LGDP4525 176RGBx220-dot, 262,144-color 1-chip TFT LCD driver IC Rev 0.9.0 2007-12-10 Description................................................................................................................................... 5 Features........................................................................................................................................ 6 Power Supply Specifications ..................................................................................................... 7 Block Diagram ............................................................................................................................. 8 Pin Function................................................................................................................................. 9 PAD Arrangement ..................................................................................................................... 13 PAD Coordinate ......................................................................................................................... 14 Bump Arrangement................................................................................................................... 18 Block Function........................................................................................................................... 19 External Display Interface........................................................................................................ 19 Bit Operations .......................................................................................................................... 20 Address Counter (AC) ............................................................................................................. 20 Graphics RAM (GRAM) ........................................................................................................... 20 Grayscale Voltage Generating Circuit ..................................................................................... 20 Timing Generator..................................................................................................................... 20 Oscillator (OSC)....................................................................................................................... 20 LCD Driver Circuit.................................................................................................................... 20 LCD Drive Power Supply Circuit.............................................................................................. 20 GRAM Address MAP ................................................................................................................. 21 Instructions ................................................................................................................................ 29 Outline...................................................................................................................................... 29 Index (IR) ................................................................................................................................. 31 Status Read (SR)..................................................................................................................... 31 ID CODE (R00h)...................................................................................................................... 31 Driver Output Control (R01h)................................................................................................... 31 LCD Driving Waveform Control (R02h) ................................................................................... 33 Entry Mode (R03h) .................................................................................................................. 33 LGDP4525 Rev 0.9.0 Resize Control (R04h) ............................................................................................................. 36 Display Control 1 (R07h) ......................................................................................................... 36 Display Control 2 (R08h) ......................................................................................................... 38 Display Control 3 (R09h) ......................................................................................................... 39 Frame Cycle Control (R0Bh) ................................................................................................... 40 External Display Interface Control 1 (R0Ch) ........................................................................... 41 Oscillator Control (R0Fh) ......................................................................................................... 43 Power Control 1 (R10h) ........................................................................................................... 44 Power Control 2 (R11h) ........................................................................................................... 44 Power Control 3 (R12h) ........................................................................................................... 46 Power Control 4 (R13h) ........................................................................................................... 46 Power Control 5 (R14h) ........................................................................................................... 48 Power Control 6 (R15h) ........................................................................................................... 49 RAM Address Set (R21h) ........................................................................................................ 49 Write Data to GRAM (R22h) .................................................................................................... 50 RAM Access via RGB I/F and System I/F ............................................................................... 54 Read Data Read from GRAM (R22h)...................................................................................... 55 Software Reset (R28h) ............................................................................................................ 57 γ Control (R30h to R3Fh)......................................................................................................... 58 Gate Scan Position (R40h) ...................................................................................................... 58 Vertical Scroll Control (R41h) .................................................................................................. 60 1st-Screen Drive Position (R42h) ............................................................................................ 60 2nd-Screen Drive Position (R43h) ........................................................................................... 60 Horizontal RAM Address Position (R44h) ............................................................................... 61 Vertical RAM Address Position (R45h).................................................................................... 61 Test Register 1 (R71h) ............................................................................................................ 61 Test Register 2 (R72h) ............................................................................................................ 62 Instruction List........................................................................................................................... 63 Interface Specifications ............................................................................................................ 64 System Interface........................................................................................................................ 66 80-System 18-Bit Interface ...................................................................................................... 67 80-System 16-Bit Interface ...................................................................................................... 68 Data Transfer Synchronizing in 16-Bit Bus Interface Mode .................................................... 69 80-System 9-Bit Interface ........................................................................................................ 70 Data Transfer Synchronizing in 9-Bit Bus Interface Mode ...................................................... 71 80-System 8-Bit Interface ........................................................................................................ 72 2 LGDP4525 Rev 0.9.0 Data Transfer Synchronization in 8-Bit Bus Interface Mode ................................................... 74 Serial Peripheral Interface (SPI) .............................................................................................. 75 VSYNC Interface ........................................................................................................................ 77 External Display Interface ........................................................................................................ 80 Interfacing Timing with LCD Panel .......................................................................................... 90 RGB I/F Mode .......................................................................................................................... 90 Internal Clock Operation Mode ................................................................................................ 91 Scan Mode Setting .................................................................................................................... 92 γ-Correction Function ............................................................................................................... 93 Grayscale Amplifier Unit Configuration.................................................................................... 94 γ-Correction Register............................................................................................................... 96 Ladder Resistors and 8-to-1 Selector...................................................................................... 98 Relationship between RAM Data and Voltage Output Levels ............................................... 102 8-Color Display Mode.............................................................................................................. 103 Configuration of Power Supply Circuit ................................................................................. 105 Specification of External Elements Connected to LGDP4525 Power Supply ....................... 106 Instruction Setting................................................................................................................... 107 Display On/Off ....................................................................................................................... 107 Standby and Sleep Modes..................................................................................................... 108 Deep Standby Mode .............................................................................................................. 108 Power Supply Setting ............................................................................................................. 109 Pattern Diagram for Voltage Setting ..................................................................................... 110 Oscillator .................................................................................................................................. 111 n-Line Inversion AC Drive ...................................................................................................... 112 Interlaced Scan ........................................................................................................................ 113 Alternating Timing................................................................................................................... 114 Frame Frequency Adjustment Function ............................................................................... 115 Partial Display Function ......................................................................................................... 116 Absolute Maximum Ratings ................................................................................................... 119 Electrical Characteristics ....................................................................................................... 120 DC Characteristics................................................................................................................. 120 3 LGDP4525 Rev 0.9.0 80-System Bus Interface Timing Characteristics (18/16-Bit Bus) ......................................... 120 80-System Bus Interface Timing Characteristics (8/9-Bit Bus) ............................................. 121 Serial Peripheral Interface Timing Characteristics ................................................................ 121 Reset Timing Characteristics................................................................................................. 121 RGB Interface Timing Characteristics ................................................................................... 122 Notes to Electrical Characteristics......................................................................................... 122 Timing Characteristics Diagram............................................................................................. 125 4 LGDP4525 Rev 0.9.0 Description The LGDP4525 is a 262,144-color one-chip controller driver LSI for a TFT liquid crystal display with resolution of 176 RGB x 220 dots, comprising a 528-channel source driver, RAM for graphics data of 176 RGB x 220 dots at maximum, a gate driver and a power supply circuit. The LGDP4525 supports high-speed parallel interfaces to 8-, 9-, 16-, 18-bit ports and a function to write RAM data in high speed for transferring data efficiently and rewriting RAM graphics data in high speed. In addition, the LGDP4525 incorporates 6-, 16-, 18-bit RGB interfaces (VSYNC, HSYNC, DOTCLK, ENABLE, and DB[17:0]) and a VSYNC interface (system interface + VSYNC) for displaying a moving picture, which, with use of window address function, enable the LGDP4525 to display a moving picture easily at a position specified by a user and still pictures in other areas on the screen simultaneously. Since this combination allows transferring only moving picture data while retaining still picture data in the internal RAM intact, data transfer can be minimized and power consumption by the entire system is reduced. The LGDP4525 can operate with low I/O interface power supply up to 1.65V, with an incorporated voltage follower circuit to generate voltage levels for driving an LCD. The LGDP4525 also supports a function to display in 8 colors and a standby mode, allowing for precise power control by software. These features make the LGDP4525 an ideal LCD driver for medium or small sized portable products supporting WWW browsers such as digital cellular phones or small PDAs, where long battery life is a measure concern. 