Preliminary HD66787 528-channel, One-chip Driver with 262,144-color Display RAM and Power Supply Circuit for Low-temperature Poli-Si TFT (LTPS-TFT) Panels with Incorporated Gate Drivers REJxxxxxxx-xxxx Rev.0.22 10 June, 2003 Description ......................................................................................................... 5 Features ......................................................................................................... 6 Block Diagram .................................................................................................... 7 Pin Functions ...................................................................................................... 8 PAD Arrangement............................................................................................... 15 PAD Coordinate.................................................................................................. 16 BUMP Arrangements (T.B.D.) ........................................................................... 18 Block Function.................................................................................................... 19 1. System Interface ............................................................................................................... 19 2. External Display Interface ................................................................................................ 20 3. Bit Operations ................................................................................................................... 20 4. Address Counter (AC) ...................................................................................................... 20 5. Graphics RAM (GRAM) .................................................................................................. 20 7. Timing Generator.............................................................................................................. 20 8. Oscillation Circuit (OSC) ................................................................................................. 21 9. LCD Driver Circuit........................................................................................................... 21 10.LCD Drive Power Supply Circuit..................................................................................... 21 GRAM Address MAP......................................................................................... 22 Instructions ......................................................................................................... 29 Outline ................................................................................................................................... 29 Instruction Descriptions ......................................................................................................... 30 Index ...................................................................................................................................... 30 Status Read ............................................................................................................................ 31 Start Oscillation (R00h) ......................................................................................................... 31 Rev.0.22, May.23.2003, page 1 of 159 HD66787 Preliminary Driver Output Control (R01h)................................................................................................ 31 LCD Driving Waveform Control (R02h)............................................................................... 33 Entry Mode (R03h) Compare Register 1 (R04h) Compare Register 2 (R05h) ..................... 34 Display Control 1 (R07h)....................................................................................................... 36 Display Control 2 (R08h)....................................................................................................... 38 Frame Cycle Control (R0Bh)................................................................................................. 40 External Display Interface Control (R0Ch) ........................................................................... 43 LTPS Interface Control (R0Dh)............................................................................................. 47 Power Control 1 (R10h) Power Control 2 (R11h) ................................................................. 51 Power Control 3 (R12h) Power Control 4 (R13h) ................................................................. 54 RAM Address Set (R21h)...................................................................................................... 56 Write Data to GRAM (R22h)................................................................................................. 57 RAM Access through RGB-I/F and System I/F..................................................................... 62 Read Data Read from GRAM (R22h).................................................................................... 63 RAM Write Data Mask (R23h) RAM Write Data Mask (R24h) ........................................... 66 γ Control (R30h to R39h)....................................................................................................... 67 Vertical Scroll Control (R41h)............................................................................................... 68 1st-Screen Drive Position (R42h) 2nd-Screen Drive Position (R43h)................................... 68 Horizontal RAM Address Position (R44h) Vertical RAM Address Position (R45h) ............ 69 Instruction List .................................................................................................... 70 Reset Function .................................................................................................... 71 Interface Specifications....................................................................................... 73 System Interface.................................................................................................. 75 80-system 18-bit interface...................................................................................................... 76 80-system 16-bit interface...................................................................................................... 77 80-system 9-bit interface........................................................................................................ 78 Data transmission synchronizing in 9-bit bus interface mode................................................ 79 80-system 8-bit interface........................................................................................................ 79 Data transmission synchronization in 8-bit bus interface mode............................................. 81 Serial Peripheral interface (SPI) ............................................................................................ 82 VSYNC Interface................................................................................................ 85 Conditions on using VSYNC interface .................................................................................. 87 External Display Interface .................................................................................. 89 RGB interface ........................................................................................................................ 89 VLD and ENABLE signals.................................................................................................... 90 RGB interface timing ............................................................................................................. 90 Moving picture display .......................................................................................................... 92 RAM access through system interface in RGB-I/F mode ...................................................... 92 6-bit RGB interface................................................................................................................ 93 Data transmission synchronization in 6-bit RGB interface mode .......................................... 93 16-bit RGB interface.............................................................................................................. 94 18-bit RGB interface.............................................................................................................. 95 Rev.0.22, May.23.2003, page 2 of 159 HD66787 Preliminary Conditions on using external display interface ...................................................................... 96 Timing Interfacing with Liquid Crystal Panel Signals ....................................... 98 Register settings..................................................................................................................... 102 Low-temperature poli-Si TFT Panel Control...................................................... 104 High-Speed Burst RAM Write Function ............................................................ 106 Conditions on using high-speed RAM write mode ................................................................ 107 High-Speed RAM Write with Window Address Function..................................................... 108 Window Address Function ................................................................................. 110 Graphics Operation Function .............................................................................. 111 Graphics Operation ................................................................................................................ 111 Write-data Mask Function ..................................................................................................... 112 Graphics Operation Processing Examples ............................................................................. 112 γ-Correction Function ......................................................................................... 116 Configuration of Grayscale Amplifier ................................................................................... 117 γ-Correction Register ............................................................................................................. 119 Ladder resistors and 8-to-1 selector ....................................................................................... 120 Variable resistor..................................................................................................................... 120 Relationship between RAM data and output level................................................................. 126 8-color Display Mode ......................................................................................... 127 System Configuration ......................................................................................... 129 Configuration of Power Generation Circuit........................................................ 130 Specification of External Elements Connected to HD66787 Power Supply ...... 131 Instruction Setting Flow...................................................................................... 132 Power Supply Setting Flow ................................................................................ 134 Pattern Diagram for Voltage Setting................................................................... 135 Oscillation Circuit............................................................................................... 136 n-raster-row inversion AC drive ......................................................................... 137 AC Timing ......................................................................................................... 138 Frame-Frequency Adjustment Function ............................................................. 139 Relationship between Liquid Crystal Drive Duty and Frame Frequency .............................. 139 Rev.0.22, May.23.2003, page 3 of 159 HD66787 Preliminary Screen–split Display Function ............................................................................ 140 Conditions on Setting the 1st/2nd Screen Drive Position Register ........................................ 141 Absolute Maximum Values ................................................................................ 143 Electric Characteristics (T.B.D.)......................................................................... 144 DC Characteristics ................................................................................................................. 144 AC Characteristics ................................................................................................................. 145 80-system Bus Interface Timing Characteristics.................................................................... 145 Serial Peripheral Interface Timing Characteristics ................................................................ 148 Reset Timing Characteristics (VCC = 1.8 to 3.7 V) ................................................................ 149 RGB interface timing characteristics ..................................................................................... 150 Liquid crystal driver output characteristics............................................................................ 152 Electrical Characteristics Notes ............................................................................................. 152 Load circuits for measuring AC characteristics ..................................................................... 155 80-system Bus Operation ....................................................................................................... 155 Clock Synchronized Serial Interface Operation..................................................................... 156 RESET Operation .................................................................................................................. 156 RGB I/F Operation................................................................................................................. 157 Liquid Crystal Driver Output................................................................................................. 157 Rev.0.22, May.23.2003, page 4 of 159 HD66787 Preliminary Description The HD66787 handles 262,144 TFT colors and can drive a TFT color liquid crystal display of 176RGB x 240 dots with an incorporated RAM compliant to a graphics display of 176 RGB x 240 dots at maximum, a 528-channel source driver, and a power supply circuit. The HD66787 generates signals to control panel-integrated gate circuit to drive a TFT panel with incorporated gate driver with a single chip. The HD66787’s bit-operation functions, 8/9/16/18-bit high-speed bus interface, and high-speed RAM-write functions enable efficient transfer of data and high-speed data update on a graphics RAM. The HD66787 incorporates 6/16/18-bit RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, and PD 17 to 0) and VSYNC interface (system interface + VSYNC) as an interface for moving picture display. With a window address function that facilitates the moving picture display in an arbitrary area and simultaneous display of moving pictures and the contents of the internal RAM, the HD66787 enables moving picture display not constrained by the still picture area. Accordingly, the data transmission is reduced to minimum, thereby saving power consumed by a system as a whole when displaying moving pictures. The HD66787 supports power-saving operation up to the power supply voltage of 2.4V with a voltage follower circuit that generate voltage to drive liquid crystal. The HD66787 also incorporates 8-color display and standby functions that allow precise power control by software. These features make this LSI the ideal solution for any medium or small sized portable battery-driven products such as digital cellular phones supporting WWW browsers or small PDA, where long battery life and board size are major concern. Rev.0.22, May.23.2003, page 5 of 159 HD66787 Preliminary Features • • • • • • • • • Liquid crystal controller/driver for 262,144 TFT-color 176RGB x 240-dot graphics display Control signal for a low-temperature poly-Si TFT (LTPS-TFT) panel with incorporated gate circuit Single chip solution for gate-less display panels System interface – 8-/9-/16-/18-bit high-speed bus interface – Serial Peripheral Interface (SPI) – 8-bit transmission x 3 times (262k/65k color modes) Interface for moving picture display – 6-/16-/18-bit RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, PD17-0) – VSYNC interface (System interface + VSYNC) High-speed burst RAM write function Window address function to write data to the rectangular area of RAM specified by the window address – Interface to facilitate moving picture display in an arbitrary area – Reduce data transmission by transmitting only the data for the moving picture display area – Simultaneous display of moving pictures and the contents of the internal RAM Bit unit operations for processing graphics – Write data mask function by bit – Logical operation and conditional rewrite by pixel Functions for controlling abundant color displays – Simultaneous availability of 262,144 colors with γ-correction function – Line-unit vertical scrolling • Low-power architecture: features for low-power operation – Vcc = 2.4 ~ 3.3 V (internal logic power supply) – IOVcc = 1.8 ~ 3.3 V (interface I/O power supply) – Vci = 2.5 ~ 3.3 V (analogue power supply) – DDVDH = 4.5 ~ 5.5 V (liquid-crystal drive voltage) – Power-saving drive function (standby mode etc.) – Partial liquid crystal drive to display two screens at arbitrary positions – Voltage followers for liquid crystal drive power circuit to fend off the direct current from bleederresistors • • • • Step-up circuit generating liquid crystal drive voltage boosted up to 6-time scale 95,040-byte internal RAM Incorporated liquid crystal display driver with 582 source outputs n-raster-row liquid crystal AC drive, enabling polarity inversion by every arbitrary number of rasterrows Internal oscillation, and hardware reset Reversible direction of signals between RAM and source driver Exclusive for Cst structure • • • Rev.0.22, May.23.2003, page 6 of 159 HD66787 Preliminary Block Diagram ENABLE HSYNC OSC1 OSC2 PD0 ~ 17 DOTCLK VSYNC Vcc 18 Index Register (IR) 7 System Interface 18 VciLVL Vci VciOUT Vci1 VLOUT1 Selector LSEL12 LSEL11 LSEL10 16 18 18 LSEL22 LSEL21 LSEL20 Read Data Latch 4 4 18 Write Data Latch 18 72 4x2 Level Shift Level Shift Graphics RAM (GRAM) 95,040 bytes Voltage Adjustment Circuit Step-up Circuit 1 Power Supply Circuit Step-up Circuit 2 VREG1 Vcom OUT DDVDH VLOUT2 VGH VLOUT3 VGL VLOUT4 VCL SFTCLK DISPTMG M RESET* TEST1 TEST2 TS7-0 SOUT11 SOUT12 SOUT13 SOUT14 SOUT21 SOUT22 SOUT23 SOUT24 Bit Operation γ Adjustment Circuit VcomL Vcom VREG1OUT Vc mH Rev.0.22, May.23.2003, page 7 of 159 Grayscale voltage generation Circuit VTEST VGS VMONI V0P,V0N, V31P,V31N V0-31 LCD Drive Circuit WR*/SCL RD* DB0/SDI, DB1/SDO, ~ DB17 - 18 bit - 16 bit - 9 bit - 8 bit - Serial Peripheral Interface (SPI) - 3-transmission mode CL1 CL1B FLM Latch Circuit RS 18 Timing Generation Circuit M Alternate Current Circuit VLD Address Counter (AC) Latch Circuit CS* 18 16 Latch Circuit IM3-1, IM0/ID CPG External Display Interfaces VSYNC,HSYNC,DCLK,ENABLE PD17-0 Control Register (CR) S1 ~ S528 HD66787 Preliminary Pin Functions Signals Number of Pins I/O Connected to Functions IM3~1, IM0/ID 4 I GND or IOVcc Pins to select MPU-interface mode. IM3 IM2 IM1 IM0/ID MPU-Interface DB Pin Mode GND GND GND GND Setting disabled _ GND GND GND IOVcc Setting disabled _ GND GND IOVcc GND GND GND IOVcc IOVcc 80-system 16-bit DB17~10, interface DB8~1 80-system 8-bit DB17 ~10 interface GND IOVcc GND ID Serial Peripheral DB1~ 0 Interface (SPI) GND IOVcc IOVcc * Setting disabled IOVcc GND GND GND Setting disabled IOVcc GND GND IOVcc Setting disabled IOVcc GND IOVcc GND 80-system 18-bit DB17~0 interface GND IOVcc IOVcc IOVcc 80-system 9-bit DB17~9 interface IOVcc IOVcc * * Setting disabled When Serial Peripheral Interface is selected, IM0 pin is used for the device code ID setting. CS* 1 I MPU Select the HD66787. Low: the HD6678 is selected and accessible High: the HD66787 is not selected and not accessible Must be fixed to the GND level while not used. VLD 1 I MPU Indicate whether data is valid or not during RAM write. Low: Valid (Write data to RAM). High: Invalid (Not write data to RAM). RAM address is updated irrespective of VLD. Must be fixed to the GND level while not used. This signal is available when external display interface is used. Rev.0.22, May.23.2003, page 8 of 159 CS VLD RAM Write RAM Address 0 0 Valid Updated 0 1 Invalid Updated 1 * Invalid Hold HD66787 Preliminary Signals Number of Pins I/O Connected to Functions RS 1 I MPU Select register. Low: Index/status, High: Control Fix to the “IOVcc” or “GND” level while using SPI. WR*/SCL 1 I MPU In 80-system bus interface mode, serves as a write strobe signal. Data are written at “Low” level. In Serial Peripheral Interface mode, serves as synchronizing clock signal. RD* 1 I MPU In 80-system bus interface mode, serves as read-strobe signal. Data are read at the low level of the signal. Fix to the “IOVcc” or “GND” level while using SPI. DB0/SDI 1 I/O MPU 18-bit parallel bi-directional data bus. 8-bit bus: DB17-DB10 9-bit bus: DB17-DB9 16-bit bus: DB17-DB10 and DB8-DB1 18-bit bus: DB17-DB0 Unused pins must be fixed to the IOVcc or GND level. Serves as serial data input pin (SDI) in Serial Peripheral Interface mode, where data are input on the rising edge of SCL signal. DB1/SDO 1 I/O MPU 18-bit parallel bi-directional data bus. 8-bit bus: DB17-DB10 9-bit bus: DB17-DB9 16-bit bus: DB17-DB10 and DB8-DB1 18-bit bus: DB17-DB0 Unused pins must be fixed to the IOVcc or GND level. Serves as serial data output pin (SDO) in Serial Peripheral Interface mode, where data are output on the falling edge of the SCL signal. DB2~DB17 16 I/O MPU 18-bit parallel bi-directional data bus. 8-bit bus: DB17-DB10 9-bit bus: DB17-DB9 16-bit bus: DB17-DB10 and DB8-DB1 18-bit bus: DB17-DB0 Unused pins must be fixed to the IOVcc or GND level. ENABLE 1 I Rev.0.22, May.23.2003, page 9 of 159 MPU Indicate whether RAM data are valid or not when RGB interface is used. Low: Selected (access enabled) High: Not selected (access disabled) Must be fixed to the IOVcc or GND level while not used. ENABLE signal invert the polarity according to the setting of EPL resister. HD66787 Preliminary Signals Number of Pins I/O Connected to ENABLE 1 I MPU Functions EPL ENABLE VLD RAM Write RAM Address 0 0 0 Valid Updated 0 0 1 Invalid Updated 0 1 * Invalid Held 1 0 * Invalid Held 1 1 0 Valid Updated 1 1 1 Invalid Updated VSYNC 1 I MPU Frame synchronizing signal. This signal is active low. Must be fixed at the IOVcc level while not used. HSYNC 1 I MPU Line synchronizing signal. This signal is active low. Must be fixed at the IOVcc level while not used. DOTCLK 1 I MPU Dot-clock signal This signal is active low The timing of data input is determined at the falling edge of the signal. Must be fixed at the IOVcc level while not used PD0~PD17 18 I MPU 18-bit bus for RGB data. 6-bit bus: PD17-PD12 16-bit bus: PD17-PD13 and PD11-PD1 18-bit bus: PD17-PD0 Unused pins must be fixed to the IOVcc or GND level. RESET* 1 I MPU or reset circuit S1~S528 528 O LCD Reset pin. Initializes the LSI at the “Low” level. Power-on reset required after turning on the power. Output voltage applied to liquid crystal. The shift direction of segment signals is changeable with SS bit. For example, if SS = 0, RAM address “0000” is output from S1. If SS = 1, it is output from S528. S1, S4, S7, ... display red (R), S2, S5, S8, ... display green (G), and S3, S6, S9, ... display blue (B) (SS = 0). LSEL22,21,20 3 I GND or IOVcc Output level shift output signals, SOUT24, 23, 22,21. LSEL12,11,10 3 I GND or IOVcc Output level shift output signals, SOUT14, 13, 12,11. Rev.0.22, May.23.2003, page 10 of 159 HD66787 Preliminary Signals Number of Pins I/O Connected to Functions SOUT14,13, 12,11 SOUT24,23, 22,21 8 O LCD Level-shift and then output display clocks. Output pins for SOUT14-11 are arranged on either left or right side of the chip and pins for SOUT24-21 are arranged on the other side of the chip. The kinds of output signals can be selected as shown in the following table with LSEL22-20 and LSEL12-10 bits and output from both or either one side of SOUT14-11 and SOUT 24-21 pins. If signals are output from either one side, halt the operation of unused circuits. When signals are output from SOUT14-11, SOUT 24-21 pins, 6 different kind of 8 level-shift signals are output at maximum. The amplitude of level-shift signal is between VGH and VGL. Pin settings Vcom1, Vcom2 2 O TFT common electrode Level shift signal LSEL 12 LSEL 11 LSEL 10 SOUT 11 SOUT 12 SOUT 13 SOUT 23 SOUT 14 LSEL 22 LSEL 21 LSEL 20 SOUT 21 SOUT 22 GND GND GND FLM SFTCLK CL1 CL1B GND GND IOVcc FLM SFTCLK CL1 DISPTMG GND IOVcc GND FLM SFTCLK M CL1B SOUT 24 GND IOVcc IOVcc FLM SFTCLK M DISPTMG IOVcc GND GND FLM DISPTMG CL1 CL1B IOVcc GND IOVcc Setting disabled IOVcc IOVcc GND Setting disabled IOVcc IOVcc IOVcc Halt (VGL) Halt (VGL) Halt (VGL) Halt (VGL) Power supply for TFT common electrode. When Vcom AC drive is not selected, output the same level of voltage as VcomL level. When Vcom AC drive is selected, output the voltage with the amplitude between VcomH and VcomL. The AC cycle can be set with M signal. Connect to the TFT common electrode. VcomR 1 I Variable resistor or open Reference voltage for VcomH. When adjusting VcomH externally, VcomH internal adjusting circuit must be halted by register setting and place a variable resistor between VREG1OUT and GND to make an adjustment. Otherwise, leave open and adjust VcomH by internal-register setting. VcomH 1 O Stabilizing capacitor High level of Vcom during Vcom AC drive. Connect to a stabilizing capacitor. VcomL 1 O Stabilizing capacitor or open Vcom voltage when Vcom AC drive is not selected. Step-up capacitor Step-up capacitor connection pins for step-up circuit 1. When the internal step-up circuit is not used, leave open. C11+, C11- 2 - Rev.0.22, May.23.2003, page 11 of 159 Low level of Vcom during Vcom AC drive. Voltage can be adjusted with internal registers. Connect to a stabilizing capacitor. When VCOMG bit is set to LOW, a stabilizing capacitor is not necessary because VcomL output is halted. HD66787 Preliminary Signals Number of Pins I/O Connected to Functions C12+, C12- 6 - Step-up capacitor Step-up capacitor connection pins for step-up circuit 2. Capacitor connection will be necessary depending on the stepup scale. When the internal step-up circuit is not used, leave open. OSC1, OSC2 2 I or O Resistor for the oscillator Connect to an external resistor for R-C oscillation. When supplying clock signals externally, it must be supplied through OSC1 and leave OSC2 open. FLM 1 O MPU or open Frame head pulse with amplitude between GND and Vcc. Power supply Power supply for analogue circuits. Power supply Generates a reference voltage (VciOUT, REGP) in accordance to the ratio set with VC2~0 registers. C21+, C21C22+, C22- Vci VciLVL 1 1 I I Use when writing data to RAM in synchronization with FLM. When FLM is not used, leave open. In this case, power supply for the VciOUT amplifier. Connect to an external power supply of 2.5~3.3V. Connect to the same power supply as the Vci, which has separate wiring from the VciLVL on the FPC. REGP 1 I/O Test pin Test pin for VREG1OUT. Leave open. VciOUT 1 I Stabilizing capacitor, Vci1 Internal reference voltage with amplitude between Vci and GND. Set with VC bit. Vci1 1 I VciOUT A reference voltage for the step-up circuit 1. Connect to an external power supply of 2.75V or less when the internal reference voltage is not used. VLOUT1 1 O Stabilizing capacitor, DDVDH Output twice stepped-up Vci1 voltage from the step-up circuit 1. Connect to a stabilizing capacitor. VLOUT1 = 4.0~5.5V DDVDH 1 I VLOUT1 Power supply for source driver liquid crystal output portion. A reference voltage for the step-up circuit 2. VLOUT2 1 O Stabilizing capacitor, VGH Output stepped-up DDVDH voltage, which is stepped up to the level Vci1 x 4~6 from the step-up circuit 2. The step-up scale is determined with BT bits. Connect to a stabilizing capacitor. VLOUT2 = max 16.5V VGH 1 I VLOUT2 Power supply for TFT gate drive. Connect to VLOUT2. VLOUT3 1 O Stabilizing capacitor, VGL Output stepped-up DDVDH voltage, which is stepped up to the level Vci1 x (- 3) ~ (-5) from the step-up circuit 2. The step-up scale is determined with BT bits. Connect to a stabilizing capacitor. VLOUT2 = min -16.5V VGL 1 I VLOUT3 A power supply for TFT gate drive. Connect to VLOUT3. VLOUT4 1 O Stabilizing capacitor, VCL Output the Vci1 x (-1) voltage from the step-up circuit 2. Connect to a stabilizing capacitor. VLOUT4 = 0 ~ -3.3V VCL 1 I VLOUT4 Power supply for VcomL drive. Connect to VLOUT4. Rev.0.22, May.23.2003, page 12 of 159 HD66787 Preliminary Signals Number of Pins I/O Connected to Functions VREG1OUT 1 I/O Stabilizing capacitor or power supply Reference voltage with amplitude between DDVDH and GND, which is generated from the reference voltage internally generated with amplitude between Vci and GND. The scale of output voltage can be set with VRH bits. VREG1OUT becomes (1) a source driver grayscale reference voltage VDH, (2) a VcomH level reference voltage, or (3) a Vcom amplitude reference voltage. Connect to a stabilizing capacitor. VREG1OUT = 3.0 ~ (DDVDH – 0.5)V Vcc 1 - Power supply Power supply for a logic circuit. Vcc = 2.4 ~ 3.3V IOVcc 1 - Power supply Power supply for interface pins. IOVcc = 1.8 ~ 3.3V. IOVcc must be turned on with the same voltage as the internal logic voltage Vcc. When it is assembled on COG, connect to Vcc on the FPC to avoid effects from the noise when IOVcc is used. RVcc 1 - Power supply Vcc power supply for RAM. Supply with the same potential as the Vcc. GND 1 - Power supply Ground for the logic