuit 2- load characteristic (AP=10 amplifier constant voltage: medium)
21.6
32 divided frequency
VCH [V]
21.5
64 divided frequency
21.4
96 divided frequency
21.3
128 divided frequency
21.2
21.1
0
10
20
30
40
50
Load voltage [uA]
Figure 74 Step-up circuit 2- load characteristic (AP=11 amplifier constant voltage: large)
89
HD66766R
Rev. 1.0-1 / September 2002
(3) Polarity inversion circuit – loading characteristic
Measureing condition
Ta = 25C, VCC = 3.0 [V], Oscillation frequency = 250 [kHz]
Vci1 step-up magnification = 0.92, Step-up circuit 1 step-up magnification two times
32 divided frequency, VREFM = 1.1 x VREFL, CT = 0.00R 1/12 Vias
Step-up circuit 2: Five times
21.5
VCL [V]
21.3
32 divided frequency
21.1
64 divided frequency
20.9
96 divided frequency
20.7
128 divided frequency
20.5
0
10
20
30
40
50
Load voltage [uA]
Figure 75 Polarity inversion circuit – Load characteristic (AP=01 amplifier constant current: small)
VCL [V]
21.5
21.3
32 divided frequency
21.1
64 divided frequency
96 divided frequency
20.9
128 divided frequency
20.7
20.5
0
10
20
30
Load voltage [uA]
40
50
Figure 76 Polarity inversion circuit - Load characteristic (AP=10 amplifier constant current: medium)
21.5
VCL [V]
21.3
32 divided frequency
21.1
64 divided frequency
20.9
96 divided frequency
20.7
128 divided frequency
20.5
0
10
20
30
Load voltage [uA]
40
50
Figure 77 Polarity inversion circuit - Load characteristic (AP=11 amplifier constant current: large)
90
HD66766R
Rev. 1.0-1 / September 2002
Load Circuits
AC Characteristics Test Load Circuits
Data bus: DB15 to DB0
Test point
50pF
Figure 78 Load Circuit
91
HD66766R
Rev. 1.0-1 / September 2002
Timing Characteristics
68-system Bus Operation
RS
R/W
CS*
VIH
VIH
VIL
VIL
tASE
tAHE
VIL
VIL
Note 1)
PWEH
VIH
PWEL
VIH
E
VIL
VIL
VIL
tEf
tEr
t DSWE
tCYCE
tHE
Note2)
VIH
VIL
DB0
to DB15
Wrire data
tDDRE
VIH
VIL
tDHRE
Note 2)
VOH1
VOH1
DB0
to DB15
VOL1
Read data
VOL1
Figure79 68-system Bus Timing
Notes: 1) PWEH is specified in the overlapped period when CS* is low and E is high.
2) Parallel data transfer is enabled on the DB15-8 pins when the 8-bit bus interface is used.
Fix the DB7-0 pins to Vcc or GND.
92
HD66766R
Rev. 1.0-1 / September 2002
80-system Bus Operation
RS
VIH
VIH
VIL
VIL
tAS
tAH
VIH
CS*
VIL
Note 1)
PWLW, PWLR
PWHW, PWHR
VIH
WR *
VIL
RD*
tWRr
VIH
VIL
tCYCW, tCYCR
tDSW
DB0
to DB15
VIH
VIL
Wrire data
tDDR
tWRf
tHWR
VIH
VIL
tDHR
VOH1
Read data
VOL1
DB0
to DB15
VOH1
VOL1
Figure 80 80-system Bus Timing
Note1) PWLW and PWLR are specified in the overlapped period when CS* is low and WR* or RD* is
low.
Note2) Parallel data transfer is enabled on the DB15-0 pins when the 8-bit bus interface is used. Fix the
DB7-0 pins to Vcc or GND.