5 LGDP4525 Rev 0.9.0 Features • • • • • • • • • • • • • • • • A controller driver for a liquid crystal TFT display with resolution of 176RGB x 220-dot, capable of graphics display in 262,144 colors Single chip solution for a liquid crystal TFT display System interfaces − High-speed interfaces to 8-, 9-, 16-, 18-bit parallel ports − Serial Peripheral Interface (SPI) Interfaces for moving picture display − 6-, 16-, 18-bit RGB interfaces (VSYNC, HSYNC, DOTCLK, ENABLE, DB[17:0]) − VSYNC interface (System interface + VSYNC) Window address function to specify a rectangular area on the internal RAM for moving picture display − Facilitate moving picture display at any area on the screen via a moving picture display interface − Limit the data rewriting area and reduce data transfer − Enable moving and still picture display at the same time Bit operation function for facilitating graphics data processing − Bit-unit write data mask function − Pixel-unit logical/conditional write function Abundant functions for color display control − γ-correction function enabling display in 262,144 colors − Line-unit vertical scrolling function Low -power consumption architecture − Low operating power supplies: VCI = 2.5 to 3.3 V (To generate logic voltage & analog) VDD = 1.7 to 1.9 V (internal logic) VDD3 = 1.65 to 3.3 V (interface I/O) − Low voltage drive: AVDD = 4.5 to 5.5 V − Power saving functions (standby mode etc.) − Liquid crystal partial drive function, enabling partially driving an LCD panel at positions specified by a user − A voltage follower circuit for generating LCD driving voltage levels with a small direct current through bleeder resistors Incorporate step-up circuits for stepping up a liquid crystal drive voltage level up to 6 times (x6) 87,120 byte internal RAM Incorporate a 528-channel source driver and a 220-channel gate driver n-line liquid crystal AC drive: invert polarity at an interval of arbitrarily set n lines (n: 0 ~ 64) Internal oscillator and hardware reset Internal oscillator uses an internal resistor and also an external resistor optionally. Reversible source driver shift direction For Cst structure only 6 LGDP4525 Rev 0.9.0 Power Supply Specifications Table 1 No. 1 2 3 4 Item TFT source lines TFT gate lines Capacitor structure of TFT display Liquid crystal S1 to S528 drive output G1 to G220 VCOM 5 Input voltage 6 Internal step-up circuits VDD3 VCI VDD AVDD VGH VGL VCL LGDP4525 528 pins (176 x RGB) 220 pins Cst structure only (common VCOM formula) V0 to V63 grayscales VGH to VGL VCOMH – VCOML: amplitude = electronic volumes VCOMH = VCOMR: adjusted with an external resistor 1.65 – 3.30 V 2.50 – 3.30 V 1.70 – 1.90 V VCI1 ×2 VCI1 ×4, ×5, ×6 VCI1 ×-3, ×-4, ×-5 VCI1 ×-1 7 LGDP4525 Rev 0.9.0 Block Diagram Index register VDD3 E_RDB SDI SDO Write data latch 18-bit bus 16-bit bus 9-bit bus 8-bit bus SPI Read data latch 18 Graphics RAM 87,120 bytes 18 Source driver circuit RW_WRB Bit operation Latch circuit RS System interface M alternating circuit CSB Latch circuit IM[3:0] VSS VSSC AVSS Address counter Control registers S1 - S528 DB[17:0] V63-0 DOTCLK External display interface Timing generator ENABLE RESETB RESETEN Oscillator OSC1 CL1 VREF VREF_BUF BandGap Reference Gate driver circuit OSC2 Scan data generation FLM TEST_ MODE[1:0] Grayscale voltage generating circuit VSYNC Gamma correction HSYNC VGS G1 – G220 Internal reference voltage generating circuit VCOM VCOML VCOMH GVDD VCOMR VCL VGL VGH AVDD C22P/C22M C21P/C21M C12P/C12M C31P/C31M C11P/C11M VCI VCI Liquid crystal drive level generating circuit Logic power supply regulator VCI1 VDD RVDD Figure 1 Block Diagram of LGDP4525 8 LGDP4525 Rev 0.9.0 Pin Function Table 2 Name IM[3:0] # pins 4 I/O I Connected to GND or VDD3 Function MPU interface mode select signal. In SPI mode, the IM[0] pin is used to set the ID of device code. IM[3:0] 0000 Interface mode 68-system 16 bit interface 0001 0010 68-system 8 bit interface 80-system 16 bit interface 0011 010* CSB 1 I MPU RS 1 I MPU RW_WRB / SCL 1 I MPU E_RDB 1 I MPU SDI 1 I MPU SDO 1 O MPU DB[17:0] 18 I/O MPU ENABLE 1 I MPU VSYNC 1 I MPU HSYNC 1 I MPU DOTCLK 1 I MPU Data pins DB[17:10], DB[8:1] DB[17:10], DB[17:10], DB[8:1] DB[17:10] SDI, SDO 80-system 8 bit interface Serial peripheral interface (SPI) 1000 68-system 18 bit interface DB[17:0] 1001 68-system 9 bit interface DB[17:9] 1010 80-system 18 bit interface DB[17:0] 1011 80-system 9 bit interface DB[17:9] 11** Setting disabled Chip select signal (active low). Low: LGDP4525 is selected and accessible. High: LGDP4525 is not selected and not accessible. Fix to the GND level when not in use. Register select signal. Low: selects the index/status register. High: selects a control register. Write strobe (active low) in 80-system bus interface mode. Serial clock input in SPI mode. Read strobe (active low) in 80-system bus interface mode. Fix to either VDD3 or GND level in SPI mode. Serial data input in SPI mode. Data are input on the rising edge of the SCL signal. Fix to either VDD3 or GND level when not in use. Serial data output in SPI mode. Data are output on the falling edge of the SCL signal. Leave the pin open when not in use. Parallel bidirectional data bus. Unused pins must be fixed either VDD3 or GND level. Data enable signal in RGB interface mode. Low: select (accessible). High: not select (inaccessible). The EPL bit inverts the polarity of the ENABLE signal. Fix to either VDD3 or GND level when not in use. Frame synchronization signal. When VSPL = “0”, it is active low. When VSPL = “1”, it is active high. Fix to either VDD3 or GND level when not in use. Line synchronization signal. When HSPL = “0”, it is active low. When HSPL = “1”, it is active high. Fix to either VDD3 or GND level when not in use. Dot clock signal. When DPL = “0”, input data on the rising edge of DOTCLK. When DPL = “1”, input data on the falling edge of DOTCLK. Fix to either VDD3 or GND level when not in use. 9 LGDP4525 Name Rev 0.9.0 I/O RESETB # pins 1 RESETEN 1 I FLM 1 I/O CL1 OSC1 1 1 O I OSC2 1 O I Connected to MPU Function VDD3, GND or OPEN VDD3, GND or OPEN LCD LCD TFT panel common electrode Dummy pins. Hardware reset (active low). Be sure to execute a power-on reset after supplying power. MPU or GND Enable for RESETB Pin. If this connected to VDD3, the RESETB Pin is invalid and the LGDP4525 cannot be reset. Otherwise, RESETB Pin is valid to LGDP4525. MPU or Frame head pulse signal. OPEN This is used when writing RAM data in synchronization with display frame. Leave the pin open when not in use. OPEN Output Pin for test purpose. OPEN or This pin can be used to connect to an external resistor for external R oscillator with OSC2. OPEN or This pin can be used to connect to an external resistor for external R oscillator wth OSC1. GND Input Pins for test purpose. TEST_MODE 2 [1:0] TEST_MUX[2:1] 2 I TEST_DA 1 I S1 to S528 G1 to G220 VCOM 528 220 1 O O O VCOMH 1 O VCOML 1 O VCOMR 1 I Variable resistor or OPEN C11P, C11M 2 I/O C12P, C12M 2 I/O C31P, C31M C21P, C21M C22P, C22M VCI 6 I/O Step-up capacitor Step-up capacitor or GND or OPEN Step-up capacitor 1 - Power supply VCI1 1 I/O Stabilizing capacitor I Stabilizing capacitor Stabilizing capacitor or OPEN Dummy pin. Source line outputs to LCD. Gate line outputs to LCD. Supply voltage to the common electrode of TFT panel. VCOM is AC voltages alternating between the VCOMH and VCOML levels. The alternating cycle is set by M signal. Connect to the common electrode of TFT panel. All outputs come from the same node. The high level of VCOM AC voltage. Connect to a stabilizing capacitor. The low level of VCOM AC voltage. Adjust the VCOML level with the VDV bits. Connect to a stabilizing capacitor. To fix the VCOML level to GND, set VCOMG to “0”. In this case, capacitor connection is not necessary. Reference level to generate the VCOMH level either with an externally connected variable resistor or by setting the register of the LGDP4525. When using a variable resistor, halt the internal VCOMH adjusting circuit by setting the register and place the resister between GVDD and GND. When generating the VCOMH level by setting the register, leave this pin open. Pins to connect a capacitor for the internal step-up circuit 1. Pins to connect a capacitor when using the dual mode stepup1 circuit. Leave the pins open or connect to GND, when not using the dual mode step-up1 circuit. Pins to connect capacitors for the internal step-up circuit 2. Connect capacitors according to step-up rate. Leave the pins open when not using the circuit. Power supply to generate the internal logic power supply. Supply voltage to the analog circuit. Connect to an external power supply of 2.5 to 3.3V. Internal reference voltage level of amplitude VCI−GND. Place a stabilizing capacitor between GND. Reference voltage input to the step-up circuit 1. When not using the internal reference voltage, connect to an external power supply up to 2.75V. 10 LGDP4525 Name Rev 0.9.0 I/O AVDD # pins 1 VGH 1 I/O Stabilizing capacitor, Schottky diode VGL 1 I/O Stabilizing capacitor, Schottky diode VCL 1 I/O Stabilizing capacitor GVDD 1 I/O Stabilizing capacitor, variable resistor when generating VCOMR VDD 1 - RVDD 1 I/O VDD3 1 - Power supply Stabilizing capacitor, VDD Power supply VSS, AVSS, VSSC VGS 1 - 1 VREF 1 I/O VREF_BUF 1 I/O M 1 - CONTACT DUMMY1~12 DUMMY13~37 2 1 1 - I/O Connected to Stabilizing capacitor, Schottky diode Power supply GND or external resistor OPEN or stabilizing capacitor OPEN or stabilizing capacitor VDD3, GND or OPEN - Function Output voltage from the step-up circuit 1. Place a stabilizing capacitor between GND. Place a schottky diode between VGH. AVDD = 4.5 to 5.5V (twice the VCI1 level).Power supply to the source driver’s LCD output unit and an input voltage to the step-up circuit 2. An output voltage from the step-up circuit 2. The step-up rate is set with the BT bits. Place a stabilizing capacitor between GND. Place a schottky diode between AVDD. VGH = max 16.5V (4 to 6 times the VCI1 level) A supply voltage to drive gate lines of the TFT panel. An output voltage from the step-up circuit 2. The step-up rate is set with the BT bits. Place a stabilizing capacitor between GND. Place a schottky diode between GND. VGL = min −16.5V (−3 to −5 times the VCI1 level) A supply voltage to drive gate lines of the TFT panel. An output voltage from the step-up circuit 2. Place a stabilizing capacitor between GND. VCL = 0 to −3.3V (−1 times the VCI1 level) A supply voltage to generate the VCOML level. A voltage level of AVDD−GND, generated from the reference level of VCI−GND according to the rate set with the VRH bits. GVDD is (1) a source driver grayscale reference voltage VDH, (2) a VCOMH level reference voltage, and (3) a VCOM amplitude reference voltage. Connect to a stabilizing capacitor. GVDD = 3.0 to (AVDD – 0.5) V. When using a variable resistor for VCOMH(VCOMR), place the resister between GVDD and GND. Generated power supply to the internal logic. VDD = 1.7 to 1.9V Internal logic regulator output. Power supply to the interface pins: VDD3 = 1.65 to 3.3V. VDD3 and the internal logic voltage VDD must be supplied in the same condition. In case of COG, connect to VDD on the FPC if VDD3 = VDD to prevent noise. Circuit ground : GND = 0V. Reference level for the grayscale voltage generation circuit. The VGS level can be changed by connecting to an external resistor. Reference voltage pin for test. Reference voltage pin for test. Dummy pin. Dummy pins. Dummy pins. Dummy pins. 11 LGDP4525 Rev 0.9.0 12 LGDP4525 Rev 0.9.0 PAD Arrangement (1-a) DUMMY1 DUMMY2 VCOM VCOM VCOM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • DUMMY37 DUMMY36 DUMMY35 DUMMY34 G<1> G<3> G<5> G<7> G<9> G<11> G<13> 988 987 986 985 984 983 982 981 980 979 978 1 2 3 4 5 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • G<213> G<215> G<217> G<219> DUMMY33 DUMMY32 DUMMY31 DUMMY30 DUMMY29 DUMMY28 DUMMY27 DUMMY26 S<1> S<2> S<3> S<4> 878 877 876 875 874 873 872 871 870 869 868 867 866 865 864 863 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • LGDP 4525 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 610 609 608 607 606 605 604 603 S<257> S<258> S<259> S<260> S<261> S<262> S<263> S<264> 602 601 600 599 598 597 596 595 S<265> S<266> S<267> S<268> S<269> S<270> S<271> S<272> Top view Y X • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • VCOM VCOM VCOM DUMMY11 DUMMY12 342 341 340 339 338 337 336 335 334 333 332 331 330 329 328 327 326 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • S<525> S<526> S<527> S<528> DUMMY25 DUMMY24 DUMMY23 DUMMY22 DUMMY21 DUMMY20 DUMMY19 DUMMY18 DUMMY17 G<220> G<218> G<216> G<214> • • • • • • • • • • • • • • • 211 212 213 214 215 (1-b) 226 225 224 223 222 221 220 219 218 217 216 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • G<14> G<12> G<10> G<8> G<6> G<4> G<2> DUMMY16 DUMMY15 DUMMY14 DUMMY13 13 LGDP4525 Rev 0.9.0 PAD Coordinate Pad # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 Pad name DUMMY1 DUMMY2 VCOM VCOM VCOM VCOM DUMMY3 VGH VGH VGH VGH VGH DUMMY4 VGL VGL VGL VGL VGL DUMMY5 C22P C22P C22P C22M C22M C22M C21P C21P C21P C21M C21M C21M DUMMY6 DUMMY7 VSSC VSSC VSSC VSSC VSSC VSSC VSSC VSSC VSSC VSSC VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 C11P C11P C11P C11P C11P C11P C11P C11P C11M C11M C11M C11M C11M C11M C11M C11M C12P C12P C12P C12P C12P C12P C12M C12M C12M C12M C12M C12M C31P C31P C31P C31P C31P C31M X -6695 -6635 -6575 -6515 -6455 -6395 -6335 -6275 -6215 -6155 -6095 -6035 -5975 -5915 -5855 -5795 -5735 -5675 -5615 -5555 -5495 -5435 -5375 -5315 -5255 -5195 -5135 -5075 -5015 -4955 -4895 -4835 -4775 -4715 -4655 -4595 -4535 -4475 -4415 -4355 -4295 -4235 -4175 -4115 -4055 -3995 -3935 -3875 -3815 -3755 -3695 -3635 -3575 -3515 -3455 -3395 -3335 -3275 -3215 -3155 -3095 -3035 -2975 -2915 -2855 -2795 -2735 -2675 -2615 -2555 -2495 -2435 -2375 -2315 -2255 -2195 -2135 -2075 -2015 -1955 -1895 -1835 -1775 Y -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 Pad # 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 Pad name C31M C31M C31M C31M AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD VCI VCI VCI VCI VCI VCI VCI VCI VCI VCI VCL VCL VCL VCL VCL DUMMY8 RS CSB VSYNC HSYNC DOTCLK ENABLE RESETB SDI E_RDB RW_WRB DB<17> DB<16> DB<15> DB<14> DB<13> DB<12> DB<11> DB<10> DB<9> DB<8> DB<7> DB<6> DB<5> DB<4> DB<3> DB<2> DB<1> DB<0> IM<3> IM<2> IM<1> IM<0> SDO M FLM CL1 RESETEN TEST_MODE<1> TEST_MODE<0> TEST_MUX<2> TEST_MUX<1> VREF_BUF TEST_DA OSC2 OSC1 AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS VSS X -1715 -1655 -1595 -1535 -1475 -1415 -1355 -1295 -1235 -1175 -1115 -1055 -995 -935 -875 -815 -755 -695 -635 -575 -515 -455 -395 -335 -275 -215 -155 -95 -35 25 85 145 205 265 325 385 445 505 565 650 735 820 905 990 1075 1160 1245 1330 1415 1500 1585 1670 1755 1840 1925 2010 2095 2155 2215 2275 2335 2420 2505 2590 2675 2735 2795 2855 2915 2975 3035 3095 3155 3215 3275 3335 3395 3455 3515 3575 3635 3695 3755 Y -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 Pad # 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 Pad name VSS VSS VSS VSS VSS VSS VSS VSS VSS VGS VGS RVDD RVDD RVDD RVDD RVDD RVDD VDD VDD VDD VDD VDD VDD VDD3 VDD3 VDD3 VDD3 VDD3 VDD3 DUMMY9 VREF GVDD GVDD GVDD GVDD VCOMH VCOMH VCOML VCOML VCOMR CONTACT CONTACT DUMMY10 VCOM VCOM VCOM VCOM DUMMY11 DUMMY12 DUMMY13 DUMMY14 DUMMY15 DUMMY16 G<2> G<4> G<6> G<8> G<10> G<12> G<14> G<16> G<18> G<20> G<22> G<24> G<26> G<28> G<30> G<32> G<34> G<36> G<38> G<40> G<42> G<44> G<46> G<48> G<50> G<52> G<54> G<56> G<58> G<60> X 3815 3875 3935 3995 4055 4115 4175 4235 4295 4355 4415 4475 4535 4595 4655 4715 4775 4835 4895 4955 5015 5075 5135 5195 5255 5315 5375 5435 5495 5555 5615 5675 5735 5795 5855 5915 5975 6035 6095 6155 6215 6275 6335 6395 6455 6515 6575 6635 6695 6772 6756 6740 6724 6708 6692 6676 6660 6644 6628 6612 6596 6580 6564 6548 6532 6516 6500 6484 6468 6452 6436 6420 6404 6388 6372 6356 6340 6324 6308 6292 6276 6260 6244 Y -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 -335 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 14 LGDP4525 Pad # 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 Pad name G<62> G<64> G<66> G<68> G<70> G<72> G<74> G<76> G<78> G<80> G<82> G<84> G<86> G<88> G<90> G<92> G<94> G<96> G<98> G<100> G<102> G<104> G<106> G<108> G<110> G<112> G<114> G<116> G<118> G<120> G<122> G<124> G<126> G<128> G<130> G<132> G<134> G<136> G<138> G<140> G<142> G<144> G<146> G<148> G<150> G<152> G<154> G<156> G<158> G<160> G<162> G<164> G<166> G<168> G<170> G<172> G<174> G<176> G<178> G<180> G<182> G<184> G<186> G<188> G<190> G<192> G<194> G<196> G<198> G<200> G<202> G<204> G<206> G<208> G<210> G<212> G<214> G<216> G<218> G<220> DUMMY17 DUMMY18 DUMMY19 DUMMY20 DUMMY21 DUMMY22 DUMMY23 Rev 0.9.0 X 6228 6212 6196 6180 6164 6148 6132 6116 6100 6084 6068 6052 6036 6020 6004 5988 5972 5956 5940 5924 5908 5892 5876 5860 5844 5828 5812 5796 5780 5764 5748 5732 5716 5700 5684 5668 5652 5636 5620 5604 5588 5572 5556 5540 5524 5508 5492 5476 5460 5444 5428 5412 5396 5380 5364 5348 5332 5316 5300 5284 5268 5252 5236 5220 5204 5188 5172 5156 5140 5124 5108 5092 5076 5060 5044 5028 5012 4996 4980 4964 4948 4932 4916 4900 4884 4868 4852 Y 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 Pad # 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 Pad name DUMMY24 DUMMY25 S<528> S<527> S<526> S<525> S<524> S<523> S<522> S<521> S<520> S<519> S<518> S<517> S<516> S<515> S<514> S<513> S<512> S<511> S<510> S<509> S<508> S<507> S<506> S<505> S<504> S<503> S<502> S<501> S<500> S<499> S<498> S<497> S<496> S<495> S<494> S<493> S<492> S<491> S<490> S<489> S<488> S<487> S<486> S<485> S<484> S<483> S<482> S<481> S<480> S<479> S<478> S<477> S<476> S<475> S<474> S<473> S<472> S<471> S<470> S<469> S<468> S<467> S<466> S<465> S<464> S<463> S<462> S<461> S<460> S<459> S<458> S<457> S<456> S<455> S<454> S<453> S<452> S<451> S<450> S<449> S<448> S<447> S<446> S<445> S<444> X 4836 4820 4804 4788 4772 4756 4740 4724 4708 4692 4676 4660 4644 4628 4612 4596 4580 4564 4548 4532 4516 4500 4484 4468 4452 4436 4420 4404 4388 4372 4356 4340 4324 4308 4292 4276 4260 4244 4228 4212 4196 4180 4164 4148 4132 4116 4100 4084 4068 4052 4036 4020 4004 3988 3972 3956 3940 3924 3908 3892 3876 3860 3844 3828 3812 3796 3780 3764 3748 3732 3716 3700 3684 3668 3652 3636 3620 3604 3588 3572 3556 3540 3524 3508 3492 3476 3460 Y 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 Pad # 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 Pad name S<443> S<442> S<441> S<440> S<439> S<438> S<437> S<436> S<435> S<434> S<433> S<432> S<431> S<430> S<429> S<428> S<427> S<426> S<425> S<424> S<423> S<422> S<421> S<420> S<419> S<418> S<417> S<416> S<415> S<414> S<413> S<412> S<411> S<410> S<409> S<408> S<407> S<406> S<405> S<404> S<403> S<402> S<401> S<400> S<399> S<398> S<397> S<396> S<395> S<394> S<393> S<392> S<391> S<390> S<389> S<388> S<387> S<386> S<385> S<384> S<383> S<382> S<381> S<380> S<379> S<378> S<377> S<376> S<375> S<374> S<373> S<372> S<371> S<370> S<369> S<368> S<367> S<366> S<365> S<364> S<363> S<362> S<361> S<360> S<359> S<358> S<357> X 3444 3428 3412 3396 3380 3364 3348 3332 3316 3300 3284 3268 3252 3236 3220 3204 3188 3172 3156 3140 3124 3108 3092 3076 3060 3044 3028 3012 2996 2980 2964 2948 2932 2916 2900 2884 2868 2852 2836 2820 2804 2788 2772 2756 2740 2724 2708 2642 2626 2610 2594 2578 2562 2546 2530 2514 2498 2482 2466 2450 2434 2418 2402 2386 2370 2354 2338 2322 2306 2290 2274 2258 2242 2226 2210 2194 2178 2162 2146 2130 2114 2098 2082 2066 2050 2034 2018 Y 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 15 LGDP4525 Pad # 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 Pad name