side. GND = 0V AGND 1 - Power supply Ground for the analog side. AGND = 0V. When assembled on COG, connect to GND on the FPC to avoid effects from the noise. RGND 1 - Power supply Ground for internal RAM. RGND = 0V. When assembled on COG, connect to GND on the FPC to avoid effects from the noise. TEST1 1 I GND Test pin. Fix it to the GND level. TEST2 1 I GND Test pin. Fix it to the GND level. V0P, V31P 2 I or O Stabilizing capacitor Output from internal positive polarity operational amplifier when the operational amplifier is ON (SAP2-0 = “001”, “010”, “011”, “100”, and “101”). Stabilize by connecting to a capacitor. V0N, V31N 2 I or O Stabilizing capacitor Output from internal negative polarity operational amplifier when the operational amplifier is ON (SAP2-0 = “001”, “010”, “011”, “100”, and “101”). Stabilize by connecting to a capacitor. VGS 1 I GND or external resistor Reference level for grayscale voltage generation circuit. open Test pin. Leave open. Connect to an external resistor when source driver is used to adjust grayscale levels for each panel. VTESTS 1 I/O TS0~TS7 8 O open Test pin. Leave open. TESTA1 1 I/O open Test pin for VcomH. Leave open. TESTA2 1 I/O open Test pin for VcomL. Leave open. TESTA4 1 I/O open Test pin for VcomL. Leave open or connect to a stabilizing capacitor depending on the display quality. VMONI 1 O open Test pin. Leave open. IOVccDUM1~4 4 O Input pin Internal IOVcc level. When neighboring input pins are fixed to the IOVcc side, short-circuit them. Rev.0.22, May.23.2003, page 13 of 159 HD66787 Preliminary Signals Number of Pins I/O Connected to Functions IOGNDDUM1~7 7 O Input pin Internal GND level. When neighboring input pins are fixed to the IOVcc side, short-circuit them. TESTO1~2 2 - - Dummy pads. Leave open. DUMMY - - Dummy pad. Leave open. DUMMYR - - Dummy pad. Leave open. Rev.0.22, May.23.2003, page 14 of 159 HD66787 Preliminary PAD Arrangement No.791 VLOUT3 VGL VGL VGL VGL VGL VGL VGL VGL VLOUT2 VGH VGH VGH VGH VGH VGH VGH VGH DUMMY41 SOUT11 SOUT12 SOUT13 SOUT14 No.769 No.1 (4)33µm×77µm Laced LCD output side: No.235 ~ No.762 nAu bump pitch : see PAD coordinate nAu bump height :15µm (typ.) nNumbers in the figure indecates numbers of PAD coordinate nAlignment mark (1) Arrangement : 2 places Coordinate(X,Y)= (-9394.4, 1214.7) Coordinate(X,Y)= (9394.4, 1214.7) 100µm 40 30 50 100µm 30 50 30 40 30 (2-a) Coordinate(X,Y) =( -10024.0,1264.6) 50µm (2-b) Coordinate(X,Y) =( 10024.0,1264.6) 50µm 20 (3-a)Coordinate (X,Y) = (-10114.6, 1160.7) 25 25 10 5 25 5 10 25 70µm 80µm 10 5 5 10 70µm 80µm (3-b)Coordinate (X,Y) = (10114.6, 1160.7) 25 25 10 10 25 70µm 25 10 10 70µm No.210 DUMMY39 No.211 No.212 Rev.0.22, May.23.2003, page 15 of 159 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 No.768 1 1 1 1 TESTO2 1 1 Vcom1 Vcom1 Vcom1 Vcom1 Vcom1 1 1 1 1 Min 80um pich 23 pin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 No.767 1 1 1 1 No.762 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S1 S2 S3 S4 S5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 HD667B87 Laced Output Arrangement Top View 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Min 35um pich 538pin (3)100µm×54µm Input : No.212 ~ No.228 , No.769 ~ No.791 1 1 1 1 1 1 1 1 Y 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Short-circuit within the chip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S524 S525 S526 S527 S528 1 1 1 1 No.235 1 1 1 1 1 1 Vcom2 Vcom2 Vcom2 Vcom2 Vcom2 1 1 TESTO1 1 1 1 1 1 1 1 1 1 1 Min 80um pich 17 pin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DUMMY40 SOUT21 SOUT22 SOUT23 SOUT24 (2)54µm×100µm Input : No.2 ~ No.210 , No.230 ~ No.234 , No.763 ~ No.767 1 1 VcomH VcomH VcomH VcomH VcomH VcomH nAu bump size : (1) 80µm x 80µm Corner dummy No.1, No211, No.229, No.768 C22+ C22+ C22C22C21+ C21+ C21C21C12+ C12+ C12+ C12+ C12C12C12C12DUMMY2 DUMMY3 DUMMY4 DUMMY5 DUMMY6 DUMMY7 DUMMY8 DUMMY9 DUMMY10 IOGNDDUM1 LSEL12 LSEL11 LSEL10 LSEL20 LSEL21 LSEL22 IM0/ID IM1 IM2 IM3 IOVccDUM1 RESET* DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 IOGNDDUM2 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1/SDO DB0/SDI IOVccDUM2 RD* WR*/SCL RS CS* VLD IOGNDDUM3 VSYNC HSYNC DOTCLK ENABLE IOVccDUM3 PD17 PD16 PD15 PD14 PD13 PD12 IOGNDDUM4 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 FLM IOVcc IOVcc Vcc Vcc Vcc Vcc RVcc RVcc RVcc RVcc RVcc Vci Vci Vci Vci Vci Vci VciLVL RGND RGND RGND RGND RGND RGND AGND AGND AGND AGND AGND GND GND GND GND GND GND TEST1 TEST2 OSC1 OSC2 TS7 TS6 TS5 TS4 TS3 TS2 TS1 TS0 DUMMYR1 DUMMYR2 DUMMYR3 DUMMYR4 DUMMYR5 DUMMYR6 DUMMYR7 DUMMYR8 DUMMYR9 DUMMY11 DUMMY12 DUMMY13 DUMMY14 DUMMY15 DUMMY16 DUMMY17 DUMMY18 DUMMY19 DUMMY20 DUMMY21 DUMMY22 DUMMY23 DUMMY24 DUMMY25 DUMMY26 DUMMY27 DUMMY28 DUMMY29 DUMMY30 DUMMY31 DUMMY32 DUMMY33 DUMMY34 DUMMY35 DUMMY36 DUMMY37 DUMMY38 REGP VGS VGS V0P V0N VMONI V31P V31N TESTA4 TESTA1 VcomR VREG1OUT TESTA2 VTESTS VCL VCL VLOUT4 Vci1 Vci1 Vci1 VciOUT VciOUT VciOUT DDVDH DDVDH DDVDH VLOUT1 VLOUT1 C11C11C11C11C11+ C11+ C11+ C11+ 1 1 Min 80um pich 209pin nChip Size : 20.50mm×2.80mm nChip Thickness : 550µ m (typ.) nPad Coordinate: PAD Center nCoordinate Origin : Chip center DUMMY1 1 1 VcomL VcomL VcomL VcomL VcomL VcomL No.2 No.230 No.229 No.228 HD66787 Preliminary PAD Coordinate pad No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 pad name DUMMY1 C22+ C22+ C22C22C21+ C21+ C21C21C12+ C12+ C12+ C12+ C12C12C12C12DUMMY2 DUMMY3 DUMMY4 DUMMY5 DUMMY6 DUMMY7 DUMMY8 DUMMY9 DUMMY10 IOGNDDUM1 LSEL12 LSEL11 LSEL10 LSEL20 LSEL21 LSEL22 IM0/ID IM1 IM2 IM3 IOVccDUM1 RESET* DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 IOGNDDUM2 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1/SDO DB0/SDI IOVccDUM2 RD* WR*/SCL RS CS* VLD IOGNDDUM3 VSYNC HSYNC DOTCLK ENABLE IOVccDUM3 PD17 PD16 PD15 PD14 PD13 PD12 IOGNDDUM4 PD11 PD10 PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 FLM IOVcc IOVcc Vcc Vcc Vcc Vcc RVcc RVcc RVcc RVcc X -10114.0 -9885.5 -9805.3 -9725.2 -9645.0 -9564.9 -9484.7 -9404.6 -9324.4 -9186.0 -9105.9 -9025.7 -8945.6 -8807.1 -8727.0 -8646.8 -8566.7 -8433.7 -8353.5 -8273.4 -8193.2 -8113.1 -8032.9 -7952.8 -7872.6 -7792.5 -7618.5 -7501.1 -7421.0 -7340.8 -7260.7 -7180.5 -7100.4 -7020.2 -6940.1 -6859.9 -6779.8 -6635.3 -6512.5 -6372.9 -6292.7 -6212.6 -6132.4 -6052.3 -5972.1 -5892.0 -5811.8 -5731.7 -5587.2 -5469.9 -5389.7 -5309.6 -5229.4 -5149.3 -5069.1 -4989.0 -4908.8 -4828.7 -4684.2 -4566.9 -4486.7 -4406.6 -4326.4 -4246.3 -4101.8 -3984.5 -3904.3 -3824.2 -3744.0 -3599.6 -3482.2 -3402.1 -3321.9 -3241.8 -3161.6 -3081.5 -2937.0 -2819.7 -2739.5 -2659.4 -2579.2 -2499.1 -2418.9 -2338.8 -2258.6 -2178.5 -2098.3 -2018.2 -1938.0 -1857.9 -1702.6 -1622.4 -1478.6 -1398.4 -1307.4 -1227.3 -1083.4 -1003.3 -912.3 -832.1 Y -1264.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 pad No pad name X 101 RVcc -752.0 102 Vci -608.1 103 Vci -528.0 104 Vci -447.8 105 Vci -367.7 106 Vci -287.5 107 Vci -207.4 108 VciLVL -57.7 109 RGND 86.6 110 RGND 166.8 111 RGND 246.9 112 RGND 327.1 113 RGND 407.2 114 RGND 487.4 115 AGND 620.4 116 AGND 700.5 117 AGND 780.7 118 AGND 860.8 119 AGND 941.0 120 GND 1074.0 121 GND 1154.1 122 GND 1287.1 123 GND 1367.3 124 GND 1447.4 125 GND 1527.6 126 TEST1 1679.2 127 TEST2 1759.4 128 OSC1 1899.0 129 OSC2 1979.2 130 TS7 2118.8 131 TS6 2199.0 132 TS5 2279.1 133 TS4 2359.3 134 TS3 2439.4 135 TS2 2519.6 136 TS1 2599.7 137 TS0 2679.9 138 DUMMYR1 2824.3 139 DUMMYR2 2904.5 140 DUMMYR3 2984.6 141 DUMMYR4 3064.8 142 DUMMYR5 3144.9 143 DUMMYR6 3225.1 144 DUMMYR7 3305.2 145 DUMMYR8 3385.4 146 DUMMYR9 3465.5 147 DUMMY11 3598.5 148 DUMMY12 3678.7 149 DUMMY13 3758.8 150 DUMMY14 3839.0 151 DUMMY15 3919.1 152 DUMMY16 3999.3 153 DUMMY17 4079.4 154 DUMMY18 4159.6 155 DUMMY19 4239.7 156 DUMMY20 4319.9 157 DUMMY21 4400.0 158 DUMMY22 4480.2 159 DUMMY23 4560.3 160 DUMMY24 4640.5 161 DUMMY25 4720.6 162 DUMMY26 4800.8 163 DUMMY27 4880.9 164 DUMMY28 4961.1 165 DUMMY29 5041.2 166 DUMMY30 5121.4 167 DUMMY31 5201.5 168 DUMMY32 5281.7 169 DUMMY33 5361.8 170 DUMMY34 5442.0 171 DUMMY35 5522.1 172 DUMMY36 5602.3 173 DUMMY37 5682.4 174 DUMMY38 5762.6 175 REGP 5959.8 176 VGS 6115.4 177 VGS 6241.2 178 V0P 6367.0 179 V0N 6492.9 180 VMONI 6618.7 181 V31P 6744.5 182 V31N 6870.3 183 TESTA4 7020.0 184 TESTA1 7302.8 185 VcomR 7428.6 186 VREG1OUT 7554.4 187 TESTA2 7680.2 188 VTESTS 7806.1 189 VCL 7950.3 190 VCL 8033.1 191 VLOUT4 8113.3 192 Vci1 8251.7 193 Vci1 8331.8 194 Vci1 8412.0 195 VciOUT 8492.1 196 VciOUT 8572.3 197 VciOUT 8652.4 198 DDVDH 8796.3 199 DDVDH 8876.4 200 DDVDH 8956.6 Rev.0.22, May.23.2003, page 16 of 159 Y -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 pad No 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 pad name VLOUT1 VLOUT1 C11C11C11C11C11+ C11+ C11+ C11+ DUMMY39 VcomL VcomL VcomL VcomL VcomL VcomL VcomH VcomH VcomH VcomH VcomH VcomH DUMMY40 SOUT21 SOUT22 SOUT23 SOUT24 TESTO1 Vcom2 Vcom2 Vcom2 Vcom2 Vcom2 S528 S527 S526 S525 S524 S523 S522 S521 S520 S519 S518 S517 S516 S515 S514 S513 S512 S511 S510 S509 S508 S507 S506 S505 S504 S503 S502 S501 S500 S499 S498 S497 S496 S495 S494 S493 S492 S491 S490 S489 S488 S487 S486 S485 S484 S483 S482 S481 S480 S479 S478 S477 S476 S475 S474 S473 S472 S471 S470 S469 S468 S467 S466 S465 S464 S463 X 9100.4 9180.6 9324.4 9404.6 9484.7 9564.9 9645.0 9725.2 9805.3 9885.5 10114.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10104.0 10114.0 9892.1 9811.9 9731.8 9651.6 9571.5 9240.0 9205.0 9170.0 9135.0 9100.0 9065.0 9030.0 8995.0 8960.0 8925.0 8890.0 8855.0 8820.0 8785.0 8750.0 8715.0 8680.0 8645.0 8610.0 8575.0 8540.0 8505.0 8470.0 8435.0 8400.0 8365.0 8330.0 8295.0 8260.0 8225.0 8190.0 8155.0 8120.0 8085.0 8050.0 8015.0 7980.0 7945.0 7910.0 7875.0 7840.0 7805.0 7770.0 7735.0 7700.0 7665.0 7630.0 7595.0 7560.0 7525.0 7490.0 7455.0 7420.0 7385.0 7350.0 7315.0 7280.0 7245.0 7210.0 7175.0 7140.0 7105.0 7070.0 7035.0 7000.0 6965.0 Y -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1254.0 -1264.0 -1035.5 -897.1 -758.6 -620.2 -481.8 -343.4 -204.9 -66.5 71.9 210.4 348.8 487.2 655.3 788.3 868.4 948.6 1028.7 1264.0 1254.0 1254.0 1254.0 1254.0 1254.0 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 pad No 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 pad name S462 S461 S460 S459 S458 S457 S456 S455 S454 S453 S452 S451 S450 S449 S448 S447 S446 S445 S444 S443 S442 S441 S440 S439 S438 S437 S436 S435 S434 S433 S432 S431 S430 S429 S428 S427 S426 S425 S424 S423 S422 S421 S420 S419 S418 S417 S416 S415 S414 S413 S412 S411 S410 S409 S408 S407 S406 S405 S404 S403 S402 S401 S400 S399 S398 S397 S396 S395 S394 S393 S392 S391 S390 S389 S388 S387 S386 S385 S384 S383 S382 S381 S380 S379 S378 S377 S376 S375 S374 S373 S372 S371 S370 S369 S368 S367 S366 S365 S364 S363 X 6930.0 6895.0 6860.0 6825.0 6790.0 6755.0 6720.0 6685.0 6650.0 6615.0 6580.0 6545.0 6510.0 6475.0 6440.0 6405.0 6370.0 6335.0 6300.0 6265.0 6230.0 6195.0 6160.0 6125.0 6090.0 6055.0 6020.0 5985.0 5950.0 5915.0 5880.0 5845.0 5810.0 5775.0 5740.0 5705.0 5670.0 5635.0 5600.0 5565.0 5530.0 5495.0 5460.0 5425.0 5390.0 5355.0 5320.0 5285.0 5250.0 5215.0 5180.0 5145.0 5110.0 5075.0 5040.0 5005.0 4970.0 4935.0 4900.0 4865.0 4830.0 4795.0 4760.0 4725.0 4690.0 4655.0 4620.0 4585.0 4550.0 4515.0 4480.0 4445.0 4410.0 4375.0 4340.0 4305.0 4270.0 4235.0 4200.0 4165.0 4130.0 4095.0 4060.0 4025.0 3990.0 3955.0 3920.0 3885.0 3850.0 3815.0 3780.0 3745.0 3710.0 3675.0 3640.0 3605.0 3570.0 3535.0 3500.0 3465.0 Y 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 HD66787 pad No 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Preliminary pad name S362 S361 S360 S359 S358 S357 S356 S355 S354 S353 S352 S351 S350 S349 S348 S347 S346 S345 S344 S343 S342 S341 S340 S339 S338 S337 S336 S335 S334 S333 S332 S331 S330 S329 S328 S327 S326 S325 S324 S323 S322 S321 S320 S319 S318 S317 S316 S315 S314 S313 S312 S311 S310 S309 S308 S307 S306 S305 S304 S303 S302 S301 S300 S299 S298 S297 S296 S295 S294 S293 S292 S291 S290 S289 S288 S287 S286 S285 S284 S283 S282 S281 S280 S279 S278 S277 S276 S275 S274 S273 S272 S271 S270 S269 S268 S267 S266 S265 S264 S263 X 3430.0 3395.0 3360.0 3325.0 3290.0 3255.0 3220.0 3185.0 3150.0 3115.0 3080.0 3045.0 3010.0 2975.0 2940.0 2905.0 2870.0 2835.0 2800.0 2765.0 2730.0 2695.0 2660.0 2625.0 2590.0 2555.0 2520.0 2485.0 2450.0 2415.0 2380.0 2345.0 2310.0 2275.0 2240.0 2205.0 2170.0 2135.0 2100.0 2065.0 2030.0 1995.0 1960.0 1925.0 1890.0 1855.0 1820.0 1785.0 1750.0 1715.0 1680.0 1645.0 1610.0 1575.0 1540.0 1505.0 1470.0 1435.0 1400.0 1365.0 1330.0 1295.0 1260.0 1225.0 1190.0 1155.0 1120.0 1085.0 1050.0 1015.0 980.0 945.0 910.0 875.0 840.0 805.0 770.0 735.0 700.0 665.0 630.0 595.0 560.0 525.0 490.0 455.0 420.0 385.0 350.0 315.0 280.0 245.0 210.0 175.0 140.0 105.0 70.0 35.0 -35.0 -70.0 Y 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 pad No 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 pad name S262 S261 S260 S259 S258 S257 S256 S255 S254 S253 S252 S251 S250 S249 S248 S247 S246 S245 S244 S243 S242 S241 S240 S239 S238 S237 S236 S235 S234 S233 S232 S231 S230 S229 S228 S227 S226 S225 S224 S223 S222 S221 S220 S219 S218 S217 S216 S215 S214 S213 S212 S211 S210 S209 S208 S207 S206 S205 S204 S203 S202 S201 S200 S199 S198 S197 S196 S195 S194 S193 S192 S191 S190 S189 S188 S187 S186 S185 S184 S183 S182 S181 S180 S179 S178 S177 S176 S175 S174 S173 S172 S171 S170 S169 S168 S167 S166 S165 S164 S163 Rev.0.22, May.23.2003, page 17 of 159 X -105.0 -140.0 -175.0 -210.0 -245.0 -280.0 -315.0 -350.0 -385.0 -420.0 -455.0 -490.0 -525.0 -560.0 -595.0 -630.0 -665.0 -700.0 -735.0 -770.0 -805.0 -840.0 -875.0 -910.0 -945.0 -980.0 -1015.0 -1050.0 -1085.0 -1120.0 -1155.0 -1190.0 -1225.0 -1260.0 -1295.0 -1330.0 -1365.0 -1400.0 -1435.0 -1470.0 -1505.0 -1540.0 -1575.0 -1610.0 -1645.0 -1680.0 -1715.0 -1750.0 -1785.0 -1820.0 -1855.0 -1890.0 -1925.0 -1960.0 -1995.0 -2030.0 -2065.0 -2100.0 -2135.0 -2170.0 -2205.0 -2240.0 -2275.0 -2310.0 -2345.0 -2380.0 -2415.0 -2450.0 -2485.0 -2520.0 -2555.0 -2590.0 -2625.0 -2660.0 -2695.0 -2730.0 -2765.0 -2800.0 -2835.0 -2870.0 -2905.0 -2940.0 -2975.0 -3010.0 -3045.0 -3080.0 -3115.0 -3150.0 -3185.0 -3220.0 -3255.0 -3290.0 -3325.0 -3360.0 -3395.0 -3430.0 -3465.0 -3500.0 -3535.0 -3570.0 Y 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 pad No 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 pad name S162 S161 S160 S159 S158 S157 S156 S155 S154 S153 S152 S151 S150 S149 S148 S147 S146 S145 S144 S143 S142 S141 S140 S139 S138 S137 S136 S135 S134 S133 S132 S131 S130 S129 S128 S127 S126 S125 S124 S123 S122 S121 S120 S119 S118 S117 S116 S115 S114 S113 S112 S111 S110 S109 S108 S107 S106 S105 S104 S103 S102 S101 S100 S99 S98 S97 S96 S95 S94 S93 S92 S91 S90 S89 S88 S87 S86 S85 S84 S83 S82 S81 S80 S79 S78 S77 S76 S75 S74 S73 S72 S71 S70 S69 S68 S67 S66 S65 S64 S63 X -3605.0 -3640.0 -3675.0 -3710.0 -3745.0 -3780.0 -3815.0 -3850.0 -3885.0 -3920.0 -3955.0 -3990.0 -4025.0 -4060.0 -4095.0 -4130.0 -4165.0 -4200.0 -4235.0 -4270.0 -4305.0 -4340.0 -4375.0 -4410.0 -4445.0 -4480.0 -4515.0 -4550.0 -4585.0 -4620.0 -4655.0 -4690.0 -4725.0 -4760.0 -4795.0 -4830.0 -4865.0 -4900.0 -4935.0 -4970.0 -5005.0 -5040.0 -5075.0 -5110.0 -5145.0 -5180.0 -5215.0 -5250.0 -5285.0 -5320.0 -5355.0 -5390.0 -5425.0 -5460.0 -5495.0 -5530.0 -5565.0 -5600.0 -5635.0 -5670.0 -5705.0 -5740.0 -5775.0 -5810.0 -5845.0 -5880.0 -5915.0 -5950.0 -5985.0 -6020.0 -6055.0 -6090.0 -6125.0 -6160.0 -6195.0 -6230.0 -6265.0 -6300.0 -6335.0 -6370.0 -6405.0 -6440.0 -6475.0 -6510.0 -6545.0 -6580.0 -6615.0 -6650.0 -6685.0 -6720.0 -6755.0 -6790.0 -6825.0 -6860.0 -6895.0 -6930.0 -6965.0 -7000.0 -7035.0 -7070.0 Y 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 pad No pad name 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 S62 S61 S60 S59 S58 S57 S56 S55 S54 S53 S52 S51 S50 S49 S48 S47 S46 S45 S44 S43 S42 S41 S40 S39 S38 S37 S36 S35 S34 S33 S32 S31 S30 S29 S28 S27 S26 S25 S24 S23 S22 S21 S20 S19 S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 Vcom1 Vcom1 Vcom1 Vcom1 Vcom1 TESTO2 SOUT14 SOUT13 SOUT12 SOUT11 DUMMY41 VGH VGH VGH VGH VGH VGH VGH VGH VLOUT2 VGL VGL VGL VGL VGL VGL VGL VGL VLOUT3 Alignment Mark L-type (Positive) L-type (Negative) Circle (Positive) Circle (Negative) Cross X -7105.0 -7140.0 -7175.0 -7210.0 -7245.0 -7280.0 -7315.0 -7350.0 -7385.0 -7420.0 -7455.0 -7490.0 -7525.0 -7560.0 -7595.0 -7630.0 -7665.0 -7700.0 -7735.0 -7770.0 -7805.0 -7840.0 -7875.0 -7910.0 -7945.0 -7980.0 -8015.0 -8050.0 -8085.0 -8120.0 -8155.0 -8190.0 -8225.0 -8260.0 -8295.0 -8330.0 -8365.0 -8400.0 -8435.0 -8470.0 -8505.0 -8540.0 -8575.0 -8610.0 -8645.0 -8680.0 -8715.0 -8750.0 -8785.0 -8820.0 -8855.0 -8890.0 -8925.0 -8960.0 -8995.0 -9030.0 -9065.0 -9100.0 -9135.0 -9170.0 -9205.0 -9240.0 -9571.5 -9651.6 -9731.8 -9811.9 -9892.1 -10114.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 -10104.0 X -10114.6 10114.6 -10024.0 10024.0 -9394.4 9394.4 Y 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1148.5 1265.5 1254.0 1254.0 1254.0 1254.0 1254.0 1264.0 1028.7 948.6 868.4 788.3 655.3 512.8 432.6 352.5 272.3 192.2 112.0 31.9 -48.3 -181.3 -341.4 -421.6 -501.7 -581.9 -662.0 -742.2 -822.3 -902.5 -1035.5 Y 1160.7 1160.7 1264.6 1264.6 1214.7 1214.7 HD66787 BUMP Arrangements (T.B.D.) Rev.0.22, May.23.2003, page 18 of 159 Preliminary HD66787 Preliminary Block Function 1. System Interface The HD66787 has five high-speed system interfaces: 80-system 18-/16-/9-/8-bit bus and Serial Peripheral Interface (SPI) port. The interface mode is selected with IM3-0 pins. The HD66787 has three registers: 16-bit index register (IR), 18-bit write-data register (WDR), and 18-bit read-data register (RDR). The IR stores index information from control registers and GRAM. The WDR temporarily stores data to write into the control registers and GRAM, and the RDR temporarily stores data read from GRAM. Data written into GRAM from the MPU is first written into the WDR and then automatically written into GRAM by internal operation. Since data are read through the RDR from GRAM, the data read out first are invalid data and the ensuing data are read out normally. The execution time for instructions other than oscillation start is 0-clock cycle, which enables writing instructions consecutively. Register Selection (8/9/16/18 Parallel Interfaces) 80-system Bus WR* RD* RS Operation 0 1 0 Write index to IR 1 0 0 Read internal status 0 1 1 Write to the control registers or GRAM through WDR 1 0 1 Read from GRAM through RDR Values of CS and VLD during RAM Write CS* VLD Operations 0 0 Write data to GRAM. RAM address is updated. 1 0 Not write data to GRAM. RAM address is not updated. 0 1 Not write data to GRAM. RAM address is updated. 1 1 Not write data to GRAM. RAM address is not updated. Note 1) The VLD setting is only effective with RAM write instructions. Register Selection (Serial Peripheral Interface) Start bytes R/W RS Operations 0 0 Write index to IR 1 0 Read internal status 0 1 Write into the control register and GRAM through WDR 1 1 Read from GRAM through RDR Rev.0.22, May.23.2003, page 19 of 159 HD66787 2. Preliminary External Display Interface The HD66787 incorporates RGB and VSYNC interfaces as an external interface for displaying moving pictures. When RGB-I/F is selected, the display operation is executed in synchronization with the externally supplied signals, VSYNC, HSYNC, and DOTCLK. The display data (PD17-0) are written according to the values of data enable signal (ENABLE) and data valid signal (VLD) in synchronization with VSYNC, HSYNC, and DOTCLK signals. This data write method allows flicker-free screen update. When VSYNC-I/F is selected, operations other than the frame synchronization by VSYNC signal are synchronized with internal clocks. The display data are written to GRAM through a system interface. In this case, there are constraints on the timing and methods of RAM update. See the “External Display Interface” section for more details. Switching between conventional system interfaces and external display interfaces is made through instructions. An optimum interface is selected whether the screen is displaying moving or still pictures. All data written through RGB-I/F are written to GRAM. Therefore, data is transmitted only when the screen is being updated, which reduces the amount of data transmission, thereby saving power when moving pictures are being displayed. 3. Bit Operations The HD66787 supports a write data mask function that selects and writes data into GRAM by bit, and performs logical operation or conditional rewrite on the contents of compare registers and the data to write to GRAM. For details, see the “Graphics Operation Functions” section. 4. Address Counter (AC) Address counter (AC) assigns address to GRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC. After writing data to GRAM, the AC is automatically updated plus or minus 1. The AC is not updated when the data are read from GRAM. Window address function enables data write only in the rectangular area of GRAM specified by the window address. 5. Graphics RAM (GRAM) GRAM is a graphics RAM that stores bit-pattern data of 176 x 240 bytes with 18 bits per pixel. 6. Grayscale Power Supply Voltage Generating Circuit Grayscale voltage generation circuit generates liquid crystal drive voltage according to the grayscale data set in the γ-correction register, enabling 262,144-color display. For details, see the “γ-Correction Register” section. 7. Timing Generator Timing generator generates timing signals for the operation of internal circuits such as GRAM. The timing for display operation such as RAM read and the internal operation timing such as access from MPU are generated in a way to avoid mutual interfere. The interface signals (M, FLM, CL1, EQ, DCCLK, Rev.0.22, May.23.2003, page 20 of 159 HD66787 Preliminary DISPTMG, and SFTCLK) are generated internally, and a part of the signals is output through a level transforming circuit. 8. Oscillation Circuit (OSC) The HD66787 can provide R-C oscillation simply by placing an external oscillation-resistor between OSC1 and OSC2 pins. An appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can be supplied externally. Since R-C oscillation is halted during the standby mode, current consumption will be reduced. For details, see the “Oscillation Circuit” section. 9. LCD Driver Circuit The LCD driver circuit of HD66787 consists of a 528-output source driver (S1 ~ S528). Display pattern data are latched when 528-bit data arrive. The latched data controls the source driver and generates drive waveforms. The shift direction of outputting 528 bits from source driver is changeable with the SS bit. Select an appropriate shift direction for an assembly. 10. LCD Drive Power Supply Circuit The LCD drive power supply circuit of HD66787 generates voltages V0, V31P, V31N, VGH, and Vcom required for driving LCD. 11. LTPS Panel Interface Circuit LTPS Panel Interface Circuit level-shifts and outputs display clock signal to control LTPS (gate-less) panel. Output pins arranged on both sides of the LSI allow flexible panel design. The LSEL22-20 pins allows a combination of display clocks from SOUT24-21 and the LSEL12-10 pins allows a combination of display clocks from SOUT14-11. Rev.0.22, May.23.2003, page 21 of 159 HD66787 Preliminary "0802"H "0902"H "EA02"H "EB02"H "EC02"H "ED02"H "EE02"H "EF02"H "0803"H "0903"H "EA03"H "EB03"H "EC03"H "ED03"H "EE03"H "EF03"H PD PD 17 … 0 "00AD"H "01AD"H "02AD"H "03AD"H "04AD"H "05AD"H "06AD"H "07AD"H "08AD"H "09AD"H "0AAD"H "0BAD"H "0CAD"H "0DAD"H "0EAD"H "0FAD"H "10AD"H "11AD"H "12AD"H "13AD"H S528 S527 S526 S525 PD PD 17 … 0 "00AE"H "01AE"H "02AE"H "03AE"H "04AE"H "05AE"H "06AE"H "07AE"H "08AE"H "09AE"H "0AAE"H "0BAE"H "0CAE"H "0DAE"H "0EAE"H "0FAE"H "10AE"H "11AE"H "12AE"H "13AE"H ………… ………… ………… ………… ………… ………… ………… ………… "E8AC"H "E9AC"H "EAAC"H "EBAC"H "ECAC"H "EDAC"H "EEAC"H "EFAC"H "E8AD"H "E9AD"H "EAAD"H "EBAD"H "ECAD"H "EDAD"H "EEAD"H "EFAD"H "E8AE"H "E9AE"H "EAAE"H "EBAE"H "ECAE"H "EDAE"H "EEAE"H "EFAE"H "E8AF"H "E9AF"H "EAAF"H "EBAF"H "ECAF"H "EDAF"H "EEAF"H "EFAF"H GRAM address and display panel position (SS =”0”) Rev.0.22, May.23.2003, page 22 of 159 S524 S523 S522 S521 S520 S519 S518 S517 …… …… "0801"H "0901"H "EA01"H "EB01"H "EC01"H "ED01"H "EE01"H "EF01"H …… …… "0800"H "0900"H "EA00"H "EB00"H "EC00"H "ED00"H "EE00"H "EF00"H ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… PD PD 17 … 0 "00AC"H "01AC"H "02AC"H "03AC"H "04AC"H "05AC"H "06AC"H "07AC"H "08AC"H "09AC"H "0AAC"H "0BAC"H "0CAC"H "0DAC"H "0EAC"H "0FAC"H "10AC"H "11AC"H "12AC"H "13AC"H …… …… G233 G234 G235 G236 G237 G238 G239 G240 ………… …… S12 S11 S9 S10 S8 S7 S6 S5 S4 S3 …… PD PD PD PD PD PD PD PD 17 … 0 17 … 0 17 … 0 17 … 0 "0000"H "0001"H "0002"H "0003"H "0100"H "0101"H "0102"H "0103"H "0200"H "0201"H "0202"H "0203"H "0300"H "0301"H "0302"H "0303"H "0400"H "0401"H "0402"H "0403"H "0500"H "0501"H "0502"H "0503"H "0600"H "0601"H "0602"H "0603"H "0700"H "0701"H "0702"H "0703"H "0800"H "0801"H "0802"H "0803"H "0900"H "0901"H "0902"H "0903"H "0A00"H "0A01"H "0A02"H "0A03"H "0B00"H "0B01"H "0B02"H "0B03"H "0C00"H "0C01"H "0C02"H "0C03"H "0D00"H "0D01"H "0D02"H "0D03"H "0E01"H "0E02"H "0E03"H "0E00"H "0F00"H "0F01"H "0F02"H "0F03"H "1000"H "1001"H "1002"H "1003"H "1100"H "1101"H "1102"H "1103"H "1200"H "1201"H "1202"H "1203"H "1300"H "1301"H "1302"H "1303"H …… G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 S2 SG pin S1 GRAM Address MAP PD PD 17 … 0 "00AF"H "01AF"H "02AF"H "03AF"H "04AF"H "05AF"H "06AF"H "07AF"H "08AF"H "09AF"H "0AAF"H "0BAF"H "0CAF"H "0DAF"H "0EAF"H "0FAF"H "10AF"H "11AF"H "12AF"H "13AF"H HD66787 Preliminary 80-System 18-Bit Interface GRAM Data DB 17 DB 16 DB DB 15 14 DB 13 DB 12 DB 11 DB 10 DB 9 DB DB 8 7 DB 6 DB 5 DB DB 4 3 DB 2 DB 1 DB 0 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G0 B5 B4 B2 B1 B0 Output pin S (3n + 1) G1 B3 S (3n + 2) S (3n + 3) Note: n = lower eight bits of address (0 to 175) 80-System 16-Bit Interface GRAM Data DB 17 DB 16 DB DB 15 14 DB 13 DB 12 DB 11 DB 10 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 S (3n + 1) Output pin G3 DB DB 8 7 DB 6 DB 5 DB DB 4 3 DB 2 DB 1 G2 G0 B5 B4 B2 B1 G1 B3 S (3n + 2) B0 S (3n + 3) Note: n = lower eight bits of address (0 to 175) 80-System 9-Bit Interface 1st Transmission 2nd Transmission GRAM Data DB 17 DB 16 DB 15 DB DB 14 13 DB 12 DB 11 DB 10 DB DB 9 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB DB 10 9 RGB Arrangement R5 R4 R3 R2 R0 G5 G4 G3 G1 G0 B5 B4 B3 B2 B1 R1 S (3n + 1) Output pin G2 S (3n + 2) B0 S (3n + 3) Note: n = lower eight bits of address (0 to 175) 80-System 8-Bit Interface/SPI (2 transmissions/pixel) 1st Transmission GRAM Data DB 17 DB 16 RGB Arrangement R5 R4 Output pin 2nd Transmission DB DB 15 14 DB 13 DB 12 DB 11 DB 10 R3 R2 R1 R0 G5 G4 S (3n + 1) G3 DB 17 DB 16 DB DB 15 14 DB 13 G2 G1 G0 B4 S (3n + 2) B5 DB 12 DB 11 DB 10 B3 B2 B1 B0 S (3n + 3) Note: n = lower eight bits of address (0 to 175) GRAM data and RGB assignment (SS = “0”, BGR = “0”) Rev.0.22, May.23.2003, page 23 of 159 HD66787 Preliminary 18-bit RGB interface GRAM Data RGB Arrangement PD PD PD PD PD PD 17 16 15 14 13 12 PD PD PD PD PD PD PD PD PD PD 11 10 9 8 7 6 5 4 3 2 PD PD 1 0 R5 G5 B1 R4 R3 R2 R1 R0 G4 G3 S (3n + 1) Output pin G2 G1 G0 B5 B4 S (3n + 2) B3 B2 B0 S (3n + 3) 16-bit RGB interface GRAM Data RGB Arrangement PD PD PD PD PD 17 16 15 14 13 R5 R4 R3 R2 R1 R0 PD PD PD PD PD PD PD PD PD PD 11 10 9 8 7 6 5 4 3 2 PD 1 G5 B1 S (3n + 1) Output pin G4 G3 G2 G1 G0 B5 B4 S (3n + 2) B3 B2 B0 S (3n + 3) 6-bit RGB interface 1st Transmission GRAM Data RGB Arrangement Output pin 2nd Transmission 3rd Transmission PD 17 PD PD PD 16 15 14 PD PD 13 12 PD PD PD PD PD 17 16 15 14 13 PD PD 12 17 PD PD PD 16 15 14 PD PD 13 12 R5 R4 R1 G5 G0 B4 B1 R3 R2 S (3n + 1) R0 G4 G3 G2 S (3n + 2) G1 B5 B3 B2 S (3n + 3) GRAM data and RGB assignment (SS = “0”, BGR = “0”) Rev.0.22, May.23.2003, page 24 of 159 B0 "E8AD"H "E9AD"H "EAAD"H "EBAD"H "ECAD"H "EDAD"H "EEAD"H "EFAD"H "E8AC"H "E9AC"H "EAAC"H "EBAC"H "ECAC"H "EDAC"H "EEAC"H "EFAC"H S528 S527 "0802"H "0902"H "EA02"H "EB02"H "EC02"H "ED02"H "EE02"H "EF02"H "0801"H "0901"H "EA01"H "EB01"H "EC01"H "ED01"H "EE01"H "EF01"H "0800"H "0900"H "EA00"H "EB00"H "EC00"H "ED00"H "EE00"H "EF00"H GRAM address and display panel position (SS =”1”, BGR “1”) Rev.0.22, May.23.2003, page 25 of 159 S526 S525 S524 S523 S522 S521 S520 S519 S518 S517 ………… "0803"H ………… "0903"H ………… "EA03"H ………… "EB03"H ………… "EC03"H ………… "ED03"H ………… "EE03"H ………… "EF03"H …… "E8AE"H "E9AE"H "EAAE"H "EBAE"H "ECAE"H "EDAE"H "EEAE"H "EFAE"H …… "E8AF"H "E9AF"H "EAAF"H "EBAF"H "ECAF"H "EDAF"H "EEAF"H "EFAF"H …… G233 G234 G235 G236 G237 G238 G239 G240 PD PD PD PD PD PD PD PD 17 … 0 17 … 0 17 … 0 17 … 0 "0003"H "0002"H "0001"H "0000"H "0103"H "0102"H "0101"H "0100"H "0203"H "0202"H "0201"H "0200"H "0303"H "0302"H "0301"H "0300"H "0403"H "0402"H "0401"H "0400"H "0503"H "0502"H "0501"H "0500"H "0603"H "0602"H "0601"H "0600"H "0703"H "0702"H "0701"H "0700"H "0803"H "0802"H "0801"H "0800"H "0903"H "0902"H "0901"H "0900"H "0A03"H "0A02"H "0A01"H "0A00"H "0B03"H "0B02"H "0B01"H "0B00"H "0C03"H "0C02"H "0C01"H "0C00"H "0D03"H "0D02"H "0D01"H "0D00"H "0E03"H "0E02"H "0E01"H "0E00"H "0F03"H "0F02"H "0F01"H "0F00"H "1003"H "1002"H "1001"H "1000"H "1103"H "1102"H "1101"H "1100"H "1203"H "1202"H "1201"H "1200"H "1303"H "1302"H "1301"H "1300"H …… S12 S11 …… S9 S10 S8 S7 …… S6 S5 S4 S3 ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… PD PD 17 … 0 "00AF"H "01AF"H "02AF"H "03AF"H "04AF"H "05AF"H "06AF"H "07AF"H "08AF"H "09AF"H "0AAF"H "0BAF"H "0CAF"H "0DAF"H "0EAF"H "0FAF"H "10AF"H "11AF"H "12AF"H "13AF"H …… PD PD 17 … 0 "00AD"H "01AD"H "02AD"H "03AD"H "04AD"H "05AD"H "06AD"H "07AD"H "08AD"H "09AD"H "0AAD"H "0BAD"H "0CAD"H "0DAD"H "0EAD"H "0FAD"H "10AD"H "11AD"H "12AD"H "13AD"H PD PD 17 … 0 "00AC"H "01AC"H "02AC"H "03AC"H "04AC"H "05AC"H "06AC"H "07AC"H "08AC"H "09AC"H "0AAC"H "0BAC"H "0CAC"H "0DAC"H "0EAC"H "0FAC"H "10AC"H "11AC"H "12AC"H "13AC"H G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 …… PD PD 17 … 0 "00AE"H "01AE"H "02AE"H "03AE"H "04AE"H "05AE"H "06AE"H "07AE"H "08AE"H "09AE"H "0AAE"H "0BAE"H "0CAE"H "0DAE"H "0EAE"H "0FAE"H "10AE"H "11AE"H "12AE"H "13AE"H ………… …… SG pin S2 Preliminary S1 HD66787 HD66787 Preliminary 80-system 18-bit interface GRAM Data DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 DB 0 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 S (528 - 3n) Output pin S (527 - 3n) S (526 - 3n) Note: n = lower eight bits of address (0 to 175) 80-system 16-bit interface GRAM Data RGB Arrangement DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 R5 R4 R3 R2 R1 R0 G5 G4 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 G2 G1 G0 B5 B4 B3 B2 B1 S (527 - 3n) S (528 - 3n) Output pin G3 DB 8 B0 S (526 - 3n) Note: n = lower eight bits of address (0 to 175) 80-system 9-bit interface 1st Transmission GRAM Data RGB Arrangement DB 17 DB 16 R5 R4 2nd Transmission DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 R3 R2 R1 R0 G5 G4 S (528 - 3n) Output pin DB DB 9 17 DB 16 DB 15 DB 14 DB 13 G3 G1 G0 B5 B4 G2 DB 12 DB 11 DB 10 DB 9 B3 B2 B1 B0 S (527 - 3n) S (526 - 3n) Note: n = lower eight bits of address (0 to 175) 80-system 8-bit interface/SPI (2 transmissions/pixel) 1st Transmission GRAM Data DB 17 DB 16 RGB Arrangement R5 R4 Output pin 2nd Transmission DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 R3 R2 R1 R0 G5 G4 S (528 - 3n) G3 DB 17 DB 16 DB 15 DB 14 DB 13 G2 G1 G0 B5 B4 S (527 - 3n) DB 12 DB 11 DB 10 B3 B2 B1 B0 S (526 - 3n) Note: n = lower eight bits of address (0 to 175) GRAM data and RGB assignment (SS = “1”, BGR = “1”) Rev.0.22, May.23.2003, page 26 of 159 HD66787 Preliminary 80-system 8 -bit interface (3 transmissions / pixel, 262k color mode : TRI = 1, DFM1 - 0 =10) 1st Transmission GRAM Data PD PD PD PD 17 16 15 14 RGB Arrangement R5 R4 R3 R2 2nd Transmission PD PD 17 16 PD PD 15 14 PD PD PD PD PD PD 13 12 17 16 15 14 PD PD 13 12 R1 G5 G3 G1 B1 R0 G4 S (528 - 3n) Output pin 3rd Transmission PD PD 13 12 G2 G0 B5 B4 S (527 - 3n) B3 B2 B0 S (526 - 3n) Note : n = Lower 8 bits of address (0 ~175) 80-system 8-bit interface (3 transmissions/pixel, 65k color mode : TRI = 1, DFM1 - 0 = 11) 1st Transmission GRAM Data PD PD 17 16 RGB Arrangement R5 Output pin R4 2nd Transmission 3rd Transmission PD PD 15 14 PD PD 13 12 PD PD 17 16 PD PD PD PD PD PD 15 14 13 12 17 16 PD PD 15 14 PD PD 13 12 R3 R2 R1 G5 G3 B3 B1 S (528 - 3n) R0 G4 G2 G1 S (527 - 3n) G0 B5 B4 B2 B0 S (526 - 3n) Note : n = Lower 8 bits of address (0 ~175) GRAM data and RGB assignment (SS = “1”, BGR = “1”) Rev.0.22, May.23.2003, page 27 of 159 HD66787 Preliminary 18- bit RGB interface GRAM Data PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB R5 Arrangement R4 Output pin R3 R2 R1 R0 G5 G4 S (528 - 3n) G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 S (526 - 3n) S (527 - 3n) Note : n = Lower 8 bits of address (0 ~ 175) 16- bit RGB interface GRAM Data RGB Arrangement PD PD PD PD PD 17 16 15 14 13 R5 R4 R3 R2 R1 R0 PD PD PD PD PD PD PD PD PD PD 11 10 9 8 7 6 5 4 3 2 PD 1 G5 B1 G4 S (528 – 3n) Output pin G3 G2 G1 G0 B5 S (527 – 3n) B4 B3 B2 B0 S (526 – 3n) Note : n = Lower 8 bits of address (0 ~ 175) 6- bit RGB interface 1st Transmission 2nd Transmission GRAM Data PD PD PD PD PD PD 17 16 15 14 13 12 RGB Arrangement Output pin R5 R4 R3 R2 R1 S (528 - 3n) R0 3rd Transmission PD PD PD PD 17 16 15 14 PD PD PD PD PD PD PD PD 13 12 17 16 15 14 13 12 G5 G1 G4 G3 G2 S (527 - 3n) G0 B5 B4 B3 B2 B1 B0 S (526 - 3n) Note : n = Lower 8 bits of address (0 ~ 175) GRAM data and RGB assignment (SS = “1”, BGR = “1”) Rev.0.22, May.23.2003, page 28 of 159 HD66787 Preliminary Instructions Outline The HD66787 adapts 18-bit bus architecture that enables high-speed interfacing with a high-performance microcomputer. Data sent from external (18/16/9/8 bits) are stored temporarily in the instruction register (IR) and the data register (DR) to store control information before internal operation starts. Since internal operation is decided according to the signal sent from the microcomputer, register selection signal (RS), read/write signal (R/W), and internal 16-bit data bus signal (DB15 to DB0) are called instruction. GRAM is accessed through internal 18-bit data bus. There are eight categories of instructions: 1. 