93
HD66766R
Rev. 1.0-1 / September 2002
Clock Synchronized Serial Interface Operation
Start: S
End: P
CS*
VIH
VIL
VIL
tCSU
tSCYC
tscf
tscr
tSCL
tSCH
SCL
VIH
VIH VIH
VIL
VIL
tCH
VIH
VIL
VIL
tSISU
SDI
VIH
VIL
tSIH
Input data
VIH
VIL
Input data
tSOD
tSOH
SDO
VOH1
Output data
Output data
VOL1
VOH1
VOL1
Figure 81 Clock Synchronized Serial Interface Timing
Reset Operation
trRES
tRES
VIH
RESET*
VIL
VIL
Figure 82 Reset Timin
94
HD66766R
Rev. 1.0-1 / September 2002
Additional Issue
HD66766R Contrast fluctuation on RAM access
Hitachi one-chip driver; HD66766R has contrast fluctuation while accessing the internal RAM. This
phenomenon occurs according to the structure of external circuit and the usage of HD66766R. Please
have a clear understanding of the phenomenon and measures described below before using HD66766R.
1. Contrast fluctuation
When HD66766R is mounted on glass, the grand terminal gets contact with resistance of ITO wiring.
HD66766R has 8 GNDs, 4 AGNDs for power supply circuit, and another 4 GNDs for RAM and Logic.
When all the GNDs are connected on glass with ITO, transferring display data to the internal RAM at
high-speed causes high current consumption. And resistance of ITO wiring connected with GND
terminal raises the voltage. The raised voltage is amplified with a step-up circuit, and it results in a
decrease of VCH/VCL voltage causing contrast fluctuation on display. Figure 1 shows the mechanism
of the phenomenon. Figure 2 shows decrease of VCH voltage according to RAM access frequency and
resistance of ITO wiring. (The value shown in Figure 2 is the actual data of a typical sample of
HD66766R measured by Hitachi’s jig.)
2. Measures
ITO patterns on glass must be separated as shown in Figure 3. (Even if GND bumps are separated on
LSI, if ITO patterns on glass are connected, GND level rises up in RAM circuit and Logic circuit.) Also,
GND resistor should be designed to be less than 10 Ω, considering the decrease of VCH voltage caused
by the raise of GND voltage.
LCD
HD66766R
RAM
RAM access
current
Voltage
decrease
Voltage
generating
circuit
Resistance of
ITO wiring
GND
Figure 1 Influence of ITO wiring resistance
95
VCH
Voltage
decrease
HD66766R
Rev. 1.0-1 / September 2002
0.6
VCH Voltage decrease (V)
0.5
RAM access
frequency
0.4
1MHz
0.3
2MHz
3MHz
0.2
4MHz
0.1
0
0
5
10
15
Resistance of ITO wiring (Ω)
Figure 2 VCH voltage decrease depending on RAM access frequency and Resistance of ITO wiring
RAM, LOGIC
Power Supply
Circuit
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
Vcc
AGND AGND
ITO
GND
GND
GND
Power Supply
Circuit
GND
ITO
ITO
AGND AGND RESET2*
ITO
Slit
Figure 3 Recommended ITO Connection Pattern (HCD667X66)
RAM, LOGIC
Power Supply
Circuit
Vcc
Vcc
Vcc
ITO
Vcc
AVcc
AVcc
AVcc
AVcc
AGND AGND
ITO
ITO
GND
GND
GND
Power Supply
Circuit
GND
ITO
Slit
Figure 4 Recommended ITO Connection Pattern (HCD667X66R)
96
AGND AGND RESET2*
ITO
HD66766R
Rev. 1.0-1 / September 2002
Maintenance history report
Rev.
1.0
1.1
Date
August 8, 2002
September 17, 2002
Contents
First release
P74 2.Determine VOUT voltage Line2 From “4.0 to 5.5V” to “4.0 to 5.75
V”
P74 5.Determine input voltage of step-up circuit2 Line 3 From “4.5 to
5.75V)-0.5V” to “ (4.0 to 5.75V)-0.5V
97