S<356> S<355> S<354> S<353> S<352> S<351> S<350> S<349> S<348> S<347> S<346> S<345> S<344> S<343> S<342> S<341> S<340> S<339> S<338> S<337> S<336> S<335> S<334> S<333> S<332> S<331> S<330> S<329> S<328> S<327> S<326> S<325> S<324> S<323> S<322> S<321> S<320> S<319> S<318> S<317> S<316> S<315> S<314> S<313> S<312> S<311> S<310> S<309> S<308> S<307> S<306> S<305> S<304> S<303> S<302> S<301> S<300> S<299> S<298> S<297> S<296> S<295> S<294> S<293> S<292> S<291> S<290> S<289> S<288> S<287> S<286> S<285> S<284> S<283> S<282> S<281> S<280> S<279> S<278> S<277> S<276> S<275> S<274> S<273> S<272> S<271> S<270> Rev 0.9.0 X 2002 1986 1970 1954 1938 1922 1906 1890 1874 1858 1842 1826 1810 1794 1778 1762 1746 1730 1714 1698 1682 1666 1650 1634 1618 1602 1586 1570 1554 1538 1522 1506 1490 1474 1458 1442 1426 1410 1394 1378 1362 1346 1330 1314 1298 1282 1266 1250 1234 1218 1202 1186 1170 1154 1138 1122 1106 1090 1074 1058 1042 1026 1010 994 978 962 946 930 914 898 882 866 850 834 818 802 786 770 754 738 722 706 690 674 658 642 626 Y 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 Pad # 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 Pad name S<269> S<268> S<267> S<266> S<265> S<264> S<263> S<262> S<261> S<260> S<259> S<258> S<257> S<256> S<255> S<254> S<253> S<252> S<251> S<250> S<249> S<248> S<247> S<246> S<245> S<244> S<243> S<242> S<241> S<240> S<239> S<238> S<237> S<236> S<235> S<234> S<233> S<232> S<231> S<230> S<229> S<228> S<227> S<226> S<225> S<224> S<223> S<222> S<221> S<220> S<219> S<218> S<217> S<216> S<215> S<214> S<213> S<212> S<211> S<210> S<209> S<208> S<207> S<206> S<205> S<204> S<203> S<202> S<201> S<200> S<199> S<198> S<197> S<196> S<195> S<194> S<193> S<192> S<191> S<190> S<189> S<188> S<187> S<186> S<185> S<184> S<183> X 610 594 578 562 546 -554 -570 -586 -602 -618 -634 -650 -666 -682 -698 -714 -730 -746 -762 -778 -794 -810 -826 -842 -858 -874 -890 -906 -922 -938 -954 -970 -986 -1002 -1018 -1034 -1050 -1066 -1082 -1098 -1114 -1130 -1146 -1162 -1178 -1194 -1210 -1226 -1242 -1258 -1274 -1290 -1306 -1322 -1338 -1354 -1370 -1386 -1402 -1418 -1434 -1450 -1466 -1482 -1498 -1514 -1530 -1546 -1562 -1578 -1594 -1610 -1626 -1642 -1658 -1674 -1690 -1706 -1722 -1738 -1754 -1770 -1786 -1802 -1818 -1834 -1850 Y 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 Pad # 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 Pad name S<182> S<181> S<180> S<179> S<178> S<177> S<176> S<175> S<174> S<173> S<172> S<171> S<170> S<169> S<168> S<167> S<166> S<165> S<164> S<163> S<162> S<161> S<160> S<159> S<158> S<157> S<156> S<155> S<154> S<153> S<152> S<151> S<150> S<149> S<148> S<147> S<146> S<145> S<144> S<143> S<142> S<141> S<140> S<139> S<138> S<137> S<136> S<135> S<134> S<133> S<132> S<131> S<130> S<129> S<128> S<127> S<126> S<125> S<124> S<123> S<122> S<121> S<120> S<119> S<118> S<117> S<116> S<115> S<114> S<113> S<112> S<111> S<110> S<109> S<108> S<107> S<106> S<105> S<104> S<103> S<102> S<101> S<100> S<99> S<98> S<97> S<96> X -1866 -1882 -1898 -1914 -1930 -1946 -1962 -1978 -1994 -2010 -2026 -2042 -2058 -2074 -2090 -2106 -2122 -2138 -2154 -2170 -2186 -2202 -2218 -2234 -2250 -2266 -2282 -2298 -2314 -2330 -2346 -2362 -2378 -2394 -2410 -2426 -2442 -2458 -2474 -2490 -2506 -2522 -2538 -2554 -2570 -2586 -2602 -2618 -2634 -2650 -2716 -2732 -2748 -2764 -2780 -2796 -2812 -2828 -2844 -2860 -2876 -2892 -2908 -2924 -2940 -2956 -2972 -2988 -3004 -3020 -3036 -3052 -3068 -3084 -3100 -3116 -3132 -3148 -3164 -3180 -3196 -3212 -3228 -3244 -3260 -3276 -3292 Y 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 16 LGDP4525 Pad # 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 Pad name S<95> S<94> S<93> S<92> S<91> S<90> S<89> S<88> S<87> S<86> S<85> S<84> S<83> S<82> S<81> S<80> S<79> S<78> S<77> S<76> S<75> S<74> S<73> S<72> S<71> S<70> S<69> S<68> S<67> S<66> S<65> S<64> S<63> S<62> S<61> S<60> S<59> S<58> S<57> S<56> S<55> S<54> S<53> S<52> S<51> S<50> S<49> S<48> S<47> S<46> S<45> S<44> S<43> S<42> S<41> S<40> S<39> S<38> S<37> S<36> S<35> S<34> S<33> S<32> S<31> S<30> S<29> S<28> S<27> S<26> S<25> S<24> S<23> S<22> S<21> Rev 0.9.0 X -3308 -3324 -3340 -3356 -3372 -3388 -3404 -3420 -3436 -3452 -3468 -3484 -3500 -3516 -3532 -3548 -3564 -3580 -3596 -3612 -3628 -3644 -3660 -3676 -3692 -3708 -3724 -3740 -3756 -3772 -3788 -3804 -3820 -3836 -3852 -3868 -3884 -3900 -3916 -3932 -3948 -3964 -3980 -3996 -4012 -4028 -4044 -4060 -4076 -4092 -4108 -4124 -4140 -4156 -4172 -4188 -4204 -4220 -4236 -4252 -4268 -4284 -4300 -4316 -4332 -4348 -4364 -4380 -4396 -4412 -4428 -4444 -4460 -4476 -4492 Y 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 Pad # 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 Pad name S<20> S<19> S<18> S<17> S<16> S<15> S<14> S<13> S<12> S<11> S<10> S<9> S<8> S<7> S<6> S<5> S<4> S<3> S<2> S<1> DUMMY26 DUMMY27 DUMMY28 DUMMY29 DUMMY30 DUMMY31 DUMMY32 DUMMY33 G<219> G<217> G<215> G<213> G<211> G<209> G<207> G<205> G<203> G<201> G<199> G<197> G<195> G<193> G<191> G<189> G<187> G<185> G<183> G<181> G<179> G<177> G<175> G<173> G<171> G<169> G<167> G<165> G<163> G<161> G<159> G<157> G<155> G<153> G<151> G<149> G<147> G<145> G<143> G<141> G<139> G<137> G<135> G<133> G<131> G<129> G<127> X -4508 -4524 -4540 -4556 -4572 -4588 -4604 -4620 -4636 -4652 -4668 -4684 -4700 -4716 -4732 -4748 -4764 -4780 -4796 -4812 -4828 -4844 -4860 -4876 -4892 -4908 -4924 -4940 -4956 -4972 -4988 -5004 -5020 -5036 -5052 -5068 -5084 -5100 -5116 -5132 -5148 -5164 -5180 -5196 -5212 -5228 -5244 -5260 -5276 -5292 -5308 -5324 -5340 -5356 -5372 -5388 -5404 -5420 -5436 -5452 -5468 -5484 -5500 -5516 -5532 -5548 -5564 -5580 -5596 -5612 -5628 -5644 -5660 -5676 -5692 Y 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 Pad # 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 Pad name G<125> G<123> G<121> G<119> G<117> G<115> G<113> G<111> G<109> G<107> G<105> G<103> G<101> G<99> G<97> G<95> G<93> G<91> G<89> G<87> G<85> G<83> G<81> G<79> G<77> G<75> G<73> G<71> G<69> G<67> G<65> G<63> G<61> G<59> G<57> G<55> G<53> G<51> G<49> G<47> G<45> G<43> G<41> G<39> G<37> G<35> G<33> G<31> G<29> G<27> G<25> G<23> G<21> G<19> G<17> G<15> G<13> G<11> G<9> G<7> G<5> G<3> G<1> DUMMY34 DUMMY35 DUMMY36 DUMMY37 Alignment mark (1-a) (1-b) X -5708 -5724 -5740 -5756 -5772 -5788 -5804 -5820 -5836 -5852 -5868 -5884 -5900 -5916 -5932 -5948 -5964 -5980 -5996 -6012 -6028 -6044 -6060 -6076 -6092 -6108 -6124 -6140 -6156 -6172 -6188 -6204 -6220 -6236 -6252 -6268 -6284 -6300 -6316 -6332 -6348 -6364 -6380 -6396 -6412 -6428 -6444 -6460 -6476 -6492 -6508 -6524 -6540 -6556 -6572 -6588 -6604 -6620 -6636 -6652 -6668 -6684 -6700 -6716 -6732 -6748 -6764 X -6827.5 6827.5 Y 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 151 304 Y -297.5 -297.5 17 LGDP4525 Rev 0.9.0 Bump Arrangement 17 15 S1 – S528 G1 – G220 I/O pins 16 Bump size = 2006 um2 56 16 Figure 2 Bump Arrangement 18 LGDP4525 Rev 0.9.0 Block Function System Interface The LGDP4525 supports 2-system high-speed interfaces: 80-system high-speed interfaces to 8-, 9-, 16-, 18-bit parallel ports and a Serial Peripheral Interface (SPI). The interface mode is selected by setting the IM[3:0] pins. The LGDP4525 has a 16-bit index register (IR); an 18-bit write-data register (WDR); and an 18bit read-data register (RDR). The IR is the register to store index information from control registers and the internal GRAM. The WDR is the register to temporarily store data to be written to control registers and the internal GRAM. The RDR is the register to temporarily store data read from the GRAM. Data from the MPU to be written to the internal GRAM are first written to the WDR and then automatically written to the internal GRAM in internal operation. Data are read via the RDR from the internal GRAM. Therefore, invalid data are read out to the data bus when the LGDP4525 read the first data from the internal GRAM. Valid data are read out after the LGDP4525 performs the second read operation. Instructions are written consecutively as the instruction execution time except starting oscillator takes 0 clock cycle. Table 3: Register Selection (80-system 8-/9-/16-/18-bit Parallel Interface) 80-system I/F RW_WRB E_RDB 0 1 1 0 0 1 1 0 Function RS 0 0 1 1 Write an index to IR Read an internal status Write to control registers or the internal GRAM via WDR Read from the internal GRAM via RDR Table 4: Register Selection (Serial Peripheral Interface) Start Byte (SPI) R/W RS 0 0 1 0 0 1 1 1 Function Write an index to IR Read an internal status Write into control registers and the internal GRAM via WDR Read from the internal GRAM via RDR External Display Interface The LGDP4525 supports the RGB interface and the VSYNC interface as the external interface for displaying a moving picture. When the RGB interface is selected, display operations are synchronized with externally supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface mode, data (DB[17:0]) are written in synchronization with these signals according to the polarity of enable signal (ENABLE) to prevent flicker on display while updating display data. In VSYNC interface mode, the display operation is synchronized with the internal clock except frame synchronization, where the operation is synchronized with the VSYNC signal. Display data are written to the internal GRAM via the system interface. In this case, there are constraints in speed and method in writing data to the internal RAM. For details, see the “External Display Interface” section. The LGDP4525 allows for switching between the external display interface and the system interface by instruction so that the optimum interface is selected for the kind of picture to be displayed on the screen (still and/or moving picture(s)). The RGB interface, by writing all display data to the internal RAM, allows for transferring data only when updating the frames of a moving picture, contributing to low power requirement for moving picture display. 19 LGDP4525 Rev 0.9.0 Bit Operations The LGDP4525 supports a write data mask function for selectively writing data to the internal RAM in units of bits and a logical/compare operation to write data to the GRAM only when a condition is met as a result of comparing the data and the compare register bits. Address Counter (AC) The address counter (AC) gives an address to the internal GRAM. When the index of the register for setting a RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As writing data to the internal GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only in the rectangular area arbitrarily set by users on the GRAM. Graphics RAM (GRAM) GRAM is graphics RAM storing bit-pattern data of 87,120 (176 x 220 x 18/8) bytes, using 18 bits per pixel. Grayscale Voltage Generating Circuit The grayscale voltage generating circuit generates a liquid crystal drive voltage according to grayscale data set in the γ-correction register to display in 262,144 colors. For details, see the “γ-Correction Function” section. Timing Generator The timing generator generates a timing signal for operation of internal circuits such as the internal GRAM. The timing for the display operation such as RAM read operation and the timing for the internal operation such as access from the MPU are generated in the way not to interfere each other. Oscillator (OSC) The LGDP4525 generates RC oscillation with both an internal oscillator resistor(default) and an external oscillation resistor optionally placed between the OSC1 and OSC2 pins. The oscillation frequency is changed according to the value of FCNT bit of the register set or the value of an external resistor. Adjust the oscillation frequency in accordance to the operating voltage or the frame frequency. An operating clock can be input externally. During standby mode, RC oscillation is halted to reduce power consumption. For details, see “Oscillator” section. LCD Driver Circuit The LCD driver circuit of the LGDP4525 consists of a 528-output source driver (S1 to S528) and a 220-output gate driver (G1 to G220). Display pattern data are latched when the 528th bit data are input. The latched data control the source driver and generate a drive waveform. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 528-bit source outputs from the source driver is set with the SS bit and the shift direction of gate outputs from the gate driver is set with the GS bit. The scan mode by the gate driver is set with the SM bit. These bits allow setting an appropriate scan method for an LCD module. LCD Drive Power Supply Circuit The LCD drive power supply circuit generates the voltage levels GVDD, VGH, VGL and VCOM for driving an LCD. 20 LGDP4525 Rev 0.9.0 GRAM Address MAP S528 S527 … S526 S525 S524 S523 … S522 S521 … S520 S519 … S518 S517 … S11 … S10 … S9 … S8 … S7 … S6 … S5 DB[17:0] DB[17:0] DB[17:0] DB[17:0] 00AC 00AD 00AE 00AF 01AC 01AD 01AE 01AF 02AC 02AD 02AE 02AF 03AC 03AD 03AE 03AF 04AC 04AD 04AE 04AF 05AC 05AD 05AE 05AF 06AC 06AD 06AE 06AF 07AC 07AD 07AE 07AF 08AC 08AD 08AE 08AF 09AC 09AD 09AE 09AF 0AAC 0AAD 0AAE 0AAF 0BAC 0BAD 0BAE 0BAF 0CAC 0CAD 0CAE 0CAF 0DAC 0DAD 0DAE 0DAF 0EAC 0EAD 0EAE 0EAF 0FAC 0FAD 0FAE 0FAF 10AC 10AD 10AE 10AF 11AC 11AD 11AE 11AF 12AC 12AD 12AE 12AF 13AC 13AD 13AE 13AF S4 … … … … … … … … … … … … … … … … … … … … … S3 GS=0 GS=1 DB[17:0] DB[17:0] DB[17:0] DB[17:0] G1 G220 0000 0001 0002 0003 G2 G219 0100 0101 0102 0103 G3 G218 0200 0201 0202 0203 G4 G217 0300 0301 0302 0303 G5 G216 0400 0401 0402 0403 G6 G215 0500 0501 0502 0503 G7 G214 0600 0601 0602 0603 G8 G213 0700 0701 0702 0703 G9 G212 0800 0801 0802 0803 G10 G211 0900 0901 0902 0903 G11 G210 0A00 0A01 0A02 0A03 G12 G209 0B00 0B01 0B02 0B03 G13 G208 0C00 0C01 0C02 0C03 G14 G207 0D00 0D01 0D02 0D03 G15 G206 0E00 0E01 0E02 0E03 G16 G205 0F00 0F01 0F02 0F03 G17 G204 1000 1001 1002 1003 G18 G203 1100 1101 1102 1103 G19 G202 1200 1201 1202 1203 G20 G201 1300 1301 1302 1303 S2 … S/G pin S1 S12 Table 5: GRAM address and display panel position (SS = “0”, BGR = “0”) G213 G214 G215 G217 G217 G218 G219 G220 G8 G7 G6 G5 G4 G3 G2 G1 D400 D500 D600 D700 D800 D900 DA00 DB00 D401 D501 D601 D701 D801 D901 DA01 DB01 D402 D502 D602 D702 D802 D902 DA02 DB02 D403 D503 D603 D703 D803 D903 DA03 DB03 … … … … … … … … D4AC D5AC D6AC D7AC D8AC D9AC DAAC DBAC D4AD D5AD D6AD D7AD D8AD D9AD DAAD DBAD D4AE D5AE D6AE D7AE D8AE D9AE DAAE DBAE D4AF D5AF D6AF D7AF D8AF D9AF DAAF DBAF 21 LGDP4525 Rev 0.9.0 18-bit interface (262k colors) GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) 16-bit interface (65k colors) – TRI = “0” GRAM data DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) DB DB DB DB DB DB DB DB 8 7 6 5 4 3 2 1 S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) 16-bit interface (2 transfers/pixel, 262k colors) – TRI = “1”, DFM = “0” 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1 17 16 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) 16-bit interface (2 transfers/pixel, 262k colors) – TRI = “1”, DFM = “1” 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 1 2 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) Figure 3: GRAM data and display data: system interface (SS = “0”, BGR = “0”) 22 LGDP4525 Rev 0.9.0 9-bit interface (262k colors) 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 17 16 15 14 13 12 11 10 9 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) 8-bit interface or SPI (2 transfers/pixel, 65k colors) – TRI = “0” 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) 8-bit interface or SPI (3 transfers/pixel, 262k colors) – TRI = “1”, DFM = “0” 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) 8-bit interface (3 transfers/pixel, 65k colors) – TRI = “1”, DFM = “1” 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) Figure 4: GRAM data and display data: system interface (SS = “0”, BGR = “0”) 23 LGDP4525 Rev 0.9.0 18-bit RGB interface (262k colors) GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) 16-bit RGB interface (65k colors) GRAM data DB DB DB DB DB 17 16 15 14 13 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) DB DB DB DB DB DB DB DB DB DB DB 11 10 9 8 7 6 5 4 3 2 1 S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) 6-bit RGB interface (262k colors) 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (3n + 1) S (3n + 1) S (3n + 1) Note: n = lower eight bits of address (0 to 175) Figure 5: GRAM data and display data: system interface (SS = “0”, BGR = “0”) 24 LGDP4525 Rev 0.9.0 S528 S527 … S526 S525 S524 S523 … S522 S521 … S520 S519 … S518 S517 … S11 … S10 … S9 … S8 … S7 … S6 … S5 DB[17:0] DB[17:0] DB[17:0] DB[17:0] 0003 0002 0001 0000 0103 0102 0101 0100 0203 0202 0201 0200 0303 0302 0301 0300 0403 0402 0401 0400 0503 0502 0501 0500 0603 0602 0601 0600 0703 0702 0701 0700 0803 0802 0801 0800 0903 0902 0901 0900 0A03 0A02 0A01 0A00 0B03 0B02 0B01 0B00 0C03 0C02 0C01 0C00 0D03 0D02 0D01 0D00 0E03 0E02 0E01 0E00 0F03 0F02 0F01 0F00 1003 1002 1001 1000 1103 1102 1101 1100 1203 1202 1201 1200 1303 1302 1301 1300 S4 … … … … … … … … … … … … … … … … … … … … … S3 GS=0 GS=1 DB[17:0] DB[17:0] DB[17:0] DB[17:0] G1 G220 00AF 00AE 00AD 00AC G2 G219 01AF 01AE 01AD 01AC G3 G218 02AF 02AE 02AD 02AC G4 G217 03AF 03AE 03AD 03AC G5 G216 04AF 04AE 04AD 04AC G6 G215 05AF 05AE 05AD 05AC G7 G214 06AF 06AE 06AD 06AC G8 G213 07AF 07AE 07AD 07AC G9 G212 08AF 08AE 08AD 08AC G10 G211 09AF 09AE 09AD 09AC G11 G210 0AAF 0AAE 0AAD 0AAC G12 G209 0BAF 0BAE 0BAD 0BAC G13 G208 0CAF 0CAE 0CAD 0CAC G14 G207 0DAF 0DAE 0DAD 0DAC G15 G206 0EAF 0EAE 0EAD 0EAC G16 G205 0FAF 