2. 3. 4. Specify index Read status Control display Control power management 5. 6. 7. 8. Process graphics data Set internal GRAM address Transfer data to and from internal GRAM Set grayscale level for internal grayscale γ-adjustment Normally, the 7th instruction to write display data is executed the most frequently. The address of internal GRAM is updated automatically after data are written to the internal GRAM. With the window address function, this reduces the amount of data transmission to minimum and thereby lightens the load on the program in the microcomputer. Since instructions are executed in 0 cycle, it is possible to write instructions consecutively. As the following figure shows, the assignment to the 16 instruction bits (IB15-0) varies according to the interface in use. An instruction must adopt the data format for each interface. . Rev.0.22, May.23.2003, page 29 of 159 HD66787 Preliminary 80-system 18-bit interface GRAM Data DB 17 DB 16 DB DB 15 14 DB 13 DB 12 DB 11 DB 10 IB 15 IB 14 IB 13 IB 11 IB 10 IB 9 IB 8 DB 13 DB 12 DB 11 DB 10 IB 11 IB 10 IB 9 Instruction Bit (IB) IB 12 DB 9 DB DB 8 7 IB 7 IB 6 DB 6 DB 5 IB IB 5 4 DB DB 4 3 DB 2 DB 1 IB 3 IB 1 IB 0 IB 2 DB 0 80-system 16-bit interface GRAM Data DB 17 DB 16 IB 15 IB 14 Instruction Bit (IB) DB DB 15 14 IB 13 IB 12 DB DB 8 7 DB 6 DB 5 DB DB 4 3 DB 2 DB 1 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 DB DB 9 17 DB 16 DB DB 15 14 DB 13 DB 12 DB 11 DB 10 IB 7 IB 6 IB 5 IB 3 IB 2 IB 1 IB 0 80-system 9-bit interface 1st Transmission 2nd Transmission GRAM Data DB 17 DB 16 DB DB 15 14 DB 13 DB 12 DB 11 DB 10 IB 15 IB 14 IB 13 IB 11 IB 10 IB 9 IB 8 Instruction Bit (IB) IB 12 IB 4 DB 9 80-system 8-bit interface / SPI(2/3 transmissions) 1st Transmission GRAM Data DB 17 DB 16 IB 15 IB 14 Instruction Bit (IB) DB DB 15 14 IB 13 IB 12 2nd Transmission DB 13 DB 12 DB 11 DB 10 DB 17 DB 16 DB DB 15 14 DB 13 DB 12 DB 11 DB 10 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 3 IB 2 IB 1 IB 0 IB 4 Instruction bits Instruction Descriptions The following are detail explanations of instructions with illustrations of instruction bits (IB15-0) assigned to each interface. Index The index instruction specifies the index (R00h to R4Fh) of control register and RAM control. It sets the register number from 0000000 to 1111111 in binary form. Do not try to access to the register to which the index is not assigned. R/W RS W 0 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Rev.0.22, May.23.2003, page 30 of 159 IB6 ID6 IB5 ID5 IB4 ID4 IB3 IB2 IB1 IB0 ID3 ID2 ID1 ID0 HD66787 Preliminary Status Read The status read instruction reads the internal status of the HD66787. L7–0: Indicate the position of raster-row driving liquid crystal. R/W RS R 0 IB15 IB14 IB13 IB12 IB11 IB10 IB9 L7 L6 L5 L4 L3 L2 L1 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 L0 0 0 0 0 0 0 0 0 Start Oscillation (R00h) The start oscillation instruction restarts the oscillator in a halt state during the standby mode. After executing this instruction, wait at least 10 ms for stabilizing oscillation before issuing a next instruction. For details, see the “Standby Mode” section. “0787”H is read out, if this register is forced to read out. R/W RS W 1 R 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ IB0 1 1 1 1 0 0 0 0 1 1 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 SS 0 0 0 0 0 0 0 0 1 Driver Output Control (R01h) R/W RS W 1 0 VSPL HSPL DPL EPL 0 0 NL4 NL3 NL2 NL1 NL0 SS: Select the shift direction of outputs from the source driver. When SS = 0, the shift direction of outputs is from S1 to S528. When SS = 1, the shift direction of output is from S528 to S1. In addition to the shift direction, the settings for both SS and BGR bits are required to change the assignment of R, G, B dots to the source driver pins. To assign R, G, B dots to the source driver pins interchangeably from S1, set SS = 0, BGR = 0. To assign R, G, B dots to the source driver pins interchangeably from S528, set SS = 1, BGR = 1. EPL: Set the polarity of ENABLE pin while using RGB interface. EPL = “0” EPL =”1” : ENABLE = “Low” / Write data to PD17-0. : ENABLE = “High” / Data write invalid. : ENABLE = “High” / Write data to PD17-0. : ENABLE = “Low” / Data write invalid. Rev.0.22, May.23.2003, page 31 of 159 HD66787 Preliminary The following table shows the relationship between EPL, ENABLE, VLD and RAM access. EPL ENABLE VLD RAM write RAM address 0 0 0 Valid Updated 0 0 1 Invalid Updated 0 1 * Invalid Hold 1 0 * Invalid Hold 1 1 0 Valid Updated 1 1 1 Invalid Updated VSPL: Invert the polarity of signal for VSYNC pin. VSPL = ”0” VSPL = ”1” : Low active. : High active. HSPL: Invert the polarity of signal for HSYNC pin. HSPL = ”0” HSPL = ”1” : Low active. : High active. DPL: Invert the polarity of signal for DOTCLK pin. DPL = ”0” DPL = ”1” : Data are read in synchronization with the rising edge of the DOTCLK. : Data are read in synchronization with the falling edge of the DOTCLK. NL4-0: Specify the number of LCD drive raster-rows. The number of drive raster-rows is changeable by 8 multiples. The GRAM address mapping is independent of this setting. Select a number of raster-rows that the display size covers the size of a panel. Rev.0.22, May.23.2003, page 32 of 159 HD66787 Preliminary NL bits NL4 NL3 NL2 NL1 NL0 Display Size Liquid crystal drive raster-rows Gate Driver Lines Used 0 0 0 0 0 Setting disabled Setting disabled Setting disabled 0 0 0 0 1 528 x 16 dots 16 G1–G16 0 0 0 1 0 528 x 24 dots 24 G1–G24 0 0 0 1 1 528 x 32 dots 32 G1–G32 0 0 1 0 0 528 x 40 dots 40 G1–G40 0 0 1 0 1 528 x 48 dots 48 G1–G48 0 0 1 1 0 528 x 56 dots 56 G1–G56 0 0 1 1 1 528 x 64 dots 64 G1–G64 0 1 0 0 0 528 x 72 dots 72 G1–G72 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 0 0 0 528 x 200 dots 200 G1–G200 1 1 0 0 1 528 x 208 dots 208 G1–G208 1 1 0 1 0 528 x 216 dots 216 G1–G216 1 1 0 1 1 528 x 224 dots 224 G1–G224 1 1 1 0 0 528 x 232 dots 232 G1–G232 1 1 1 0 1 528 x 240 dots 240 G1–G240 Note 1) A front porch period (set in the FP register) and a back porch period (set in the BP register) will be inserted as a blank period before and after driving all gate lines. LCD Driving Waveform Control (R02h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 0 0 0 0 0 1 B/C IB8 EOR IB7 IB6 0 0 IB5 IB4 IB3 IB2 IB1 IB0 NW5 NW4 NW3 NW2 NW1 NW0 NW5-0: Specify n, the number of raster-rows from 1 to 64 to alternate every n+1 raster-rows when Cpattern waveform is generated (B/C = 1). EOR: When EOR = 1 and a C-pattern waveform is generated (B/C =1), an odd/even frame select signal and an n-raster-row inversion signal are AC-driven. This instruction is available when liquid crystal AC drive is not made depending on the combination of numbers of LCD drive raster-rows and the value of “n” of n-raster-row inversion AC drive. For details, see “n-raster-row inversion AC drive”. Rev.0.22, May.23.2003, page 33 of 159 HD66787 Preliminary B/C: When B/C =0, a field AC waveform is generated. Alternation occurs every frame when driving liquid crystal. When B/C=1, alternation occurs every n raster-row. For details, see the “n-raster-row Inversion AC Drive” section. Entry Mode (R03h) Compare Register 1 (R04h) Compare Register 2 (R05h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 W 1 W 1 0 0 W 1 0 0 TRI DFM1 DFM0 BGR 0 CP11 CP10 CP9 0 0 0 IB8 IB7 IB6 0 0 IB5 IB4 IB3 IB2 IB1 IB0 I/D1 I/D0 AM LG2 LG1 LG0 CP3 CP2 0 HWM 0 CP8 CP7 CP6 0 0 CP5 0 0 0 0 0 CP17 CP16 CP15 CP14 CP13 CP12 CP4 CP1 CP0 The HD66787 modifies write data sent from the microcomputer before writing to GRAM. This enables high-speed GRAM data update, and reduces the load on the microcomputer software. For details, see the “Graphics Operation Function” section. TRI: RAM write data are transmitted in 3 times through 8-bit interface when TRI = 1. When 8-bit interface mode is not selected, set TRI to 0. DFM1-0: Specify the data format for RAM write data transmission when TRI = 1 (8-bit interface mode only). DFM1-0 = “10” : 262k mode (6bit x 3 transmissions) DFM1-0 = “11” : 65k mode (5,6,5 bits transmissions) HWM: When HWM=1, data are written to GRAM in high speed. In high-speed write mode, 4 words are written to GRAM in a single operation after executing 4 RAM write operations. If RAM write is terminated before it is executed 4 times, the last data will not be written. Make sure that RAM write is executed 4 times. For this reason, the lower 2 bits must be set to “0” when setting the RAM address. For details, see “High-Speed RAM Write Mode” section. I/D1-0: The address counter is automatically incremented by 1, after data are written to GRAM when I/D10 = “1”. The address counter is automatically decremented by 1, after data are written to GRAM when I/D1-0 = “0”. An independent setting for the increment or decrement of the address counter can be made to the upper (AD15-8) and the lower (AD7-0) bits of the address. The address transition direction when data are written to GRAM is set with AM bits. AM: Set the direction of updating address counter automatically after data are written to GRAM. When AM = “0”, the address counter is updated in the horizontal direction. When AM = “1”, the address counter is updated in the vertical direction. When the window address is specified, data are written to the GRAM area specified by the window address in the manner specified with I/D1-0, AM bits. Rev.0.22, May.23.2003, page 34 of 159 HD66787 TRI Preliminary DFM1 DFM0 8-bit interface data format First transmission Second transmission DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 0 0 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 0 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 0 * * Setting disabled 1 0 * Setting disabled First transmission G0 B5 B4 Second transmission B3 B2 B1 B0 Third transmission DB17 DB16 DB15 DB14 DB13 DB12 DB17 DB16 DB15 DB14 DB13 DB12 DB17 DB16 DB15 DB14 DB13 DB12 1 1 0 R5 R4 R3 R2 R1 R0 G5 G4 First transmission G3 G2 G1 G0 B5 B4 Second transmission B3 B2 B1 B0 Third transmission DB17 DB16 DB15 DB14 DB13 DB12 DB17 DB16 DB15 DB14 DB13 DB12 DB17 DB16 DB15 DB14 DB13 DB12 1 1 1 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 8-bit interface data format I/D1-0="00” horizontal : decrement vertical : decrement 0000h I/D1-0="01” horizontal : increment vertical : decrement 0000h I/D1-0="10” horizontal : decrement vertical : increment 0000h I/D1-0="11” horizontal : increment vertical : increment 0000h AM="0” horizontal EFAFh EFAFh 0000h 0000h EFAFh EFAFh 0000h 0000h AM="1” vertical EFAFh EFAFh EFAFh EFAFh Note : Data are written only on the GRAM area specified with the window addresses when window addresses are set. Address transition direction LG2–0: Rewrite data to GRAM after comparing the data that are written by the microcomputer to GRAM with the values in the compare registers (CP17–0) and performing logical operation. For details, see the “Graphics Operation Function” CP17–0: Set the value for the compare register, with which the data read out from GRAM or data written to GRAM by the microcomputer are compared. This function is not available with the external display interface mode. In the external display interface mode, make sure LG2-0 = “000”. BGR: Reverse the order from R, G, B to B, G, R to the 18-bit data to write to GRAM. When setting BGR = 1, CP17-0 and WM17-0 bits will be automatically changed to the same effect. Rev.0.22, May.23.2003, page 35 of 159 HD66787 Preliminary 18 bits Write data to GRAM Note 1) 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 Conversion between RGB and BGR (BGR) Logical/compare operation (LG2-0) Logical operation (write data) LG2-0 = 000: Replacement Write data to GRAM (WM17-0) Note 2) Compare operation (with compare register) LG2-0 = 110: Replacement of matched write data LG2-0 = 111: Replacement of unmatched write data Write data mask (WM17-0) GRAM Note 1) Data write to GRAM is executed by 18 bits. Logical operation is also executed by 18 bits. As to the assignment of bits, see the description regarding each bit data bus interface. Note 2) Write data mask (WM17-0) is set with the RAM write data mask register. Logic/Compare Operation Display Control 1 (R07h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 0 0 0 PT1 IB8 PT0 VLE2 VLE1 SPT IB7 IB6 IB5 0 0 0 IB4 DTE IB3 CL IB2 REV IB1 IB0 D1 D0 PT1-0: Determine the kind of source output in a non-display area in the partial display mode. For details, see the “Screen-split Drive function” section. PT1-0 bits Source Output for Non-display Area PT1 PT0 Positive Polarity Negative Polarity 0 0 V31 V0 0 1 V31 V0 1 0 GND GND 1 1 High impedance High impedance VLE2–1: When VLE1 = 1, the first screen is scrolled in the vertical direction. When VLE2 = 1, the second screen is scrolled in the vertical direction. The first and second screens cannot be scrolled simultaneously. This function is not available with the external display interface mode. In this case, make sure VLE2-1 = 0. Rev.0.22, May.23.2003, page 36 of 159 HD66787 Preliminary VLE Bits VLE2 VLE1 Image on 2nd Screen Image on 1st Screen 0 0 Stationary Stationary 0 1 Stationary Scrolled 1 0 Scrolled Stationary 1 1 Setting disabled Setting disabled CL: When CL = 1, 8-color display mode is selected. For details, see the “8-Color Display Mode” section. CL Bit CL Colors 0 262,144 1 8 SPT: When SPT = 1, liquid crystal is driven with 2 split screens. For details, see the “Screen Split Drive Function” section. This function is not available in the external display interface mode. In this case, make sure SPT = 0. REV: When REV = 1, a reverse display is shown. Inverting the grayscale levels allows the display of same data on both normally white and normally black panels. The source output during front, back porch periods and blank periods during the 2-split-screen display is made in accordance with settings with PT1-0 bits. Source Output in the Display Area Source Output in the Display Area* REV GRAM Data Positive Polarity Negative Polarity 18’h00000 V31 V0 18’h3FFFF V0 V31 18’h00000 V0 V31 18’h3FFFF V31 V0 0 1 Note: The output on the source lines during the front and back porch periods and blanking of the partial display is determined with PT1-0 bits. Rev.0.22, May.23.2003, page 37 of 159 HD66787 Preliminary DTE: When DTE = 0, the DISPTMG output is fixed to GND. DTE Bit DTE DISPTMG Output 0 Halt (GND) 1 Operation (Vcc/GND) D1–0: The graphics display is on when D1 = 1, and off when D1 = 0. When setting D1 = 0, the data are retained in GRAM. This means the graphics is instantly redisplayed when setting D1 to 1. When D1 is 0 (i.e., the display is off) all the source outputs are set to the GND level. This reduces the charged/discharged current on LCD, accompanied by the liquid crystal AC drive. When D1-0 = 01, the HD66787 continues the internal display operation, even while the external display is off. When D1-0 = 00, both the internal display operations and the external display operation are halted. In combination with GON and DTE bits, D1-0 bits control ON/OFF of display. For details, see the “Instruction Setting Flow” section. D1-0 D1 D0 Source Output HD67789 Internal Operations Gate-Driver Control Signals (CL1, FLM, and M) 0 0 GND Halt Halt 0 1 GND Operate Operate 1 0 Unlit display Operate Operate 1 1 Display Operate Operate Note 1) Data are written to GRAM from the microcomputer irrespective of the setting of D1-0 bits. Note 2) In the standby mode, D1-0 = "00". However, the D1-0 register setting before entering standby modes is retained. Display Control 2 (R08h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 0 0 0 0 FP3 FP2 FP1 IB8 FP0 IB7 IB6 IB5 IB4 IB3 IB2 0 0 0 0 BP3 BP2 IB1 IB0 BP1 BP0 FP3-0/BP3-0: Make settings for blank periods (the front and back porches), which are placed at the beginning and end of the display. FP3-0 and BP3-0 bits specify the number of raster-rows for the front and back porch respectively. When making this setting, make sure: BP + FP = <16 raster-rows FP >= 2 raster-rows BP >= 2 raster-rows In the external display interface mode, the back porch (BP) starts on the falling edge of VSYNC signal, Rev.0.22, May.23.2003, page 38 of 159 HD66787 Preliminary followed by display operation. After displaying the number of raster-rows set with NL bits, the front porch starts. After the front porch, a blank period ensues until an input of next VSYNC signal. FP and BP FP3 FP2 FP1 FP0 Number of lines for the Front Porch BP3 BP2 BP1 BP0 Number of lines for the Back Porch 0 0 0 0 Setting disabled 0 0 0 1 Setting disabled 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 ⋅ ⋅ ⋅ ⋅ 1 1 0 0 12 1 1 0 1 13 1 1 1 0 14 1 1 1 1 Setting disabled VSYNC Back porch Display area Front porch Note: The output timing to the LCD panels is delayed two rasterrows from the input of synchronization signal. External display interface Rev.0.22, May.23.2003, page 39 of 159 HD66787 Preliminary BP3-0, FP3-0 Setting Set BP3-0, FP3-0 bits as follows each in the following operation modes. Operation of internal clock FLD1-0 = 01 BP>= 2 lines FP >= 2 lines FLD1-0 = 11 FP +BP <= 16 lines BP= 3 lines FP = 5 lines RGB interface BP >= 2 lines FP >= 2 lines FP +BP <= 16 lines VSYNC interface BP >= 2 lines FP >= 2 lines FP +BP = 16 lines Frame Cycle Control (R0Bh) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 NO1 NO0 SDT1 SDT0 EQ1 EQ0 DIV1 DIV0 RTN3-0: Set the 1H (1 raster-row) period. RTN Bits and Clock Cycles RTN3 RTN2 RTN1 RTN0 Clock Cycles per Raster-row 0 0 0 0 16 0 0 0 1 17 0 0 1 0 18 : : 1 1 1 0 30 1 1 1 1 31 Rev.0.22, May.23.2003, page 40 of 159 IB7 IB6 IB5 IB4 0 0 0 0 IB3 IB2 IB1 IB0 RTN3 RTN2 RTN1 RTN0 HD66787 Preliminary DIV1-0: Set the division ratio of clocks for internal operations (DIV1-0). Internal operations are in synchronization with the clock, the frequency of which is divided according to the DIV1-0 setting. When changing the number of drive raster-rows, adjust the frame frequency too. For details, see “Frame Frequency Adjustment Function”. DIV Bits and Division Ratio DIV1 DIV0 Division Ratio Internal Operating Clock Frequency 0 0 1 fosc / 1 0 1 2 fosc / 2 1 0 4 fosc / 4 1 1 8 fosc / 8 fosc = R-C oscillation frequency Formula for the frame frequency fosc Frame frequency = [Hz] Clock cycles per raster-row × division ratio × (Line + BP + FP) fosc: R-C oscillation frequency Line: number of drive raster-rows (NL bit) Division ratio: DIV bit Clock cycles per raster-row: RTN bit FP : the number of raster-rows in the front porch BP : the number of raster-rows in the back porch EQ1-0: Equalizing period is prolonged as the number of clocks specified with EQ1-0 bits. The equalization signal is output only with the alternating current. EQ Bits Equalizing period EQ1 EQ0 Internal Operation RGB I/F Operation (synchronized with the internal operating clock) (synchronized with DOTCLK ) 0 0 Not equalized Not equalized 0 1 1 clock 8 clocks 1 0 2 clocks 16 clocks 1 1 3 clocks 24 clocks Rev.0.22, May.23.2003, page 41 of 159 HD66787 Preliminary SDT1-0: Determine the amount of delay for the source output from the falling edge of the gate output. SDT Bits Delay Time for Source Signal SDT1 SDT0 Internal Operation RGB I/F Operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 0 1 clock 8 clocks 0 1 2 clocks 16 clocks 1 0 3 clocks 24 clocks 1 1 4 clocks 32 clocks Note 1) The amount of delay for the source output is measured from the falling edge of the CL1. 1H period 1H period CL1 M Gn Sn EQ Source output delay equalizing period Source output delay and equalize period Note 1) In internal operation and VSYNC interface modes, the reference clock is the internal operating clock. In RGB interface modes, the reference clock is DOTCLK. NO1-0: Specify the amount of non-overlap time for the gate output. NO Bits Non-overlap time NO1 NO0 Internal Operation RGB I/F Operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 0 0 clock 0 clock 0 1 4 clocks 32 clocks 1 0 6 clocks 48 clocks 1 1 8 clocks 64 clocks Note 1) The amount of non-overlap time is defined from the falling edge of the CL1. Rev.0.22, May.23.2003, page 42 of 159 HD66787 Preliminary 1H period 1H period CL1 Gn Non-overlap period Gn + 1 Non-overlap period External Display Interface Control (R0Ch) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 0 0 0 0 0 0 0 IB8 RM IB7 IB6 0 0 IB5 IB4 DM1 DM0 IB3 IB2 0 0 IB1 IB0 RIM1 RIM0 RIM1–0: Specify the RGB I/F mode when RGB interface is selected. Specifically, this setting specifies the RGB interface mode when it is selected by the setting DM and RM bits. The setting must be made before the display operation through external display interface. Do not make a setting during display. RIM Bits RIM1 RIM0 RGB Interface Mode 0 0 18-bit RGB interface (one-time transfer/pixel) 0 1 16-bit RGB interface (one-time transfer/pixel) 1 0 6-bit RGB interface (three-time transfers/pixel) 1 1 Setting disabled Note 1) The instruction register setting is possible only through a system interface. Note 2) Data transmission and input of DOTCLK in the 6-bit RGB interface mode should be executed by RGB. DM1–0:Specify the display operation mode. The interface through which display operation is executed is selected with DM1-0 bits. This setting enables switching between internal clock operation and external display interface. Switching within the external display interface modes (between RGB-I/F and VSYNCI/F) cannot be made. Rev.0.22, May.23.2003, page 43 of 159 HD66787 Preliminary DM Bits DM1 DM0 Display Interface 0 0 Internal clock operation 0 1 RGB interface 1 0 VSYNC interface 1 1 Setting disabled RM: Specify the interface for RAM accesses. RAM is accessible only through the interface specified with RM bit. When the display data is written through RGB-I/F, set RM = 1. The RM-bit setting can be made irrespective of the display operation mode. This means the display data can be updated through a system interface even during the display period through RGB interface by setting RM = 0. RM Bit RM Interface for RAM Access 0 System interface/VSYNC interface 1 RGB interface Rev.0.22, May.23.2003, page 44 of 159 HD66787 Preliminary Setting for external display interface control allows selecting an optimum interface for the kind of display as follows. When displaying a moving picture (RGB-I/F/VSYNC-I/F), the display data must be written in the high-speed mode (HWM = 1) which enables high-speed RAM access with low power consumption. Display state and interfaces Display State Operation Mode RAM Access (RM) Display Operation Mode (DM1-0) Still pictures Internal clock operation System interface (RM = 0) Internal clock operation (DM1-0 = 00) Moving pictures RGB interface (1) RGB interface (RM = 1) RGB interface (DM1-0 = 01) Rewrite still picture area while displaying moving pictures. RGB interface (2) System interface (RM = 0) RGB interface (DM1-0 = 01) Moving pictures VSYNC interface System interface (RM = 0) VSYNC interface (DM1-0 = 10) Note 1) The instruction register setting is made only through system interface. Note 2) Switching between RGB-I/F and VSYNC-I/F cannot be made. Note 3) The RGB-I/F mode settings is not changeable during RGB I/F operation. Note 4) For details on the transition flow between operation modes, see the “External Display Interface” section. Note 5) Use the high-speed write mode (HWM = 1) during the write operation in RGB-I/F and VSYNC-I/F modes. Internal clock operation mode All display operations are controlled by signals generated by the internal clock in internal clock operation mode. All inputs through the external display interface are invalid. The internal RAM is accessible only through a system interface. RGB interface mode (1) Display operation is controlled by the frame synchronization clock (VSYNC), line synchronizing signal (VSYNC), and dot clock (DOTCLK) in the RGB interface mode. These signals must be supplied throughout the display operation in this mode. All display data are stored in the internal RAM, transmitted with PD17-0 bits by pixel. The combination with the high-speed write mode and window address function enables simultaneous display of both moving picture areas and the internal RAM area. The data are transmitted only when the screen is being updated, thereby reducing the overall data transmission to minimum. The periods of the front (FP) and back (BP) porches and the display period (NL) are automatically generated in the HD66782 by counting the clock of line synchronizing signal (HSYNC) in accordance to the frame synchronizing signal (VSYNC). Transmit pixel data with PD 17-0 bits in accordance with the setting specified above. RGB interface mode (2) Rev.0.22, May.23.2003, page 45 of 159 HD66787 Preliminary When RGB-I/F is selected, RAM data are changeable through the system interface. This write operation must be performed while display data are not being transmitted through the RGB-I/F (ENABLE = High). When reverting from the system interface mode to the data transmission through the RGB interface, make a new setting for the address set and index (R22h) after changing the aforementioned settings. VSYNC interface mode The internal display operation is synchronized with the frame-synchronizing signal (VSYNC) in the VSYNC interface mode. By writing data to RAM at a fixed speed on the falling edge of VSYNC, it enables moving pictures display with a system interface. In this case, there are some constraints in the RAM write speed and methods. For details, see the “External Display Interface” section. In the VSYNC-I/F mode, only VSYNC input is valid. Other input signals for the external display interface are invalid. The front porch (FP), back porch (BP) periods and display period (NL) are automatically generated in accordance to the frame synchronizing signal (VSYNC) according to the register setting of HD66787. Rev.0.22, May.23.2003, page 46 of 159 HD66787 Preliminary LTPS Interface Control (R0Dh) R/W W RS 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 CLW CLW CLW 0 0 0 TG0 0 0 2 1 0 IB6 0 IB5 IB4 SHW SHW 0 1 IB3 IB2 IB1 0 STG 2 STG STG 1 0 IB0 The HD66787 enables connection to LTPS-TFT panels by outputting timing signals (CL1, SFTCLK) for controlling low-temperature poli-Si TFT (LTPS-TFT) panels with incorporated gates. For details, see the “Low-temperature Poli-Si TFT Control” section. CLW2-0 CL1 SHW1-0 SFTCLK STG2-0 Note) SFTCLK is output under the same condition as CL1. Timing signals for LTPS-TFT panels Rev.0.22, May.23.2003, page 47 of 159 HD66787 Preliminary STG2-0:Set the output position of the pulse of SFTCLK signal. STG2-0 STG 2 0 STG 1 0 STG 0 0 SFTCLK signal : pulse output position internal operation RGB interface operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 clock 0 clock 0 0 1 1 clock 8 clocks 0 1 0 2 clocks 16 clocks 0 1 1 3 clocks 24 clocks 1 0 0 4 clocks 32 clocks 1 0 1 5 clocks 40 clocks 1 1 0 6 clocks 48 clocks 1 1 1 7 clocks 56 clocks Note 1) The number of clocks is counted from the falling edge of the CL1 signal. SHW1-0: Set the width of the pulse of SFTCLK signal during “High”. SHW1-0 SHW 1 SHW 0 SFTCLK signal : purse width during “High” internal operation RGB interface operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 0 1 clock 8 clocks 0 1 2 clocks 16 clocks 1 0 3 clocks 24 clocks 1 1 4 clocks 32 clocks In making settings for SFTCLK signal, the following condition must be observed. STG2-0 + SHW1-0 ≤ 8 clocks (Internal operation) ≤ 64 clocks (RGB interface operation) Rev.0.22, May.23.2003, page 48 of 159 HD66787 Preliminary CLW2-0: Set the width of the pulse of CL1 signal during “Low”. CLW 2 CLW 1 CLW 0 CL1 signal : pulse width during “Low” internal operation RGB interface operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 0 0 1 clock 8 clocks 0 0 1 2 clocks 16 clocks 0 1 0 3 clocks 24 clocks 0 1 1 4 clocks 32 clocks 1 0 0 5 clocks 40 clocks 1 0 1 6 clocks 48 clocks 1 1 0 7 clocks 56 clocks 1 1 1 8 clocks 64 clocks Note 1) The number of clocks is counted from the falling edge of the CL1 signal. TG0: Change the output timing of CL1 and SFTCLK signals. If TG0 =1, the setting in SHW is nullified and the frequencies of CL1 and SFTCLK become the frequency of normal mode divided by 2. The output timing of each signal is illustrated as follows. FLM(TG0=1) Timing of Internal Operation t1 t2 t2 t1 = RTN - CLW t2 = STG t3 = SDT CL1(TG0=1) internal operation RGB-I/F SFTCLK(TG0=1) t3 t3 Sn First Line Second Line CL1 and SFTCLK (TG0 = 1) Rev.0.22, May.23.2003, page 49 of 159 : 1H = 16clks : 1H = Number of DLTCLKs HD66787 Preliminary RTN FLM (TG0 = 0) CLW CL1 (TG0 = 0) STG SFTCLK (TG0=0) SDT 1st line S (n) 2nd line FLM (TG0 = 1) RTN-CLW STG CL1 (TG0 = 1) STG SFTCLK (TG0=1 SDT S (n) 1st line FLM level-shift output (TG0=1) CL1 level-shift output (TG0=1) SFTCLK level-shift output (TG0=1) CL1 and SFTCLK timing chart Rev.0.22, May.23.2003, page 50 of 159 2nd line HD66787 Preliminary Power Control 1 (R10h) Power Control 2 (R11h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 W 1 0 W 1 0 SAP2 SAP1 SAP0 0 0 0 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 SLP STB 0 BT2 BT1 BT0 0 AP2 AP1 AP0 0 DK 0 DC12 DC11 DC10 0 DC02 DC01 DC00 0 VC2 VC1 VC0 SAP2-0: Adjust the amount of fixed current from the fixed current source of operational amplifier for the source driver. When the amount of fixed current is set large, the operational amplifier will stabilize, while the current consumption will increase. Select an optimum amount of current taking both the display quality and the current consumption into account. During non-display operation, set SAP2-0 = “000” to halt the operation of operational amplifier, to reduce the current consumption. SAP Bits and the amount of current for the Op-amp SAP2 SAP1 SAP0 Op-amp Current SAP2 SAP1 SAP0 Op-amp Current 0 0 0 Halt 1 0 0 1 (fixed) 0 0 1 Setting disabled 1 0 1 1.25 (fixed) 0 1 0 0.62 (fixed) 1 1 0 1.43 (fixed) 0 1 1 0.71 (fixed) 1 1 1 Setting disabled BT2–0: Change the step-up scale of the step-up circuit. Adjust the scale according to the voltage. Smaller scale consumes lesser current. DC02–00: Select the operating frequency for the step-up circuit 1. The higher frequency enhances the drive capacity of step-up circuit as well as the display quality, while the current consumption will increase. Adjust the frequency taking both the display quality and the current consumption into consideration. DC12–10: Select the operating frequency for the step-up circuit 2. The higher frequency enhances the drive capacity of step-up circuit as well as the display quality, while the current consumption will increase. Adjust the frequency taking both the display quality and the current consumption into consideration. AP2–0: Adjust the amount of fixed current from the fixed current source of operational amplifier for the liquid crystal drive power supply. When the amount of fixed current is set large, the liquid crystal drive capacity will be enhanced and the display quality will improve, while the current consumption will increase. Select an optimum amount of current taking both the display quality and the current consumption into account. During non-display operation, set AP2-0 = “000” to halt the operation of operational amplifier to reduce current consumption. DK: Control the operation of the step-up circuit 1. When turning on the power supply, stop the start up of VLOUT1 for a moment, and wait for an enough time until VLOUT2 is stabilized before starting up VLOUT1. For details, see the “Power Supply Setting Flow” section. Rev.0.22, May.23.2003, page 51 of 159 HD66787 Preliminary SLP: When SLP = 1, the HD66789 enters into the sleep mode. In the sleep mode, internal display operation is halted except the R-C oscillator to reduce current consumption. Only power control instructions (BT2–0, DC2–0, AP2–0, SLP, STB, VC2-0, VRH4-0, VCOMG, VDV4-0, and VCM4-0 bits) are executed during the sleep mode. No change is made to the GRAM data or instructions during the sleep mode, although it is retained. STB: When STB = 1, the HD66789 enters into the standby mode. In the standby mode, display operation is completely halted, and all internal operation including the internal R-C oscillator and reception of external clock pulse, is halted. For details, see the “Standby Mode” section. Only instructions to release the standby mode (STB = 0) and to start oscillation are accepted during the standby mode. Changes in the GRAM data or instructions during the standby mode are susceptible to destruction. These changes should be made after releasing the standby mode. VC2-0: Adjust the reference voltage for VREG1OUT, VciOUT voltages to the optimum ratio of Vci. AP2 AP1 AP0 Amount of current in operational amplifier 0 0 0 halt 0 0 1 setting disabled 0 1 0 0.5 (fixed) 0 1 1 0.75 (fixed) 1 0 0 1 (fixed) 1 0 1 1.25 (fixed) 1 1 0 1.5 (fixed) 1 1 1 setting disabled DC02 DC01 DC00 Step-up circuit 1 step-up frequency DC12 DC11 DC10 Step-up circuit 2 step-up frequency 0 0 0 oscillation clock / 8 0 0 0 oscillation clock / 16 0 0 1 oscillation clock / 16 0 0 1 oscillation clock / 32 0 1 0 oscillation clock / 32 0 1 0 oscillation clock / 64 0 1 1 oscillation clock / 64 0 1 1 oscillation clock / 128 1 0 0 oscillation clock / 128 1 0 0 oscillation clock / 256 1 0 1 setting disabled 1 0 1 setting disabled 1 1 0 setting disabled 1 1 0 setting disabled 1 1 1 setting disabled 1 1 1 setting disabled Rev.0.22, May.23.2003, page 52 of 159 HD66787 Preliminary BT2 BT1 BT0 VLOUT1 output (DDVDH) VLOUT4 output (VCL) VLOUT2 output (VGH) VLOUT3 output (VGL) Capacitor connection pins 0 0 0 Vci1 x 2 [x2] Vci1 x -1 [x-1] DDVDH x 3 [x 6] - (Vci1+DDVDH x 2) [x –5] DDVDH, VGH, VGL, VCL, 0 0 1 ↑ ↑ DDVDH x 3 [x 6] - (DDVDH x 2) [x –4] DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, C11±, C12±, C21±, C22±, 0 1 0 ↑ ↑ DDVDH x 3 [x 6] - (Vci1+DDVDH) [x –3] DDVDH, VGH, VGL, VCL, 0 1 1 ↑ ↑ Vci1 +DDVDH x 2 [x 5] - (Vci1+DDVDH x 2) [x –5] DDVDH, VGH, VGL, VCL, Vci1 +DDVDH x 2 [x 5] - (DDVDH x 2) [x –4] DDVDH, VGH, VGL, VCL, Vci1 +DDVDH x 2 [x 5] - (Vci1+DDVDH) [x –3] DDVDH, VGH, VGL, VCL, DDVDH x 2 [x 4] - (DDVDH x 2) [x –4] DDVDH, VGH, VGL, VCL, DDVDH x 2 [x 4] - (Vci1+DDVDH) [x –3] DDVDH, VGH, VGL, VCL, 1 1 1 1 0 0 1 1 ↑ 0 ↑ ↑ 1 ↑ ↑ 0 ↑ ↑ 1 ↑ C11±, C12±, C21±, C22±, C11±, C12±, C21±, C22±, C11±, C12±, C21±, C22±, C11±, C12±, C21±, C22±, C11±, C12±, C21±, C22±, C11±, C12±, C21± Note 1) The numerals in the bracket [ ] show the step-up scale from Vci1. Note 2) The capacitor connection pins are step-up capacitors which are necessary for DDVDH, VCL, VGH, VGL voltages. Note 3) Set the voltage within the following range: DDVDH = 5.5 V (Max.), VCL = - 3.3 V (Min.), VGH = 16.5 V (Max.), VGL = -16.5 V (Min.) VC2 VC1 VC0 VciOUT output voltage (REGP) DK Operation of step-up circuit 1 0 0 0 Vci 0 Operation 0 0 1 0.92 x Vci 1 Halt 0 1 0 0.87 x Vci 0 1 1 0.83 x Vci 1 0 0 0.76 x Vci 1 0 1 0.73 x Vci 1 1 0 setting disabled 1 1 1 setting disabled Rev.0.22, May.23.2003, page 53 of 159 HD66787 Preliminary Power Control 3 (R12h) Power Control 4 (R13h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 W 1 0 0 W 1 0 0 0 0 0 0 0 IB8 IB7 IB6 IB5 0 0 0 0 PON VRH3 VRH2 VRH1 VRH0 0 VCM4 VCM3 VCM2 VCM1 VCM0 VCO VDV4 VDV3 VDV2 VDV1 VDV0 MG 0 0 IB4 IB3 IB2 IB1 IB0 PON: Start operation of VLOUT3. To stop operation, set PON = 0. To start operation, set PON = 1. VRH3-0: Set the scale for amplifying VLOUT1 voltage (the reference voltage for VCOM and grayscale voltage). REGP voltage is amplified by 1.33 ~ 2.775 times. VCOMG: When VCOMG = 1, VcomL outputs a negative voltage (1.0V ~ -Vci+0.5V Max.). When VCOMG = 0, the amplifiers for the negative voltage is halted, thereby saving power consumption. When VCOMG = 0, settings with VDV4-0 bits are invalid. In this case, to adjust AC amplitude of Vcom, make settings with VCM4-0 bits (VcomH setting). VCOMG = 1 is valid when PON = 1. VDV4-0: Set the AC amplitude of Vcom during Vcom AC drive. The amplitude can be specified within the range of 0.6 ~ 1.23 times of VREG1OUT. When VCOMG = 0, this setting is invalid. VCM4-0: Set the VcomH voltage (The higher voltage during Vcom AC drive). The voltage can be specified within the range of 0.4 ~ 0.98 times of VREG1OUT. When VCM4-0 = “11111”, the internal volume adjustment operation is halted, and the VcomH voltage can be adjust by placing an external resistor from VcomR. Rev.0.22, May.23.2003, page 54 of 159 HD66787 Preliminary VRH3 VRH2 VRH1 VRH0 VREG1OUT voltage 0 0 0 0 REGP x 1.33 0 0 0 1 REGP x 1.45 0 0 1 0 REGP x 1.55 0 0 1 1 REGP x 1.65 0 1 0 0 REGP x 1.75 0 1 0 1 REGP x 1.80 0 1 1 0 REGP x 1.85 0 1 1 1 halt 1 0 0 0 REGP x 1.90 1 0 0 1 REGP x 2.175 1 0 1 0 REGP x 2.325 1 0 1 1 REGP x 2.475 1 1 0 0 REGP x 2.625 1 1 0 1 REGP x 2.700 1 1 1 0 REGP x 2.775 1 1 1 1 halt Rev.0.22, May.23.2003, page 55 of 159 HD66787 Preliminary VCM4 VCM3 VCM2 VCM1 VCM0 VcomH VDV4 VDV3 VDV2 VDV1 VDV0 Vcom amplitude 0 0 0 0 0 VREG1OUT x 0.40 0 0 0 0 0 VREG1OUT x 0.60 0 0 0 0 1 VREG1OUT x 0.42 0 0 0 0 1 VREG1OUT x 0.63 0 0 0 1 0 VREG1OUT x 0.44 0 0 0 1 0 VREG1OUT x 0.66 : : : : : : : : : : : : 0 1 1 0 0 VREG1OUT x 0.64 0 1 1 0 0 VREG1OUT x 0.96 0 1 1 0 1 VREG1OUT x 0.66 0 1 1 0 1 VREG1OUT x 0.99 0 1 1 1 0 VREG1OUT x 0.68 0 1 1 1 0 VREG1OUT x 1.02 0 1 1 1 1 Halt internal volume. Adjust with a variable external resistor from VcomR. 0 1 1 1 1 Setting disabled 1 0 0 0 0 VREG1OUT x 0.70 1 0 0 0 0 VREG1OUT x 1.05 1 0 0 0 1 VREG1OUT x 0.72 1 0 0 0 1 VREG1OUT x 1.08 1 0 0 1 0 VREG1OUT x 0.74 1 0 0 1 0 VREG1OUT x 1.11 : : : : : : 1 0 0 1 1 VREG1OUT x 1.14 1 1 1 0 0 VREG1OUT x 0.94 1 0 1 0 0 VREG1OUT x 1.17 1 1 1 0 1 VREG1OUT x 0.96 1 0 1 0 1 VREG1OUT x 1.20 1 1 1 1 0 VREG1OUT x 0.98 1 0 1 1 0 1 Halt internal volume. Adjust with a variable external resistor from VcomR. 1 1 1 1 1 0 1 1 1 1 * * VREG1OUT x 1.23 Setting disabled Setting disabled * Note 1) Adjust VREG1OUT and VCM0-4 to set VcomH the same level as VDH or less. Note 2) Adjust VREG1OUT and VDV0-4 to set the amplitude of Vcom 6.0V or less. RAM Address Set (R21h) R/W W RS 1 IB15 IB14 IB13 IB12 IB11 IB10 AD 15 AD 14 AD 13 AD 12 AD 11 AD 10 IB9 AD 9 IB8 AD 8 IB7 IB6 IB5 AD 7 AD 5 AD 6 IB4 AD 4 IB3 IB2 AD 3 AD 2 IB1 AD 1 IB0 AD 0 AD15–0: Make the initial setting for the GRAM address in the address counter (AC). After GRAM data are written, the address counter is automatically updated according to the settings with AM, I/D bits and the setting for a new GRAM address is not required in the address counter. Therefore, data are written consecutively without resetting the address. The address counter is not automatically updated when data are read out from GRAM. GRAM address setting can not be made during the standby mode. An address set should be made within the area specified with the window address. When the RGB interface is selected (RM = 1), the setting of the address for AD15-0 is made every frame at the falling edge of VSYNC. When the internal clock operation or VSYNC interface is selected (RM = 0), the setting of the address is made when the instruction is executed. Rev.0.22, May.23.2003, page 56 of 159 HD66787 Preliminary GRAM Address Range AD15–AD0 GRAM Setting “0000”H – “00AF”H Bitmap data for G1 “0100”H – “01AF”H Bitmap data for G2 “0200”H – “02AF”H Bitmap data for G3 “0300”H – “03AF”H Bitmap data for G4 : : “EC00”H – “ECAF”H Bitmap data for G237 “ED00”H – “EDAF”H Bitmap data for G238 “EE00”H – “EEAF”H Bitmap data for G239 “EF00”H – “EFAF”H Bitmap data for G240 Write Data to GRAM (R22h) R/W RS W 1 RAM write data (WD17-0) The pin assignment for DB17-0 varies for each interface (see below). PD17 PD16 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PD7 PD6 RGB-I/F mode: WD 17 WD WD 16 15 WD 14 WD 13 WD 12 WD 11 WD 10 WD 9 WD 8 WD 7 WD 6 PD5 WD 5 PD4 WD 4 PD3 PD2 PD1 PD0 WD WD 2 3 WD 1 WD 0 WD17–0: All data are expanded into 18 bits internally before written to GRAM. Each interface has its own way of expanding data to 18 bits. The grayscale level is selected according to the GRAM data. The address is automatically updated according to the setting with the AM and I/D bits after data are written to GRAM. During the standby mode, no access is allowed to GRAM. When 8 or 16 bit interface modes is selected, the data in the MSB of R and B pixels are also written to the LSB of R and B pixels respectively to expand the 8/16- bit data into the 18bit data internally. During the RGB interface mode, when writing data to RAM through a system interface, make sure to avoid conflicts between writing through the RGB interface and writing through the system interface. When the 18-bit RGB interface is selected, the18-bit data in PD17-0 bits are written, and 262,144 colors are available. When the 16-bit RGB interface is selected, the data in the MSB of R and B pixels are also written to the LSB of R and B pixels respectively, and 65,536 colors are available. Rev.0.22, May.23.2003, page 57 of 159 HD66787 Preliminary 18-bit interface(262,144 colors) INPUT Write Data to GRAM RGB Assignment DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 DB 0 WD 17 WD 16 WD 15 WD 14 WD 13 WD 12 WD 11 WD 10 WD 9 WD 8 WD 7 WD 6 WD 5 WD 4 WD 3 WD 2 WD 1 WD 0 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 one pixel 16-bit interface(65,536 colors) INPUT DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 Write Data to GRAM WD 17 WD 16 WD 15 WD 14 WD 13 WD 12 WD 11 WD 10 RGB Assignment R5 R4 R3 R2 R1 R0 G5 G4 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 WD 9 WD 8 WD 7 WD 6 WD 5 WD 4 WD 3 WD 2 WD 1 WD 0 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 one pixel 9-bit interface (262,144 colors) 1st Transmission (Upper) 2nd Transmission (Lower) INPUT DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 Write Data to GRAM WD 17 WD 16 WD 15 WD 14 WD 13 WD 12 WD 11 WD 10 WD 9 WD 8 WD 7 WD 6 WD 5 WD 4 WD 3 WD 2 WD 1 WD 0 RGB Assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 one pixel Write data to GRAM: Bit assignment Rev.0.22, May.23.2003, page 58 of 159 HD66787 Preliminary 8-bit interface (65,536 colors) TRI = 0, DFM1-0 = 00 1st Transmission (Upper) 2nd Transmission (Lower) INPUT DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 Write Data to GRAM WD 17 WD 16 WD 15 WD 14 WD 13 WD 12 WD 11 WD 10 RGB Assignment R5 R4 R3 R2 R1 R0 G5 G4 DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 WD 9 WD 8 WD 7 WD 6 WD 5 WD 4 WD 3 WD 2 WD 1 WD 0 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 one pixel 8-bit interface (262,144 colors) TRI =1, DFM1-0 = 10 1st Transmission INPUT Write Data to GRAM RGB Assignment 2nd Transmission DB DB DB DB DB DB DB 17 16 15 14 13 12 17 DB 16 DB DB 15 14 3rd Transmission DB DB 13 12 DB DB DB 17 16 15 DB DB 14 13 DB 12 WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 0 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 One pixel 8-bit interface (65,536 colors) TRI =1, DFM1-0 = 11 1st Transmission INPUT Write Data to GRAM RGB Assignment 2nd Transmission DB DB DB DB DB DB DB 17 16 15 14 13 12 17 DB 16 DB DB 15 14 3rd Transmission DB DB 13 12 DB DB DB 17 16 15 DB DB 14 13 DB 12 WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 0 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 One pixel Write data to GRAM: Bit assignment Rev.0.22, May.23.2003, page 59 of 159 B4 B3 B2 B1 B0 HD66787 Preliminary 18-bit RGB interface (262,144 colors) INPUT PD PD PD PD PD PD 17 16 15 14 13 12 Write Data to GRAM RGB Assignment PD 11 PD 10 PD PD 9 8 PD PD 7 6 PD 5 PD 4 PD 3 PD PD 2 1 PD 0 WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 0 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 One pixel The index register should be set when data is written in RGB-I/F mode. 16-bit RGB interface (65,563 colors) INPUT PD PD PD PD PD 17 16 15 14 13 PD PD 11 10 Write Data to GRAM WD WD WD WD WD 17 16 15 14 13 WD WD WD WD WD WD WD WD WD WD WD 11 10 9 8 7 6 5 4 3 2 1 RGB Assignment R5 R4 R3 R2 R1 R0 G5 G4 PD PD 9 8 G3 G2 PD PD 7 6 G1 G0 PD 5 B5 PD PD 4 3 B4 B3 PD PD 2 1 B2 B1 B0 One pixel The index register should be set when data is written in RGB-I/F mode. 6-bit RGB interface (262,144 colors) 1st Transmission INPUT Write Data to GRAM RGB Assignment 2nd Transmission PD PD PD PD PD PD PD 17 16 15 14 13 12 17 PD 16 PD PD 15 14 3rd Transmission PD PD 13 12 PD PD PD PD PD 17 16 15 14 13 PD 12 WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 0 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 One pixel The index register should be set when data is written in RGB-I/F mode. Write data to GRAM (RGB interface): Bit assignment Rev.0.22, May.23.2003, page 60 of 159 HD66787 Preliminary GRAM data settings Grayscale RGB Negative GRAM data settings Positive RGB Grayscale Negative Positive 000000 V0 V31 100000 V16 V15 000001 (V0-V1)/2 (V30-V31)/2 100001 (V16-V17)/2 (V14-V15)/2 000010 V1 V30 100010 V17 V14 000011 (V1-V2)/2 (V29-V30)/2 100011 (V17-V18)/2 (V13-V14)/2 000100 V2 V29 100100 V18 V13 000101 (V2-V3)/2 (V28-V29)/2 100101 (V18-V19)/2 (V12-V13)/2 000110 V3 V28 100110 V19 V12 000111 (V3-V4)/2 (V27-V28)/2 100111 (V19-V20)/2 (V11-V12)/2 001000 V4 V27 101000 V20 V11 001001 (V4-V5)/2 (V26-V27)/2 101001 (V20-V21)/2 (V10-V11)/2 001010 V5 V26 101010 V21 V10 001011 (V5-V6)/2 (V25-V26)/2 101011 (V21-V22)/2 (V9-V10)/2 001100 V6 V25 101100 V22 V9 001101 (V6-V7)/2 (V24-V25)/2 101101 (V22-V23)/2 (V8-V9)/2 001110 V7 V24 101110 V23 V8 (V7-V8)/2 001111 (V7-V8)/2 (V23-V24)/2 101111 (V23-V24)/2 010000 V8 V23 110000 V24 V7 010001 (V8-V9)/2 (V22-V23)/2 110001 (V24-V25)/2 (V6-V7)/2 010010 V9 V22 110010 V25 V6 010011 (V9-V10)/2 (V21-V22)/2 110011 (V25-V26)/2 (V5-V6)/2 010100 V10 V21 110100 V26 V5 010101 (V10-V11)/2 (V20-V21)/2 110101 (V26-V27)/2 (V4-V5)/2 010110 V11 V20 110110 V27 V4 010111 (V11-V12)/2 (V19-V20)/2 110111 (V27-V28)/2 (V3-V4)/2 011000 V12 V19 111000 V28 V3 011001 (V12-V13)/2 (V18-V19)/2 111001 (V28-V29)/2 (V2-V3)/2 011010 V13 V18 111010 V29 V2 011011 (V13-V14)/2 (V17-V18)/2 111011 (V29-V30)/2 (V1-V2)/2 011100 V14 V17 111100 V30 V1 011101 (V14-V15)/2 (V16-V17)/2 111101 (V30-V31)/2 (V0-V1)/2 (V0-V1)/3 V0 011110 V15 V16 111110 (V30-V31)/3 011111 (V15-V16)/2 (V15-V16)/2 111111 V31 GRAM data and LCD output level Rev.0.22, May.23.2003, page 61 of 159 HD66787 Preliminary RAM Access through RGB-I/F and System I/F The HD66787 writes all display data on the panels to the internal RAM. This enables the transfer of only the data for the moving picture area as well as for the frames for updating screens through the RGB interface. By writing data in the high speed write mode (HWM = 1) and with the window address function, the HD66787 enables the high-speed access to RAM with low power consumption while displaying moving pictures. In the frames other than the moving picture screen update, the display data in the area other than the moving picture area can be updated through a system interface. The RAM access is also possible through a system interface even in the RGB-I/F mode. In the RGB interface mode, data are written to RAM in synchronization with the DOTCLK during ENABLE = “Low”. When writing data in the RGB-I/F mode through the system interface, it is necessary to set the ENABLE “High” to stop writing through the RGB interface. After accessing to RAM through the system interface, wait an enough time for the write/read bus cycle before starting accessing to RAM through the RGB interface. When RAM accesses through the RGB and system interfaces conflict, there will be no guarantee that data are properly written to RAM. Updating (both panels) Updating (both panels) VSYNC ENABLE DOTCLK PD17-0 Setting of index System interface Index R22 RM=0 Updating or moving picture area Setting of address Index R22 Updating of area other than moving picture area RM=1 Updating still picture area*1 Setting of address Index R22 Updating or moving picture area Note 1) When RGB-I/F is selected, the address setting is made at every falling edge of VSYNC. Note 2) The address set and the index set must be made before the RAM access throught the RGB interface. Note 3) The high-speed write mode should be used in RGB-I/F and VSYNC-I/F modes. 2001/01/01 00:00 Still picture area Moving picture area Updating Still Picture Area during Displaying a Moving Picture Rev.0.22, May.23.2003, page 62 of 159 HD66787 Preliminary Read Data Read from GRAM (R22h) R/W RS R 1 RAM Read data (RD17-0) The pin assignment for DB17-0 varies for each interface (see below). RD17–0: Read 18-bit data from GRAM. The bit assignment for the data that are read out from GRAM is different according to the interface. When data are read out from GRAM to the microcomputer, the first word read immediately after GRAM address set are latched in the internal read-data latch, and thereby nullify the data in the data bus (DB17–0). The second word is read as valid data. When the HD66787 performs an internal bit processing, such as logical operation, it uses the data latched in the read-data latch. Therefore the processing is completed by single read out operation. The data are expanded internally into 18 bits before going through the logical operation. When the 8-/16-bit interfaces are selected, the GRAM data in the LSBs of R and B pixels are not read out. This function is not available in RGB interface mode. 18-bit interface GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 One pi xel Read data Output RD RD RD RD 17 16 15 14 RD RD RD RD RD RD RD 13 12 11 10 9 8 7 RD RD RD RD 6 5 4 3 RD RD RD 2 1 0 DB 17 DB 13 DB 6 DB 2 DB 16 DB DB 15 14 DB 12 DB 11 DB 10 DB 9 DB DB 8 7 DB 5 DB DB 4 3 Read data from GRAM: Bit assignment Rev.0.22, May.23.2003, page 63 of 159 DB 1 DB 0 HD66787 Preliminary 16-bit interface GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 One pixel Read RD RD RD RD data 17 16 15 14 Output DB 17 DB 16 RD RD RD RD RD RD RD 13 12 11 10 9 8 7 DB DB 15 14 DB 13 DB 12 DB 11 DB 10 R3 R2 R1 R0 G5 G4 RD RD RD RD 6 5 4 3 RD RD RD 2 1 0 DB 8 DB 7 DB DB 6 5 DB 4 DB 3 DB 2 DB 1 G2 G1 G0 B4 B3 B2 B1 9-bit interface GRAM data R5 R4 G3 B5 B0 One pixel Read data RD RD RD RD 17 16 15 14 RD RD RD RD RD RD RD 13 12 11 10 9 8 7 RD RD RD RD 6 5 4 3 RD RD RD 2 1 0 Output DB 17 DB 13 DB DB 15 14 DB 11 DB 16 DB DB 15 14 DB 12 DB 11 DB 10 DB DB 9 17 DB 16 1st Transmission (Upper) DB 13 DB 12 DB 10 DB 9 B1 B0 2nd Transmission (Lower) 8-bit interface / SPI GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 One pixel Read data Output RD RD RD RD 17 16 15 14 DB 17 DB 16 DB DB 15 14 RD RD RD RD RD RD RD 13 12 11 10 9 8 7 DB 13 DB 12 DB 11 1st Transmission (Upper) DB 10 DB 17 DB 16 RD RD RD RD 6 5 4 3 DB DB 15 14 DB 13 DB 11 2nd Transmission (Lower) Read data from GRAM: Bit assignment Rev.0.22, May.23.2003, page 64 of 159 DB 12 RD RD RD 0 2 1 DB 10 HD66787 Preliminary Set the I/D, AM, HSA/HSE, and VSA/VEA bits Set the I/D, AM, HSA/HSE, and VSA/VEA bits Address: N set Address: N set First word Dummy read (invalid data) GRAM Read-data latch Second word Read (data of address n) Read-data latch DB17-0 First word Second word Address: M set Dummy read (invalid data) GRAM Read-data latch Write (data of address n) DB17-0 GRAM Automatic address update: N +α First word Dummy read (invalid data) GRAM Read-data latch First word Dummy read (invalid data) GRAM Read-data latch Second word Read (data of address n) Read-data latch DB17-0 Second word Write(data of address n) DB17-0 GRAM i) Read data to the microcomputer ii) Logical arithmetic operation inside HD66787 GRAM read sequence Rev.0.22, May.23.2003, page 65 of 159 HD66787 Preliminary RAM Write Data Mask (R23h) RAM Write Data Mask (R24h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 WM WM WM WM WM WM 11 10 9 8 7 6 W 1 0 0 W 1 0 0 0 0 0 1 1 1 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 0 WM WM 5 4 0 1 WM WM WM WM WM WM 17 16 15 14 13 12 WM WM WM WM 3 2 1 0 WM17–0: Write-mask the data when these data are written to GRAM by bit. For example, if WM17 = 1, the WM17 write-mask the MSB of the data to write to GRAM so that the data in the MSB are not written to GRAM. The rest of WM16-0 bits also write-mask the data in the corresponding bits when these bits are set to “1”. For details, see the “Graphics Operation Function” section. The WM17-0 bits write-mask the data to write to GRAM, which are expanded, if necessary, into 18 bits. This function is not available in the RGB-I/F mode. Write mask Write data to GRAM WM WM WM WM WM WM WM WM WM WM WM WM WM WM WM WM WM WM 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 One pixel RAM write data mask Rev.0.22, May.23.2003, page 66 of 159 G0 B5 B4 B3 B2 B1 B0 HD66787 Preliminary γ Control (R30h to R39h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB2 IB1 IB0 R30 W 1 0 0 0 0 0 R31 W 1 0 0 0 0 0 PKP PKP PKP 32 31 30 0 0 0 0 0 PKP PKP PKP 22 21 20 R31 W 1 0 0 0 0 0 PKP PKP PKP 52 51 50 0 0 0 0 0 PKP PKP PKP 42 41 40 R33 W 1 0 0 0 0 0 PRP PRP PRP 12 11 10 0 0 0 0 0 PRP PRP PRP 02 01 00 R34 W 1 0 0 0 0 0 PKN PKN PKN 12 11 10 0 0 0 0 0 PKN PKN PKN 02 01 00 R35 W 1 0 0 0 0 0 PKN PKN PKN 32 31 30 0 0 0 0 0 PKN PKN PKN 22 21 20 R36 W 1 0 0 0 0 0 PKN PKN PKN 52 51 50 0 0 0 0 0 PKN PKN PKN 42 41 40 R37 W 1 0 0 0 0 0 PRN PRN PRN 12 11 10 0 0 0 0 0 PRN PRN PRN 02 01 00 R38 W 1 0 0 0 VRP VRP VRP VRP VRP 14 13 12 11 10 0 0 0 0 VRP VRP VRP VRP 03 02 01 00 W 1 0 0 0 VRN VRN VRN VRN VRN 11 10 14 13 12 0 0 0 0 VRN VRN VRN VRN 03 02 01 00 R39 0 0 0 0 0 PKP PKP PKP 02 01 00 γ Control Instructions PKP52-00 PRP12-00 PKN52-00 PRN12-00 VRP14-00 VRN14-00 IB3 PKP PKP PKP 12 11 10 : The γ fine adjustment registers for positive polarity. : The γ gradient adjustment registers for positive polarity. : The γ fine adjustment registers for negative polarity. : The γ gradient adjustment registers for negative polarity. : The amplitude adjustment registers for positive polarity. : The amplitude adjustment registers for negative polarity. For details, see the “γ adjustment” section. Rev.0.22, May.23.2003, page 67 of 159 HD66787 Preliminary Vertical Scroll Control (R41h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 0 0 IB9 IB8 0 0 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 VL7 VL6 VL5 VL4 VL3 VL2 VL1 VL0 VL7–0: Specify the number of raster-rows that are scrolled and control smooth scrolling in the vertical direction. The number of raster-rows is specified between 0 to 240. The raster-rows of the specified number are being scrolled during display. When the 240th raster-row is displayed, the scrolling display starts afresh from the 1st raster-row. The number of raster-rows that are scrolled (VL7–0) can be specified when the first panel vertical scroll enable bit VLE1 = 1 or the second panel vertical scroll enable bit VLE2 = 1. The number of raster-rows is fixed (not changeable) when VLE2-1 = 00. This function is not available in the external display interface mode. VL Bits and Display-start Raster-row VL7 VL6 VL5 VL4 VL3 VL2 VL1 VL0 Amount of Scrolling (Number of raster-row) 0 0 0 0 0 0 0 0 0 raster-row 0 0 0 0 0 0 0 1 1 raster-row 0 0 0 0 0 0 1 0 2 raster-rows . . . . . . . . . . . . . . . . . . 