0FAE 0FAD 0FAC G17 G204 10AF 10AE 10AD 10AC G18 G203 11AF 11AE 11AD 11AC G19 G202 12AF 12AE 12AD 12AC G20 G201 13AF 13AE 13AD 13AC S2 … S/G pin S1 S12 Table 6: GRAM address and display panel position (SS = “1”, BGR = “1”) G213 G214 G215 G217 G217 G218 G219 G220 G8 G7 G6 G5 G4 G3 G2 G1 D4AF D5AF D6AF D7AF D8AF D9AF DAAF DBAF D4AE D5AE D6AE D7AE D8AE D9AE DAAE DBAE D4AD D5AD D6AD D7AD D8AD D9AD DAAD DBAD D4AC D5AC D6AC D7AC D8AC D9AC DAAC DBAC … … … … … … … … D403 D503 D603 D703 D803 D903 DA03 DB03 D402 D502 D602 D702 D802 D902 DA02 DB02 D401 D501 D601 D701 D801 D901 DA01 DB01 D400 D500 D600 D700 D800 D900 DA00 DB00 25 LGDP4525 Rev 0.9.0 18-bit interface (262k colors) GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) 16-bit interface (65k colors) – TRI = “0” GRAM data DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) DB DB DB DB DB DB DB DB 8 7 6 5 4 3 2 1 S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) 16-bit interface (2 transfers/pixel, 262k colors) – TRI = “1”, DFM = “0” 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1 17 16 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) 16-bit interface (2 transfers/pixel, 262k colors) – TRI = “1”, DFM = “1” 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 1 2 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) Figure 6: GRAM data and display data: system interface (SS = “1”, BGR = “1”) 26 LGDP4525 Rev 0.9.0 9-bit interface (262k colors) 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 17 16 15 14 13 12 11 10 9 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) 8-bit interface or SPI (2 transfers/pixel, 65k colors) – TRI = “0” 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) 8-bit interface or SPI (3 transfers/pixel, 262k colors) – TRI = “1”, DFM = “0” 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) 80-system 8-bit interface (3 transfers/pixel, 65k colors) – TRI = “1”, DFM = “1” 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) Figure 7: GRAM data and display data: system interface (SS = “1”, BGR = “1”) 27 LGDP4525 Rev 0.9.0 18-bit RGB interface (262k colors) GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) 16-bit RGB interface (65k colors) GRAM data DB DB DB DB DB 17 16 15 14 13 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) DB DB DB DB DB DB DB DB DB DB DB 11 10 9 8 7 6 5 4 3 2 1 S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) 6-bit RGB interface (262k colors) 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output pin S (528 – 3n) S (527 – 3n) S (526 – 3n) Note: n = lower eight bits of address (0 to 175) Figure 8: GRAM data and display data: system interface (SS = “1”, BGR = “1”) 28 LGDP4525 Rev 0.9.0 Instructions Outline The LGDP4525 adopts 18-bit bus architecture to interface to a high-performance microcomputer. The LGDP4525 starts internal processing after storing control information of externally sent 18-, 16-, 9-, 8-bit data in the instruction register IR and the data register DR. Since internal operations of the LGDP4525 are controlled by the signals sent from the microcomputer, the register selection signal RS, the read/write signal R/W, and the internal 16bit data bus signals IB[15:0] are called instructions. The LGDP4525 use the 18-bit format internally for operations involving internal GRAM access. The instructions of the LGDP4525 are categorized into the following groups. 1. 2. 3. 4. 5. 6. 7. 8. Specify the index of register Read a status Display control Power management Control Graphics data processing Set internal GRAM address Transfer data to and from the internal GRAM γ-correction Normally, the instruction for writing data to the internal GRAM is used the most often. Since the LGDP4525 can update internal GRAM address automatically as it writes data to the internal GRAM and minimize data transfer by using the window address function, there is less load on the program in the microcomputer. Since instructions are executed in 0 cycles, it is possible to write instructions consecutively. As the following figure shows, the way of assigning data to the 16 instruction bits IB[15:0] varies for each interface. Send instructions in accordance with the following data transfer format. 29 LGDP4525 Rev 0.9.0 18-bit interface GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction bit (IB) IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 16-bit interface GRAM data DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 DB DB DB DB DB DB DB DB 8 7 6 5 4 3 2 1 Instruction bit (IB) IB 15 IB 7 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 9-bit interface 2nd transfer 1st transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 17 16 15 14 13 12 11 10 9 Instruction bit (IB) IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 8-bit interface or SPI (2/3 transfers) 1st transfer IB 4 IB 3 IB 2 IB 1 IB 0 2nd transfer GRAM data DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 Instruction bit (IB) IB 15 IB 7 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 Figure 9: Instruction bits 30 LGDP4525 Rev 0.9.0 Explanation of each instruction The following are detailed explanations of instructions with illustrations of instruction bits IB[15:0] assigned to each interface. Index (IR) R/W RS W 0 IB15 IB14 IB13 IB12 IB11 IB10 * * * * * * IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 * * * ID6 ID5 ID4 ID3 ID2 ID1 ID0 The index register specifies the index (R00h to RFFh) of a control register or RAM control to be accessed using binary numbers “000_0000” to “111_1111”. An access to the register as well as instruction bits contained in it is prohibited unless its index is represented in this register. Status Read (SR) R/W RS R 0 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 L[7:0] IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 0 0 0 0 0 0 0 The SR bits represent an internal status of the LGDP4525. L[7:0] – Indicates the position of the line that is currently driving liquid crystal. ID CODE (R00h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 W 1 * * * * * R 1 0 1 0 0 0 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 * * * * * * * * * * * 1 0 1 0 0 1 0 0 1 0 1 The start oscillation instruction restarts an oscillator in halt state in standby mode. After executing this instruction, wait at least 10 ms for stabilizing oscillator before issuing a next instruction. The device code 4525 is read out when reading out this register forcibly. Driver Output Control (R01h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 VSPL HSPL DPL EPL SM IB9 IB8 IB7 IB6 IB5 GS SS 0 0 0 IB4 IB3 IB2 IB1 IB0 NL[4:0] SS – Selects the shift direction of outputs from the source pins. If SS = “0”, the source pins output from S1 to S528. If SS = “1”, the source pins output from S528 to S1. The combination of SS and BGR bits controls the order of assigning RGB dots to the source driver pins S1 to S528. If SS = “0” and BGR = “0”, RGB dots are assigned interchangeably from S1 to S528. If SS = “1” and BGR = “1”, RGB dots are assigned interchangeably from S528 to S1. When changing SS or BGR bits, RAM data must be rewritten. GS – Sets the shift direction of outputs from the gate driver. GS enables setting the scan order in accordance to the scan mode adopted in the module. SM – Sets the scan order by the gate driver. SM enables setting the scan order in accordance to the scan mode adopted in the module. See “Scan Mode Setting” section for details. EPL – Sets the polarity of the signal from the ENABLE pin in RGB interface mode. If EPL = “0”, ENABLE is low active. If EPL = “1”, ENABLE is high active. 31 LGDP4525 Rev 0.9.0 The following table shows the relationship between the EPL, ENABLE bits, and RAM access. Table 7 EPL 0 0 1 1 ENABLE 0 1 0 1 RAM write Enabled Inhibited Inhibited Enabled RAM address Updated Retained Retained Updated VSPL – Inverts the polarity of signals from the VSYNC pin. If VSPL = “0”, VSYNC is low active. If VSPL = “1”, VSYNC is high active. HSPL – Inverts the polarity of signals from the HSYNC pin. If HSPL = “0”, HSYNC is low active. If HSPL = “1”, HSYNC is high active. DPL – Inverts the polarity of signals from the DOTCLK pin. If DPL = “0”, data are read on the rising edge of the DOTCLK. If DPL = “1”, data are read on the falling edge of the DOTCLK. NL[4:0] – Sets the number of gate lines for driving a liquid crystal display panel at an interval of 8 lines as the following table. The GRAM address mapping is independent from the number of gate lines set with the NL bits. Select the number of gate lines that is equal to or more than that of the panel in use. Table 8 NL[4:0] 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh Display size Setting disabled 528 x 16 dots 528 x 24 dots 528 x 32 dots 528 x 40 dots 528 x 48 dots 528 x 56 dots 528 x 64 dots 528 x 72 dots 528 x 80 dots 528 x 88 dots 528 x 96 dots 528 x 104 dots 528 x 112 dots 528 x 120 dots 528 x 128 dots 528 x 136 dots 528 x 144 dots 528 x 152 dots 528 x 160 dots 528 x 168 dots 528 x 176 dots 528 x 184 dots 528 x 192 dots 528 x 200 dots 528 x 208 dots 528 x 216 dots 528 x 220 dots Lines Driven gate lines 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 220 G1 to G16 G1 to G24 G1 to G32 G1 to G40 G1 to G48 G1 to G56 G1 to G64 G1 to G72 G1 to G80 G1 to G88 G1 to G96 G1 to G104 G1 to G112 G1 to G120 G1 to G128 G1 to G136 G1 to G144 G1 to G152 G1 to G160 G1 to G168 G1 to G176 G1 to G184 G1 to G192 G1 to G200 G1 to G208 G1 to G216 G1 to G220 32 LGDP4525 Rev 0.9.0 LCD Driving Waveform Control (R02h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 FLD[1:0] IB9 IB8 B/C EOR IB7 IB6 0 0 IB5 IB4 IB3 IB2 IB1 IB0 NW[5:0] NW[5:0] – Specifies “n”, the number of gate lines from 1 to 64, to set the interval of inverting polarity when the LGDP4525 is set to generate a C-pattern waveform (B/C = “1”). The polarity is inverted at an interval of n+1 gate lines. EOR – When EOR = “1”, the polarity is inverted according to the result of EOR (exclusive OR) operation, which is performed on a signal for selecting either odd or even frames and a signal for inverting polarity in units of n lines when the LGDP4525 is set to generate a C-pattern waveform (B/C = “1”). This instruction is used when the number of gate lines for driving an LCD panel is at odds with the interval of n lines set for inverting polarity. For details, see “n-Line Inversion AC Drive” section. B/C – When the LGDP4525 is set to generate a field-inversion waveform (B/C = “0”), polarity is inverted at an interval of fields. The LGDP4525 inverts polarity at an interval of n lines, when a C-pattern waveform is generated (B/C = “1”) according to NW and EOR bits. For details, see “nLine Inversion AC Drive”. FLD[1:0] – Sets the number of fields for n-field interlaced scan. See “Interlaced Scan” for details. The FLD bits are disabled in external display interface mode. When using the external display interface, set FLD[1:0] = “01”. Table 9 FLD 00 01 10 11 Number of fields Setting disabled 1 field (= 1 frame) Setting disabled 3 fields Entry Mode (R03h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 TRI DFM 0 BGR 0 0 IB9 IB8 IB7 IB6 0 0 0 0 IB5 IB4 I/D[1:0] IB3 IB2 IB1 IB0 AM 0 0 0 The LGDP4525 modifies data sent from a microcomputer before writing them to the internal GRAM in order to write the GRAM data in high speed and reduce software processing load on the microcomputer. TRI – When TRI = “1”, data are transferred to the internal RAM in 8-bit x 3 transfers mode via the 8-bit interface. It is also possible to send data via the 16-bit interface or SPI in the transfer mode that realizes display in 262k colors in combination with DFM bits. When not using these interface modes, be sure to set TRI to “0”. DFM – Sets the mode of transferring data to the internal RAM when TRI = “1”. See the following figures for details. 33 LGDP4525 Rev 0.9.0 Table 10 TRI 0 DFM * RAM write data transfer via serial peripheral interface (SPI) SPI (2 transfers/pixel) – 65k colors available 1st transfer GRAM D15 D14 D13 D12 D11 D10 D9 data RGB assign 1 0 R5 R4 R3 R2 R1 R0 G5 2nd transfer D8 G4 G3 D7 D6 D5 D4 D3 D2 D1 D0 G2 G1 G0 B5 B4 B3 B2 B1 B0 SPI (3 transfers/pixel) – 262k colors available 1st transfer 2nd transfer GRAM D23 D22 D21 D20 D19 D18 D15 D14 D13 D12 D11 D10 D7 data RGB assign 1 1 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 3rd transfer D6 D5 D4 D3 D2 B4 B0 G1 G0 B5 B3 B2 B1 DB 17 DB 16 DB 15 2nd transfer DB DB DB 14 13 12 DB 11 DB 10 G2 G1 G0 B5 B4 B2 B1 B0 2nd transfer DB DB DB 15 14 13 DB 12 DB 17 DB 16 3rd transfer DB DB DB 15 14 13 DB 12 G1 G0 B5 B4 2nd transfer DB DB DB 15 14 13 DB 12 DB 17 DB 16 G0 B5 B4 Setting disabled Table 11 TRI 0 1 1 DFM * 0 1 RAM write data transfer via 8-bit interface 8-bit interface (2 transfers/pixel) – 65k colors available GRAM data DB 17 DB 16 DB 15 1st transfer DB DB DB 14 13 12 DB 11 DB 10 RGB assign R5 R4 R3 R2 G5 G4 R1 R0 G3 B3 8-bit interface (3 transfers/pixel) – 262k colors available GRAM data DB 17 DB 16 RGB assign R5 R4 1st transfer DB DB DB 15 14 13 R3 R2 R1 DB 12 DB 17 DB 16 R0 G5 G4 G3 G2 B3 B2 B1 B0 3rd transfer DB DB DB 15 14 13 DB 12 8-bit interface (3 transfers/pixel) – 65k colors available GRAM data DB 17 DB 16 RGB assign R5 R4 1st transfer DB DB DB 15 14 13 DB 12 DB 17 DB 16 R1 R0 G5 G4 R3 R2 G3 G2 G1 B3 B2 B1 B0 34 LGDP4525 Rev 0.9.0 Table 12 TRI 0 1 1 DFM * 0 1 RAM write data transfer via 16-bit interface 16-bit interface (1 transfers/pixel) – 65k colors available GRAM data DB 17 DB 16 DB 15 1st transfer DB DB DB 14 13 12 DB 11 DB 10 RGB assign R5 R4 R3 R2 G5 G4 R1 R0 G3 DB 8 DB 7 DB 6 2nd transfer DB DB DB 5 4 3 DB 2 DB 1 G2 G1 G0 B5 B4 B3 B2 B1 B0 16-bit interface MSB mode (2 transfers/pixel) – 262k colors available GRAM data DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 RGB assign R5 R4 R3 R2 R1 R0 G5 1st transfer DB DB DB 10 8 7 G4 G3 G2 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 2nd DB DB 17 16 G1 G0 B5 B4 B3 B2 B1 B0 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 B5 B4 B3 B2 B1 B0 16-bit interface LSB mode (2 transfers/pixel) – 262k colors available GRAM data RGB assign 1st DB DB 2 1 DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 R5 R3 R2 R1 R0 G5 G4 G3 R4 2nd transfer DB DB DB 10 8 7 G2 G1 G0 BGR – Reverses the order of RGB dots to BGR when writing 18-bit pixel data to the internal GRAM. Note that the orders of RGB dots in both WM[17:0] and CP[17:0] bits are automatically changed upon setting BGR to “1”. I/D[1:0] – The address counter is automatically incremented by 1 as writing data to the internal GRAM when I/D = “1”. The address counter is automatically decremented by 1 as writing data to the internal GRAM when I/D = “0”. The increment/decrement can be set separately to each upper (AD[15:8]) / lower (AD[7:0]) byte of address. The transition direction of address (vertical/horizontal) when writing data to the internal GRAM is set with the AM bit. AM – Sets the direction of automatically updating address for writing data to the internal RAM in the address counter (AC). When AM = “0”, the address is updated in horizontal writing direction. When AM = “1”, the address is updated in vertical writing direction. When a window address area is set, data are written only to the GRAM area specified with window address in the writing direction set with I/D[1:0] and AM bits. 35 LGDP4525 Rev 0.9.0 Table 13: Address transition directions I/D[1:0] = “00” Horizontal decrement Vertical decrement AM = “0” Horizontal 0000h AM = “1” Vertical 0000h I/D[1:0] = “01” Horizontal increment Vertical decrement I/D[1:0] = “10” Horizontal decrement Vertical increment 0000h EFAFh 0000h EFAFh 0000h EFAFh 0000h EFAFh I/D[1:0] = “11” Horizontal increment Vertical increment EFAFh 0000h EFAFh 0000h EFAFh EFAFh Resize Control (R04h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 0 0 IB9 IB8 RCV[1:0] IB7 IB6 0 0 IB5 IB4 RCH[1:0] IB3 IB2 0 0 IB1 IB0 RSZ[1:0] RSZ[1:0] – Sets the resizing factor. When the RSZ bits are set for resizing, the LGDP4525 writes the data of the resized image in both horizontal and vertical directions according to the resizing factor on the internal GRAM. RCH[1:0] – Sets the number of pixels made as the remainder in horizontal direction as a result of resizing a picture. By specifying the number of remainder pixels with RCH bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCH = 2’h0 when not using the resizing function (RSZ = 2’h0) or there are no remainder pixels. RCV[1:0] – Sets the number of pixels made as the remainder in vertical direction as a result of resizing a picture. By specifying the number of remainder pixels with the RCV bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCV = 2’h0 when not using the resizing function (RSZ = 2’h0) or there are no remainder pixels. Table 14: Resizing scale RSZ[1:0] 00 01 10 11 Resizing scale No resizing (x 1) x 1/2 Setting disabled x 1/4 Table 15: Surplus pixels in horizontal/vertical directions RCH[1:0]/RCV[1:0] 00 01 10 11 Surplus pixels 0 pixel 1 pixel 2 pixels 3 pixels Display Control 1 (R07h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 PTS[2:0] IB9 IB8 IB7 IB6 VLE[1:0] SPT 0 0 IB5 IB4 IB3 IB2 GON DTE CL REV IB1 IB0 D[1:0] PTS[2:0] – Sets the kind of source output in non-display area in partial display mode. For details, see the “Partial Display Function” section. 