1 1 1 0 1 1 1 0 238 raster-rows 1 1 1 0 1 1 1 1 239 raster-rows Note: When setting the number of raster-rows for scrolling, it must be 239 or less. 1st-Screen Drive Position (R42h) 2nd-Screen Drive Position (R43h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 W 1 SE17 SE16 SE15 SE14 SE13 SE12 SE11 SE10 SS17 SS16 SS15 SS14 SS13 SS12 SS11 SS10 W 1 SE27 SE26 SE25 SE24 SE23 SE22 SE21 SE20 SS27 SS26 SS25 SS24 SS23 SS22 SS21 SS20 SS17–10: Specify the start position for driving the first screen by line. The liquid crystal is driven by from the gate driver of “the set value + 1”. SE17–10: Specify the end position for driving the first screen by line. The liquid crystal is driven by to the gate driver of “the set value + 1”. For instance, when SS17–10 = “07”H and SE17–10 = “10”H, the liquid crystal is driven from G8 to G17, and black display is driven from G1 to G7, and G18 thereafter. Make sure that SS17–10 ≤ SE17–10 ≤ “EF”H. For details, see the “Screen Split Drive Function” section. Rev.0.22, May.23.2003, page 68 of 159 HD66787 Preliminary SS27–20: Specify the start position for driving the second screen by line. The liquid crystal is driven by from the gate driver of “the set value + 1”. The second screen is driven when SPT = 1. SE27–20: Specify the end position for driving the second screen by line. The liquid crystal is driven by to the gate driver of “the set value + 1”. For instance, when SPT = 1, and SS27–20 = “20”H, SE27–20 = “4F”H, the liquid crystal is driven from G33 to G80. Make sure that SS17–10 ≤ SE17–10 < SS27–20 ≤ SE27–20 ≤ “EF”H. For details, see the “Screen Split Drive Function” section. Horizontal RAM Address Position (R44h) Vertical RAM Address Position (R45h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 W 1 HEA7 HEA6 HEA5 HEA4 HEA3 HEA2 HEA1 HEA0 HSA7 HSA6 HSA5 HSA4 HSA3 HSA2 HSA1 HSA0 W 1 VEA7 VEA6 VEA5 VEA4 VEA3 VEA2 VEA1 VEA0 VSA7 VSA6 VSA5 VSA4 VSA3 VSA2 VSA1 VSA0 HSA7-0/HEA7-0: Specify the start/end positions of the window-address range in the horizontal direction by address. Data are written to GRAM within the area determined by the addresses specified by HEA7-0 and HSA7-0. These addresses must be set before RAM write. In setting these bits, make sure that “00”h ≤ HSA7-0 ≤ HEA7-0 ≤ “AF”h. VSA7-0/VEA7-0: Specify the start/end positions of the window-address range in the vertical direction by address. Data are written to GRAM within the area determined by the addresses specified by VEA7-0 and VSA7-0. These addresses must be set before RAM write. In setting these bits, make sure that “00”h ≤ VSA7-0 ≤ VEA7-0 ≤ “EF”h. HSA HEA 0000h VSA Window Address Window address setting area “00”h=< HSA7-0=<HEA7-0=<“AF”h “00”h=<VSA7-0=<VEA7-0=<“EF”h VEA GRAM address space EFAFh Note 1) The window address area is set within the GRAM address space. Note 2) In the high-speed write mode, data are written to the GRAM every four words. Therefore, depending on the window address setting, dummy write operations are required. For details, see the "High-Speed Burst RAM Write Function" section. Note 3) The address set must be within the window address area. In the high-speed write mode, dummy write area must also be within the window address area. GRAM address area and window-address range Rev.0.22, May.23.2003, page 69 of 159 HD66787 Preliminary Instruction List Upper Index SR 0* Main Category Upper Index Index Status Read Display Control IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 Index Status Read Oscillation Start Device Code Read * L7 * 0 * L3 * 0 EPL (0) ID6 0 * 0 ID5 0 * 0 0 0 02h LCD AC driving Control 0 0 0 0 0 1 0 0 03h Entry Mode TRI (0) DFM1 (0) 0 0 BGR (0) CP10 (0) 0 Compare Register (1) DFM0 (0) CP11 (0) 0 04h CP9 (0) CP8 (0) B/C (0) HWM (0) CP7 (0) * L0 * 1 SS (0) EOR (0) * 0 * 1 0 * L4 * 0 DPL (0) * L1 * 1 Driver Output Control * L5 * 0 HSPL (0) * L2 * 1 01h * L6 * 0 VSPL (0) 05h Compare Register (2) 0 0 0 0 0 0 ID4 0 * 0 NL4 (1) NW4 (0) ID0 (1) CP4 (0) CP16 (0) ID3 0 * 0 NL3 (1) NW3 (0) AM (0) CP3 (0) CP15 (0) ID2 0 * 1 NL2 (1) NW2 (0) LG2 (0) CP2 (0) CP14 (0) ID21 0 * 1 NL1 (0) NW1 (0) LG1 (0) CP1 (0) CP13 (0) ID0 0 1 1 NL0 (1) NW0 (0) LG0 (0) CP0 (0) CP12 (0) PT0 (0) FP3 (1) CL (0) BP3 (1) REV (0) BP2 (0) D1 (0) BP1 (0) D0 (0) BP0 (0) RTN3 (0) RTN2 (0) 0 0 0 STG2 (0) RTN1 (0) RIM1 (0) STG1 (0) RTN0 (0) RIM0 (0) STG0 (0) DK (1) VC2 (0) VRH2 (0) VCM2 (0) SLP (0) VC1 (0) VRH1 (0) VCM1 (0) STB (0) VC0 (0) VRH0 (0) VCM0 (0) 00h 06h Setting Disabled 07h Display Control (1) 0 0 0 PT1 (0) 08h Display Control (2) 0 0 0 0 09h 0Ah Setting Disabled Setting Disabled Frame Cycle Adjustment Control External Display Interface Control NO1 (0) NO0 (0) SDT1 (0) SDT0 (0) EQ1 (0) 0 0 0 0 0 LTPS Interface Control 0 0 0 TG0 (1) 0 0Ch 0Dh 2* 3* 4* Power Control RAM Access γ Control Coordination Control 0Eh 0Fh Setting Disabled Setting Disabled 10h Power Control (1) 0 SAP2 (0) SAP1 (0) SAP0 (0) 0 11h Power Control (2) 0 0 0 0 0 12h Power Control (3) 0 0 0 0 13h Power Control (4) 0 0 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled 21h RAM Address Set 22h RAM data Write/Read 0 0 VCOM VDV4 (0) G 0 0 0 CP6 (0) 0 0 0 0 0 0 VLE2 (0) FP2 (0) VLE1 (0) FP1 (0) SPT (0) FP0 (0) 0 0 0 DTE (0) 0 0 0 0 EQ0 (0) DIV1 (0) 0 0 0 0 0 0 0 0 0 0 DIV0 (0) RM (0) CLW2 CLW1 CLW0 (0) (0) (0) AD15 (0) AD14 (0) AD13 (0) AD12 (0) WM11 WM10 (0) (0) 0 0 RAM Write Data Mask (2) 0 0 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled 30h γ Control (1) 0 0 0 31h γ Control (2) 0 0 0 32h γ Control (3) 0 0 0 33h γ Control (4) 0 0 0 34h γ Control (5) 0 0 0 35h γ Control (6) 0 0 0 36h γ Control (7) 0 0 0 37h γ Control (8) 0 0 0 38h γ Control (9) BT2 (0) DC12 (0) BT1 (0) DC11 (0) BT0 (0) DC10 (0) 0 0 0 0 VDV3 (0) VDV2 (0) VDV1 (0) VDV0 (0) AD11 (0) AD10 (0) AD9 (0) AD8 (0) 0 0 AP1 (0) DC01 (0) 0 0 0 0 0 0 0 AD7 (0) AD6 (0) WM8 (0) WM7 (0) WM6 (0) 0 0 0 0 0 0 0 0 AP0 (0) DC00 (0) PON (0) VCM4 (0) 0 0 VRH3 (0) VCM3 (0) 0 AD5 (0) AD4 (0) AD3 (0) AD2 (0) AD1 (0) AD0 (0) 0 WM5 WM4 WM3 WM2 WM1 WM0 (0) (0) (0) (0) (0) (0) WM17 WM16 WM15 WM14 WM13 WM12 (0) (0) (0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0 PKP12 (0) PKP32 (0) PKP52 0 0 (0) PRP12 0 0 (0) PKN12 0 0 (0) PKN32 0 0 (0) PKN52 0 0 (0) PRN12 0 0 (0) VRP14 VRP13 VRP12 (0) (0) (0) VRN14 VRN13 VRN12 (0) (0) (0) 0 0 0 0 PKP11 (0) PKP31 (0) PKP51 (0) PRP11 (0) PKN11 (0) PKN31 (0) PKN51 (0) PRN11 (0) VRP11 (0) VRN11 (0) PKP10 (0) PKP30 (0) PKP50 (0) PRP10 (0) PKN10 (0) PKN30 (0) PKN50 (0) PRN10 (0) VRP10 (0) VRN10 (0) 39h γ Control (10) Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled 41h Vertical Scroll Control 0 0 0 0 0 0 0 0 First Screen Driving Position Second Screen Driving Position Horizontal RAM Address Position Vertical RAM Address Position Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled Setting Disabled SE17 (1) SE27 (1) HEA7 (1) VEA7 (1) SE16 (1) SE26 (1) HEA6 (0) VEA6 (1) SE15 (1) SE25 (1) HEA5 (1) VEA5 (1) SE14 (1) SE24 (1) HEA4 (0) VEA4 (0) SE13 (1) SE23 (1) HEA3 (1) VEA3 (1) SE12 (1) SE22 (1) HEA2 (1) VEA2 (1) SE11 (1) SE21 (1) HEA1 (1) VEA1 (1) SE10 (1) SE20 (1) HEA0 (1) VEA0 (1) 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh * * * AP2 (0) DC02 (0) 0 WM9 (0) 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh 40h 45h 0 RAM Write Data (WD17-0 /RAM Read Data (RD17-0) *Bit assignment changes depending on the interface to be selected. RAM Write Data Mask (1) 44h DM0 DM1 (0) (0) SHW1 SHW0 (0) (0) 787 0 0 0 0 0 0 0 0 0 0 0 23h 43h 0 NW5 (0) ID1 (1) CP5 (0) CP17 (0) Note 0 24h 42h 5* 6* 7* Lower Code Command 0Bh 1* Upper Code Sub Category 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VL7 (0) SS17 (0) SS27 (0) HSA7 (0) VSA7 (0) VL6 (0) SS16 (0) SS26 (0) HSA6 (0) VSA6 (0) VL5 (0) SS15 (0) SS25 (0) HSA5 (0) VSA5 (0) VL4 (0) SS14 (0) SS24 (0) HSA4 (0) VSA4 (0) PKP02 (0) PKP22 (0) PKP42 0 (0) PRP02 0 (0) PKN02 0 (0) PKN22 0 (0) PKN42 0 (0) PRN02 0 (0) VRP03 VRP02 (0) (0) VRN03 VRN02 (0) (0) 0 0 PKP01 (0) PKP21 (0) PKP41 (0) PRP01 (0) PKN01 (0) PKN21 (0) PKN41 (0) PRN01 (0) VRP01 (0) VRN01 (0) PKP00 (0) PKP20 (0) PKP40 (0) PRP00 (0) PKN00 (0) PKN20 (0) PKN40 (0) PRN00 (0) VRP00 (0) VRN00 (0) VL1 (0) SS11 (0) SS21 (0) HSA1 (0) VSA1 (0) VL0 (0) SS10 (0) SS20 (0) HSA0 (0) VSA0 (0) 0 0 0 0 0 0 0 0 0 VL3 (0) SS13 (0) SS23 (0) HSA3 (0) VSA3 (0) VL2 (0) SS12 (0) SS22 (0) HSA2 (0) VSA2 (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Note 1) The numerals in parenthesis in the bit cells are initialized value. Note 2) Do not access to the"Setting Disabled" indexes. Rev.0.22, May.23.2003, page 70 of 159 HD66787 Preliminary Reset Function The HD66787 makes internal initialization with RESET input. During RESET, the HD66787 is in a busy state, and no instruction from the MPU and access to GRAM are accepted. The time required for the RESET input is at least 1ms. In case of power-on reset, wait at least 10ms after the power is turned on until the R-C oscillation frequency becomes stabilized. While waiting, do not make an initial setting for the instruction set or an access to GRAM. Initial State of Instructions a. b. c. d. e. f. g. h. i. j. k. l. m. n. o. p. q. r. s. t. u. v. Start oscillation Driver output control (NL4–0 = “11101”, SS = “0”, SM = “0”, EPL = “0”, DPL = “0”, HSPL = “0”, VSPL = “0”) Liquid crystal AC drive control (B/C = “0”, EOR = “0”, NW5–0 = “00000”) Entry mode set (HWM = “0”, I/D1-0 = “11”: Increment by 1, AM = “0” : Horizontal direction, LG2–0 = “000” : Replace mode, BGR = “0”, TRI = “0”, DFM1-0 = “00”) Compare register (CP17–0 : “00 0000 0000 0000 0000”) Display control 1 (PT1-0 = “00”, VLE2-1 = “00” : No vertical scroll, SPT = “0”, DTE = “0”, CL = “0” : 65,536-color mode, REV = “0”, D1-0 = “00” : Display OFF) Display control 2 (BP3-0 = “1000”, FP3-0 = “1000”) Frame cycle control (NO1-0 = “00”, SDT1-0 = “00”, EQ1-0 = “00” : No equalization, DIV1-0 = “00”: clock/1, RTN3-0 = “0000” : 16 clocks in 1H period) External display interface (RIM1-0 = “00” : 18-bit RGB interface, DM1-0 = “00” : internal clock operation, RM = “0” : System interface) LTPS interface control (TG0 = “1”, STG2-0 = “000”, SHW1-0 = “00”, CLW2-0 = “000”) Power control 1 (SAP2-0 = “000”, BT2-0 = “000”, AP2–0 = “000”: liquid crystal power off, DK = “1” : DCDC1 off, SLP = “0”, STB = “0” : Standby mode off) Power control 2 (DC12-0 = “000”, DC02-00 = “000”, VC2-0 = “000”) Power control 3 (PON = “0”, VRH3-0 = “00000”) Power control 4 (VCOMG = “0”, VDV4-0 = “00000”, VCM4-0 = “00000”) RAM address set (AD15–0 = “0000”H) RAM write data mask (WM17–0 = “18’h00000”: No mask) γ control (PKP02-00 = “000”, PKP12-10 = “000”, PKP22-20 = “000”, PKP32-30 = “000”, PKP42-40 = “000”, PKP52-50 = “000”, PRP02-00 = “000”, PRP12-10 = “000”) (PKN02-00 = “000”, PKN12-10 = “000”, PKN22-20 = “000”, PKN32-30 = “000”, PKN42-40 = “000”, PKN52-50 = “000”, PRN02-00 = “000”, PRN12-10 = “000”) (VRP14-10 = “00000”, VRP03-00 = “0000”, VRN14-10 = “00000”, VRN12-10 = “000”) Vertical scroll (VL7–0 = “00000000”) 1st split screen (SE17-10 = “11111111”, SS17-10 = “00000000”) 2nd split screen (SE27-20 = “11111111”, SS27-20 = “00000000”) Horizontal RAM address position (HEA7-0 = “10000011”, HSA7-0 = “00000000”) Vertical RAM address position (VEA7-0 = “10101111”, VSA7-0 = “00000000”) Rev.0.22, May.23.2003, page 71 of 159 HD66787 Preliminary GRAM Data Initialization The data in GRAM are not initialized by the RESET input. Initialize through software during the display OFF (D1–0 = “00”). Initial state of Output Pins a. b. Liquid crystal driver output pins (source outputs): Output GND level Oscillator output pin (OSC2): Outputs oscillation signal Rev.0.22, May.23.2003, page 72 of 159 HD66787 Preliminary Interface Specifications The HD66787 incorporates a system interface to make settings for instructions, and an external display interface to display moving pictures. By selecting an optimum interface for display (moving or still picture, or both), data are transmitted efficiently. The external display interfaces are RGB-I/F and VSYNC-I/F. Through these interfaces, the data can be updated without flickering the moving picture on the display. In the RGB-I/F mode, the display operation is performed in synchronization with the signals (VSYNC, HSYNC, and DOTCLK). The display data are written according to the values of the data enable signal (ENABLE), data valid signal (VLD) and PD17-0 bits in synchronization with VSYNC, HSYNC, and DOTCLK signals. The display data are written to GRAM to reduce the data transmission to minimum, i.e. only when the displays are being updated. With the window address function, only the RAM area used for moving picture display is overwritten, and therefore the simultaneous display of moving picture area, which is overwritten, and the RAM data in the area other than the moving picture area, which is not overwritten, is possible. In the RGB and VSYNC interface modes, write data to GRAM in the high speed write mode (HWM = 1) while displaying moving pictures to make an access to GRAM in high speed with low power consumption. In the VSYNC interface mode, internal display operations are synchronized with the frame-synchronizing signal (VSYNC). By writing data in synchronization with the falling edge of VSYNC at a fixed speed to GRAM through a system interface, it enables moving pictures display with a system interface. In this case, there are some constraints in the RAM writing speed and method. The HD66787 handles the following 4 operational modes for the type of display. The setting can be made through an external display interface. A transition between the modes must follow the transition flow. Rev.0.22, May.23.2003, page 73 of 159 HD66787 Preliminary Operation modes and interfaces Operation Mode RAM Access Setting (RM) Display Operation Mode (DM1-0) Internal operating clock only (Displaying still pictures) System interface (RM = 0) Internal operating clock (DM1-0 = 00) RGB interface (1) (Displaying moving pictures) RGB interface (RM = 1) RGB interface (DM1-0 = 01) RGB interface (2) (Rewriting still pictures while displaying moving pictures) System interface (RM = 0) RGB interface (DM1-0 = 01) VSYNC interface (Displaying moving pictures) System interface (RM = 0) VSYNC interface (DM1-0 = 10) Note 1) the instruction register setting can be made only through a system interface. Note 2) The RGB-I/F and VSYNC-I/F are not compatible with each other. Note 3) Do not change the setting for RGB-I/F mode (RIM-0) while RGB I/F is in operation. Note 4) See the “External Display Interface” section for the transition flow of each operation mode. Note 5) In the RGB-I/F and VSYNC-I/F modes, write data in the high speed write mode (HWM = 1). CSn* RS WR* (RD*) System interface DB17-0 18/16/9/8 System VLD ENABLE VSYNC HSYNC RGB interface DOTCLK PD17-0 18/16/6 Interfaces and HD66787 Rev.0.22, May.23.2003, page 74 of 159 HD66787 HD66787 Preliminary System Interface The following shows the kinds of system interfaces and the IM pins setting for selecting an interface. The instruction setting and RAM access are made through a system interface. IM bits setting and the type of system interface IM3 IM2 IM1 IM0 MPU-Interface Mode 0 0 0 0 Setting disabled 0 0 0 1 Setting disabled DB Pin 0 0 1 0 80-system 16-bit interface DB17 to 10 and 8-to-1 0 0 1 1 80-system 8-bit interface DB17 to 10 0 1 0 * Serial peripheral interface (SPI) SDI, SDO 0 1 1 * Setting disabled 1 0 0 0 Setting disabled 1 0 0 1 Setting disabled 1 0 1 0 80-system 18-bit interface DB17 to 0 1 0 1 1 80-system 9-bit interface DB17 to 9 1 1 * * Setting disabled Rev.0.22, May.23.2003, page 75 of 159 HD66787 Preliminary 80-system 18-bit interface 80-system 18-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to IOVcc/GND/IOVcc/GND levels respectively. CSn* A1 HWR* (RD*) MPU CS* RS WR* HD66787 (RD*) DB17-0 D31-0 18 18-bit microcomputer and HD66787 Instruction Input Instruction DB DB DB 17 16 15 DB DB 14 13 DB 12 DB DB 11 10 IB 15 IB 12 IB 10 IB 9 IB 14 IB 13 IB 11 DB 9 IB 8 DB 8 IB 7 DB DB 7 6 IB 6 DB 5 DB 4 DB 3 IB 4 IB 3 IB 2 IB 1 IB 0 IB 5 DB DB 2 1 DB 0 Instruction code RAM data write Input Write data to GRAM DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB DB DB 12 10 9 DB 8 DB 7 DB DB 6 5 DB 4 DB 3 DB 2 DB 1 DB 0 R5 R4 R3 R2 R1 R0 G5 G2 G1 G0 B4 B3 B2 B1 B0 G4 G3 B5 One pixel 262,144 colors are available in 18-bit system interface Data format for 18-bit interface Rev.0.22, May.23.2003, page 76 of 159 HD66787 Preliminary 80-system 16-bit interface The 80-system 16-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to GND/GND/IOVcc/GND levels respectively. CSn* A1 H8/2245 HWR* (RD*) CS* RS WR* (RD*) HD66787 DB17-10, 8-1 D15-0 16 16-bit microcomputer and HD66787 Input Instruction DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 Instruction code Input DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 GRAM R5 write data R4 R3 R2 R1 R0 G5 G4 G3 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 G2 G1 G0 B5 B4 B3 B2 B1 One pixel 66,536 colors are available in 16-bit system interface. Data format for 16-bit interface Rev.0.22, May.23.2003, page 77 of 159 B0 HD66787 Preliminary 80-system 9-bit interface The 80-system 9-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to IOVcc/GND/IOVcc/IOVcc levels respectively. When transmitting a 16-bit instruction, it is divided into upper and lower 8 bits (the LSB is not used) and the upper 8 bits are transmitted first. The RAM data is also divided into the upper and lower 9 bits, and the upper bits are transmitted first. The unused pins DB8-0 pins must be fixed to either IOVcc or GND level. When writing into the index register, the upper byte (8 bits) must be written. CSn* A1 HWR* (RD*) H8/2254 CS* RS WR* HD66787 (RD*) DB17-9 D15-0 9 DB8-0 9 GND 9-bit microcomputer and HD66787 Instructions 1st Transfer (Upper) Input Instruction 2nd Transfer (Lower) DB DB 17 16 DB 15 DB 14 DB 13 DB DB 12 11 DB 10 IB 15 IB 13 IB 12 IB 11 IB 10 IB 8 IB 14 IB 9 DB 9 DB 17 DB DB 16 15 DB 14 DB 13 DB 12 DB DB 11 10 IB 7 IB 6 IB 4 IB 3 IB 2 IB 1 IB 5 DB 9 IB 0 Instruction code RAM data write 1st Transmission (Upper) Input Write data to GRAM 2nd Transmission (Lower) DB DB 17 16 DB 15 DB 14 DB 13 DB DB 12 11 DB 10 DB 9 DB 17 DB DB 16 15 DB 14 DB 13 DB 12 DB DB 11 10 DB 9 R5 R3 R2 R1 R0 G4 G3 G2 G1 B5 B4 B3 B2 B0 R4 G5 G0 B1 One pixel 262,144 colors are available in the 9 - bit system interface. Data format for 9-bit interface Rev.0.22, May.23.2003, page 78 of 159 HD66787 Preliminary Data transmission synchronizing in 9-bit bus interface mode The HD66787 supports a data transmission synchronizing function, which resets the upper/lower counter that counts the number of transmission of upper/lower 9-bit data in the 9-bit bus interface mode. When a discrepancy occurs in the upper/lower 9-bit data transmission due to effects from noise and so on, the “00” H instruction is written 4 times consecutively to forcibly reset the upper/lower counter so that data transmission restarts with an upper 9-bit data transmission. The excursion can be recovered by executing the synchronizing function periodically. RS RD WR DB17-9 Upper Lower 00H 00H 00H 00H (1) (2) (3) (4) Upper Lower (9-bit transmission synchronization) 9-bit data transmission synchronization 80-system 8-bit interface The 80-system 8-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to GND/GND/IOVcc/IOVcc levels respectively. When transmitting a 16-bit instruction, it is divided into upper and lower 8 bits and the upper 8 bits are transmitted first. The RAM data is also divided into the upper and lower 8 bits, and the upper bits are transmitted first. The data to write to RAM are expanded into 18 bits internally. The unused pins DB9-0 must be fixed to either IOVcc or GND level. When writing into the index register, the upper byte (8 bits) must be written. H8/2245 CS * RS WR* (RD*) CSn* A1 HWR* (RD*) D15-0 HD6 66787 DB17-10 8 DB9-0 10 GND 8-bit microcomputer and HD66787 Rev.0.22, May.23.2003, page 79 of 159 HD66787 Preliminary Instruction 1st Transfer (Upper) Input Instruction 2nd Transfer (Lower) DB DB 17 16 DB DB DB 15 14 13 DB DB 12 11 DB 10 DB 17 IB 15 IB 13 IB 10 IB 8 IB 7 IB 14 IB 12 IB 11 IB 9 DB DB 16 15 IB 6 DB DB DB 14 13 12 IB 5 IB 4 IB 3 DB DB 11 10 IB 2 IB 1 IB 0 Instruction code RAM data write 1st Transfer (Upper) Input Write data to GRAM DB DB 17 16 DB 15 R5 R3 R2 R4 DB 14 2nd Transfer (Lower) DB DB 13 12 DB 11 DB 10 R1 G5 G4 R0 G3 DB DB DB 17 16 15 DB DB 14 13 DB 12 DB DB 11 10 G2 B5 B3 B2 One pixel G1 G0 B4 B1 B0 65,536 colors are available in 8 - bit system interface. RAM data write : TRI =1, DFM1-0 = 10 1st Transmission INPUT RGB Assignment 2nd Transmission 3rd Transmission DB DB DB DB DB DB DB 17 16 15 14 13 12 17 DB 16 DB DB 15 14 DB DB 13 12 DB DB DB 17 16 15 DB DB 14 13 DB 12 R5 G4 G3 G1 B5 B2 B0 R4 R3 R2 R1 R0 G5 G2 One pixel G0 B4 B3 B1 262,144 colors are available in 8 - bit system interface. RAM data write : TRI =1, DFM1-0 = 11 1st Transmission INPUT RGB Assignment 2nd Transmission 3rd Transmission DB DB DB DB DB DB DB 17 16 15 14 13 12 17 DB 16 DB DB 15 14 DB DB 13 12 DB DB DB 17 16 15 DB DB 14 13 DB 12 R5 G4 G3 G1 B5 B2 B0 R4 R3 R2 R1 R0 G5 G2 One pixel G0 B3 B1 65,636 colors are available in 8 - bit system interface. Data format for 8-bit interface Rev.0.22, May.23.2003, page 80 of 159 B4 HD66787 Preliminary Data transmission synchronization in 8-bit bus interface mode The HD66787 supports a data transmission synchronizing function, which resets the upper/lower counter that counts the number of transmission of upper/lower 8-bit data in the 8-bit bus interface mode. When a discrepancy occurs in the transmission of upper/lower 8-bit data due to effects from noise and so on, the “00” H instruction is written 4 times consecutively to forcibly reset the upper/lower counter so that data transmission restarts with the upper 8-bit transmission. The excursion can be recovered by executing the synchronizing function periodically. RS RD WR DB17-10 Upper/ Lower 00H 00H 00H 00H (1) (2) (3) (4) Upper (8-bit transfer synchronization) 8-bit data transmission synchronization Rev.0.22, May.23.2003, page 81 of 159 Lower HD66787 Preliminary Serial Peripheral interface (SPI) The Serial Peripheral Interface (SPI) becomes operable by setting IM3/2/1 pins to GND/IOVcc/GND levels respectively. The SPI is available through the chip select line (CS*), serial transfer clock line (SCL), serial data input (SDI), and serial data output (SDO). In the SPI mode, the IM0/ID pin functions as ID pin. In the SPI mode, the unused DB15-2 pins must be fixed at either IOVcc or GND level. The HD66787 recognizes the start of data transfer at the falling edge of CS* input to initiate the transfer of start byte. It recognizes the end of data transfer at the rising edge of CS* input. The HD66787 is selected when the 6-bit chip address in the start byte transferred from the transmission device and the 6-bit device identification code assigned to the HD66787 are compared and the both 6-bit data correspond. When selected, the HD66787starts taking in the subsequent data string. The setting for the least significant bit of the identification code is made with the ID pin. The five upper bits of the identification code must be 01110. Two different chip addresses must be assigned to the HD66787 because the seventh bit of the start byte is assigned to a register select bit (RS). When RS = 0, index register write or status read is executed. When RS = 1, instruction write or RAM read/write is executed. The eighth bit of the start byte is to specify read or write (R/W bit). The data are received when the R/W bit is 0, and are transmitted when the R/W bit is 1. In the SPI mode, the data are written to GRAM after two-byte data transmission. The data are expanded into 18 bits by adding one bit (the same data as the MSB of RB) next to the LSB of RB data. After receiving the start byte, the HD66787 starts to transmit or receive data by byte. The data transmission adopts a format by which the MSB is first transmitted. All HD66787 instructions consist of 16 bits and they are executed internally after two bytes are transmitted with the MSB first (DB15 to 0). The data to write to RAM are expanded into 18-bit data. After the start byte is received, the first byte is always fetched as the upper eight bits of the instruction and the second byte is fetched as the lower eight bits of the instruction. The 4-byte data that are read from RAM right after the start byte are made invalid. The HD66789 reads as valid data from the 5th-byte data. Start Byte Format Transmitted bits S 1 Start byte format Transmission start Device ID code 0 Note 1) ID bit is selected with the IM0/ID pin. RS and R/W Bit Function RS R/W Function 0 0 Set index register 0 1 Read status 1 0 Write instruction or RAM data 1 1 Read instruction or RAM data Rev.0.22, May.23.2003, page 82 of 159 2 1 3 1 4 1 5 0 6 ID 7 8 RS R/W HD66787 Preliminary 1st Transmission (Upper) Input Instruction 2nd Transmission (Lower) D15 D14 D13 D12 D11 D10 D9 IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 D8 D7 D6 D5 D4 D3 D2 D1 D0 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 Instruction code 1st Transmission (Upper) Input Write data to GRAM 2nd Transmission (Lower) D15 D14 D13 D12 D11 D10 D9 D8 R5 G4 R4 R3 R2 R1 R0 G5 G3 D7 D6 D5 D4 D3 D2 D1 D0 G2 G1 G0 B5 B4 B3 B2 B1 One pixel Data format for SPI Rev.0.22, May.23.2003, page 83 of 159 66,536 colors are available in serial interface. B0 HD66787 Preliminary A)Basic data transmission through SPI Data transmission start Data transmission end CS* (Input) 1 SCL (Input) SDI (Input) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 MSB “0” “1” “1” “1” “0” ID Device ID code RS RW RS RW LSB D15 D14 D13 D12 D11 D10 Start byte 24 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D3 D2 D1 D0 Index register setting, instruction, RAM data write SDO (Output) D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 Status read, instruction read, RAM data read B)Consecutive data transmission through SPI CS* (Input) 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 SCL (Input) Start byte SDI (Input) Instruction1: upper eight bits Instruction1: lower eight bits Instruction2: upper eight bits Instruction1: execution time Start End Note: The first byte after the start byte is always the upper eight bits. C) RAM data read transmission CS* (Input) SCL (Input) Start byte RS = 1, R/W = 1 SDI (Input) SDO (Output) Dummy Read 1 Dummy Read 2 Dummy Read 3 Dummy Read 4 Dummy Read 5 RAM read Upper 8 bits RAM read Lower 8 bits Start End Note: Five bytes of invalid dummy data are read after the start byte. The valid data are read from the 6th byte. D) Status read / instruction read CS* (Input) SCL (Input) Start byte RS = 1, R/W = 1 SDI (Input) SDO (Output) Dummy read 1 Status read: upper eight bits Start Status read: lower eight bits End Note: One byte of invalid dummy data are read after the start byte. The valid data are read from the second byte. Data transmission through SPI Rev.0.22, May.23.2003, page 84 of 159 HD66787 Preliminary VSYNC Interface The HD66787 incorporates a VSYNC-I/F, which enables moving picture display with only a system interface and the frame-synchronizing signal (VSYNC). This interface enables moving picture display with minimum modification to a conventional system. VSYNC HD66787 LCDC/ MPU CS* RS WR* 16 DB17-10, 8-1 VYSNC interface The VSYNC-I/F becomes operable by setting DM1-0 = 10 and RM = 0. In the VSYNC I/F mode, the internal display operations are synchronized with VSYNC. By writing data to RAM through a system interface in a speed that is higher for more than a fixed speed than the internal display operation speed, it enables moving picture display through a system interface, while preventing flickers while the screens are being updated. Display operations are executed by the internal clock generated by the internal oscillator and VSYNC input. All display data are stored in RAM. This enables moving picture display only by transmitting data that are written over, thereby minimizing the number of data transmission while displaying moving picture. The high-speed write mode (HWM = 1) enables RAM access in high speed with low power consumption. VSYNC RAM write via system interface Updating screen Updating screen Display operation in synchronization with the internal clock Note: Data must be written in the high-speed write mode (HWM = 1) in VSYNC-I/F mode. Moving picture data transmission through VSYNC interface Rev.0.22, May.23.2003, page 85 of 159 HD66787 Preliminary The VSYNC-I/F has limits on the minimum speed and the frequency of the internal clock for the RAM write through system interface. It requires a RAM write speed more than the result that is calculated from the following formula. • Internal clock frequency (fosc) [Hz] = Frame frequency × (Display line (NL) + Front porch (FP) + Back porch (BP)) × 16 clocks × Fluctuation • Minimum speed for RAM write (min.)[Hz] > 176 × Display line (NL) / {((Back porch (BP) + Display raster-row (NL) - Margin) × 16 clock) / fosc} Note 1) When RAM write does not start right after the falling edge of VSYNC, the time between the falling edge of VSYNC and the start of RAM write must also be taken into account. An example of RAM write speed and the frequency of the internal clock in the VSYNC interface mode is as follows. [Example] Display size Display line Back/front porch Frame frequency 176 RGB × 240 lines 240 lines (NL = 11110) 14/2 lines (BP = 1110/FP = 0010) 60 Hz Internal clock frequency (fosc) [Hz] = 60 Hz × (240 + 2 + 14) × 16 Clock × 1.1 / 0.9 = 300 kHz When calculating the internal clock frequency, possible causes of fluctuations must also be taken into consideration. The allowance for this fluctuation is ± 10 % from the center value, and the range of the frequency must be within VSYNC period. As the causes of fluctuations, the above example takes the variation in the LSI fabrication and the room temperature into account. Other possible causes of fluctuations, such as variation in the external resistors or the voltage change are not considered in the above example. It is necessary to make a setting with enough margins to include the allowances for these factors. Minimum speed for RAM writing [Hz] > 176 × 240 / {((14 + 240 - 2) raster-rows × 16 clock) / 300 kHz} = 3.14 MHz In this case, RAM write is performed in synchronization with the falling edge of VSYNC. When the data for one frame are written to RAM completely, there must be more than 2 raster-rows of margin before the raster-row starts to drive for the next frame. By writing data to RAM on the falling edge of VSYNC at the speed of 3.14 MHz or more, the data for the whole screen on RAM are overwritten before the display operation starts. Accordingly, the flicker due to updating moving picture data can be avoided while displaying a moving picture. Rev.0.22, May.23.2003, page 86 of 159 HD66787 Preliminary VSYNC Display (240 raster-rows) Display operation The number of driven raster-rows Back porch (14 raster-rows) Display operation Front porch (2 raster-rows) R-C oscillation 10% RAM write at 10MHz 44240 times Raster-row 240 RAM write RAM write at 3.15 MHz Display operation [ms] 0 4.22 13.41 16.74 13.55 Blanking period 60Hz Back-porch 14H VSYNC Operation through VSYNC interface Notes to the VSYNC interface 1. The aforementioned example of calculation is just a result of calculation. In the actual settings, causes for the fluctuations such as internal clocks should be taken into consideration. It is necessary to make a setting for RAM write speed with enough margins. 2. The aforementioned example of calculation is the value in case of writing over the entire screen. Limiting the area for the moving picture display will create more margins for the RAM write speed. R-C oscillation 10% Raster-row 240 220 VSYNC The number of driven raster-rows Back porch (14 raster-rows) (20 raster-rows) Moving picture area (200 raster-rows) Display operation RAM write at 3.15 MHz Display operation 20 0 (20 raster-rows) Front porch (2 raster-rows) 4.22 [ms] 11.17 13.52 16.74 13.55 Back-porch 14H 60Hz VSYNC Limiting moving picture display area 3. A front porch period continues after the completion of 1 frame display and until the next input of VSYNC. 4. The transition between the internal clock operation mode (DM1-0 = 00) and the VSYNC interface mode becomes effective after displaying one frame made during instruction setting. 5. In the VSYNC interface mode, the partial display, vertical scroll, and interlaced drive functions are not available. 6. In the VSYNC interface mode, set AM to 0 to transmit display data in the aforementioned method. 7. In the VSYNC interface mode, write display data to RAM in the high speed write mode (HWM = 1) Rev.0.22, May.23.2003, page 87 of 159 HD66787 Preliminary Internal Clock Operation to VSYNC Interface VSYNC interface operation Internal clock operation HWM = 1, AM = 0 Address Setting VSYNC interface mode setting (DM1-0 = 0, RM = 0) VSYNC Interface to Internal Clock Operation Display operation in synchronization with the internal clock The values set in DM1-0 and RM become valid after completion of 1-frame display. Internal clock mode setting (DM1-0 = 0, RM = 0) Display operation in synchronization with VSYNC The values set in DM1-0 and RM become valid after completion of 1-frame display. Wait more than 1 frame Internal clock operation Display operation in synchronization with the internal clock Index register set (R22h) Note: When switching into the internal clock mode,the VSYNC signal must be kept continuously supplied for more than 1 frame after it is switched into the internal clock mode. Wait more than 1 frame VSYNC interface Write data to RAM VSYNC interface operation Displa y operation in synchronization with VSYNC Internal clock mode setting (DM1-0 =00, RM = 0) Wait more than 1 frame Internal clock operation Note: When t he interface mode is switched, VSYNC should be input before setting of DM1-0 and RM. Transition flow between VSYNC and internal clock operation modes Rev.0.22, May.23.2003, page 88 of 159 HD66787 Preliminary External Display Interface The following interfaces are available as the external display interface (RGB interface). The interface is selected by setting RIM1-0 bits. RAM is accessible through the RGB interface. RIM bits setting and RGB interface RIM1 RIM0 RGB Interface PD Pin 0 0 18-bit RGB interface PD17-0 0 1 16-bit RGB interface PD17-13, 11-1 1 0 6-bit RGB interface PD17-12 1 1 Setting disabled Note 1) The use of multiple interfaces simultaneously is not possible. RGB interface Through the RGB-I/F, the display operation is performed in synchronization with VSYNC, HSYNC, and DOTCLK. The RGB interface enables data transmission with low power consumption by overwriting the area that needs update in high-speed write mode in combination with the window address function. The front and back porches must be set before and after the display period. VSYNC Back porch period (BP3-0) Display area for RAM data Display area for moving pictures Display period (NL4-0) Front porch period (FP3-0) HSYNC Note 1) The front porch period continues until the next input of VSYNC signal. DOTCLK Note 2) The DOTCLK signal must be supplied consecutively. ENABLE VLD PD17-0 VSYNC: Frame synchronization signal HSYNC: Raster-row synchronization signal DOTCLK: Dot clock ENABLE: Data enable signal VLD: Data valid signal PD17-0: Display data for RGB (6:6:6) Back porch period (BPP):14H>=BP3-0>=2H Front porch period (FPP):14H>=FP3-0>=2H FPP + BPP =<16H Display operation period: NL4-0 =< 240H The number of raster-rows of 1 frame: FPP + DP + BPP Note 3) In RGB interface mode, VSYNC, HSYNC, and DOTCLK more than to achieve the LCD resolution must be supplied. RGB interface Rev.0.22, May.23.2003, page 89 of 159 HD66787 Preliminary VLD and ENABLE signals The relationship with the VLD and ENABLE signals is as follows. With the ENABLE signal, the addresses are not updated during data write, while with the VLD signal, the addresses are updated during data write when the ENABLE is “Low”. The polarity of the ENABLE signal is inverted by the setting of EPL bit. EPL ENABLE VLD RAM Write RAM Address 0 0 0 Valid Updated 0 0 1 Invalid Updated 0 1 * Invalid Unchanged 1 0 * Invalid Unchanged 1 1 0 Valid Updated 1 1 1 Invalid Updated RGB interface timing The timing chart of 16/18-bit RGB interfaces is as follows. 1 frame Back porch period Front porch period VSYNC HSYNC DOTCLK C ENABLE VLD PD17-0 >=1H VSYNC 1H HLW >= 1CLK HSYNC 1 clock DOTCLK DTST >=HLW ENABLE VL D PD17-0 Valid data VLW: the period in which VSYNC is low level HLW: the period in which HSYNC is low level DTST: the set up time for data transmission Note: Data to be displayed must be written in the high-speed write mode (HWM = 1) in RGB I/F mode. 16-/18-bit RGB Interface Timing Rev.0.22, May.23.2003, page 90 of 159 HD66787 Preliminary The timing chart of 6-bit RGB interface is as follows. 1 frame Back porch period Front porch period VSYNC HSYNC DOTCLK ENABLE VLD PD17-0 >= 1H VSYNC 1H HLW>=3CLK HSYNC 1 clock DOTCLK DTST >= HLW ENABLE VLD RGB RGB RGB RGB RGB PD17-0 Valid data VLW: the period in which VSYNC is low level HLW: the period in which HSYNC is low level DTST: the set up time for data transmission Note 1) In 6-bit interface.mode, one pixel, which consists of R,G, and B, must be transmitted in synchronization with 3 DOTCLKs. Note 2) VSYNC, HSYNC, EVABLE, DOTCLK, VLD, and PD17-2 should be all transmitted by three clocks. Note 3) Data to be displayed must be written in the high-speed write mode (HWM =1) in RGB I/F mode. 6-bit RGB Interface Timing Rev.0.22, May.23.2003, page 91 of 159 HD66787 Preliminary Moving picture display The HD66787 incorporates the RGB interface to display moving pictures and RAM to store display data, which provides the following merits in displaying moving pictures. • • • • • The window address function enables the transfer of only the data for the moving picture area. The high-speed write modes enables high-speed access to RAM with low power consumption Only transmitting the data that are written over the moving picture area. By reducing the amount of data transmission, the power consumption of the whole system is reduced. In combination with a system interface the still picture area, such as an icon, can be updated while displaying moving pictures. RAM access through system interface in RGB-I/F mode RAM is accessible through a system interface in the RGB-I/F mode. In the RGB interface mode, data are being written to RAM in synchronization with the DOTCLK input while the ENABLE is “Low”. When writing data to RAM through the system interface, it is necessary to set ENABLE to “High” to stop data write through the RGB-I/F. Setting RM = 0 allows RAM access through the system interface. When reverting to the RGB interface mode, wait a write/read bus cycle. Then, set RM = 1 and the index to R22h to start RAM access though the RGB-I/F. When the RAM writes through the RGB and system interface conflicts, it is not guaranteed that the data are properly written to RAM. The following is an example of moving picture display through the RGB-I/F and updating still picture area through the system interface. Updating screen Updating screen VSYNC ENABLE DOTCLK PD17-0 *Note 2 Index set System interface Index R22 RM=0 Updating moving picture area Setting of address Index R22 Updating of area other than moving picture area Setting of address Updating of still picture area RM=1 Index R22 * Note 1 Updating moving picture area Note 1) In the RGB interface mode, the address is set at every falling edge of VSYNC. Note 2) Set the address and the index (R22h) before RAM access starts through the RGB interface mode. Note 3) In the RGB interface mode write data in the high-speed write mode (HWM = 1). 2001/01/01 00:00 Still picture area Moving picture area Updating Still Picture Area during Displaying Moving Picture Rev.0.22, May.23.2003, page 92 of 159 HD66787 Preliminary 6-bit RGB interface The 6-bit RGB interface is selected by setting RIM1-0 bits to 10. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transmitted to RAM in synchronization with the display operation through 6-bit RGB data bus (PD17-12) according to data valid signal (VLD), and the data enable signal (ENABLE). Unused pins (PD11 to 0) must be fixed to either IOVcc or GND level. The instructions are set only through a system interface. VSYNC HSYNC DOTCLK LCDC VLD ENABLE HD66787 PD17-12 6 PD11-0 12 GND 6-bit RGB interface RAM data write 1st Transmission INPUT Write Data to GRAM PD 17 PD 16 PD 15 R5 R4 R3 R2 PD 14 2nd Transmission 3rd Transmission PD 13 PD PD 12 17 PD PD 16 15 PD 14 PD 13 PD PD PD PD PD PD PD 12 17 16 15 14 13 12 R1 R0 G4 G2 G1 G0 G5 G3 One Pixel B5 B4 B3 B2 B1 B0 262,144 colors are available in 6-bit system interface. Data format for 6-bit interface Data transmission synchronization in 6-bit RGB interface mode The HD66787 incorporates a transmission counter to count the first, second, third data transmissions in the 6-bit RBG interface mode. The transmission counter is reset to the first transmission on the falling edge of VSYNC. When a discrepancy occurs in the transmission of first, second and third data, the counter is reset to the first data transmission at the start of each frame (on the falling edge of VSYNC) and the data transmission restarts in the correct order from the next frame. In case of displaying moving pictures, which requires consecutive data transfer, this function minimizes the effect from the discrepancy in the data transmission and makes it easy to return to the normal display. The internal display operation is executed by pixel. Note that each DOTCLK input must correspond to a pixel. Otherwise data transmission discrepancies will occur and affect the displays of the current and ensuing frames. Rev.0.22, May.23.2003, page 93 of 159 HD66787 Preliminary VSYNC ENABLE DOTCLK PD17-0 2nd Transmission 2nd 3rd 1st 2nd 3rd 1st Trans- Trans- Trans- Trans- Trans- Transmission mission mission mission mission mission Transfer synchronization 6-bit data transmission synchronization 16-bit RGB interface The 16-bit RGB interface is selected by setting RIM1-0 bits to 01. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transmitted to RAM in synchronization with the display operation through 16-bit RGB data bus (PD17-13, 11-1) according to the data valid signal (VLD), and the data enable signal (ENABLE). The instructions are set only through system interface. VSYNC HSYNC DOTCLK C LCDC HD66787 VLD ENABLE PD17-13,11- 1 16 PD12,0 2 GND 16-bit RGB interface RAM data Write Input Write data to GRAM PD PD PD PD PD 17 16 15 14 13 R5 R4 R3 R2 R1 R0 PD PD PD PD PD 11 10 9 8 7 PD PD PD PD PD PD 6 5 4 3 2 1 G5 G0 G4 G3 G2 G1 One pixel Data format for 16-bit interface Rev.0.22, May.23.2003, page 94 of 159 B5 B4 B3 B2 B1 B0 HD66787 Preliminary 18-bit RGB interface The 18-bit RGB interface is selected by setting RIM1-0 bits to 00. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transmitted to RAM in synchronization with the display operation through 18-bit RGB data bus (PD17-0) according to the data valid signal (VLD), and the data enable signal (ENABLE). The instructions are set only through a system interface. VSYNC HSYNC DOTCLK LCDC HD66787 VLD ENABLE PD17-0 18 18-bit RGB interface RAM data Write Input Write data to GRAM PD PD PD PD PD PD 17 16 15 14 13 12 PD PD PD PD PD 11 10 9 8 7 PD PD PD PD PD PD 6 5 4 3 2 1 PD 0 R5 G5 G0 B0 R4 R3 R2 R1 R0 G4 G3 G2 One pixel G1 B5 B3 B2 B1 262,144 colors available in 18-bit RGB interface. Data format for 18-bit interface Rev.0.22, May.23.2003, page 95 of 159 B4 HD66787 Preliminary Notes to the external display interface 1. While an external display interface is selected, the following functions are not available. Function External Display Interface Internal Display Operation Partial display Not available Available Scroll function Not available Available Graphics operation function Not available Available 2. The VSYNC, HSYNC, and DOTCLK signals must be supplied consecutively during display operation through the RGB-I/F. 3. When setting NO1-0, SDT1-0, and EQ1-0 bits in the RGB-I/F mode, the reference clock is the DOTCLK, not the internal operation clock. 4. In the 6-bit RGB-I/F mode, RGB (pixels) data are transmitted by three clocks. The data transmission, therefore, should be made by RGB. 5. In the 6-bit RGB-I/F mode, the interface signals, VSYNC, HSYNC, DOTCL, ENABLE, VLD, and PD17-0, should be set in RGB (pixels) in convenience for transmitting RGB pixels. 6. The transitions between the internal operation mode and external display interface should be made according to the mode switching sequence below. 7. In the RGB-I/F mode, the front porch period continues after displaying one frame data until the next VSYNC signal input. 8. In the RGB-I/F mode, the data must be written in the high-speed write mode (HWM = 1). 9. In the RGB-I/F mode, the address is set every frame on the falling edge of VSYNC. Rev.0.22, May.23.2003, page 96 of 159 HD66787 Preliminary Internal Clock Operation to RGB I/F (1) RGB I/F (1) to Internal Clock Operation RGB I/F operation Internal clock operation HWM = 1, AM = 0 Address Setting RGB I/F Setting (DM1-0=01, RM=1) Index resister setting (R22h) Display operation in synchronization with the internal clock The value set in DM1-0 and RM become valid after the completion of 1-frame display. The value set in DM1-0 and RM bits become valid after the completion of 1-frame display. Wait more than 1 frame Internal clock operation Display operation in synchronization with the internal clock Note: When switching into the internal clock mode from RGB I/F, keep RGB I/F signals (VSYNC, HSYNC, DOTCLK, ENABLE) input for more than 1 frame after the mode has been switched. Wait more than 1 frame RGB I/F Writing RAM Data Internal clock mode setting (DM1-0 = 00, RM=0) Display operation in synchronization with the RGB signals ( VSYNC , HSYNC, DOTCLK) Display operation in synchronization with the RGB signal RGB interface operation Note: When switching into the RGB interface mode, the RGB interface signals, VSYNC, HSYNC, DOTCLK, and ENABLE, must be input before the setting of DM1-0 and RM bits. Transition between the Internal Clock Operation Mode and RGB Interface Mode From RGB I/F (1) to RGB I/F (2) From RGB I/F (2) to RGB I/F (1) RGB I/F Operation RGB I/F mode setting (DM1-0=01, RM=0) System I/F Writing RAM Data HWM=1/0 HWM=1, AM=0 Address Setting Address Setting Index resister setting (R22h) RGB I/F mode (DM1-0=01, RM=1) System I/F Writing RAM Data Index resister setting (R22h) RGB I/F Operation RAM data write sequence through system interface in RGB-I/F mode Rev.0.22, May.23.2003, page 97 of 159 HD66787 Preliminary Timing Interfacing with Liquid Crystal Panel Signals The relationship between RGB I/F signals and the liquid crystal panel signals in the RGB I/F mode is as follows (TG0 = “0”). 1 frame Back porch period (BP) Front porch period (BP) Back porch period (BP) >=1H VSYNC 1H HSYNC DOTCLK ENABLE VLD PD17-0 1 2 3 4 5 236 237 238 239 240 1 Note 1) 5DOTCLK Note 1) 5DOTCLK 1H FLM CLW2-0 CL1 SHW1-0 STG2-0 SFTCLK DISPTMG NO1-0 G1 G2 G240 S1-528 SDT1-0 1 2 3 4 5 236 237 238 239 240 EQ1-0 EQ M (VCOM) Note 1) 15 clocks in case of 6-bit RGB I/F mode. Note 2) FLM, CL1, SFTCLK, DISPTMG, and M can be output after level-shifted. EQ is an internal signal. Relationship between RGB I/F signal and the liquid crystal panel signal (TG0 = “0”) Rev.0.22, May.23.2003, page 98 of 159 HD66787 Preliminary The timing interfacing with the liquid crystal panel signals in the internal clock operation mode is as follows (TG0 = “0”). 1-frame Front porch period (FP) +Back porch period(BP) =8H 1H FLM CLW2-0 CL1 SHW1-0 STG2-0 SFTCLK DISPTMG NO1-0 G1 G2 G240 S1-528 SDT1-0 1 2 3 4 5 236 237 238 239 240 1 EQ1-0 EQ M (VCOM) Note 1) 15 clocks in case of 6-bit RGB I/F mode. Note 2) FLM, CL1, SFTCLK, DISPTMG, and M can be output after level-shifted. EQ is an internal signal. Interfacing with the liquid crystal panel signals in the internal clock operation mode (TG0 = “0”) Rev.0.22, May.23.2003, page 99 of 159 HD66787 Preliminary The timing interfacing with the liquid crystal panel signals in RGB interface mode is as follows (TG0 = “1”). 1 Frame Front Porch (FP) Back Porch (BP) Back Porch (BP) 1H or more VSYNC 1H HSYNC DOTCLK ENABLE VLD PD17-0 1 5 DOTCLKs Note 1) 2 3 4 236 237 238 239 240 5 1 5 DOTCLKs Note 1) 1H FLM(TG0=1) FLM(TG0=0) STG2-0 CLW 2-0 CL1(TG0=1) CL1(TG0=0) STG2-0 SFTCLK (TG0=1) SFTCLK (TG0=0) DISPTMG NO1-0 (G1) (G2) (G240) SDT1-0 S1-528 1 2 3 4 5 236 237 238 239 240 EQ1-0 EQ M(VCOM) Note 1) 15 DOTCLKs in 6-bit RGB I/F mode. Note 2) FLM,CL1, SFTCLK, DISPTMG and M are output after level-shifted. EQ is an internal signal. Interfacing with the liquid crystal panel signals in RGB interface mode (TG0 = “1”) Rev.0.22, May.23.2003, page 100 of 159 HD66787 Preliminary The timing interfacing with the liquid crystal panel signals in the internal clock operation mode is as follows (TG0 = “1”). 1 Frame Front porch (FP) + Back porch (BP) = 8H 1H FLM (TG0 = 1) FLM (TG0 = 0) CL1 (TG0 = 1) CL1 (TG0 = 0) STG2-0 CLW2-0 STG2-0 SFTCLK (TG0 = 1) SHW1-0 STG2-0 SFTCLK (TG0 = 0) (TG0 = 0) DISPTMG NO1-0 (G1) (G2) (G240) SDT1-0 S1-528 1 2 3 4 5 236 237 238 239 240 1 EQ1-0 EQ M(VCOM) Note 1) 15 clocks in case of 6-bit RGB I/F mode. Note 2) FLM, CL1, SFTCLK, DISPTMG, and M can be output after level-shifted. EQ is an internal signal. Interfacing with the liquid crystal panel signals in the internal clock operation mode (TG0 = “1”) Rev.0.22, May.23.2003, page 101 of 159 HD66787 Preliminary Register settings CL1 signal: “Low” width CLW 2 CLW 1 CLW 0 CL1 signal : pulse width during “Low” internal operation RGB interface operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 0 0 1 clock 8 clocks 0 0 1 2 clocks 16 clocks 0 1 0 3 clocks 24 clocks 0 1 1 4 clocks 32 clocks 1 0 0 5 clocks 40 clocks 1 0 1 6 clocks 48 clocks 1 1 0 7 clocks 56 clocks 1 1 1 8 clocks 64 clocks Note 1) The number of clocks is counted from the falling edge of CL1 signal. EQ signal: “High” width EQ 1 EQ 0 EQ signal : pulse width during “High” internal operation RGB interface operation (synchronized with the internal operating clock) (synchronized with DOTCLK) No equalize 0 0 No equalize 0 1 1 clock 8 clocks 1 0 2 clocks 16 clocks 1 1 3 clocks 24 clocks Source output delay STD 1 STD 0 Source output delay internal operation RGB interface operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 0 1 clock 8 clocks 0 1 2 clocks 16 clocks 1 0 3 clocks 24 clocks 1 1 4 clocks 32 clocks Note 1) The amount of source output delay is measured from the falling edge of CL1 signal. Rev.0.22, May.23.2003, page 102 of 159 HD66787 Preliminary Gate output non-overlap STD 1 STD 0 Gate output non-overlap internal operation RGB interface operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 0 0 clock 0 clocks 0 1 4 clocks 32 clocks 1 0 6 clocks 48 clocks 1 1 8 clocks 64 clocks Note 1) The amount of gate output non-overlap is measured from the falling edge of CL1 signal. SFTCLK signal: pulse output position STG 2 STG 1 STG 0 SFTCLK signal : pulse output position internal operation RGB interface operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 0 0 0 clock 0 clock 0 0 1 1 clock 8 clocks 0 1 0 2 clocks 16 clocks 0 1 1 3 clocks 24 clocks 1 0 0 4 clocks 32 clocks 1 0 1 5 clocks 40 clocks 1 1 0 6 clocks 48 clocks 1 1 1 7 clocks 56 clocks Note 1) The number of clocks is counted from the falling edge of the CLT signal. SFTCLK signal: purse width during “High” SHW 1 SHW 0 SFTCLK signal : purse width during “High” internal operation RGB interface operation (synchronized with the internal operating clock) (synchronized with DOTCLK) 0 0 1 clock 8 clocks 0 1 2 clocks 16 clocks 1 0 3 clocks 24 clocks 1 1 4 clocks 32 clocks Rev.0.22, May.23.2003, page 103 of 159 HD66787 Preliminary Low-temperature poli-Si TFT Panel Control HD66787 outputs timing signals (FLM, CL1, SFTCLK) for controlling low-temperature poli-Si TFT (LTPS-TFT) panels with incorporated gates. By level-shifting the voltage of FLM, CL1, SFTCLK, and DISPTMG, the LTPS-TFT panel with incorporated gates becomes easily controllable. ■ Source drivers (HD66787) • Output control timing signals (internal signal) FLM (Frame heading pulse) CL1 (Line cycle signal): “Low” width variable with CLW2-0 bits SFTCLK (Line cycle signal): output timing variable with STG2-0, SHW1-0 bits • Level-shift output VGH ~ VGL amplitude • ports for LTPS SOUT 11, SOUT 12, SOUT 13, SOUT 14, SOUT 21, SOUT 22, SOUT 23, SOUT 24 176 pixels x 3 VGH, VGL G1 G2 Low-temperature poli-Si (LTPS) TFT 240 Shift Register with incorporated gates SOUT11 SOUT12 SOUT13 SOUT14 S1 S2 S527 S528 G239 G240 4 Driver circuits for incorporated gates Vcom SOUT21 SOUT22 SOUT23 SOUT24 Power supply Circuit Level shift Vcom HD66787 Level Shift DCDC 18 RESET 4 DB17-0 3 18 4 Vcc GND Vci1 Vci IM2,IM1, VLD PD17-0 IMO/ID CS*, WR* RD*, RS VSYNC HSYNC DOTCLK ENABLE System configuration Rev.0.22, May.23.2003, page 104 of 159 HD66787 Preliminary ■ Output timing (HD66787) HD66787 outputs timing signals (FLM, CL1, SFTCLK) for controlling low-temperature poli-Si TFT (LTPS-TFT) panels with incorporated gates. The output timing of CL1 can be adjusted by instructions for controlling LTPS-TFT interface. Set an optimum timing for the configuration of gate circuits incorporated in the LTPS-TFT panel in use. FLM CL1 SFTCLK Source Output 2nd Line 1st Line 3rd Line 4th Line 5th Line Example 1) Gate selection signal G1 G2 G3 Example 2) Non-overlap gate selection signal G1 G2 G3 Example of connecting timing signals for LTPS CL1 FLM LS LS Incorporated gate circuit HD66787 LTPS-TFT LS : Voltage level-shift circuit LTPS-TFT control Note 1) Some gate circuit configuration incorporated in the LTPS-TFT may not allow the use of certain functions with HD66787. Rev.0.22, May.23.2003, page 105 of 159 HD66787 Preliminary High-Speed Burst RAM Write Function The HD66787 incorporates high-speed burst RAM-write function, which writes data to RAM in one-fourth the access time required for a standard RAM-write operation. This function is especially useful for applications which require the high-speed rewrite of the display data such as display of colored moving picture and so on. In the high-speed RAM write mode (HWM), data to write to RAM is temporarily stored to the internal register of HD66787. The data storage in the register is executed by word. When the data storage operation is executed 4 times, all data stored in the register are written to RAM at once. While the data is being written from the register to RAM, another set of data is being written to the register. This function enables high-speed and consecutive RAM write, which are required in displaying moving pictures and so on. Microcomputer 18 Address counter (AC) Register 1 Register 2 Register 3 Register 4 72 16 “0001H” “0000H” “0002H” “0003H” GRAM Operational flow of High-Speed Burst RAM Write CS* (input) 1 2 3 4 1 2 3 4 1 2 3 4 RAM data 2 RAM data 3 RAM data 4 RAM data 5 RAM data 6 RAM data 7 RAM data 8 RAM data 9 RAM data 10 RAM data 11 RAM data 12 E (input) DB15-0 (input/output) RAM Index RAM data data 1 (R22) 1 RAM write execution time RAM write data (72 bits) RAM address (AC15 to 0) RAM data 1 to 4 “0000”H RAM write execution time RAM data 5 to 8 “0004”H Index (R22) RAM write execution time RAM data 9 to 12 “0008”H “000A”H The lower two bits of the address must be set as follows in the high-speed write mode. When ID0 = 0, set the lower two bits of the address to 11. When ID1 = 1, set the lower two bits of the address to 00. Note : When terminating the high-speed RAM write, wait for the time required for the RAM write execution (bus cycle line (tCYC) in the normal write mode) before executing the next instruction. High-Speed Consecutive Write to RAM Rev.0.22, May.23.2003, page 106 of 159 HD66787 Preliminary CS* (input) 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 E (input) DB15-0 (input/output) Index (R22) RAM data 1 Upper RAM data 1 lower RAM data 2 Upper RAM data 2 lower RAM data 3 Upper RAM data 3 lower RAM data 4 Upper RAM data 4 lower RAM data 1 Upper RAM data 1 lower RAM data 2 Upper RAM data 2 lower RAM data 3 Upper RAM address (AC15 to 0) RAM data 1 to 4 “0000”H RAM data 4 Upper RAM data 4 lower RAM write execution time *Note RAM write execution time RAM write data (64 its) RAM data 3 lower RAM data 5 to 8 “0004”H “The lower two bits of the address must be set as follows in high-speed write mode. When ID0 = 0, set the lower two bits of the address to 11. When ID1 = 1, set the lower two bits of the address to 00. Note : In the high-speed mode (HWM), data are written to the RAM every 4 words. This means in the 8-bit interface mode, data are written to the RAM for every eight write operation. Operation of High-Speed Consecutive Writing to RAM (8-Bit Interface) Notes to the high-speed RAM write mode 1. The logical/compare operations are not available. 2. The RAM write operation is executed every four words. Set the lower 2 bits of the addresses as follows when setting addresses. *When ID0=0, the lower two bits in the address must be set to 11 before RAM write. *When ID0=1, the lower two bits in the address must be set to 00 before RAM write. 3. The RAM write operation is executed every four words. If RAM write operation is terminated before all four-word data is written to RAM, the last data will not be written to RAM. 4. When the index register is set to R22H (RAM data write), the first RAM write operation is always executed. In this case, RAM data read is not operable simultaneously. During RAM read, set the HWM to 0. 5. The high-speed RAM write mode is not compatible with the normal RAM write mode. When the mode must be switched to the other, make a new address set before starting RAM write. 