36 LGDP4525 Rev 0.9.0 Table 16 PTS Source output in non-display area Positive polarity Negative polarity 000 001 010 011 100 101 110 111 V63 Setting disabled GND High impedance V63 Setting disabled GND High impedance V0 Setting disabled GND High impedance V0 Setting disabled GND High impedance Operating grayscale amplifier in non-display area V0 to V63 V0 to V63 V0 to V63 V0, V63 V0, V63 V0, V63 VLE[1:0] – When VLE[0] = “1”, the first display is scrolled up in vertical direction. When VLE[1] = “1”, the second display is scrolled up in vertical direction. The first and second displays cannot be scrolled simultaneously. This function is not available with the external display interface. In this case, set VLE to “00”. Table 17 VLE 00 01 10 11 2nd display image Fixed Fixed Scroll up Setting disabled 1st display image Fixed Scroll up Fixed SPT – When SPT = “1”, the LCD is driven in 2 split screens. For details, see the “Partial Display Function” section. This function is not available with the external display interface. In this case, set SPT to “0”. GON, DTE – Sets the output level of gate lines G1 to G220 as follows. Table 18 GON 0 0 1 1 DTE 0 1 0 1 Gate output G1 to G220 VGH VGH VGL VGH/VGL CL – When CL = “1”, the 8-color display mode is selected. For details, see the “8-Color Display Mode” section. The 8-color display mode is not available in external interface mode. REV – By setting REV = “1”, the grayscale levels can be inverted. This means, the REV bit allows both normally black and normally white panels to display a same image from the same data. The source output level during front and back porch periods and a blank period in partial display mode is set with the PTS bits. 37 LGDP4525 Rev 0.9.0 … 1 3Fh 00h V0 V0 V63 V63 … … Source output in display area Positive polarity Negative polarity V63 V0 … REV … 0 GRAM data (RGB each) 00h … Table 19 3Fh V63 V0 D[1:0] – A graphics display appears on the screen when D[1] = “1”, and is turned off upon setting D[1] = “0”. When setting D[1] = “0”, the graphics display data are retained in the internal GRAM and the display appears instantly on the screen upon setting D[1] to “1”. When the D[1] bit is “0”, i.e. while no display is shown on the screen, all source outputs are at the GND level to reduce charging/discharging current on liquid crystal cells, which is generated during liquid crystal AC drive. Upon setting D = “00”, the display is turned off and internal display operations are halted completely.In combination with the GON, DTE bit, the D[1:0] bits controls ON/OFF of graphics display. For details, see the flowcharts in the “Instruction Setting” section. Table 20 D[1:0] 00 01 10 11 Source and VCOM outputs GND GND Non-lit display Display IC internal operation Halt Operate Operate Operate Notes: 1. Data write operations from the microcomputer are performed irrespective of the D[1:0] bits. 2. When D[1:0] = “00”, the LGDP4525 is in the same state as the standby mode. However, this does not mean the D[1:0] bits are written over to “00” upon setting the standby mode. Display Control 2 (R08h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 FP[7:0] IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 BP[7:0] FP[7:0]/BP[7:0] – Sets the blank period made at the beginning and the end of a display (front porch and back porch, respectively). The FP[3:0] and BP[3:0] bits specify the number of lines for the front and back porch periods, respectively. In setting, be sure: BP + FP ≤ 16 lines FP ≥ 2 lines BP ≥ 2 lines In external display interface mode, a back porch (BP) period starts on the falling edge of the VSYNC signal, followed by a display operation period. After driving the number of lines set with NL bits, a front porch period starts. After the front porch period, a blank period continues until the next input of VSYNC signal. 38 LGDP4525 Rev 0.9.0 Table 21 FP/BP 0 1 2 3 4 5 6 7 Number of lines for the front/back porches Setting disabled Setting disabled 2 lines 3 lines 4 lines 5 lines 6 lines 7 lines 15 15 lines 253 254 255 253 lines 254 lines 255 lines VSYNC Back porch Display area Front porch Note: The output timing to the LCD is delayed by a 2-line period from the input of synchronizing signal. Figure 10: Back/front porches Set the BP[7:0], FP[7:0] bits as follows in each operation mode. Table 22 Internal clock operation RGB interface VSYNC interface FLD[1:0] = “01” FLD[1:0] = “11” BP ≥ 2 lines BP = 3 lines BP ≥ 2 lines BP ≥ 2 lines FP ≥ 2 lines FP = 5 lines FP ≥ 2 lines FP ≥ 2 lines FP + BP ≤ 16 lines FP + BP ≤ 16 lines FP + BP = 16 lines Display Control 3 (R09h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 0 0 IB9 IB8 IB7 IB6 0 0 0 0 IB5 IB4 PTG[1:0] IB3 IB2 IB1 IB0 ISC[3:0] PTG[1:0] – Sets the scan mode by the gate driver in non-display area. 39 LGDP4525 Rev 0.9.0 Table 23 PTG 00 01 10 11 Gate outputs in non-display area Normal scan VGL (fixed) Interval scan Setting disabled ISC[3:0] – Sets the scan cycle by the gate driver when the PTG bits are set to the interval scan mode in non-display area. The scan cycle can be set as (2 * ISC + 1) frames, where ISC is from 1 to 15. In this case, polarity is inverted as gate lines are scanned. Frame Cycle Control (R0Bh) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 NO[1:0] SDT[1:0] EQ[1:0] IB9 IB8 DIV[1:0] IB7 IB6 IB5 0 IB4 IB3 IB2 RTN[6:1] IB1 IB0 0 RTN[6:0] - Sets the 1H (1 line) period in internal oscillator cycles. RTN[6:0] should be greater than or equal to 44 (= 2Ch). Table 24 RTN[6:0] 2Ch 2Eh 30h …. 7Ah 7Ch 7Eh Clock cycles per line 44 46 48 …. 122 124 126 DIV[1:0] – The internal operation is synchronized with the clock, which is divided with the division ratio set with the DIV bits. Set the RTN and DIV bits to adjust frame frequency. If the number of lines for driving liquid crystal is changed, the frame frequency must also be adjusted. See “Frame Frequency Adjustment Function”. In RGB interface mode, the DIV bits are disabled. Table 25 DIV 0 1 2 3 Division ratio 1 2 4 8 Internal operation clock frequency fosc/1 fosc/2 fosc/4 fosc/8 Note: fosc = Frequency of RC oscillation Formula to calculate frame frequency Frame frequency = Fosc (Clock cycles per line * Division ratio * (Active line + BP + FP)) Where, fosc = frequency of RC oscillation, Active line = number of active lines for driving liquid crystal (NL bits), Division ratio = DIV bits, Clock cycles per line = RTN bits, FP = the number of lines for the front porch period and BP = the number of lines for the back porch period. EQ[1:0] – Sets the equalization. Recommend that EQ[1:0] sets 11. SDT[1:0] – Sets the source output delay from the falling edge of gate output. 40 LGDP4525 Rev 0.9.0 Table 26 SDT[1:0] 0 1 2 3 Source output delay Internal operation (internal oscillator) 2 clocks 4 clocks 6 clocks 8 clocks RGB I/F operation (DOTCLK) 8 clocks 16 clocks 24 clocks 32 clocks NO[1:0] – Sets the non-overlap period of outputs from adjacent gate lines. Table 27 NO[1:0] 0 1 2 3 Gate output non-overlap period Internal operation (internal oscillator) 0 clocks 8 clocks 12 clocks 16 clocks RGB I/F operation (DOTCLK) 0 clocks 32 clocks 48 clocks 64 clocks Note that the clock mentioned in the above description refers to different clocks according to the interface mode in use as follows. Table 28 Interface mode in use Internal operation mode RGB interface mode VSYNC interface mode Reference clock Internal oscillator DOTCLK Internal oscillator External Display Interface Control 1 (R0Ch) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 0 0 IB9 IB8 IB7 IB6 0 RM 0 0 IB5 IB4 DM[1:0] IB3 IB2 0 0 IB1 IB0 RIM[1:0] RM – Selects the interface to access the LGDP4525’s internal GRAM. The RAM access is possible only via the interface selected with the RM bit. Set RM to “1” when writing display data via the RGB interface. The LGDP4525 allows for setting the RM bit not constrained by the mode used for the display operation. This means it is possible to rewrite display data via a system interface by setting RM = “0” even while display operations are performed via the RGB interface. Table 29: RM bit RM 0 1 Interface for RAM access System interface/VSYNC interface RGB interface RIM[1:0] – Selects one of the following RGB interface modes when the RGB interface mode is selected with the RM and DM bits. Make this setting before display operation via external display interface. Do not make changes to the setting during display operation. Table 30: RIM[1:0] bits RIM 0 1 2 3 RGB interface mode 18-bit RGB interface (1 transfer/pixel) 16-bit RGB interface (1 transfer/pixel) 6-bit RGB interface (3 transfers/pixel) Setting disabled DM[1:0] – Sets the display operation mode. By setting DM[1:0] as follows, it is possible to switch between the internal clock operation mode and the external display interface mode. Do not switch between different external interface modes (RGB interface and VSYNC interface). 41 LGDP4525 Rev 0.9.0 Table 31: DM[1:0] bits DM 0 1 2 3 Display operation mode Internal clock operation RGB interface VSYNC interface Setting disabled Notes: 1. Instructions are set only via the system interface. 2. Be sure that data transfer and dot clock input are performed in units of RGB dots in 6-bit RGB interface mode. As the following table, the optimum interface for the state of display can be selected by setting the external display interface mode. Table 32 Display State Still pictures Moving pictures Rewrite still picture area while display moving pictures Moving pictures Operation mode Internal clock operation RGB interface (1) RGB interface (2) VSYNC interface RAM access (RM) System interface (RM = 0) RGB interface (RM = 1) RGB interface (RM = 0) System interface (RM = 0) Display mode (DM) Internal clock operation (DM = 00) RGB interface (DM = 01) RGB interface (DM = 01) VSYNC interface (DM = 10) Notes: 1. Instructions are set only via the system interface. 2. The RGB-I/F and the VSYNC-I/F are not used simultaneously. 3. Do not make changes to the RGB-I/F mode setting (RIM) while the RGB I/F is in operation. 4. See the “External Display Interface” section for the flowcharts to follow when switching from one mode to another. Internal clock operation mode All display operations are synchronized with the signals generated from the internal operating clock in this mode. None of inputs via the external display interface are valid. The internal RAM is accessible only via the system interface. RGB interface mode (1) In RGB interface mode, display operations are synchronized with the frame synchronizing signal (VSYNC), the line synchronizing signal (HSYNC), and the dot clock (DOTCLK). These signals must be supplied through a display period using the RGB interface. Display data are transferred in units of pixels via the DB[17:0] pins. All display data are stored in the internal RAM. The combined use of the high-speed RAM write mode and the widow address function enables not only displaying data in moving picture area and data in the internal RAM in other than the moving picture area at a time but also minimizing data transfer by transferring data only when rewriting screen. The front porch (FP) and back porch (BP) periods, and the display duration period (NL) are automatically calculated inside the LGDP4525 by internally counting the number of line synchronizing signal clocks (HSYNC) from the falling edge of the frame synchronizing signal (VSYNC). Take this into consideration when transferring RGB data via the DB[17:0] pins. 42 LGDP4525 Rev 0.9.0 RGB interface mode (2) The LGDP4525 enables rewriting RAM data via the system interface while the RGB interface is selected for display operation. In this case, Be sure to write RAM data while display data are not being transferred via the RGB interface (ENABLE = High). To return to the display data transfer mode via the RGB interface, change the ENABLE bit first and then set a new address (AD[15:0]) in the AC and the index register to R22h. VSYNC interface mode In VSYNC interface mode, internal display operations are synchronized with the frame synchronizing signal (VSYNC). In this mode, a moving picture can be displayed via the system interface by writing data to the internal RAM at more than the minimum speed from the falling edge of frame synchronizing signal (VSYNC). In this case, there are constraints in the RAM writing speed and method. For details, see “External Display Interface”. No external signal input except VSYNC input is accepted in VSYNC interface mode. The timings and durations of front porch (FP), back porch (BP) periods and display duration period (NL) are automatically calculated from the falling edge of the frame synchronization signal (VSYNC) according to the instructions set in the relevant registers. Oscillator Control (R0Fh) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 0 0 0 IB8 FCNT[4:0] IB7 IB6 0 0 IB5 IB4 IB3 FLM_CLK 0 IB2 IB1 IB0 FFO EXR Halt_OSC Halt_OSC – Stop oscillator circuit and internal clock is disabled. EXR – If set, an external resistor is used for oscillator circuit instead of an internal resistor. An external resistor should be connected to OSC1 and OSC2 pin. FFO – Register for test purpose at IC-side. In normal operation, fix to FFO=0. FLM_CLK – If set, FLM pin is used as an external clock input. FCNT – Set the frequency of oscillator. Table 33 FCNT[4:0] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 FOSC(MHZ) 0.29 0.38 0.47 0.57 0.65 0.74 0.83 0.88 0.99 1.07 1.17 1.24 1.33 1.41 1.52 1.56 FCNT[4:0] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 FOSC(MHZ) 1.66 1.74 1.82 1.88 1.99 2.07 2.14 2.18 2.31 2.39 2.47 2.53 2.66 2.72 2.77 2.79 43 LGDP4525 Rev 0.9.0 Power Control 1 (R10h) Power Control 2 (R11h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 W 1 0 SAP[2:0] 0 0 0 IB3 IB2 IB1 0 BT[2:0] IB9 IB8 IB7 0 IB6 AP[2:0] IB5 IB4 STB DK SLP DSTB IB0 0 DC1[2:0] 0 DC0[2:0] 0 VC[2:0] SAP[2:0] – Adjusts the constant current in the operational amplifier circuit for the source driver. Setting a larger constant current stabilizes the operational amplifier circuit, but current consumption also increases. Adjust the constant current taking the trade-off between display quality and current consumption into account. During no display period, set SAP[2:0] = “000” to halt the operational amplifier circuit to reduce current consumption. Table 34 SAP[2:0] 0 1 2 3 4 5 6 7 DC current of op-amp Halt Setting disable 0.5 0.75 1 1.25 1.5 1.75 Note: The DC current in the table is shown as the ratio to the DC current when SAP[2:0] = “100”. BT[2:0] – Changes the rate applied to the step-up circuit. Adjust the step-up rate according to the voltage in use. To reduce current consumption, set a smaller step-up rate. Table 35 BT[2:0] 0 AVDD VCI1 x 2 [x2] VCI1 x 2 [x2] VCI1 x 2 [x2] VCI1 x 2 [x2] VCI1 x 2 [x2] VCI1 x 2 [x2] VCI1 x 2 [x2] VCI1 x 2 [x2] 1 2 3 4 5 6 7 VCL VCI1 x -1 [x-1] VCI1 x -1 [x-1] VCI1 x -1 [x-1] VCI1 x -1 [x-1] VCI1 x -1 [x-1] VCI1 x -1 [x-1] VCI1 x -1 [x-1] VCI1 x -1 [x-1] VGH AVDD x 3 [x6] AVDD x 3 [x6] AVDD x 3 [x6] VCI1 + AVDD x 2 [x5] VCI1 + AVDD x 2 [x5] VCI1 + AVDD x 2 [x5] AVDD x 2 [x4] AVDD x 2 [x4] VGL (VCI1 + AVDD x2) [x-5] (AVDD x2) [x-4] (VCI1 + AVDD) [x-3] (VCI1 + AVDD x2) [x-5] (AVDD x2) [x-4] (VCI1 + AVDD) [x-3] (AVDD x2) [x-4] (VCI1 + AVDD) [x-3] Capacitor connection pins AVDD, VGH, VGL, VCL, C11±, C13±, C21±, C22± AVDD, VGH, VGL, VCL, C11±, C13±, C21±, C22± AVDD, VGH, VGL, VCL, C11±, C13±, C21±, C22± AVDD, VGH, VGL, VCL, C11±, C13±, C21±, C22± AVDD, VGH, VGL, VCL, C11±, C13±, C21±, C22± AVDD, VGH, VGL, VCL, C11±, C13±, C21±, C22± AVDD, VGH, VGL, VCL, C11±, C13±, C21±, C22± AVDD, VGH, VGL, VCL, C11±, C13±, C21± Notes: 1. The step-up rate from the VCI1 level is shown in the bracket [ ] in the above table. 2. When using the AVDD, VCL, VGH and VGL voltage levels, connect a capacitor to each capacitor connection pin. 3. Set the following voltages within the limits: AVDD = max 5.5V, VCL = min –3.3V, VGH = max 16.5V, VGL = min –16.5V. AP[2:0] – Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. Setting a larger constant current stabilizes the operational amplifier circuit, but current consumption increases. Adjust the constant current taking the trade-off between display 44 LGDP4525 Rev 0.9.0 quality and current consumption into account. During no display period, set AP[2:0] = “000” to halt the operational amplifier circuit and step-up circuits to reduce current consumption. Table 36 AP[2:0] 0 1 2 3 4 5 6 7 DC current of op-amp Halt 0.25 0.5 1 2 3 4 5 Note: The DC current in the table is shown as the ratio to the DC current when AP[2:0] = “100”. STB – When STB = “1”, the LGDP4525 enters the standby mode. In standby mode, display operations are completely halted, and all internal operations including internal RC oscillation and reception of external clocks are halted. See the “Instruction Setting” section for the sequence. Only the instruction to exit the standby mode (STB = “0”) or that to start oscillators is accepted during standby mode. In standby mode, the GRAM data and the instruction sets before entering the standby mode are retained. DK – Controls the operation of step-up circuit 1. In supplying power to the LGDP4525, stop generating AVDD for a moment, and wait until the VGH level is stabilized. Then start generating the AVDD level. For details, see the “Power Supply Setting” section. Table 37 DK 0 1 Operation of step-up circuit 1 Operate Halt SLP – When SLP = “1”, the LGDP4525 enters the sleep mode. In sleep mode, internal display operation except RC oscillation is halted to reduce current consumption. In sleep mode, only the following instructions, BT, DC0, DC1, AP, SLP, STB, VRH, VINIT, and VCM, are accepted. No changes to the GRAM data or other instruction sets are accepted. In sleep mode, the GRAM data and the instruction sets before entering the sleep mode are retained. DSTB – When DSTB = “1”, the LGDP4525 enters the deep standby mode. In deep standby mode, display operations are completely halted, with shutdown internal vdd regulator used as logic supply voltage and all internal operations including internal RC oscillation and reception of external clocks are halted. See the “Instruction Setting” section for the sequence. Only the sequence to exit the deep standby mode is hardware reset or 6 tmes CSB pin low consecutively. GRAM data and instruction sets are susceptible to destruction and must be set again after exiting the deep standby mode DC1[2:0] – Selects the operating frequency of the step-up circuit 2. A higher step-up operating frequency enhances the driving capacity of the step-up circuit and the quality of display. Adjust the frequency taking the trade-off between display quality and current consumption into account. DC0[2:0] – Selects the operating frequency of the step-up circuit 1. A higher step-up operating frequency enhances the driving capacity of the step-up circuit and the quality of display. Adjust the frequency taking the trade-off between display quality and current consumption into account. Note: Setting step-up cycles of step-up circuits 1/2, be sure the step-up cycle of the step-up circuit 1 is more than that of the step-up circuit 2 (step-up frequency 1 ≥ step-up frequency 2). 45 LGDP4525 Rev 0.9.0 Table 38 DC1[2:0] 0 1 2 3 4 5 6 7 fDCDC2 Oscillation clock / 16 Oscillation clock / 32 Oscillation clock / 64 Oscillation clock / 128 Oscillation clock / 256 Oscillation clock / 512 Oscillation clock / 1024 Oscillation clock / 2048 Table 39 DC0[2:0] 0 1 2 3 4 5 6 7 fDCDC1 Oscillation clock / 8 Oscillation clock / 16 Oscillation clock / 32 Oscillation clock / 64 Oscillation clock / 128 Oscillation clock / 256 Oscillation clock / 512 Oscillation clock / 1024 Note: Be sure fDCDC1 ≥ fDCDC2 when setting DC0, DC1. VC[2:0] – Sets the rate applied to VCI to generate the reference voltage for the GVDD and VCI1 levels. Table 40 VC[2:0] 0 1 2 3 4 5 6 7 VCI1 output voltage VCI 0.93 x VCI 0.88 x VCI 0.82 x VCI 0.78 x VCI 0.74 x VCI 0.70 x VCI Halt(Hi-z) Power Control 3 (R12h) Power Control 4 (R13h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 W 1 0 0 0 W 1 0 0 VCOMG 0 0 0 VDV[4:0] IB9 IB8 IB7 IB6 IB5 IB4 0 0 0 0 0 PON 0 IB3 IB2 IB1 IB0 VRH[3:0] VCM[6:0] PON – Controls ON/OFF of VGL output. To stop VGL output, set PON to “0”. To start VGLoutput, set PON to “1”. VRH[3:0] – Sets the amplifying rate (1.38 to 1.83) applied to REGP to output the GVDD level, which is a reference level for the VCOM level and the grayscale voltage level. 46 LGDP4525 Rev 0.9.0 Table 41: VRH VRH[3:0] 0 to 7 8 9 A B C D E F GVDD voltage Halt VCI1 x 1.38 VCI1 x 1.45 VCI1 x 1.53 VCI1 x 1.60 VCI1 x 1.68 VCI1 x 1.75 VCI1 x 1.83 Setting disable VCOMG – When VCOMG = “1”, the LGDP4525 can output a negative voltage level for VCOML (1.0V to –VCI1+0.5V Max.). When VCOMG = “0”, the LGDP4525 halts the amplifier for negative voltage to save power. When VCOMG = “0”, the VDV bits are disabled. In this case, adjust the amplitude of VCOM AC voltage with the VCM bits (VCOMH setting). Set PON to “1” before setting VCOMG to “1”. VDV[4:0] – Sets the amplitude of VCOM AC voltage. The VDV bits can set the VCOM amplitude 0.6 to 1.23 times the GVDD level. If VCOMG = “0”, the VDV bits are disabled. Table 42 VDV[4:0] 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh VCOM amplitude GVDD x 0.60 GVDD x 0.63 GVDD x 0.66 GVDD x 0.69 GVDD x 0.72 GVDD x 0.75 GVDD x 0.78 GVDD x 0.81 GVDD x 0.84 GVDD x 0.87 GVDD x 0.90 GVDD x 0.93 GVDD x 0.96 GVDD x 0.99 GVDD x 1.02 Setting disabled VDV[4:0] 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh VCOM amplitude GVDD x 1.05 GVDD x 1.08 GVDD x 1.11 GVDD x 1.14 GVDD x 1.17 GVDD x 1.20 GVDD x 1.23 Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Notes: 1. Adjust GVDD and VCM so that VCOMH are set within the range 3.0 to (AVDD – 0.5)V 2. Adjust GVDD and VDV so that the amplitude of VCOM are set to 6.0V or less. VCM[6:0] – Set the VCOMH level (the high level of VCOM AC voltage). The VCM bits can set the VCOMH level 0.4 to 0.98 times the GVDD level. To stop adjusting VCOMH with the internal volume and adjust it with an external resistor from VCOMR, set VCM = “11111”. 47 LGDP4525 Rev 0.9.0 Table 43 VCM [6:0] 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh VCOMH VCM [6:0] 20h 21h 22h 23h 24h 25h 26h 27h 28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh 30h 31h 32h 33h 34h 35h 36h 37h 38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh GVDD x 0.400 GVDD x 0.405 GVDD x 0.410 GVDD x 0.415 GVDD x 0.420 GVDD x 0.425 GVDD x 0.430 GVDD x 0.435 GVDD x 0.440 GVDD x 0.445 GVDD x 0.450 GVDD x 0.455 GVDD x 0.460 GVDD x 0.465 GVDD x 0.470 GVDD x 0.475 GVDD x 0.480 GVDD x 0.485 GVDD x 0.490 GVDD x 0.495 GVDD x 0.500 GVDD x 0.505 GVDD x 0.510 GVDD x 0.515 GVDD x 0.520 GVDD x 0.525 GVDD x 0.530 GVDD x 0.535 GVDD x 0.540 GVDD x 0.545 GVDD x 0.550 GVDD x 0.555 VCOMH VCM [6:0] 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh GVDD x 0.560 GVDD x 0.565 GVDD x 0.570 GVDD x 0.575 GVDD x 0.580 GVDD x 0.585 GVDD x 0.590 GVDD x 0.595 GVDD x 0.600 GVDD x 0.606 GVDD x 0.610 GVDD x 0.615 GVDD x 0.620 GVDD x 0.625 GVDD x 0.630 GVDD x 0.635 GVDD x 0.640 GVDD x 0.645 GVDD x 0.650 GVDD x 0.655 GVDD x 0.660 GVDD x 0.665 GVDD x 0.670 GVDD x 0.675 GVDD x 0.680 GVDD x 0.685 GVDD x 0.690 GVDD x 0.695 GVDD x 0.700 GVDD x 0.705 GVDD x 0.710 GVDD x 0.715 VCOMH VCM[ 6:0] 60h 61h 62h 63h 64h 65h 66h 67h 68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh 70h 71h 72h 73h 74h 75h 76h 77h 78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh GVDD x 0.720 GVDD x 0.725 GVDD x 0.730 GVDD x 0.735 GVDD x 0.740 GVDD x 0.745 GVDD x 0.750 GVDD x 0.755 GVDD x 0.760 GVDD x 0.765 GVDD x 0.770 GVDD x 0.775 GVDD x 0.780 GVDD x 0.785 GVDD x 0.790 GVDD x 0.795 GVDD x 0.800 GVDD x 0.805 GVDD x 0.810 GVDD x 0.815 GVDD x 0.820 GVDD x 0.825 GVDD x 0.830 GVDD x 0.835 GVDD x 0.840 GVDD x 0.845 GVDD x 0.850 GVDD x 0.855 GVDD x 0.860 GVDD x 0.865 GVDD x 0.870 GVDD x 0.875 VCOMH GVDD x 0.880 GVDD x 0.885 GVDD x 0.890 GVDD x 0.895 GVDD x 0.900 GVDD x 0.905 GVDD x 0.910 GVDD x 0.915 GVDD x 0.920 GVDD x 0.925 GVDD x 0.930 GVDD x 0.935 GVDD x 0.940 GVDD x 0.945 GVDD x 0.950 GVDD x 0.955 GVDD x 0.960 GVDD x 0.965 GVDD x 0.970 GVDD x 0.975 GVDD x 0.980 Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Power Control 5 (R14h) R/W RS W IB15 IB14 IB13 IB12 IB11 IB10 IB9 1 0 0 0 0 0 RI[2:0] IB8 IB7 0 IB6 IB5 RV[2:0] IB4 IB3 IB2 0 0 IB1 IB0 LbiasEnb S_MULTI RI[2:0] – Adjusts the constant current in the operational amplifier circuit for the logic voltage regulator. Table 44 RI[2:0] 0 1 2 3 4 5 6 7 DC current of op-amp 0.2 1 2 3 3 4 5 6 RV[2:0] – Set the logic voltage(RVDD) level. The RV bits can set the logic voltage(RVDD) level 0.45 to 0.80 times the VCI level. 48 LGDP4525 Rev 0.9.0 Table 45 RV[2:0] 0 1 2 3 4 5 6 7 RVDD voltage level VCI x 0.80 VCI x 0.75 VCI x 0.70 VCI x 0.65 VCI x 0.60 VCI x 0.55 VCI x 0.50 VCI x 0.45 LbiasEnb – It enables bias circuit operate in minimum current consumption when standby mode is invoked. Default value of LbiasEnb is low which means enabling minimum current consumption. S_MULTI – It controls output size of Amp used for source output .Recommend value is low. Power Control 6 (R15h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 0 0 IB9 IB8 0 0 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 TRIM[7:0] TRIM[7:0] – Adjusts option of band gap regulator. RAM Address Set (R21h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 AD[15:0] AD[15:0] – Represents the GRAM address set in the AC (Address Counter) initially. The address in the AC is automatically updated in accordance with the AM, I/D bits as data are written to the internal GRAM so that data are written consecutively without resetting an address in the AC. The address is not automatically updated when reading data from the internal GRAM. It is not possible to set an address in the AC when the LGDP4525 is in standby mode. Also be sure to set an address within the window address area. Notes: 1. When the RGB interface is selected (RM = “1”), the address AD is set in the address counter every frame on the falling edge of VSYNC. 2. When the internal clock operation or the VSYNC interface mode is selected (RM = “0”), the address AD is set when executing an instruction. 49 LGDP4525 Rev 0.9.0 Table 46: GRAM address range … GRAM setting Bitmap data for G1 Bitmap data for G2 Bitmap data for G3 Bitmap data for G4 … AD[15:0] 0000 – 00AF 0100 – 01AF 0200 – 02AF 0300 – 03AF D800 – D8AF D900 – D9AF DA00 – DAAF DB00 – DBAF Bitmap data for G217 Bitmap data for G218 Bitmap data for G219 Bitmap data for G220 Write Data to GRAM (R22h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 WD[17:0] WD[17:0] – If data are less than 18 bits in unit, the LGDP4525 expands the data into 18 bits internally before written to the internal GRAM. How the data are expanded into 18 bits differs for each interface and data transfer mode. The grayscale level is selected according to GRAM data. The GRAM address is automatically updated according to the AM and I/D bits as data are written to the internal GRAM. In standby mode, no access to the internal GRAM is allowed. When the 8 or 16 bit interface mode is selected, data are expanded into 18 bits internally by writing the MSBs of R and B dots to the LSBs of R and B dots respectively. When writing data to the GRAM via a system interface while using the RGB interface, be sure there is no conflict between writing operations via respective interfaces (RGB and system interfaces). When the18-bit RGB interface is selected, 18-bit data are written via the DB[17:0] pins and 262,144 colors are available. When the 16-bit RGB interface is selected, the MSBs of R and B dots are also written to the LSBs of R and B dots respectively, and 65,536 colors are available. 50 LGDP4525 Rev 0.9.0 18-bit interface (262k colors) Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 16-bit interface (65k colors) – TRI = “0” Input DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 DB DB DB DB DB DB DB DB 8 7 6 5 4 3 2 1 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 16-bit interface (2 transfers/pixel, 262k colors) – TRI = “1”, DFM = “0” 1st transfer 2nd transfer Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1 17 16 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 16-bit interface (2 transfers/pixel, 262k colors) – TRI = “1”, DFM = “1” 1st transfer 2nd transfer Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 2 1 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 11: Write data to GRAM in 18-/16-bit interface mode 51 LGDP4525 Rev 0.9.0 9-bit interface (262k colors) 1st transfer 2nd transfer Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 17 16 15 14 13 12 11 10 9 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 8-bit interface (65k colors) – TRI = “0” 1st transfer 2nd transfer Input DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 8-bit interface (3 transfers/pixel, 262k colors) – TRI = “1”, DFM = “0” 1st transfer Input 2nd transfer 3rd transfer DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 8-bit interface (3 transfers/pixel, 65k colors) – TRI = “1”, DFM = “1” 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 12: Write data to GRAM in 9-/8-bit interface mode 52 LGDP4525 Rev 0.9.0 18-bit RGB interface (262k colors) Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 16-bit RGB interface (65k colors) Input DB DB DB DB DB 17 16 15 14 13 DB DB DB DB DB DB DB DB DB DB DB 11 10 9 8 7 6 5 4 3 2 1 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 6-bit RGB interface (262k colors) 1st transfer 2nd transfer 3rd transfer Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 Write data to GRAM WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD WD 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 13: Write data to GRAM in 18-/16-/6-bit RGB interface mode 53 LGDP4525 Rev 0.9.0 Table 47: GRAM data and LCD output level … Positive V63 V62 V61 V60 … Grayscale Negative V0 V1 V2 V3 … GRAM data setting: RGB each 0 1 2 3 60 61 62 63 V60 V61 V62 V63 V3 V2 V1 V0 RAM Access via RGB I/F and System I/F In RGB interface mode, the LGDP4525 stores all display data in the internal RAM, enabling transferring only moving picture data only when updating the frames of a moving picture. While the moving picture frames are not updated, it is possible to write data displayed in the area outside the moving picture area via the system interface. In RGB interface mode, the LGDP4525 writes data to the internal RAM in synchronization with DOTCLK during ENABLE = “Low”. To access the internal RAM via the system interface while using the RGB interface for display operation, set ENABLE “High” to stop writing via the RGB interface. To start accessing the internal RAM via the RGB interface after accessing the RAM via the system interface, wait at least for a write/read bus cycle time. Data will not be written properly to the internal RAM when writing operations via both RGB and system interfaces are conflicting. 54 LGDP4525 Rev 0.9.0 VSYNC ENABLE DOTCLK PD17-0 *See Note 2) System interface Set IR to R22h Set RM=0 Set AD Rewrite data in the area other than the moving picture area Set IR to R22h Updating moving picture area Set RM=1 Set AD Set IR to R22h Rewrite still picture area *See Note 1) Updating moving picture area Note 1) An address (AD[15:0]) is set in the AC on ever falling edge of VSYNC in RGB interface mode. Note 2) Set the address AD[15:0] in the AC and the index register to R22h (RAM data write/read) before starting RAM access through the RGB interface. 6/25 00:00 6/25 00:00 Moving picture area Moving picture area Figure 14 RAM Acess via RGB Interface and System Interface Read Data Read from GRAM (R22h) R/W RS R 1 IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 RD[17:0] RD[17:0] – Reads 18-bit data from the GRAM. The bit assignment between the data read out from the GRAM and the DB[17:0] pins differs for each interface. When data are read out from the GRAM to the microcomputer, the first word read immediately after executing RAM address set is taken in the internal read data latch and invalid data are sent to the data bus DB[17:0]. Valid data are sent to the data bus as the LGDP4525 reads out the second word data from the internal GRAM. The 1st word data read into the internal read data latch are used for a bit operation (logical/compare operation) is performed inside the LGDP4525. Accordingly, the bit operation is processed with one read out operation. Note that the bit operation is performed on the data in units of 18 bits. When the 8 or 16-bit interface is selected, the LSBs of R and B dots are not read out. Note: This register is not available with the RGB interface. 55 LGDP4525 Rev 0.9.0 18-bit interface GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 16-bit interface GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 DB DB DB DB DB DB DB DB 8 7 6 5 4 3 2 1 9-bit interface GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 17 16 15 14 13 12 11 10 9 1st transfer 2nd transfer 8-bit interface/SPI GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Output DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 1st transfer DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 2nd transfer Figure 15: Read data from GRAM 56 LGDP4525 Rev 0.9.0 Set ID, AM, HAS/HEA, VSA/VEA bits Set ID, AM, HAS/HEA, VSA/VEA bits Set address N Set address N 1st word Dummy read (invalid data) GRAM → read data latch 1st word Dummy read (invalid data) GRAM → read data latch 2nd word Read (data of address N) read data latch → DB[17:0] 2nd word Write (data of address N) DB[17:0] → read data latch Set address M Automatic update of address counter 1st word Dummy read (invalid data) GRAM → read data latch 1st word Dummy read (invalid data) GRAM → read data latch 2nd word Read (data of address M) read data latch → DB[17:0] 2nd word Write (data of address M) DB[17:0] → read data latch 1) Read data to the MPU 2) Logical operation inside LGDP4525 Figure 16: GRAM read sequence Software Reset (R28h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 0 0 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 0 1 1 0 0 1 1 1 0 If write 00CE value to this register, an internal software reset is generated. 