6. When writing data in high speed RAM write mode within the range specified with the window address, some window-address range may require dummy write operation. See “High-Speed RAM Write with Window Address Function”. Rev.0.22, May.23.2003, page 107 of 159 HD66787 Preliminary Comparison of Normal and High-Speed RAM Write Operations Normal RAM Write (HWM=0) High-Speed RAM Write (HWM=1) Logical operation function Available Not available Compare operation function Available Not available BGR function Available Available Write mask function Available Available RAM address set Specified by one word ID0 bit=0: Set the lower two bits to 11 ID0 bit=1: Set the lower two bits to 00 RAM read Read by one word Not available RAM write Write by one word Dummy write operations may be required depending on the specified window-address range Window address Set by one word Horizontal range(HSA/HSE): more than four words Number of horizontal writing : 4N (N>=2) External display interface Available Available AM Setting AM = 1/0 AM = 0 High-Speed RAM Write with Window Address Function To rewrite the data in an arbitrary rectangular area of RAM consecutively in high speed, the number of RAM access should be made 4 multiple times. Accordingly some window-address range may require dummy write operation to make the RAM access 4 multiple times. The number of dummy write is set when setting the window address as follows. The horizontal window-address range specifying bits (HSA1-0, HEA1-0) specify the number of dummy write operations executed at the start and end of the data to write to RAM. The total RAM access must be 4 multiple times per line. Number of Dummy Write Operations in High-Speed RAM Write (HSA Bits) HSA1 HSA0 Number of Dummy Write Operations inserted 0 0 0 0 1 1 1 0 2 1 1 3 Rev.0.22, May.23.2003, page 108 of 159 HD66787 Preliminary Number of Dummy Write Operations in High-Speed RAM Write (HEA Bits) HEA1 HEA0 Number of Dummy Write Operations Inserted 0 0 3 0 1 2 1 0 1 1 1 0 The number of RAM access when writing data in the horizontal direction must be made 4 × N times by including the dummy writes. Horizontal RAM write = start dummy write + write data + end dummy write = 4 × N (times) An example of RAM write in high speed RAM write mode with the window address is as follows. The RAM data in the specified window-address range is written over consecutively in high speed by inserting two dummy writes at the start of the line and three dummy writes at the end of the line. The number of dummy writes is specified with the window-address range specifying bits. In this case, set HSA1-0 to 10, HEA1-0 to 00. Writing data in the horizontal direction AM = 0, ID0 = 1 h0000 GRAM address map h0812 Window address range setting HSA = h12, HEA = h30 VSA = h08, VEA = hA0 High-speed RAM write mode setting HWM = 1 Specified window address range (rewrite area) Address set AD = h0810 *Note hA030 hEFAF Dummy RAM write X 2 RAM write X 31 Window address range setting HAS = h12, HEA = h30 VSA = h08, VEA = hA0 X 153 Dummy RAM write X 3 Note: In the high-speed RAM write mode, the address set must be either 00 or 11 in ID0 bit setting. Only the RAM address range specified by window addresses will be overwritten. High-Speed RAM Write with Window Address Function Rev.0.22, May.23.2003, page 109 of 159 HD66787 Preliminary Window Address Function The window address function enables consecutive data write within the rectangular window-address area on the on-chip GRAM, which is specified with horizontal address registers (start: HSA7-0, end: HEA 7-0) and vertical address registers (start: VSA7-0, end: VEA7-0). The address transition direction is determined with AM bits (either increment or decrement). Accordingly, the data, including picture data, are written consecutively without taking the data wrap position into consideration. The window-address range must be specified within the GRAM address area. An address set must be set within the window-address range. [Condition on setting window-address range] (Horizontal direction) 00H ≤ HSA7-0 ≤ HSA7-0 ≤ AFH (Vertical direction) 00H ≤ VSA7-0 ≤ VEA7-0 ≤ EFH [Condition on making an address set within the window-address range] (RAM address) HSA7-0 ≤ AD7-0 ≤ HEA7-0 VSA7-0 ≤ AD15-8 ≤ VEA7-0 Note: In high-speed RAM write mode, the lower two bits of the address must be set as follows. ID0=0: The lower two bits of the address must be set to 11. ID0=1: The lower two bits of the address must be set to 00. GRAM address map “00AF”H “0000”H Window address area “2010”H “202F”H “2110”H “212F”H “5F10”H “5F2F”H “EF00”H “EFAF”H Window address range specification area HSA7-0 = “10”H, HSE7-0 = “2F”H I/D = 1 (increment) VSA7-0 = “20”H, VEA7-0 = “5F”H AM = 0 (horizontal writing) Address transition direction in specified window-address range Rev.0.22, May.23.2003, page 110 of 159 HD66787 Preliminary Graphics Operation Function The HD66787 greatly reduces the load on the graphics-processing software in the microcomputer with the 18-bit bus architecture and the graphics bit operation. The graphics bit operation includes: 1. The write data mask function that selectively rewrites some bits of 18-bit write data. 2. The conditional rewrite function that compares the write data and the compare bit data and writes the data sent from the microcomputer only when the conditions are satisfied. The graphics bit operation is controlled by setting bits in the entry mode register and RAM-write-data mask register, and the write operation from the microcomputer. Graphics Operation Bit Setting Operation Mode I/D AM LG2–0 Operation and Usage Write mode 1 0/1 0 000 Horizontal data replacement Write mode 2 0/1 1 000 Vertical data replacement Write mode 3 0/1 0 110 111 Conditional horizontal data replacement Write mode 4 0/1 1 110 111 Conditional vertical data replacement Microcomputer 18 Write data latch 18 +1/-1 +256 3 Address counter (AC) Logical/Compare operation (LG2-0) 000: replacement 110: replacement with matched write 111: replacement with unmatched write Logical operation bit (LG2-0) 18 Compare bit (CP17-0) 18 18 Write bit mask 16 Graphics RAM (GRAM) Graphics operation flow Rev.0.22, May.23.2003, page 111 of 159 Write-mask register (WM17-0) HD66787 Preliminary Write-data Mask Function The HD66787 expands the 16-bit data sent from the microcomputer into the 18-bit data. In the18-bit interface mode, data are not expanded. The write data mask function of the HD66787 controls the write operation of the 18-bit data from the microcomputer to GRAM by bit. The write data mask function write data in the bits whose corresponding bits in the write data mask resister (WM17–0) are assigned with “0” and does not write data in the bits whose corresponding bits in the write data mask register (WM17–0) are assigned with “1”, and the corresponding data in GRAM are not overwritten but retained. This function is useful when only one-pixel data are rewritten or a particular color in the display is selectively changed. DB0 DB17 Data from the microcomputer R05 R04 R03 R02 R01 R00 G05 G04 G03 G02 G02 G01 G00 B05 B04 B03 B02 B01 B00 WM17 Write data mask 1 WM0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 17 GRAM data 0 0 0 * * * * * * G05 G04 G03 G02 G02 G01 G00 * * * * B01 B00 Note : Data are expanded into 18 bits in the 8/16-bit system interface and the 16 RGB interface modes. Write data mask function Graphics Operation Processing Examples 1. Write mode 1: AM = 0, LG2–0 = 000 This mode is used when data are horizontally written in high speed mode. It is also used to initialize the graphics RAM (GRAM) or to draw a line horizontally. The write-data mask function (WM17–0) is also available in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and jumps to the counter at the opposing edge of the next one-raster-row below after when the counter reaches either left or right edge of GRAM. Operation example 1) I/D = "1", AM = "0", LG2-0 = "000" 2) WM17-0 = "00FFF"H 3) AC = "0000"H WM17 Write-data mask: WM0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 DB17 Write-data (1) 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 Write-data (2) 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 “0000”H *Write-mask <G>, <B> planes. DB0 Data are expanded into 18 bits in 8/16-bit system interface, and 16-bit RGB interface modes. “ 0002”H “ 0001” H 100111 * * * * * * * * * * * * 110001 * * * * * * * * * * * * Write data (1) Write data (2) GRAM Write Mode 1 Rev.0.22, May.23.2003, page 112 of 159 Note : The bits in the GRAM with “"*" are not overwritten. HD66787 2. Preliminary Write mode 2: AM = 1, LG2–0 = 000 This mode is used when data are vertically written in high speed mode. It is also used to initialize the graphics RAM (GRAM), develop font patterns or to draw a line vertically. The write-data mask function (WM17–0) is also available in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the counter either at the top of the next right row (ID = 1) or at the top of the next left row (I/D = 0) according to the setting in the I/D bit, when the address reaches the bottom of GRAM. Operation example 1) I/D = "1", AM = "1", LG2-0 = "000" 2) WM17-0 = "00FFF"H 3) AC = "0000"H WM17 Write-data mask: WM0 000000111111111111 DB17 DB0 Write-data (1): 100111111100101000 Write-data (2): 110001000001100000 Write-data (3): 011110100010000011 Data are expanded into 18 bits in 8/16-bit system interface, and 16-bit RGB interface modes. “0000”H 100111 * * * * * * * * * * * * Write-data (1) “0001”H 110001 * * * * * * * * * * * * Write-data (2) “0002”H 011110 * * * * * * * * * * * * Write-data (3) GRAM Note 1) The bits in the GRAM with “*”are not overwritten. Note 2) After writing data to the address "EF00"H, the address counter jumps to "0001"H. Write Mode 2 Rev.0.22, May.23.2003, page 113 of 159 HD66787 Preliminary 3. Write mode 3: AM = 0, LG2–0 = 110/111 This mode is used when data are horizontally written with comparing the write data and the value set in the compare register (CP17–0) by R, G, B pixel. When the result of the comparison satisfies a condition, the write data sent from the microcomputer are written to GRAM. In this operation, the write-data mask function (WM17–0) is available. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and jumps to the counter at the opposing edge of the next oneraster-row below after when the counter reaches either left or right edge of GRAM. Operation example 1) I/D = "1", AM = "0", LG2-0 = "110" (matched writing) 2)CP17-0 = "050C0"H 3)WM17-0 = "00000"H 4) AC = "0000"H WM0 WM17 Write-data mask: 000000000000000000 Compare register: 000101000011000000 CP0 CP17 DB17 Write-data (1): (Matched) Compare operation DB0 Conditional replacement 000101000011000000 C R Write-data (2): 000000111111000000 000101000011000000 Replacement Compare operation Conditional replacement C R **** ******* ******* Data are expanded into 18 bits in 8/16-bit system interface, and 16-bit RGB interface modes. "0000"H "0001"H 000101000011000000 * * * * * * * * * * * * * * * * * * write data (1) matched replacement GRAM Write Mode 3 Rev.0.22, May.23.2003, page 114 of 159 HD66787 Preliminary 4. Write mode 4: AM = 1, LG2–0 = 110/111 This mode is used when data are horizontally written with comparing the write data and the value set in the compare register (CP17–0) by R, G, B pixel. When the result of the comparison satisfies a condition, the write data sent from the microcomputer are written to GRAM. In this operation, the write-data mask function (WM17–0) is available. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the counter either at the top of the next right row (ID = 1) or at the top of the next left row (I/D = 0) according to the setting in the I/D bit, when the address reaches the bottom of GRAM. Operation example 1) I/D = "1", AM = "1", LG2-0 = "111" (unmatched writing) 2)CP17-0 = "0A0C0"H 3)WM17-0 = "00000"H 4) AC = "0000"H WM0 WM17 Write-data mask: 000000000000000000 Compare register: 001010000011000000 CP0 CP17 DB17 Write-data (1): ( Unmatched) DB0 Conditional replacement 100111001100111111 C (Matched) Write-data (2): Compare operation R 001010000011000000 100111001100111111 Replacement Compare operation Conditional replacement C R **** ******* ******* Data are expanded into 18 bits in 8/16-bit system interface, and 16-bit RGB interface modes. "0100"H "0000"H "0000"H 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 Write-data (1) "0100"H ****************** Write-data (2) GRAM "EF00"H Note 1) The bits in the GRAM with “*”are not overwritten. Note 2) After writing data to the address "EF00"H, the address counter jumps to "0001"H. Write Mode 4 Rev.0.22, May.23.2003, page 115 of 159 HD66787 Preliminary γ-Correction Function The HD66787 incorporates γ-correction function to simultaneously display 262,144 colors, by which 8level grayscale is determined by the gradient-adjustment and fine-adjustment registers. Select either positive or negative polarity of the registers according to the characteristics of a liquid crystal panel. Graphics RAM(GRAM) MSB Display data R5 R4 R3 R2 R1 R0 G 5 G4 G3 G2 G1 LSB G0 B5 B4 B3 B2 B1 PKP 02 PKP 01 PKP 00 PKP 12 PKP 11 PKP 10 Positive Polarity Register PKP 22 PKP 21 PKP 20 PKP 32 PKP 31 PKP 30 PKP 42 PKP 41 PKP 40 PKP 52 PKP 51 PKP 50 PRP 02 PRP 01 PRP 00 V0 VRP 03 VRP 02 VRP 01 VRP00 VRP 14 VRP 13 VRP 12 VRP 11 VRP10 PKN 02 PKN 01 PKN 00 PKN 12 PKN 11 PKN 10 Negative Polarity Register 8 Grayscale Amplifier PRP 12 PRP 11 PRP 10 6 6 6 V1 32-level grayscale control <R> 32 32-level grayscale control <G> 32-level grayscale control <B> FRC control FRC control FRC control LCD driver LCD driver LCD driver V31 PKN 22 PKN 21 PKN 20 PKN 32 PKN 31 PKN 30 PKN 42 PKN 41 PKN 40 PKN 52 PKN 51 PKN 50 PRN 02 PRN 01 PRN 00 PRN 12 PRN 11 PRN 10 VRN 03 VRN 02 VRN01 VRN00 R G B LCD VRN14 VRN13 VRN12 VRN11 VRN10 Grayscale control Rev.0.22, May.23.2003, page 116 of 159 B0 HD66787 Preliminary Configuration of Grayscale Amplifier The eight levels (VIN0-7) of grayscale are determined by the gradient adjustment and fine adjustment registers. The 8 levels are then divided into 32 levels (V0-31) by the ladder resistors placed between each level. Grayscale amplifier Rev.0.22, May.23.2003, page 117 of 159 HD66787 Preliminary VDH VRP0[3:0] VRP0 0 ~30R 5R KVP0 RP3 RP4 RP5 RP6 RP7 VRHP 0 ~28R 1R 5R RP8 KVP11 KVP12 RP11 RP12 KVP13 KVP14 KVP15 KVP16 16R 1R RP19 RP20 RP21 RP22 4R PKP1[2:0] VRHN 0 ~28R VIINP 2 1R PKP2[2:0] KVP17 KVP18 KVP19 KVP20 KVP21 KVP22 KVP23 KVP24 5R 8 to 1 SE LL VIINP3 1R PKP3[2:0] RP24 RP25 KVP25 KVP26 KVP27 RP26 RP27 KVP28 KVP29 RP28 RP29 KVP30 KVP31 KVP32 RN0 RN1 RN2 KVN2 KVN3 RN3 RN4 RN5 RN6 RN7 KVN4 8 to 1 KVN5 SE LL KVN6 KVN7 16R VIINP4 1R KVN9 KVN10 KVN11 KVN12 KVN13 KVN14 KVN15 KVN16 RN8 RN9 RN10 RN11 RN12 RN13 RN14 RN17 RN18 RN19 RN20 RN21 RN22 KVN21 8 to 1 KVN22 SE LL KVN23 KVN24 VRLP 0~28R PKN3[2:0] RN23 KVN25 KVN26 KVN27 KVN28 KVN29 KVN30 KVN31 KVN32 RN26 RN27 4R 5R RP42 RP43 RP44 RP45 KVP47 KVP48 PKP5[2:0] 8 to 1 SE LL VIINP 6 VRLN 0 ~28R VRP1[4:0] 4R PKN4[2:0] KVN36 8 to 1 KVN37 SE LL KVN38 KVN39 PKN5[2:0] KVN41 KVN42 KVN43 KVN44 KVN45 KVN46 8 to 1 SE LL VINN6 KVN47 KVN48 RN46 KVN49 VRN 0~31R VRN1[4:0] RN47 Ladder Resistors and 8-to-1 Selectors Rev.0.22, May.23.2003, page 118 of 159 VINN5 KVN40 PRN1[2:0] VIINP 7 8R RP47 VINN4 KVN34 KVN35 RN39 RN40 RN41 RN42 RN43 RN44 RN45 5R RP46 VRP1 0~31R 8R VIINP 5 KVP41 KVP42 KVP49 VGS 8 to 1 SE LL KVP40 KVP43 KVP44 KVP45 KVP46 RP40 RP41 8 to 1 SE LL RN31 RN32 RN33 RN34 RN35 RN36 RN37 RN38 KVP38 KVP39 PRP1[2:0] RP39 VINN3 KVN33 KVP34 KVP35 KVP36 KVP37 VINN2 PKN2[2:0] KVP33 1R 8 to 1 SE LL KVN17 KVN18 KVN19 KVN20 RN30 5R PKN1[2:0] RN15 RN28 RN29 PKP4[2:0] VINN1 KVN8 PRN0[2:0] RN24 RN25 8 to 1 SE LL RP31 RP32 RP33 RP34 RP35 RP36 RP37 RP38 VINN0 PKN0[2:0] RN16 RP23 RP30 5R 8 to 1 SE LL RP15 RP17 RP18 VIiNP1 KVP8 RP9 RP10 RP16 1R 8 to 1 SE LL KVP6 KVP7 KVP9 KVP10 KVN0 KVN1 PRP0[2:0] RP13 RP14 5R KVP1 KVP2 KVP3 KVP4 KVP5 VRN0[3:0] VRN0 0 ~30R PKP0[2:0] RP0 RP1 RP2 4R VIiNP 0 VINN7 HD66787 Preliminary γ-Correction Register Grayscale number Glayscale voltage Glayscale voltage Glayscale voltage The γ-adjustment register is a group of registers to set an appropriate grayscale voltage for the γcharacteristics of a liquid crystal panel. The register group is categorized into the ones adjusting gradient, amplitude, and fine-tuning in relation to grayscale number and grayscale voltage characteristics. Each register can make an independent setting for the positive/negative polarity. The reference value and RGB are common to both polarities. Grayscale number Gradient adjustment Amplitude adjustment Grayscale number Fine adjustment Gradient, Amplitude, Fine Adjustments 1. Gradient adjustment registers The gradient adjustment registers are used to adjust the gradient around the middle of the grayscale number and voltage characteristics without changing a dynamic range. To adjust a gradient, the values of the variable resistors (VRHP (N)/VRLP (N)) in the ladder resistor block for grayscale voltage generation are controlled. The registers incorporate separate registers for positive and negative polarities to be compatible with asymmetric drive. 2. Amplitude adjustment registers The amplitude adjustment registers are used to adjust the amplitude of the grayscale voltage. To adjust the amplitude, the values of the variable resistors (VRP(N)1/0) in the bottom of the ladder resistor block for grayscale voltage generation are adjusted. Same with the gradient registers, the amplitude adjustment registers also incorporate separate registers for positive and negative polarities. 3. Fine adjustment registers The fine adjustment register is to fine-adjust the grayscale voltage level. To fine-adjust the grayscale voltage level, each level of 8-level reference voltages generated from the ladder registers is controlled by 8to-1 selector. Same with the other registers, the fine adjustment registers also incorporate separate registers for positive and negative polarities. Rev.0.22, May.23.2003, page 119 of 159 HD66787 Preliminary γ-Correction Registers Register Groups Positive Polarity Negative Polarity Description Gradient adjustment PRP0 2 to 0 PRN0 2 to 0 Variable resistor VRHP (N) PRP1 2 to 0 PRN1 2 to 0 Variable resistor VRLP (N) Amplitude adjustment VRP0 3 to 0 VRN0 3 to 0 Variable resistor VRP (N)0 VRP1 4 to 0 VRN1 4 to 0 Variable resistor VRP (N)1 Fine adjustment PKP0 2 to 0 PKN0 2 to 0 8-to-1 selector (voltage level of grayscale 1) PKP1 2 to 0 PKN1 2 to 0 8-to-1 selector (voltage level of grayscale 8) PKP2 2 to 0 PKN2 2 to 0 8-to-1 selector (voltage level of grayscale 20) PKP3 2 to 0 PKN3 2 to 0 8-to-1 selector (voltage level of grayscale 43) PKP4 2 to 0 PKN4 2 to 0 8-to-1 selector (voltage level of grayscale 55) PKP5 2 to 0 PKN5 2 to 0 8-to-1 selector (voltage level of grayscale 62) Ladder resistors and 8-to-1 selector Block configuration The block diagram of page 117 consists of two ladder resistors including variable resistors, and 8-to-1 selectors which select the voltage generated by the ladder resistors to output a reference voltage for the grayscale voltage. The variable resistors and the 8-to-1 selectors are controlled by the γ correction registers. Pins that are connected to a variable resistor are also provided to compensate the variation among the panels. Variable resistor There are three kinds of variable resistors for the gradient adjustment (VRHP(N)/VRLP(N)), the amplitude adjustment (1) (VRP(N)0), and the amplitude adjustment (2) (VRP(N)1). The resistance is determined by the gradient adjustment and amplitude adjustment registers as is shown below. Gradient adjustment Amplitude adjustment (1) Amplitude adjustment (2) Contents of Register PRP(N) 0/1[2:0] Resistance VRHP(N) VRLP(N) Contents of Register VRP(N)0[3:0] Resistance VRP(N)0 Contents of Register VRP(N)1[4:0] Resistance VRP(N)1 000 0R 0000 0R 00000 0R 001 4R 0001 2R 00001 1R 010 8R 011 12R 100 16R 0010 • • • • 4R • • • • 00010 • • • • 2R • • • • 101 20R 1101 26R 11101 29R 110 24R 1111 28R 11110 30R 111 28R 1111 30R 11111 31R Rev.0.22, May.23.2003, page 120 of 159 HD66787 Preliminary 8-to-1 selector The 8-to-1 selectors select a voltage level generated by the ladder resistors according to fine adjustment registers, and output six kinds of reference voltage, VIN1 to VIN 6. The relationship between the fine adjustment register and the selected voltage is as follows. Fine adjustment registers and selected voltage The value of Register Selected Voltage PKP(N)[2:0] VINP(N)1 VINP(N)2 VINP(N)3 VINP(N)4 VINP(N)5 VINP(N)6 000 KVP(N)1 KVP(N)9 KVP(N)17 KVP(N)25 KVP(N)33 KVP(N)41 001 KVP(N)2 KVP(N)10 KVP(N)18 KVP(N)26 KVP(N)34 KVP(N)42 010 KVP(N)3 KVP(N)11 KVP(N)19 KVP(N)27 KVP(N)35 KVP(N)43 011 KVP(N)4 KVP(N)12 KVP(N)20 KVP(N)28 KVP(N)36 KVP(N)44 100 KVP(N)5 KVP(N)13 KVP(N)21 KVP(N)29 KVP(N)37 KVP(N)45 101 KVP(N)6 KVP(N)14 KVP(N)22 KVP(N)30 KVP(N)38 KVP(N)46 110 KVP(N)7 KVP(N)15 KVP(N)23 KVP(N)31 KVP(N)39 KVP(N)47 111 KVP(N)8 KVP(N)16 KVP(N)24 KVP(N)32 KVP(N)40 KVP(N)48 Rev.0.22, May.23.2003, page 121 of 159 HD66787 Preliminary The grayscale levels (V0-V31) are calculated according to the following formulas. Formulas for calculating voltage (Positive polarity) (1) Pin Formula KVP0 VREG1OUT - ∆ V*VRP0/SUMRP KVP1 KVP2 KVP3 KVP4 KVP5 KVP6 KVP7 KVP8 KVP9 KVP10 KVP11 KVP12 KVP13 KVP14 KVP15 KVP16 KVP17 KVP18 KVP19 KVP20 KVP21 KVP22 KVP23 KVP24 KVP25 KVP26 KVP27 KVP28 KVP29 KVP30 KVP31 KVP32 KVP33 KVP34 KVP35 KVP36 KVP37 KVP38 KVP39 KVP40 KVP41 KVP42 KVP43 KVP44 KVP45 KVP46 KVP47 KVP48 KVP49 VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT VREG1OUT - ∆ V* VRP0+5R)/SUMRP - ∆ V* VRP0+9R)/SUMRP - ∆ V* VRP0+13R)/SUMRP - ∆ V* VRP0+17R)/SUMRP - ∆ V* VRP0+21R)/SUMRP - ∆ V* VRP0+25R)/SUMRP - ∆ V* VRP0+29R)/SUMRP - ∆ V* VRP0+33R)/SUMRP - ∆ V*(VRP0+33R+VRHP)/SUMRP - ∆ V*(VRP0+34R+VRHP)/SUMRP - ∆ V*(VRP0+35R+VRHP)/SUMRP - ∆ V*(VRP0+36R+VRHP)/SUMRP - ∆ V*(VRP0+37R+VRHP)/SUMRP - ∆ V*(VRP0+38R+VRHP)/SUMRP - ∆ V*(VRP0+39R+VRHP)/SUMRP - ∆ V*(VRP0+40R+VRHP)/SUMRP - ∆ V*(VRP0+45R+VRHP)/SUMRP - ∆ V*(VRP0+46R+VRHP)/SUMRP - ∆ V*(VRP0+47R+VRHP)/SUMRP - ∆ V*(VRP0+48R+VRHP)/SUMRP - ∆ V*(VRP0+49R+VRHP)/SUMRP - ∆ V*(VRP0+50R+VRHP)/SUMRP - ∆ V*(VRP0+51R+VRHP)/SUMRP - ∆ V*(VRP0+52R+VRHP)/SUMRP - ∆ V*(VRP0+68R+VRHP)/SUMRP - ∆ V*(VRP0+69R+VRHP)/SUMRP - ∆ V*(VRP0+70R+VRHP)/SUMRP - ∆ V*(VRP0+71R+VRHP)/SUMRP - ∆ V*(VRP0+72R+VRHP)/SUMRP - ∆ V*(VRP0+73R+VRHP)/SUMRP - ∆ V*(VRP0+74R+VRHP)/SUMRP - ∆ V*(VRP0+75R+VRHP)/SUMRP - ∆ V*(VRP0+80R+VRHP)/SUMRP - ∆ V*(VRP0+81R+VRHP)/SUMRP - ∆ V*(VRP0+82R+VRHP)/SUMRP - ∆ V*(VRP0+83R+VRHP)/SUMRP - ∆ V*(VRP0+84R+VRHP)/SUMRP - ∆ V*(VRP0+85R+VRHP)/SUMRP - ∆ V*(VRP0+86R+VRHP)/SUMRP - ∆ V*(VRP0+87R+VRHP)/SUMRP - ∆ V*(VRP0+87R+VRHP+VRLP)/SUMRP - ∆ V*(VRP0+91R+VRHP+VRLP)/SUMRP - ∆ V*(VRP0+95R+VRHP+VRLP)/SUMRP - ∆ V*(VRP0+99R+VRHP+VRLP)/SUMRP - ∆ V*(VRP0+103R+VRHP+VRLP)/SUMRP - ∆ V*(VRP0+107R+VRHP+VRLP)/SUMRP - ∆ V*(VRP0+111R+VRHP+VRLP)/SUMRP - ∆ V*(VRP0+115R+VRHP+VRLP)/SUMRP - ∆ V*(VRP0+120R+VRHP+VRLP)/SUMRP SUMRP : Sum of positive ladder resistors = 128R+VRHP+VRLP+VRP0+VRP1 SUMRN : Sum of negative ladder resistors = 128R+VRHN+VRLN+VRN0+VRN1 ∆V : Voltage difference between VREG1OUT and VGS Rev.0.22, May.23.2003, page 122 of 159 Fine adjustment register value PKP02-00 = "000" PKP02-00 = "001" PKP02-00 = "010" PKP02-00 = "011" PKP02-00 = "100" PKP02-00 = "101" PKP02-00 = "110" PKP02-00 = "111" PKP12-10 = "000" PKP12-10 = "001" PKP12-10 = "010" PKP12-10 = "011" PKP12-10 = "100" PKP12-10 = "101" PKP12-10 = "110" PKP12-10 = "111" PKP22-20 = "000" PKP22-20 = "001" PKP22-20 = "010" PKP22-20 = "011" PKP22-20 = "100" PKP22-20 = "101" PKP22-20 = "110" PKP22-20 = "111" PKP32-30 = "000" PKP32-30 = "001" PKP32-30 = "010" PKP32-30 = "011" PKP32-30 = "100" PKP32-30 = "101" PKP32-30 = "110" PKP32-30 = "111" PKP42-40 = "000" PKP42-40 = "001" PKP42-40 = "010" PKP42-40 = "011" PKP42-40 = "100" PKP42-40 = "101" PKP42-40 = "110" PKP42-40 = "111" PKP52-50 = "000" PKP52-50 = "001" PKP52-50 = "010" PKP52-50 = "011" PKP52-50 = "100" PKP52-50 = "101" PKP52-50 = "110" PKP52-50 = "111" - Reference Voltage VINP0 VINP1 VINP2 VINP3 VINP4 VINP5 VINP6 VINP7 HD66787 Preliminary Formulas for calculating voltage (Positive polarity) (2) Grayscale Voltage V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 Formula VINP0 V4+(VINP1-V4)*(15/24) V4+(VINP1-V4)*(8/24) V4+(VINP1-V4)*(4/24) VINP2 V10+(V4-V10)*(20/24) V10+(V4-V10)*(16/24) V10+(V4-V10)*(12/24) V10+(V4-V10)*(8/24) V20+(V8-V20)*(4/24) VINP3 V21+(V10-V21)*(21/24) V21+(V10-V21)*(19/24) V21+(V10-V21)*(17/24) V21+(V10-V21)*(15/24) V21+(V10-V21)*(13/24) V21+(V10-V21)*(11/24) V21+(V10-V21)*(9/24) V21+(V10-V21)*(7/24) V21+(V10-V21)*(5/24) V21+(V10-V21)*(3/24) VINP4 V27+(V21-V27)*(20/24) V27+(V21-V27)*(16/24) V27+(V21-V27)*(12/24) V27+(V21-V27)*(8/24) V27+(V21-V27)*(4/24) VINP5 VINP6+(V27-VINP6)*(20/24) VINP6+(V27-VINP6)*(16/24) VINP6+(V27-VINP6)*(9/24) VINP7 Note : Make sure DDVDH - V0 > 0.5V DDVDH - V4 > 1.1V Rev.0.22, May.23.2003, page 123 of 159 HD66787 Preliminary Formulas for calculating voltage (Negative polarity) (1) Pin Formula KVP0 VREG1OUT - ∆ V*VRN0/SUMRN KVN1 KVN2 KVN3 KVN4 KVN 5 KVN 6 KVN 7 KVN 8 KVN9 KVN10 KVN 11 KVN 12 KVN13 KVN 14 KVN 15 KVN 16 KVN 17 KVN 18 KVN19 KVN 20 KVN 21 KVN22 KVN 23 KVN 24 KVN25 KVN 26 KVN 27 KVN28 KVN 29 KVN30 KVN31 KVN 32 KVN33 KVN34 KVN 35 KVN36 KVN37 KVN38 KVN 39 KVN40 KVN41 KVN42 KVN43 KVN44 KVN45 KVN46 KVN47 KVN48 KVN49 VREG1OUT - ∆ V* VRN0+5R)/SUMRN VREG1OUT - ∆ V* VRN0+9R)/SUMRN VREG1OUT - ∆ V* VRN0+13R)/SUMRN VREG1OUT - ∆ V* VRN0+17R)/SUMRN VREG1OUT - ∆ V* VRN0+21R)/SUMRN VREG1OUT - ∆ V* VRN0+25R)/SUMRN VREG1OUT - ∆ V* VRN0+29R)/SUMRN VREG1OUT - ∆ V* VRN0+33R)/SUMRN VREG1OUT - ∆ V*(VRN0+33R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+34R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+35R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+36R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+37R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+38R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+39R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+40R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+45R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+46R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+47R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+48R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+49R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+50R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+51R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+52R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+68R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+69R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+70R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+71R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+72R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+73R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+74R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+75R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+80R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+81R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+82R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+83R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+84R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+85R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+86R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+87R+VRHN)/SUMRN VREG1OUT - ∆ V*(VRN0+87R+VRHN+VRLP)/SUMRN VREG1OUT - ∆ V*(VRN0+91R+VRHN+VRLP)/SUMRN VREG1OUT - ∆ V*(VRN0+95R+VRHN+VRLP)/SUMRN VREG1OUT - ∆ V*(VRN0+99R+VRHN+VRLP)/SUMRN VREG1OUT - ∆ V*(VRN0+103R+VRHN+VRLP)/SUMRN VREG1OUT - ∆ V*(VRN0+107R+VRHN+VRLP)/SUMRN VREG1OUT - ∆ V*(VRN0+111R+VRHN+VRLP)/SUMRN VREG1OUT - ∆ V*(VRN0+115R+VRHN+VRLP)/SUMRN VREG1OUT - ∆ V*(VRN0+120R+VRHN+VRLP)/SUMRN Fine adjustment register value PKN 02-00 = "000" PKN 02-00 = "001" PKN 02-00 = "010" PKN 02-00 = "011" PKN 02-00 = "100" PKN 02-00 = "101" PKN 02-00 = "110" PKN 02-00 = "111" PKN 12-10 = "000" PKN 12-10 = "001" PKN 12-10 = "010" PKN 12-10 = "011" PKN 12-10 = "100" PKN 12-10 = "101" PKN 12-10 = "110" PKN 12-10 = "111" PKN 22-20 = "000" PKN 22-20 = "001" PKN 22-20 = "010" PKN 22-20 = "011" PKN 22-20 = "100" PKN 22-20 = "101" PKN 22-20 = "110" PKN 22-20 = "111" PKN 32-30 = "000" PKN 32-30 = "001" PKN 32-30 = "010" PKN 32-30 = "011" PKN 32-30 = "100" PKN 32-30 = "101" PKN 32-30 = "110" PKN 32-30 = "111" PKN 42-40 = "000" PKN 42-40 = "001" PKN 42-40 = "010" PKN 42-40 = "011" PKN 42-40 = "100" PKN 42-40 = "101" PKN 42-40 = "110" PKN 42-40 = "111" PKN 52-50 = "000" PKN 52-50 = "001" PKN 52-50 = "010" PKN 52-50 = "011" PKN 52-50 = "100" PKN 52-50 = "101" PKN 52-50 = "110" PKN 52-50 = "111" - SUMRP : Sum of positive ladder resistors = 128R+VRHP+VRLP+VRP0+VRP1 SUMRN : Sum of negative ladder resistors = 128R+VRHN+VRLN+VRN0+VRN1 ∆V: Voltage difference between VREG1OUT and VGS Rev.0.22, May.23.2003, page 124 of 159 Reference Voltage VINN0 VINN1 VINN2 VINN3 VINN4 VINN5 VINN6 VINN7 HD66787 Preliminary Formulas for calculating voltage (Negative polarity) (2) Grayscale Voltage Formula V0 VINN0 V1 V4+(VINN1-V4)*(15/24) V2 V4+(VINN1-V4)*(8/24) V3 V4+(VINN1-V4)*(4/24) V4 VINN2 V10+(V4-V10)*(20/24) V5 V6 V10+(V4-V10)*(16/24) V7 V10+(V4-V10)*(12/24) V8 V10+(V4-V10)*(8/24) V20+(V8-V20)*(4/24) V9 VINN3 V10 V11 V21+(V10-V21)*(21/24) V12 V21+(V10-V21)*(19/24) V13 V21+(V10-V21)*(17/24) V21+(V10-V21)*(15/24) V14 V21+(V10-V21)*(13/24) V15 V21+(V10-V21)*(11/24) V16 V21+(V10-V21)*(9/24) V17 V21+(V10-V21)*(7/24) V18 V21+(V10-V21)*(5/24) V19 V20 V21+(V10-V21)*(3/24) V21 VINN4 V27+(V21-V27)*(20/24) V22 V27+(V21-V27)*(16/24) V23 V27+(V21-V27)*(12/24) V24 V27+(V21-V27)*(8/24) V25 V27+(V21-V27)*(4/24) V26 V27 VINN5 V28 VINN6 +(V27-VINN6)*(20/24) V29 VINN6 +(V27-VINN6)*(16/24) V30 VINN6 +(V27-VINN6)*(9/24) VINN7 V31 Note : Make sure DDVDH - V0 > 0.5V DDVDH - V4 > 1.1V Rev.0.22, May.23.2003, page 125 of 159 HD66787 Preliminary Relationship between RAM data and output level The relationship between the RAM data and the source output level is as follows. V0 Negative polarity Positive polarity 111111 000000 V31 RAM data (Common for each RGB pixel) RAM data and the output voltage Sn Negative polarity Vcom Positive polarity Source output and Vcom Rev.0.22, May.23.2003, page 126 of 159 HD66787 Preliminary 8-color Display Mode The HD66787 incorporates the 8-color display mode. The available grayscale levels are V0 and V31, and the voltages for the other levels (V1-V30) are halted to reduce power consumption. The γ-fine-adjustment registers, PKP0-PKP5 and PKN0-PKN5 are not available in the 8-color display mode. Since the power supply for the levels V1-V30 are halted, RGB data in GRAM should be set to either “000000” or “111111” before setting this mode so that V0 or V31 is selected. Graphics RAM(GRAM) MSB Display data R5 R4 R3 R2 R1 R0 G 5 G4 G3 G2 G1 LSB G0 B5 B4 B3 B2 B1 PKP 02 PKP 01 PKP 00 PKP 12 PKP 11 PKP 10 Positive Polarity Register PKP 22 PKP 21 PKP 20 PKP 32 PKP 31 PKP 30 PKP 42 PKP 41 PKP 40 PKP 52 PKP 51 PKP 50 PRP 02 PRP 01 PRP 00 V0 VRP 03 VRP 02 VRP 01 VRP00 VRP 14 VRP 13 VRP 12 VRP 11 VRP10 PKN 02 PKN 01 PKN 00 PKN 12 PKN 11 PKN 10 Negative Polarity Register 8 Grayscale Amplifier PRP 12 PRP 11 PRP 10 2 6 6 6 2 - level grayscale control <R> 2 - level grayscale control <G> 2 - level grayscale control <B> LCD driver LCD driver LCD driver V31 PKN 22 PKN 21 PKN 20 PKN 32 PKN 31 PKN 30 PKN 42 PKN 41 PKN 40 PKN 52 PKN 51 PKN 50 PRN 02 PRN 01 PRN 00 PRN 12 PRN 11 PRN 10 VRN 03 VRN 02 VRN01 VRN00 R G B LCD VRN14 VRN13 VRN12 VRN11 VRN10 Grayscale control Rev.0.22, May.23.2003, page 127 of 159 B0 HD66787 Preliminary To switch between the 262, 144-color mode and the 8-color mode, make settings according to the following sequences. 262,144 to 8 colors 8 to 22,144 colors Display off Display off DTE = “1” D1-0 = “10” DTE = “1” D1-0 = “10” Wait (2 frame or more) Wait (2 frame or more) Display off Display off DTE = “0” D1-0 = “10” DTE = “0” D1-0 = “10” Wait (2 frame or more) Wait (2 frame or more) Display off Display off DTE = “0” D1-0 = “00” DTE = “0” D1-0 = “00” Setting of RAM Setting of RAM CL = “1” CL = “0” Wait (40 msec or more) Wait (40 msec or more) Display on Display on DTE = “0” D1-0 = “01” DTE = “0” D1-0 = “01” Wait (2 frame or more) Wait (2 frame or more) Display on Display on DTE = “0” D1-0 = “11” DTE = “0” D1-0 = “11” Wait (2H or longer) Wait (2H or longer) Display on Display on DTE = “1” D1-0 = “11” DTE = “1” D1-0 = “11” Displaying in 8-color mode Displaying in 262,144-color mode Rev.0.22, May.23.2003, page 128 of 159 HD66787 Preliminary System Configuration The following figure illustrates an example of configuring a TFT-LCD panel of 176x 240 dots withHD66787. 