57 LGDP4525 Rev 0.9.0 γ Control (R30h to R3Fh) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 W 1 0 0 0 0 0 W 1 0 0 0 0 0 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 PKP1[2:0] 0 0 0 0 0 PKP0[2:0] PKP3[2:0] 0 0 0 0 0 PKP2[2:0] W 1 0 0 0 0 0 PKP5[2:0] 0 0 0 0 0 PKP4[2:0] W 1 0 0 0 0 0 PRP1[2:0] 0 0 0 0 0 PRP0[2:0] W 1 0 0 0 0 0 PKN1[2:0] 0 0 0 0 0 PKN0[2:0] W 1 0 0 0 0 0 PKN3[2:0] 0 0 0 0 0 PKN2[2:0] W 1 0 0 0 0 0 PKN5[2:0] 0 0 0 0 0 PKN4[2:0] W 1 0 0 0 0 0 PRN1[2:0] 0 0 0 0 0 PRN0[2:0] W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 PFP1[2:0] 0 0 0 0 0 PFP0[2:0] W 1 0 0 0 0 0 PFP3[2:0] 0 0 0 0 0 PFP2[2:0] W 1 0 0 0 0 0 PFN1[2:0] 0 0 0 0 0 PFN0[2:0] W 1 0 0 0 0 0 PFN3[2:0] 0 0 0 0 0 PFN2[2:0] W 1 0 0 0 0 0 0 0 0 0 0 PMP[2:0] W 1 0 0 0 0 0 0 0 0 0 0 PMN[2:0] VRP1[4:0] VRN1[4:0] VRP0[4:0] VRN0[4:0] PKP5-0[2:0] – γ fine adjustment register bits for positive polarity PRP1-0[2:0] – γ gradient adjustment register bits for positive polarity PKN5-0[2:0] – γ fine adjustment register bits for negative polarity PRN1-0[2:0] – γ gradient adjustment register bits for negative polarity VRP1-0[4:0] – amplitude adjustment register bits for positive polarity VRN1-0[4:0] – amplitude average adjustment register bits for negative polarity PFP3-0[2:0] – γ fine adjustment register bits for positive polarity PFN3-0[2:0] – γ fine adjustment register bits for negative polarity PMP[2:0] – γ fine adjustment register bits for positive polarity PMN[2:0] – γ fine adjustment register bits for negative polarity For details see “γ-Correction Function” section Gate Scan Position (R40h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 0 0 IB9 IB8 IB7 IB6 IB5 0 0 0 0 0 IB4 IB3 IB2 IB1 IB0 SCN[4:0] SCN[4:0] – The LGDP4525 allows specifying the gate line from which the gate driver starts scan by setting the SCN4-0 bits. 58 LGDP4525 Rev 0.9.0 G1 G1 G57 G176 G220 G220 GS = 0 NL = 10101 SCN = 00000 GS = 0 NL = 10101 SCN = 00111 Note: Set the NL bits (the number of lines for driving the LCD panel) and the SCN bits so that the position of the gate line at the scan ends does not exceed the 220th. Figure 17 Example of Setting NL, GS & SCN Table 48 SCN[4:0] 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh Scan start position (gate line) GS = “0” GS = “1” G1 G220 G9 G212 G17 G204 G25 G196 G33 G188 G41 G180 G49 G172 G57 G164 G65 G156 G73 G148 G81 G140 G89 G132 G97 G124 G105 G116 G113 G108 G121 G100 G129 G92 G137 G84 G145 G76 G153 G68 G161 G60 G169 G52 G177 G44 G185 G36 G193 G28 G201 G20 G209 G12 G217 G4 59 LGDP4525 Rev 0.9.0 Vertical Scroll Control (R41h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 0 0 IB9 IB8 0 0 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 VL[7:0] VL[7:0] – Sets the scrolling amount of an image on the screen in vertical direction. The scrolling amount can be set from 0 line to 220 lines. The start position for displaying the image is shifted vertically by the number of lines set with the VL bits. The part of the image, which is scrolled out from the end line (the 220th line) as a result of scrolling, is displayed from the 1st line of the physical display. The VL bits are enabled when either first display vertical scroll enable bit VLE[0] or the second display vertical scroll enable bit VLE[1] is set to “1”. When VLE[1:0] = “00”, the image on the screen is displayed at the position set with the SS and SE bits. The vertical scrolling function is not available with the external display interface. Table 49 … Scrolling lines 0 line 1 line 2 lines … VL[7:0] 0 1 2 218 219 218 line 219 lines 1st-Screen Drive Position (R42h) 2nd-Screen Drive Position (R43h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 W 1 SE1[7:0] SS1[7:0] W 1 SE2[7:0] SS2[7:0] IB2 IB1 IB0 SS1[7:0] – Sets the position of the start line from which the first display starts. The gate driver starts scan from the line of the number set with the SS1 bits + 1. SE1[7:0] – Sets the position of the end line at which the first display ends. The gate driver ends scan at the line of the number set with the SE1 bits + 1. For instance, when SS1 = 07h and SE1 = 10h, the first display is shown on the gate lines from G8 to G17, and gate lines G1 to G7 and G18 thereafter are driven to show a blank screen. Be sure that SS1 ≤ SE1 ≤ EFh. For details, see the “Partial Display Function” section. SS2[7:0] – Sets the position of the start line from which the second display starts. The gate driver starts scan from the line of the number set with the SS2 bits + 1. The second display is shown when SPT = “1”. SE2[7:0] – Sets the position of the end line at which the second display ends. The gate driver ends scan at the line of the number set with the SE2 bits + 1. For instance, when SPT = “1”, and SS2 = 20h, SE2 = 4Fh, the second display is shown on the gate lines from G33 to G80. Be sure that SS1 ≤ SE1 < SS2 ≤ SE2 ≤ EFh. For details, see the “Partial Display Function” section. 60 LGDP4525 Rev 0.9.0 Horizontal RAM Address Position (R44h) Vertical RAM Address Position (R45h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 HEA[7:0] IB9 IB8 IB7 IB6 IB5 IB4 HSA[7:0] IB3 W 1 VEA[7:0] VSA[7:0] IB2 IB1 IB0 HSA[7:0]/HEA[7:0] – HSA and HEA represent the respective addresses at the start and end of the window address area in horizontal direction. By setting HSA and HEA bits, it is possible to limit the area on the GRAM horizontally for writing data. The HSA and HEA bits must be set before starting RAM write operation. In setting these bits, be sure 00h ≤ HSA < HEA ≤ AFh. VSA[7:0]/VEA[7:0] – VSA and VEA represent the respective addresses at the start and end of the window address area in vertical direction. By setting VAS and VEA bits, it is possible to limit the area on the GRAM vertically for writing data. The VSA and VEA bits must be set before starting RAM write operation. In setting, be sure 00h ≤ VSA < VEA ≤ EFh. HSA HEA 0000h Window address area VSA Window address area 00h ≤ HSA ≤ HEA ≤ AFh 00h ≤ VSA ≤ VEA ≤ EFh VEA GRAM address area Notes: 1. 2. EFAFh Make a window address area within the GRAM address area. Set a RAM address within the window address area. Figure 18: GRAM address and window address area Test Register 1 (R71h) R/W RS W 1 IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 R_OV 0 0 IB9 IB8 TDLY IB7 0 IB6 IB5 IB4 T8CL TPOL[1:0] IB3 0 IB2 IB1 IB0 TMEM TOSC TFN TFN – Sets the chip to function test mode. TOSC – Sets the pin FLM to output the internal oscillator signal instead of the frame head pulse signal TMEM – Sets the pin FLM to output the internal memory A read enable signal instead of the frame head pulse signal. TPOL[1:0] – When TPOL[1] = “1”, liquid crystal polarity is fixed to positive polarity if TPOL[0] = “0” or negative polarity if TPOL[0] = “1”. Affected are VCOM and source outputs. When TPOL[0] = “0”, field/line polarity inversion takes place. T8CL – Set Power Saving for particular images. T8CL= “1”, that means it has a chance to reserve power and “0” means it operates normally when images are displayed. TDLY[1:0] – Set the delay of arbiter logic, Delay of TDLY[1:0] : 11 < 00 < 01 < 10 61 LGDP4525 Rev 0.9.0 R_OV – Disable overwriten command if comman occurs many times... Test Register 2 (R72h) R/W RS W 1 IB15 IB14 IB13 0 0 0 IB12 REGULPD IB11 IB10 IB9 0 0 0 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 S_HIZ 0 0 0 MVCOML 0 MVCI 0 0 MVCOML – Set Multiple Option for VCOM regulator. S_HIZ – “0” Normal stepup2 operation “1” Disable stepup2 and Hi-z stepup2 output for test mode. REGULPD – Regulator Power Down MVCI– VCI1 level control signal 62 LGDP4525 Rev 0.9.0 Instruction List Table 50 Index Register 00 ID Read 01 Driver output control 02 LCD drive AC control 03 Entry mode 04 Resize control 05 - 06 - 07 Display control 1 08 Display control 2 09 Display control 3 0A - 0B Frame cycle adjustment 0C External display I/F ctrl 0F Oscillation Control 10 Power control 1 11 Power control 2 12 Power control 3 13 Power control 4 14 Power control 5 15 Power control 6 21 RAM address set 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 VSPL HSPL DPL EPL SM GS SS B/C EOR DFM BGR FLD[1:0] TRI NL[4:0] RCV[1:0] PTS[2:0] VLE[1:0] 0030 GON RSZ[1:0] DTE CL REV FP[3:0] PTG[1:0] NO[1:0] SDT[1:0] EQ[1:0] DIV[1:0] 0000 0808 ISC[3:0] 0000 002C DM[1:0] RIM[1:0] FLM_C LK FCNT[4:0] BT[2:0] AP[2:0] STB DC1[2:0] DC0[2:0] FFO EXR HALT OSC DK SLP DSTB VC[2:0] PON VCOM G D[1:0] VDV[4:0] 0000 1000 0004 0000 VRH[3:0] 0000 VCM[6:0] RI[2:0] 0000 BP[3:0] RTN[6:1] RM SAP[2:0] 0400 AM RCH[1:0] SPT 4525 001B NW[5:0] ID[1:0] Default 0000 LbaisE S_MUL 0040 TI n RV[2:0] TRIM[7:0] 0000 AD[15:0] 0000 22 RAM data R/W 28 Softwafe Reset 30 Gamma control 1 PKP1[2:0] PKP0[2:0] 0000 31 Gamma control 2 PKP3[2:0] PKP2[2:0] 0000 32 Gamma control 3 PKP5[2:0] PKP4[2:0] 0000 33 Gamma control 4 PRP1[2:0] PRP0[2:0] 0000 34 Gamma control 5 PKP1[2:0] PKP0[2:0] 0000 35 Gamma control 6 PKP3[2:0] PKP2[2:0] 0000 36 Gamma control 7 PKP5[2:0] PKP4[2:0] 0000 37 Gamma control 8 PRP1[2:0] PRP0[2:0] 38 Gamma control 9 VRP1[4:0] VRP0[3:0] VRN1[4:0] VRN0[3:0] 39 Gamma control 10 3A Gamma selection 40 Gate scan start position RAM 18-bit R/W data 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0000 0000 0000 SREF SCN[4:0] 0000 0000 41 Vertical scroll control VL[7:0] 0000 42 First screen position SE1[7:0] SS1[7:0] FF00 43 Second screen position SE2[7:0] SS2[7:0] FF00 44 Horizontal RAM address HEA[7:0] HSA[7:0] AF00 45 Vertical RAM address VEA[7:0] VSA[7:0] DB00 71 Test register 1 R_OV 72 Test register 2 REGUL PD T8CL S_HIZ TPOL[1:0] MVCOM L TMEM TOSC MVCI TFN 0000 0000 63 LGDP4525 Rev 0.9.0 Interface Specifications The LGDP4525 has the system interface for making instruction setting and other settings, and the external display interface for displaying a moving picture. The LGDP4525 allows selecting an optimum interface for the display (moving or still picture) in order to transfer data efficiently. As the external display interface, the LGDP4525 has the RGB interface and the VSYNC interface, enabling data rewrite operation without flicker the moving picture on the screen. In RGB interface mode, display operations are performed in synchronization with synchronizing signals VSYNC, HSYNC, and DOTCLK. Display data are written to the internal RAM according to the polarity of the data enable signal ENABLE via the moving picture display data bus DB[17:0] in synchronization with VSYNC, HSYNC, and DOTCLK. All display data are stored in the LGDP4525’s GRAM to limit data transfer to only when switching the frames of a moving picture. By using the window address function, it is possible to limit the RAM area to be rewritten for displaying a moving picture and display both the moving picture and the data written on the RAM at a time. In VSYNC interface mode, the internal display operations are synchronized with the frame synchronization signal VSYNC. The VSYNC interface enables a moving picture display via the system interface by writing data to the internal GRAM at more than the minimum speed in synchronization with the falling edge of VSYNC. In this case, there are constraints in speed and method for writing data to the internal RAM. The LGDP4525 operates in one of the following 4 modes in line with the state of display. The mode for display operation is set in the external interface control register. When switching from one mode to another, refer to the sequences mentioned in the sections of RGB and VSYNC interfaces. Table 51 Operation mode Internal operating clock only: Displaying still pictures RGB interface (1): Displaying moving pictures RGB interface (2): Rewriting still pictures while displaying moving pictures VSYNC interface: Displaying moving pictures RAM access setting (RM) System interface (RM = 0) RGB interface (RM = 1) RGB interface (RM = 1) Display operation mode (DM) Internal operating clock (DM = 0) RGB interface (DM = 1) RGB interface (DM = 1) System interface (RM = 0) VSYNC interface (DM = 2) Notes: 1. Instructions are set only via the system interface. 2. The RGB I/F and the VSYNC I/F are not available simultaneously. 3. Do not make changes to the RGB I/F mode (RIM[1:0] bits) while an RGB I/F is in operation. 4. See the sections of RGB and VSYNC interfaces for the sequences to follow when switching from one mode to another. 64 LGDP4525 Rev 0.9.0 CSB* RS WR* (RD*) DB[17:0] System interface System RGB interface 18/16/9/8 LGDP4525 ENABLE VSYNC HSYNC DOTCLK Figure 19: Interfaces between system and LGDP4525 65 LGDP4525 Rev 0.9.0 System Interface The following are the system interfaces available with the LGDP4525. The interface is selected by setting the IM[3:0] pins. The system interface is used for setting instructions and RAM access. Table 52 IM[3:0] 0000 MPU interface mode 68-system 16-bit interface 0001 0010 68-system 8-bit interface 80-system 16-bit interface 0011 010* 011* 1000 1001 1010 1011 11** 80-system 8-bit interface Serial peripheral interface (SPI) Setting disabled 68-system 18-bit interface 68-system 9-bit interface 80-system 18-bit interface 80-system 9-bit interface Setting disabled DB pin in use DB[17:10], DB[8:1] DB[17:10] DB[17:10], DB[8:1] DB[17:10] SDI, SDO DB[17:0] DB[17:9] DB[17:0] DB[17:9] - 66 LGDP4525 Rev 0.9.0 80-System 18-Bit Interface The 80-system 18-bit parallel system interface is selected by setting the IM[3:0] pins to “1010”. CSn* A1 HWR* (RD*) D[17:0] MPU CSB LGDP4525 RS RW_WRB (E_RDB) DB[17:0] 18 Figure 20: 18-bit microcomputer and LGDP4525 Instruction Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction Bit (IB) IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 RAM data write (1 transfer/pixel, 262k colors) Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 GRAM write data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 21: Data format for 18-bit interface 67 LGDP4525 Rev 0.9.0 80-System 16-Bit Interface The 80-system 16-bit parallel system interface is selected by setting the IM[3:0] pins to “0010”. The unused pins, “DB[9] and DB[0] must be tied to GND. CSn* A1 HWR* (RD*) D[15:0] MPU CSB LGDP4525 RS RW_WRB (E_RDB) DB[17:10], DB[8:1] 16 Figure 22: 16-bit microcomputer and LGDP4525 Instruction Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction Bit (IB) IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 RAM data write (1 transfer/pixel, 65k colors) – TRI = “0” GRAM data DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 DB DB DB DB DB DB DB DB 8 7 6 5 4 3 2 1 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 RAM data write (2 transfers/pixel, 262k colors) – TRI = “1”, DFM = “0” 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1 17 16 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 RAM data write (2 transfers/pixel, 262k colors) – TRI = “1”, DFM = “1” 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 2 1 17 16 15 14 13 12 11 10 8 7 6 5 4 3 2 1 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 23: Data format for 16-bit interface 68 LGDP4525 Rev 0.9.0 Data Transfer Synchronizing in 16-Bit Bus Interface Mode The LGDP4525 supports a data transfer synchronization function, which resets the counter to count the numbers of upper 16/2-bit and lower 2/16-bit transfers in 16 bits x 2 transfer mode. When a mismatch occurs in data transfers due to noise and so on, the 000h instruction is written 4 times consecutively to reset the upper and lower counters to restart data transfers from the upper 2/16 bits. The synchronization function, when executed periodically, will prevent the runaway of the display system. RS E_RDB RW_WRB DB[17:10] DB[8:1] upper/ lower 000h 000h 000h 000h upper synchronization Figure 24: 16-bit data transfer synchronization 69 LGDP4525 Rev 0.9.0 80-System 9-Bit Interface The 80-system 9-bit parallel system interface using the DB17 to DB9 pins is selected by setting the IM[3:0] pins to “1011”. When transferring a 16-bit instruction, it is divided into upper and lower 8 bits (the LSB is not used), and the upper 8 bits are transferred first. The RAM write data are also divided into the upper and lower 9 bits, and the upper bits are transferred first. The unused DB[8:0] pins must be fixed at either VDD3 or GND level. When writing the index register, the upper byte (8 bits) must be written. The unused pins, “DB[8:0] must be tied to GND CSn* A1 HWR* (RD*) D[8:0] MPU CSB LGDP4525 RS RW_WRB (E_RDB) DB[17:9] 9 Figure 25: 9-bit microcomputer and LGDP4525 Instruction Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction Bit (IB) IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 RAM data write (2 transfers/pixel, 262k colors) 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 17 16 15 14 13 12 11 10 9 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 26: Data format for 9-bit interface 70 LGDP4525 Rev 0.9.0 Data Transfer Synchronizing in 9-Bit Bus Interface Mode The LGDP4525 supports a data transfer synchronization function to reset upper and lower counters counting the number of transfers of upper and lower 9 bits in 9-bit bus interface mode. If a mismatch arises in the numbers of transfers between the upper and lower 9 bit counters due to noise and so on, the 000h instruction is written 4 times consecutively to reset the upper and lower counters so that data transfer will restart with a transfer of upper 9 bits. This synchronization function, when executed periodically, can effectively prevent runaway of display system. RS E_RDB RW_WRB DB[17:9] upper/ lower 000h 000h 000h 000h upper synchronization Figure 27: 9-bit data transfer synchronization 71 LGDP4525 Rev 0.9.0 80-System 8-Bit Interface The 80-system 8-bit parallel system interface using the DB17 to DB10 pins is selected by setting the IM[3:0] pins to “0011”. When transferring a 16-bit instruction, it is divided into upper and lower 8 bits and the upper 8 bits are transferred first. The RAM data is also divided into the upper and lower 8 bits, and the upper bits are transferred first. The RAM write data are expanded into 18 bits internally (see the figure below). The unused pins DB[9:0] must be fixed at either VDD3 or GND level. When writing the index