176 pixels x 3 , VGH,VGL Shift register G1 G2 SOUT1 SOUT2 SOUT3 SOUT4 240 LTPS- TFT G239 G240 4 Driver circuits for incorporated gates S527 S528 S1S2 Vcom Power supply circuit Vcom VGH,VGL HD66787 LevelShift DCDC Vci1 Vci 18 4 RESET DB0 ~17 3 18 4 IM2,IM1, VLD PD0 ~17 IM0/ID CS*,WR*, RD*, RS VS HS DO EN System configuration with HD66787 Rev.0.22, May.23.2003, page 129 of 159 Vcc GND HD66787 Preliminary Configuration of Power Generation Circuit The internal configuration of power generation circuit for driving liquid crystal with the HD66787 is as follows. Separate on FPC in case of COG assembly VREG1OUT SOUT22 SOUT24 SOUT12 SOUT14 SOUT21 SOUT23 SOUT11 SOUT13 VciLVL Voltage adjsutment circuit VcomH voltage adjsutment LSEL12 LSEL11 LSEL10 LSEL22 LSEL21 LSEL20 Amplifier 1 Level Shifter REGP Vci adjustment external variable l resistors) VciOUT VciOUT AMP γ Adjustment VcomR In case of using VciOUT AMP circuit Vci1 VcomH Adjustment Circuit C11C11+ Vci Step-up circuit 1 VLOUT1 Grayscale voltage generation circuit V0P V0N V31P V31N VMONI DDVDH Note 2) Source Driver C12- VcomH Output AMP C12+ VcomH Vcom C21C21+ C22Note 2) C22+ Vci VLOUT2 Step-up circuit 2 Vcom amplitude adjustment circuit VcomL Output AMP VcomL TESTA1 TESTA2 VGH VLOUT3 Note 1) TESTA4 VGL Note 2,3) VLOUT4 Note 4) HD66787 VCL Vcc GND Note 1) Connect stabilizing capacitors to the TESTTA1, TEST 2, and TESTA4 panel as required for the display quality of the panel and voltage consumption (0.1µF, characteristic B). Otherwise, adopt 1µF, characteristic B. Note 2) Place a shot-key diode (VF = about 0.4V/20mA, VR >=30V). Note 3) Wiring from GND or VGL to the shot-key dioode must be 10Ω or less. Note 4) Capacitors are not required when VCOMG = 0 (VCOML = GND). Power generation circuit Rev.0.22, May.23.2003, page 130 of 159 HD66787 Preliminary Specification of External Elements Connected to HD66787 Power Supply The following table shows specifications of external elements connected to HD66787 power supply. Capacitor Capacity Recommended voltage Connect pins 1 µF (B characteristic) 6V VREG1OUT, VciOUT, VOUT4, VcomH, VcomL, C11+/-, C21+/- 10V VLOUT1, C21+/-, C22+/- 25V VLOUT2, VLOUT3 6V V0P, V0N, V31P, V31N, TESTA4 0.1 µF (B characteristic) Shot-key diode Feature Connect pin VF < 0.4V / 20mA at 25 centigrade, VR>=30V GND – VGL (recommended diode : HSC226) (Vci – VGH) (Vci – DDVDH) Variable resistor Feature Connect pin > 200 kΩ VcomR Rev.0.22, May.23.2003, page 131 of 159 HD66787 Preliminary Instruction Setting Flow Make a setting for each instruction according to the following sequence. Display ON/OFF Display off EQ = 0 Display on Power supply setting Display off DTE = 1 D1-0 = 10 SAP2-0 Setting Display on Wait (2 frames or more) Display off DTE = 0 D1-0 = 10 DTE = 0 D1-0 = 01 Wait (2 frames or more) Wait (2 frames or more) Display off DTE = 0 D1-0 = 00 Display on DTE = 0 D1-0 = 11 Power supply off SAP2-0 = “000” AP2-0 = “000” PON = “0” VCOMG = “0” Wait (2 frames or more) Display on DTE = 1 D1-0 = 11 “Display on” “Display off” Display on flow Display off flow Rev.0.22, May.23.2003, page 132 of 159 HD66787 Preliminary Standby and Sleep Sleep Standby Display off flow Standby set Standby set (STB = “1”) Display off low Sleep set Sleep set (SLP = “1”) Oscillation Start Wait 10 ms Standby cancel Sleep canceled (SLP = “0”) Sleep cancel Standby canceled (STB = “0”) Power setting Power setting Display on flow Display on low Rev.0.22, May.23.2003, page 133 of 159 HD66787 Preliminary Power Supply Setting Flow Whenever turning on the power supply, it must be done in accordance to the following procedure. The stabilization time for the oscillation circuits, step-up circuits, and operational amplifiers depends on the external resistors and capacitors. Power supply (Vcc, Vci, IOVcc) ON Vcc IOVcc Vci GND Vcc(=RVcc) IOVcc Vci or Vcc(=RVcc), IOVcc, Vci Simultaneously Normal Display 1ms or more Power ON RESET & Display OFF 10ms or more Oscillation Circuit Stabilization Time Bits for “Display OFF” DTE="0”, D1-0="00" PON="0" VCOMG="0" Bits for Initializing Power Supply Settings VC2-0 bits setting VRH3-0 bits setting VCM4-0 bits setting VDV4-0 bits setting PON="0”, DK="1" Instructions for settings before driving Power Supply Bits for setting Power Supply Operation Start BT2-0="000" DC12-10 bits setting Power Supply Instruction issue (1) Bits for “Display ON” DTE = "1", D1-0="11" Display OFF Sequence Display OFF Bits for setting Power Supply Halt Power supply setting Instruction (2) SAP2-0="000" AP2-0="000" PON="0" VCOMG="0" DC02-00 bits setting AP2-0 bits setting PON="1" 40ms or more Power Supply (Vcc, Vci, IOVcc) OFF Vci IOVcc Step-up Circuit Stabilization Time 100ms or more Operational Amplifier Stabilization Time Bits for setting Power Supply Operation Start Power Supply Instruction issue (2) VCOMG="1" BT2-0 bits setting DK="0" Other mode settings Instruction issue Display ON sequence SAP2-0 bit setting Bits for “Display ON” DTE="1", D1-0="11" Display ON Display ON Sequence Power supply setting flow Rev.0.22, May.23.2003, page 134 of 159 Vci IOVcc Vcc GND Vcc(=RVcc) or Vcc(=RVcc),IOVcc, Vci Simultaneously Display OFF Sequence HD66787 Preliminary Pattern Diagram for Voltage Setting The following figures are the pattern diagram of voltage setting for the HD66787 and the voltage waveforms. VLOUT2 VGH (+9 ~ +16.5V) BT VLOUT1 DDVDH (4.5 ~ 5.5V) VREG1OUT (3.0 ~ (DDVDH-0.5)V) Vci (2.5 ~ 3.3V) VC Vci1 VcomH (3.0 ~ (DDVDH-0.5) V) VRH Vcc (2.4 ~ 3.3V) VDV IOVcc (1.8 ~ 3.3V) GND (0V) VCOMG VLOUT4 VcomL ((VCL+0.5) ~ 1V) VCL (0 ~ -3.3)V BT VLOUT3 VGL (-4.0 ~ -16.5V) Pattern diagram for voltage setting Note 1) Voltage drop occurs in relation to set voltage for each DDVDH, VGH, VGL, VCL output depending on current consumption required for each output. (DDVDH+VREG1OUT) > 0.5V and (VcomL – VCL) > 0.5V show the relationship in relation to the actual voltage. When AC frequency of Vcom1 and Vcom2 is high (e.g. alternation occurs by line), current consumption is also large. In this case, check voltage before use. VGH VDH VcomH VcomL Vcom Sn(Source driver output of HD66787) Gate Output VGL Applied voltage to the TFT display Rev.0.22, May.23.2003, page 135 of 159 HD66787 Preliminary Oscillation Circuit The HD66787 generates oscillation by internal R-C oscillator with an external oscillation resistor placed between the OSC1 and OSC2 pins. The oscillation frequency varies depending on the value of external resistor, the distance of wiring, and the power supply voltage for the oscillation. For example, the oscillation frequency becomes low when increasing the value of Rf resistor, or lowering the power supply voltage. See the “Electric Characteristics Notes” section for the relationship between the Rf resistor value and the oscillation frequency. OSC1 Rf OSC2 HD66787 OSC1 Rf OSC2 HD66787 External Resistor Oscillation Mode Note 1) Place the Rf resistor close to the OSC1, OSC2 pins. Note 2) Make sure not to arrange other wiring beneath or close to OSC1-OSC2 wiring to avoid effects from coupling. Rev.0.22, May.23.2003, page 136 of 159 HD66787 Preliminary n-raster-row inversion AC drive The HD66787, in addition to LCD inversion AC drive by frame, supports n-raster-row inversion AC drive where alternation occurs by n raster-rows, where n takes a number between 1 to 64. The n-raster-row inversion AC drive enables to overcome the problems related to display quality. In determining n (the value set in the NW bit +1), the number of raster-rows by which alternation occurs, check the display quality on the actual liquid crystal panel. Setting a small number of raster-rows will raise the AC frequency of the liquid crystal and increase the charge/discharge current on the liquid crystal cells. 1 frame Back porch 1 2 3 1 frame Front porch 4 241242 Back porch 256 1 2 3 Front porch 4 241 242 256 1 2 Frame AC driving 240-raster-row driving n-raster row driving 240-raster-row driving 3-raster-row reversed EOR = 1 Note: Make sure that EOR is set to "1" whenever the n-raster-row reverse AC driving to avoid DC bias. n-raster-rows inversion AC drive Rev.0.22, May.23.2003, page 137 of 159 HD66787 Preliminary AC Timing The AC timings of frame inversion AC drive and n-raster-row inversion drive are illustrated as follows. In case of frame inversion AC drive, alternation occurs at the completion of drawing one frame, followed by a blank, which lasts for 16H periods. In case of n-raster-row, a blank lasting 16H period is inserted after drawing a full screen. n-raster-row inversion AC drive Frame inversion AC drive Back porch AC timing One frame period Frame 1 Front porch Back porch AC timing n-raster-rows AC timing n-raster-rows AC timing n-raster-rows AC timing n-raster-rows AC timing n-raster-rows AC timing n-raster-rows AC timing n-raster-rows AC timing n-raster-rows AC timing Front porch Blank period = 16H Blank period = front porch + back porch = 16H AC drive timing Rev.0.22, May.23.2003, page 138 of 159 AC timing One frame period AC timing HD66787 Preliminary Frame-Frequency Adjustment Function The HD66787 incorporates frame frequency adjustment function. The frame frequency during the liquid crystal drive is adjusted by the instruction setting (DIV, RTN) while keeping the oscillation frequency fixed. Setting the oscillation frequency high in advance allows switching the frame frequency in accordance to the kind of displayed picture (i.e. moving/still picture). When displaying a still picture, set the frame frequency low to save power consumption, while setting the frame frequency high when displaying a moving picture which requires high-speed switching of screens. Relationship between Liquid Crystal Drive Duty and Frame Frequency The relationship between the liquid crystal drive duty and the frame frequency is calculated by the following formula. The frame frequency is adjusted through the instruction setting with the 1-H period adjustment bit (RTN bit) and the operation clock division bit (DIV bit). (Formula for the frame frequency) fosc Frame frequency = Clock cycles per raster-row × division ratio × (Line+BP+FP) [Hz] fosc: R-C oscillation frequency Line: number of drive raster-rows (NL bit) Clock cycles per raster-row: RTN bit Division ratio: DIV bit The number of raster-rows for the front porch: FP The number of raster-rows for the back porch: BP Calculation Example The maximum frame frequency = 60 Hz Number of driven raster-rows: 240 1-H period: 16 clock cycles (RTN3-0 = 0000) Operation clock division ratio: 1 division fosc = 60 Hz × (0 + 16) clock × 1 division × (240 + 16) lines = 246 (kHz) In this case, the R-C oscillation frequency becomes 246 kHz. Adjust the external resistor to the R-C oscillator to 246 kHz. Rev.0.22, May.23.2003, page 139 of 159 HD66787 Preliminary Screen–split Display Function The HD66787 allows selectively driving two screens at arbitrary positions with the screen-drive position registers (R42 and R43). Only the raster-rows required to display two screens at arbitrary positions are selectively driven to reduce power consumption. The first screen drive position register (R42) specifies the start line (SS17-10) and the end line (SE17-10) for displaying the first screen. The second screen drive position register (R43) specifies the start line (SS27-20) and the end line (SE27-20) for displaying the second screen. The second screen control is effective when the SPT bit is set to 1. The total number of raster-rows driven for displaying the first and second screens must be less than the number of liquid crystal drive raster-rows. 1st Screen: 7 raster-row driving G1 G7 Non-display ar ea G26 2nd Screen: 17 raster-row driving G42 Non-display ar ea The number of driven raster-rows : NL4-0 = “11110” (240 raster-rows) 1st screen setting : SS17-10 = “00”H, SS17-10 = “06”H 2nd screen setting : SS27-20 = “19”H, SS27-20 = “29”H, SPT = “1” Screen-split drive Rev.0.22, May.23.2003, page 140 of 159 HD66787 Preliminary Notes to the setting of 1st/2nd screen drive position registers When making settings for the start line (SS17-10) and end line (SE17-10) of the first screen drive position register (R42), and the start line (SS27-20) and end line (SE27-20) of the second screen drive position register (R43) with the HD66787, it is necessary to satisfy the following conditions to display screens correctly. One Screen Drive (SPT = 0) Register Settings Display Operation (SE17-10) - (SS17-10) = NL Full screen display The area of (SE17-10) - (SS17-10) is normally displayed. (SE17-10) - (SS17-10) < NL Partial screen display The area of (SE17-10) - (SS17-10) is normally displayed. The rest of the area is white display irrespective of data in RAM. (SE17-10) - (SS17-10) > NL Setting disabled Note 1) SS17-10 ≤ SE17-0 ≤ “EF”H Note 2) Setting disabled for SS27-20 and SE27-20. Two Screen Drive (SPT = 1) Register Settings Display Operation ((SE17-10) - (SS17-10)) + ((SE27-20) - (SS27-20)) = NL Full screen display The area of (SE27-20) - (SS17-10) is normally displayed. ((SE17-10) - (SS17-10)) + ((SE27-20) - (S27-20)) < NL Partial screen display The area of (SE27-10) - (SS17-10) is normally displayed. The rest of the area is white display irrespective of data in RAM. ((SE17-10) - (SS17-10)) + ((SE27-20) - (SS27-20)) > NL Setting disabled Note 1) Make sure that SS17-10 ≤ SE17-10 < SS27-20 ≤ SE27-20 ≤ EFH. Note 2) Make sure that ((SE27-20) - (SS17-10)) ≤ NL. The setting for the driver output in the non-display area during the partial display is changeable according to the characteristics of the display panel. Source outputs in non-display area Source Output for Non-display Area PT1 PT0 Positive Polarity Negative Polarity 0 0 V31 V0 0 1 V31 V0 1 0 GND GND 1 1 High-Z High-Z Rev.0.22, May.23.2003, page 141 of 159 HD66787 Preliminary Full screen display PT1-0 = 00 Set SS/SE bits Wait for 2 screen or more Screen division drive set up flow As required PT1-0 = 01 or PT1-0 = 10 or PT1-0 = 11 Partial display ON Set SS/SE bits Full screen display setting flow Full screen display Partial display setting flow Rev.0.22, May.23.2003, page 142 of 159 HD66787 Preliminary Absolute Maximum Values Item Symbol Unit Value Notes Power supply voltage (1) Vcc V -0.3 ~ + 4.6 1, 2 Power supply voltage (2) Vci - GND V -0.3 ~ + 4.6 1, 2 Power supply voltage (3) DDVDH - GND V -0.3 ~ + 6.0 1, 2 Power supply voltage (4) GND -VCL V -0.3 ~ + 4.6 1, 2 Power supply voltage (5) DDVDH - VCL V -0.3 ~ + 9.0 1 Power supply voltage (6) VGH - GND V -0.3 ~ + 18.5 1, 2 Power supply voltage (7) GND - VGL V -0.3 ~ + 18.5 1, 2 Input voltage Vt V -0.3 ~ Vcc + 0.3 1 Operating temperature Topr °C -40 ~ + 85 1, 3 Storage temperature Tstg °C -55 ~ + 110 1 Note 1) The LSI may be permanently damaged if it is used under the condition exceeding the above absolute maximum values. It is also recommended to use the LSI within the limit of its electric characteristics during normal operation. Exceeding the conditions may lead to malfunction of LSI and affect its credibility. Note 2) The voltage from GND. Note 3) The DC and AC characteristics of chip and wafer products are guaranteed at 85 °C. Rev.0.22, May.23.2003, page 143 of 159 HD66787 Preliminary Electric Characteristics (T.B.D.) DC Characteristics (VCC = 1.8 to 3.7 V, Ta = –40 to +85°C Note 1 ) Item Symbol Unit Test Condition Min Max Notes Input high voltage VIH V VCC = 1.8 to 3.7 V 0.7 VCC — VCC 2, 3 Input low voltage (1) (OSC1 pin) VIL1 V VCC = 1.8 to 3.7 V –0.3 — 0.15VCC 2, 3 Input low voltage (2) (Except OSC1 pin) VIL2 V Vcc=1.8V to 2.4V -0.3 0.15Vc 2,3 c Vcc=2.4V to 3.7V -0.3 0.2Vcc 2,3 Output high voltage (1) (DB0-17 pins) Output low voltage (1) (DB0-17 pins) I/O leakage current Typ VOH1 V IOH = –0.1 mA 0.75VCC — — — 0.2 VCC 2 V VCC = 1.8 to 2.4 V, IOL = 0.1 mA — VOL1 VCC = 2.4 to 3.7 V, IOL = 0.1 mA — — 0.15VCC 2 ILi Current consumption IOP during normal operation (VCC – GND) µA Vin = 0 to VCC –1 — 1 4 µA R-C oscillation; fosc = 250kHz (240line) VCC = 3.0 V, Ta = 25°C, RAM data 0000h — 190 300 5,6 Vcc = 3V, Ta<=50°C — 0.1 5 Vcc = 3V, Ta>50°C — — 20 5 Vcc=3V, VLCD=5.5V, VDH=5.0V, CR Oscillation; fosc=250kHz(240line), Ta=25°C, RAMdata:0000h, REV=”0”, SAP=”001”, VRN4-0=”0”, PKP5200=”0”, PRP12-00=”0”, VRN4-0=VRP4-0=”0” — 500 650 5,6 T.B.D Current consumption during standby mode (VCC – GND) IST Liquid Crystal Power Current ILCD 2 µA µA (DDVDH-GND) PKP52-00=”0”, PRP1200=”0” Liquid Crystal Drive Voltage(DDVDH-GND) VLCD V 4.5 — 5.5 Output Voltage deviation ∠Vo mV 5 7 mV 35 8 Variation of average output voltage Rev.0.22, May.23.2003, page 144 of 159 HD66787 Preliminary AC Characteristics (VCC = 1.7 to 3.7 V, Ta = –40 to +85°C Note 1) Clock Characteristics (VCC = 1.8 to 3.7 V) Item Symbol Unit Test Condition Min Typ Max Notes External clock frequency fcp kHz VCC = 1.8 to 3.3 V 100 270 600 9 External clock duty ratio External clock rise time External clock fall time R-C oscillation clock T.B.D. Duty % VCC = 1.8 to 3.3 V 45 50 55 9 trcp µs VCC = 1.8 to 3.3 V — — 0.2 9 tfcp µs VCC = 1.8 to 3.3 V — — 0.2 9 fOSC kHz Rf = TBD VCC = 3 V 244 305 366 10 80-system Bus Interface Timing Characteristics Normal Write Mode (HWM=0) (Vcc = 1.8 to 2.4 V) Item Symbol Unit Test Condition Min Typ Max Write tCYCW ns Figure 2 600 — — Read tCYCR ns Figure 2 800 — — Write low-level pulse width PWLW ns Figure 2 90 — — Read low-level pulse width PWLR ns Figure 2 350 — — Write high-level pulse width PWHW ns Figure 2 300 — — Read high-level pulse width PWHR ns Figure 2 400 — — Write/Read rise/fall time tWRr, WRf ns Figure 2 Bus cycle time T.B.D. Setup time Write (RS to CS*,WR*) — — 25 0 — — 10 — — tAS ns Figure 2 tAH ns Figure 2 5 — — tVS ns Figure 2 60 — — tVH ns Figure 2 15 — — Write data set up time tDSW ns Figure 2 60 — — Write data hold time tH ns Figure 2 15 — — Read data delay time tDDR ns Figure 2 — — 200 Read data hold time tDHR ns Figure 2 5 — — Read (RS to CS*, RD*) Address hold time VLD setup time VLD hold time Rev.0.22, May.23.2003, page 145 of 159 HD66787 Preliminary High-Speed Write Mode (HWM=1) (Vcc = 1.8 to 2.4 V) Item Write Read Write low-level pulse width Read low-level pulse width Write high-level pulse width Read high-level pulse width Write/Read rise/fall time Write (RS to CS*, WR*) Set up time Read (RS to CS*, RD*) Address hold time VLD setup time VLD hold time Write data set up time Write data hold time Read data delay time Read data hold time Symbol Unit Test Condition Min tCYCW tCYCR PWLW PWLR PWHW PWHR tWRr, WRf ns ns ns ns ns ns ns Figure 2 Figure 2 Figure 2 Figure 2 Figure 2 Figure 2 Figure 2 tAS ns Figure 2 tAH tVS tVH tDSW tH tDDR tDHR ns ns ns ns ns ns ns Figure 2 Figure 2 Figure 2 Figure 2 Figure 2 Figure 2 Figure 2 200 800 90 350 90 400 — 0 10 5 60 15 60 15 — 5 Bus cycle time T.B.D. Typ Max — — — — — — — — — — — — — — — — — — — — — — 25 — — — — — — — 200 — Normal Write Mode (HWM=0) : Vcc = 2.4 to 3.7 V Item Symbol Unit Test Condition Min Typ Max Write tCYCW ns Figure 2 250 — — Read tCYCR ns Figure 2 500 — — Write low-level pulse width PWLW ns Figure 2 40 — — Read low-level pulse width PWLR ns Figure 2 250 — — Write high-level pulse width PWHW ns Figure 2 70 — — Bus cycle time T.B.D. Read high-level pulse width PWHR ns Figure 2 200 — — tWRr, WRf ns Figure 2 — — 25 tAS ns Figure 2 0 — — 10 — — Address hold time tAH ns Figure 2 2 — — VLD set up time tVS ns Figure 2 25 — — VLD hold time tVH ns Figure 2 2 — — tDSW ns Figure 2 25 — — Write/Read rise/fall time Set up time Write (RS to CS*, WR*) Read (RS to CS*, WR*) Write data setup time Write data hold time tH ns Figure 2 2 — — Read data delay time tDDR ns Figure 2 — — 200 Read data hold time tDHR ns Figure 2 5 — — Rev.0.22, May.23.2003, page 146 of 159 HD66787 Preliminary High-Speed Write Mode (HWM=1) : Vcc = 2.4 to 3.7 V Item Bus cycle time Symbol Write tCYCW Read tCYCR Unit Test Condition ns Figure 2 Min Typ Max 100 — — 500 — — Write low-level pulse width PWLw ns Figure 2 40 — — Read low-level pulse width PWLR ns Figure 2 250 — — Write high -level pulse width PWHW ns Figure 2 40 — — Read high -level pulse width PWHR ns Figure 2 200 — — tWRr, WRf ns Figure 2 — — — 0 — 25 t WRr, WRf ns Figure 2 10 — — Write/Read rise/fall time Set up time T.B.D. Write (RS to CS*, WR*) Read (RS to CS*, RD*) Address hold time tAH ns Figure 2 2 — — VLD set-up time tVS ns Figure 2 25 — — VLD hold time tVH ns Figure 2 2 — — tDSW ns Figure 2 25 — — Write data hold time tH ns Figure 2 2 — — Read data delay time tDDR ns Figure 2 — — 200 Read data hold time tDHR ns Figure 2 5 — — Write data set up time Rev.0.22, May.23.2003, page 147 of 159 HD66787 Preliminary Serial Peripheral Interface Timing Characteristics Vcc = 1.8 to 2.4 V Item Symbol Unit Write tSCYC (received) Serial clock cycle time Read (transmitted tSCYC ) Write tSCH (received) Serial clock high-level pulse Read width (transmitted tSCH ) Write tSCL (received) Serial clock low-level pulse Read width (transmitted tSCL ) Serial clock rise/fall time tscr, tscf Chip select set up time tCSU Chip select hold time tCH Serial input data set up time tSISU Serial input data hold time tSIH Serial input data delay time tSOD Serial input data hold time tSOH Test Condition Min Typ Max us Figure 3 0.1 — 20 us Figure 3 0.5 — 20 ns Figure 3 40 — — T.B.D. Figure 3 40 — — ns Figure 3 230 — — ns ns ns ns ns ns ns Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 — 20 60 30 30 — 5 — — — — — — — 20 — — — — 200 — Symbol Unit Test Condition Min Typ Max tSCYC us Figure 3 0.1 — 20 tSCYC us Figure 3 0.35 — 20 tSCH ns Figure 3 40 — — T.B.D. ns Figure 3 230 — — ns Vcc = 2.4 to 3.3 V Item Serial clock cycle time Serial clock high-level pulse width Serial clock low-level pulse width Write (receive)) Read (send) Write (receive) Read (send) Write (receive) Read (send) Serial clock rise/fall time Chip select set up time Chip select hold time Serial input data set up time Serial input data hold time Serial output data delay time Serial output data hold time Rev.0.22, May.23.2003, page 148 of 159 tSCH ns Figure 3 150 — — tSCL ns Figure 3 40 — — tSCL ns Figure 3 150 — — tscr, scf tCSU tCH tSISU tSIH tSOD tSOH ns ns ns ns ns ns ns Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 Figure 3 — 20 60 30 30 — 5 — — 20 — — — — 130 — — — — — — HD66787 Preliminary Reset Timing Characteristics (VCC = 1.8 to 3.7 V) Item Reset low-level width Reset rise time Symbol Unit Test Condition Figure 4 Figure 4 Min Typ T.B.D. tRES trRES Rev.0.22, May.23.2003, page 149 of 159 ms us 1 — — — Max — 10 HD66787 Preliminary RGB interface timing characteristics 18/16 bit RGB interface (HWM =1), Vcc = 1.8V to 2.4V Item Symbol Unit Test Condition min. typ. max. VSYNC/HSYNC Set up time tSYNCS clock Figure 5 0 1 ENABLE Set up time tENS ns Figure 5 20 ENABLE Hold time tENH ns Figure 5 80 VLD Set up time tVLS ns Figure 5 20 VLD Hold time tVLH ns Figure 5 80 DOTCLK “Low” Level pulse width PWDL ns Figure 5 90 DOTCLK “High” Level pulse width PWDH ns Figure 5 90 DOTCLK cycle time tCYCD ns Figure 5 200 Data Set up time tPDS ns Figure 5 20 Data Hole time tPDH ns Figure 5 80 DOTCLK, VSYNC, HSYNC rising and falling time trgbr, trgbf ns Figure 5 25 T.B.D. 18/16 bit RGB interface (HWM = 1), Vcc = 2.4V to 3.7 V Item Symbol Unit Test Condition min. typ. max. VSYNC/HSYNC Set up time tSYNCS clock Figure 5 0 1 ENABLE Set up time tENS ns Figure 5 10 ENABLE Hold time tENH ns Figure 5 20 VLD Set up time tVLS ns Figure 5 10 tVLH ns Figure 5 40 DOTCLK “Low” Level pulse width PWDL ns Figure 5 40 DOTCLK “High” Level pulse width PWDH ns Figure 5 40 DOTCLK cycle time tCYCD ns Figure 5 100 Data Set up time tPDS ns Figure 5 10 Data Hole time tPDH ns Figure 5 40 DOTCLK, VSYNC, HSYNC rising and falling time trgbr, trgbf ns Figure 5 25 VLD Hold time T.B.D. Rev.0.22, May.23.2003, page 150 of 159 HD66787 Preliminary 6 bit RGB interface (HWM = 1), Vcc = 1.8V to 2.4 V Item Symbol Unit Test Condition min. typ. max. VSYNC/HSYNC Set up time tSYNCS clock Figure 5 0 1 ENABLE Set up time tENS ns Figure 5 20 ENABLE Hold time tENH ns Figure 5 50 VLD Set up time tVLS ns Figure 5 20 tVLH ns Figure 5 65 PWDL ns Figure 5 50 DOTCLK “High” Level pulse width PWDH ns Figure 5 50 DOTCLK cycle time tCYCD ns Figure 5 120 Data Set up time tPDS ns Figure 5 20 Data Hold time tPDH ns Figure 5 65 DOTCLK, VSYNC, HSYNC rising and falling time trgbr, trgbf ns Figure 5 25 VLD Hold time DOTCLK “Low” Level pulse width T.B.D. 6 bit RGB interface (HWM = 1), Vcc = 2.4V to 3.3 V Item Symbol Unit Test Condition min. typ. max. VSYNC/HSYNC Set up time tSYNCS clock Figure 5 0 1 ENABLE Set up time tENS ns Figure 5 10 ENABLE Hold time tENH ns Figure 5 20 VLD Set up time tVLS ns Figure 5 10 Vcc=2,4 to2,7V tVLH ns Figure 5 40 Vcc=2,7 to 3,7V tVLH ns Figure 5 30 PWDL ns Figure 5 30 PWDH ns Figure 5 30 DOTCLK cycle time tCYCD ns Figure 5 70 Data Set up time tPDS ns Figure 5 10 Vcc=2,4 to 2,7V tPDH ns Figure 5 40 Vcc=2,7 to 3,7V tPDH ns Figure 5 30 trgbr, trgbf ns Figure 5 25 VLD Hold time DOTCLK “Low” Level pulse width DOTCLK “High” Level pulse width Data Hole time DOTCLK, VSYNC, HSYNC rising and falling time T.B.D. Rev.0.22, May.23.2003, page 151 of 159 HD66787 Preliminary Liquid crystal driver output characteristics Item Symbol Unit Driver output delay time tdd µs Test conditions Vcc=3V, VLCD=5.5V, VDH=5.0V, CR oscillation ;fosc=270kHz(240 lines), Ta=25℃、REV="0", SAP="001", VRN4-0="0",VRP4-0="0" PKP52-00="0",PRP12-00="0" PKP52-00="0",PRP12-00="0" All pins changes at the same time from same grayscale. The time till output level reaches ―35mV when VCOM polarity changes. Load resistance R=10kΩ、 Load capacity C=20pF min. typ. max. Note 40 (11) T.B.D. Electrical Characteristics Notes 1. For bare die and wafer products, specified up to 85°C. 2. The following three circuits are I pin, I/O pin, O pin configurations. Pins: RESET*, CS*, E/WR, RW/RD, RS, OSC1, OPOFF, IM2-1, IM0/ID,TEST Vcc Vcc PMOS PMOS NMOS NMOS GND GND T.B.D. Pins: DB15 -DB2, DB1/SD0, DB0/SD1 Vcc PMOS (Input circuit) NMOS Vcc (Tri-state output circuit) Output enable PMOS Output data NMOS GND 3. The TEST pin must be grounded and the IM2/1 and IM0/ID pins must be grounded or connected to Vcc. 4. Applies to the resistor value (RSEG) between VSH, GND pins and segment signal pins. T.B.D. Rev.0.22, May.23.2003, page 152 of 159 HD66787 Preliminary 5. This excludes the current flowing through output drive MOSs. This excludes the current flowing through the input/output units. The input level must be fixed high or low because through current increases if the CMOS input is left floating. Even if the CS pin is low or high when an access with the interface pin is not performed, current consumption does not change. 6. The following figure shows the relationship between the operation frequency and current consumption. Vcc = 3V Vcc = 3V, DDVDH = 5,5V T.B.D. ILCD (µF) lop (µF) 440 600 typ. 400 420 typ. ( 400 380 360 340 200 320 0 100 200 0 300 400 500 600 4.0 R-C, oscillation frequencies: fosc (kHz) 4.5 5.0 VDH (V) 7. This is a voltage difference for the neighboring outputs under the same display condition. The output voltage deviation is a reference value. 8. The fluctuation of average output voltage indicates the difference of average output voltage between chips. The average output voltage is an average voltage within a chip under the same display condition. 9. Applies to the case when clocks are supplied internally (figure). T.B.D. T.B.D. Tl Th 2kΩ Oscillator OSC1 Open 0.7Vcc 0.5Vcc 0.3Vcc Duty = Th Th + Tl x 100% OSC2 trcp t fcp 10. Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table). Rev.0.22, May.23.2003, page 153 of 159 HD66787 Preliminary T.B.D. OSC1 Rf The oscillation frequency may vary depending on the capacitors for OSC1, OSC2 pins. Place OSC1 and OSC2 close to each other. OSC2 External Resistance Value and R-C Oscillation Frequency (Referential Data) External Resistance R-C Oscillation Frequency: fosc Vcc = 1.8 V Vcc = 2 V Vcc = 2.4 V Vcc = 3 V Vcc = 3.3 V 110 kΩ 299 333 372 401 411 150 kΩ 234 258 284 305 311 180 kΩ 202 222 243 258 263 (Rf) T.B.D. 200 kΩ 186 203 222 235 240 160 173 188 198 202 145 157 169 177 181 132 143 153 161 163 390 kΩ 106 113 121 126 128 430 kΩ 97 104 110 115 116 240 kΩ 270 kΩ 300 kΩ LCD driver output delay time tDD (µS) 11. Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table). Reference data Vcc =3V, VLCD = 5.5V, VDH = 5.0V, R-C Oscillation; fosc = 270kHz (240line), Ta = 25 Centigrade, REV = "0", SAP ="001", VRN4-0 = "0", VRP4-0 = "0", PKP52-00 = "0", PRP12-00 ="0", PKN52-00 = "0", PRN12-00 ="0", All pins chnge at the same time from same grayscale. The time till output level reaches +/-35mV when VCOM polarity changes. Load resistance R = 10kΩ/pin 70 60 50 40 30 20 10 T.B.D. 10 20 30 Load Capacity C(pF) Rev.0.22, May.23.2003, page 154 of 159 HD66787 Preliminary Load circuits for measuring AC characteristics T.B.D. AC characteristic measuring load circuit LCD driver output characteristic measuring load circuit Data bus : DB17-DB0, PD17-0 Test Point LCD output : S1- S528 Test Point Lord Resistance R 10kΩ 50pF Lord Capacity C 20pF 80-system Bus Operation RS VIH VIH VIL VIL tAS tAH VIH CS* T.B.D. VIL Note 1) PWHW, PWHR PWLW, PWLR WR* RD* VIH VIL VIL tWRr tCYCW, tCYCR tDSW VIH VIL DB0 to DB15 Wrire data tDDR DB0 to DB15 VIH tWRf tHWR VIH VIL tDHR VOH1 VOL1 Read data VOH1 VOL1 Note 1) PWLW and PWLR is specified in the overlapped period when CS* is low and WR* or RD* is low. Note 2) Parallel data transfer is enabled on the DB15-8 pins when the 8-bit bus interface is used. Fix the DB7-0 pins to Vcc or GND. Rev.0.22, May.23.2003, page 155 of 159 HD66787 Preliminary Clock Synchronized Serial Interface Operation Start: S End : P CS* VIH VIL VIL tCSU tSCYC tscf tscr tSCL tSCH tCH T.B.D. SCL VIH VIH VIH VIH VIL VIL VIL VIL tSIH tSISU SDI VIH VIL VIH VIL Input data Input data tSOD SDO tSOH VOH1 VOL1 Output data Output data VOH1 VOL1 RESET Operation T.B.D. trRE S tRES RESET * VIL Rev.0.22, May.23.2003, page 156 of 159 VIL VIL HD66787 Preliminary RGB I/F Operation VSYNC HSYNC trgbf trgbf tSYNCS VIH VIH VIL VIL tENS ENABLE tENH VIH VIH VIH VIH VIL VIL VIL VIL T.B.D. tVLS VLD VIH VIH VIL VIL PWDL VIH VIL VIL PWDH VIH VIH VIL VIH VIH VIL VIL VIH VIL VIL tPDS PD17-0 VIH trgbf trgbf DOTCLK tVLH tPDH Write Data VIH VIH VIL VIL Liquid Crystal Driver Output VCOM T.B.D. tPDS S1-528 Ce rta in g ray s ca le v o l t a g e +/-35mV Certain grayscale voltage +/-35mV Rev.0.22, May.23.2003, page 157 of 159 HD66787 Preliminary Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein. http://www.renesas.com Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0 Rev.0.22, May.23.2003, page 158 of 159 HD66787 Preliminary Revision Record Rev. Date Contents of Modification 0.1 2003.05.08 First issue Rev.0.22, May.23.2003, page 159 of 159 Drawn by Approved by