register, the upper byte (8 bits) must be written. The unused pins, “DB[9:0] must be tied to GND MPU CSn* A1 HWR* (RD*) D[7:0] CSB LGDP4525 RS RW_WRB (E_RDB) DB[17:10] 8 Figure 28: 8-bit microcomputer and LGDP4525 72 LGDP4525 Rev 0.9.0 Instruction Input DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction Bit (IB) IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 RAM data write (2 transfers/pixel, 65k colors) – TRI = “0” 1st transfer 2nd transfer GRAM data DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 RAM data write (3 transfers/pixel, 262k colors) – TRI = “1”, DFM = “0” 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 RAM data write (3 transfers/pixel, 65k colors) – TRI = “1”, DFM = “1” 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 29: Data format for 8-bit interface 73 LGDP4525 Rev 0.9.0 Data Transfer Synchronization in 8-Bit Bus Interface Mode The LGDP4525 supports a data transfer synchronization function to reset upper and lower counters counting the number of transfers of upper and lower 8 bits in 8-bit bus interface mode. If a mismatch arises in the numbers of transfers between the upper and lower 8 bit counters due to noise and so on, the 00h instruction is written 4 times consecutively to reset the upper and lower counters so that data transfer will restart with a transfer of upper 8 bits. This synchronization function, when executed periodically, can effectively prevent runaway of display system. RS E_RDB RW_WRB DB[17:10] upper/ lower 00h 00h 00h 00h upper synchronization Figure 30: 8-bit data transfer synchronization 74 LGDP4525 Rev 0.9.0 Serial Peripheral Interface (SPI) The Serial Peripheral Interface (SPI) is selected by setting the IM[3:1] pins to “010”. The SPI is available via the chip select line (CSB), the serial transfer clock line (SCL), the serial data input (SDI), and the serial data output (SDO). In SPI mode, the IM0/ID pin functions as the ID pin and the DB[17:0] pins, which are not used, must be fixed at either VDD3 or GND level. The LGDP4525 recognizes the start of data transfer on the falling edge of CSB input and transfers the start byte. It recognizes the end of data transfer on the rising edge of CSB input. The LGDP4525 is selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device identification code assigned to the LGDP4525 correspond as a result of comparison. When selected, the LGDP4525 starts taking subsequent data. The ID pin sets the least significant bit of the identification code. Send “01110” to the identification code, which is the five upper bits of the start byte. Two different chip addresses must be assigned to the LGDP4525 because the seventh bit of the start byte is assigned to the register select bit (RS). When RS = “0”, either index register write operation or status read operation is executed. When RS = “1”, either instruction write operation or RAM read/write operation is executed. The eighth bit of the start byte is to select either read or write operation (R/W bit). Data are received when the R/W bit is “0”, and are transferred when the R/W bit is “1”. After receiving the start byte, the LGDP4525 starts transferring or receiving data in units of bytes. Data transfer is executed from the MSB. All instructions of the LGDP4525 take a 16-bit format and are executed internally after transferring two bytes (DB[15:0]) from the MSB. GRAM write data are internally expanded into 18 bits. After receiving the start byte, the LGDP4525 takes the first and the second byte as the upper and the lower eight bits of a 16-bit instruction, respectively. In SPI mode, invalid data are sent to the data bus until 4-byte data are read out from the internal GRAM after the start byte. Valid data are read out as the LGDP4525 reads out the 5th byte data from the internal GRAM. Table 53: Start byte format Transferred bits Start byte format 1 2 3 Device ID code 0 1 1 4 5 6 1 0 ID 7 RS 8 R/W Note: ID bit is selected by setting the IM0/ID pin. Table 54 RS 0 0 1 1 R/W 0 1 0 1 Function Set an index register Read a status Write an instruction or RAM data Read an instruction or RAM data 75 LGDP4525 Rev 0.9.0 Instruction Input Instruction Bit (IB) 1st transfer 2nd transfer D15 D14 D13 D12 D11 D10 D9 D8 IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 D7 D6 D5 D4 D3 D2 D1 D0 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 RAM data write (2 transfers/pixel, 65k colors) – TRI = “0” 1st transfer 2nd transfer GRAM data D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 RAM data write (3 transfers/pixel, 262k colors) – TRI = “1”, DFM = “0” 1st transfer 2nd transfer 3rd transfer GRAM data D23 D22 D21 D20 D19 D18 D15 D14 D13 D12 D11 D10 D7 D6 D5 D4 D3 D2 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 31: Data format for SPI 76 LGDP4525 Rev 0.9.0 VSYNC Interface The LGDP4525 has the VSYNC interface, which enables moving picture display with the system interface in synchronization with the frame-synchronizing signal (VSYNC). The VSYNC interface enables the system interface to display a moving picture with minimum modification. VSYNC LGDP4525 CSB RS RW_WRB (E_RDB) DB[17:10] MPU/ LCDC 18/16/9/8 Figure 32: VSYNC interface The VSYNC interface is selected by setting DM1-0 = “10” and RM = “0”. In VSYNC interface mode, the internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM via the system interface at a speed faster to a certain degree than that of internal display operation, the VSYNC interface enables moving picture display with the system interface and screen rewriting operation without flicker. The display operation in VSYNC mode is executed in synchronization with the internal clock generated from internal oscillators and VSYNC input. All display data are stored in the internal RAM to limit the data to be transferred to those overwritten on the moving picture RAM area and minimize total data transfer required for moving picture display. VSYNC Write data to RAM through system interface Update screen Update screen Display operation synchronized with the internal clock Figure 33: Moving picture data transfer via VSYNC interface The VSYNC interface has the minimum speed of writing data to the internal RAM via the system interface and the minimum internal clock frequency, which are calculated from the following formulae. Internal clock frequency (fosc) = FrameFrequency × (DisplayLines (NL) + FrontPorch (FP) + BackPorch (BP)) × 16 clocks × variance RAMWriteSpeed > 176 × DisplayLines (NL) (BackPorch (BP) + DisplayLines (NL) − margins) × 16 clocks × 1 fosc Note: When the RAM write operation does not start on the falling edge of VSYNC, the time from the falling edge of VSYNC until the start of RAM write operation must also be taken into account. An example of minimum RAM writing speed and internal clock frequency in VSYNC interface mode is as follows. [Example] 77 LGDP4525 Rev 0.9.0 Display size Lines Back/front porch Frame frequency 176 RGB × 220 lines 220 lines (NL = 11001) 14/2 lines (BP = 1110/FP = 0010) 60 Hz Internal clock frequency (fosc) = 60 Hz × (220 + 2 + 14) lines × 44 Clocks × 1.1 / 0.9 = 760 kHz When setting the internal clock frequency, possible causes of variances must also be taken into consideration. In this example, the calculated internal clock frequency with the above register setting allows for a margin of ±10% for variances and ensures to complete the display operation within one VSYNC cycle. In this example, variances attributed to the fabrication process of LSI and room temperature are counted in. Other possible causes of variances, such as differences in external resistors or voltage changes are not in consideration. It is necessary to allow for an enough margin if these factors must be incorporated. Minimum speed for RAM writing > 176 × 220 / {((14 + 220 - 2) lines × 44 clock) / 760 kHz} = 2.88 MHz The above theoretical value is calculated on the premise that the LGDP4525 starts writing data to the internal RAM on the falling edge of VSYNC. There must at least be a margin of 2 lines between the physical display line where display operation is performed and the RAM line address where data write operation is performed. The RAM write speed of 2.88MHz or more on the falling edge of VSYNC will guarantee the completion of RAM write operation before the LGDP4525 starts displaying the RAM data on the screen, enabling rewriting the entire screen without flicker. VSYNC Due to Fosc variation of ±10% [lines] Back porch (14 lines) 220 RAM write (10MHz) RAM write (2.88MHz) Display (220 lines) Display operation Front porch (2 lines) Blank period 0 [ms] VSYNC Figure 34: Write/display operation timing via VSYNC interface Notes in Using the VSYNC Interface 1. The above example of calculation gives a theoretical value. In the actual setting, other possible causes of variances not counted in the above example such as differences in 78 LGDP4525 2. 3. 4. 5. 6. Rev 0.9.0 internal oscillators should also be taken into consideration. It is strongly recommended to allow for an enough margin in setting a RAM writing speed. The above example of calculation gives a minimum value in case of rewriting the entire screen. If the moving picture display area is smaller than that, the range for setting a minimum RAM writing speed can have extra margins. After drawing 1 frame, a front porch period continues until the next input of VSYNC is detected. When switching from the internal clock operation mode (DM[1:0] = “00”) to the VSYNC interface mode, or the other way around, it is enabled from the next VSYNC cycle, i.e. after completing the display of the frame, which the LGDP4525 was internally processing when switching the modes. The partial display, vertical scroll, and interlaced scan functions are not available in VSYNC interface mode. In VSYNC interface mode, set the AM bit to “0” to transfer display data in the method mentioned above. 79 LGDP4525 Rev 0.9.0 External Display Interface The following are the external display interface (RGB interface) available with the LGDP4525. The interface is selected by setting the RIM1-0 bits as follows. The RGB interface is used to access RAM. Table 55 RIM[1:0] 00 01 10 11 RGB interface 18-bit RGB interface 16-bit RGB interface 6-bit RGB interface Setting disabled DB pins DB[17:0] DB[17:10], DB[8:1] DB[17:12] Note: Multiple RGB interfaces cannot be used simultaneously. RGB Interface The display operation via the RGB interface is synchronized with VSYNC, HSYNC, and DOTCLK. The RGB interface enables transferring minimum necessary data and rewriting the RAM area need to be overwritten with use of window address function. In RGB interface mode, it is necessary to set back and front porch periods before and after a display period, respectively. Figure 35: RGB interface ENABLE Signal The combinations of EPL and ENABLE bits and the functions are as follows. Note that it is necessary to set both EPL and ENABLE bits to automatically update RAM address in the AC when writing data to the internal RAM. The EPL bit inverts the polarity of ENABLE signal. Table 56 EPL 0 0 1 1 ENABLE 0 1 0 1 RAM write Enabled Disabled Disabled Enabled RAM address Updated Retained Retained Updated 80 LGDP4525 Rev 0.9.0 RGB Interface Timing The timing chart of signals in 16/18-bit RGB interface mode is as follows. 1 frame Back porch period Front porch period VSYNC HSYNC DOTCLK ENABLE DB17-0 VLW >= 1H VSYNC 1H HLW >= 1CLK HSYNC 1 clock DOTCLK DTST >= HLW ENABLE DB17-0 Valid data VLW: VSYNC "Low" level HLW: HSYNC "Low" level DTST: Data transfer startup time Note: Use the high-speed write mode (either HWM or LHWM = "1") when writing display data to the internal RAM in RGB interface mode Figure 36: 16-/18-bit RGB Interface Timing 81 LGDP4525 Rev 0.9.0 The timing chart of signals in 6-bit RGB interface mode is as follows. 1 frame Back porch period Front porch period VSYNC HSYNC DOTCLK ENABLE DB17-12 VLW >= 1H VSYNC 1H HLW >= 3CLK HSYNC 1 clock DOTCLK DTST >= HLW ENABLE R G B R G R G B DB17-12 Valid data VLW: VSYNC "Low" level HLW: HSYNC "Low" level DTST: Data transfer startup time Note 1) Use the high-speed write mode (either HWM or LHWM = "1") when writing display data to the internal RAM in RGB interface mode Note 2) In 6-bit RGB interface mode, RGB dots are transferred each in synchronization with one DOTCLK input. For this reason, set the cycle of each signal (HSYNC, VSYNC, ENABLE) to contain DOTCLK inputs of a multiple of 3. Figure 37: 6-bit RGB Interface Timing 82 LGDP4525 Rev 0.9.0 Moving Picture Display The LGDP4525 has the RGB interface for moving picture display and incorporates RAM for storing moving picture data, which has following merits in displaying a moving picture. • • • • The window address function enables transferring minimum necessary data to be written on the moving picture RAM area. Data are transferred only to the moving picture RAM area. The reduction in data transfer contributes to the reduction in power consumption by the entire system. Allowing the use of system interface to rewrite data, such as icons, in still picture RAM area while displaying a moving picture. RAM Access via a System Interface in RGB-I/F Mode The LGDP4525 allows RAM access via the system interface in RGB interface mode. In RGB interface mode, data are written to the internal RAM in synchronization with DOTCLK while ENABLE is “Low”. When writing data to the internal RAM via the system interface, set ENABLE high” to stop writing data via the RGB interface. Then set RM = “0” to make RAM accessible via the system interface. When restarting RAM access in RGB interface mode, wait a time for one read/write bus cycle. Then, set RM = “1” and the index register to R22h to start accessing RAM via the RGB interface. If RAM accesses via two interfaces conflicts, there is no guarantee that data are written to the internal RAM. The following figure illustrates the operation of the LGDP4525 when displaying a moving picture via the RGB interface and rewriting data in the still picture RAM area via the system interface. Figure 38 RAM Access via a system interface and RGB interface 83 LGDP4525 Rev 0.9.0 6-Bit RGB Interface The 6-bit RGB interface is selected by setting the RIM[1:0] bits to “10”. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 6-bit RGB data bus (DB[17:12]) according to the data enable signal (ENABLE). Unused pins (DB[11:0]) must be fixed at either VDD3 or GND level. Instructions are set only via the system interface. VSYNC HSYNC LGDP4525 DOTCLK ENABLE LCDC DB[17:12] 6 Figure 39: 6-bit RGB interface 6-bit RGB interface (262k colors) 1st transfer 2nd transfer 3rd transfer GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 17 16 15 14 13 12 17 16 15 14 13 12 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 40: Data format for 6-bit interface 84 LGDP4525 Rev 0.9.0 Data Transfer Synchronization in 6-Bit RGB Interface Mode The LGDP4525 has data transfer counters for counting the first, second, third data transfers in 6-bit RGB interface mode. The transfer counters are always reset to the state of first data transfer on the falling edge of VSYNC. If a mismatch arises in the number of each data transfer, the counters are reset to the state of first data transfer at the start of the frame (i.e. on the falling edge of VSYNC) to restart data transfer in the correct order from the next frame. This function is expedient for moving picture display, which requires consecutive data transfer in light of minimizing effects from failed data transfer and enabling the system to return to a normal state. Note that internal display operation is performed in units of pixels (RGB: taking 3 inputs of DOTCLK). Accordingly, the number of DOTCLK inputs in one frame period must be a multiple of 3 to complete data transfer correctly. Otherwise it will affect the display of that frame as well as the next frame. VSYNC ENABLE DOTCLK PD17-12 2nd Transfer Transfer synchronization 1st 2nd 3rd 1st 2nd Transfer Transfer Transfer Transfer Transfer Figure 41: 6-bit data transmission synchronization 85 LGDP4525 Rev 0.9.0 16-Bit RGB Interface The 16-bit RGB interface is selected by setting the RIM1-0 bits to “01”. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 16-bit RGB data bus (DB17-10, DB8-1) according to the data enable signal (ENABLE). Instructions are set only via the system interface. VSYNC HSYNC LGDP4525 DOTCLK ENABLE LCDC DB[17:10], DB[8:1] 16 Figure 42: 16-bit RGB interface 16-bit RGB interface (65k colors) GRAM data DB DB DB DB DB 17 16 15 14 13 DB DB DB DB DB DB DB DB DB DB DB 11 10 9 8 7 6 5 4 3 2 1 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 43: Data format for 16-bit interface 86 LGDP4525 Rev 0.9.0 18-Bit RGB Interface The 18-bit RGB interface is selected by setting the RIM1-0 bits to “00”. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 18-bit RGB data bus (DB[17:0]) according to the data enable signal (ENABLE). Instructions are set only via the system interface. VSYNC HSYNC LGDP4525 DOTCLK ENABLE LCDC DB[17:0] 18 Figure 44: 18-bit RGB interface 18-bit RGB interface (262k colors) GRAM data DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RGB Arrangement R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Figure 45: Data format for 18-bit interface 87 LGDP4525 Rev 0.9.0 Notes in Using the External Display Interface 1. The following are the functions not available in external display interface mode. Table 57 Function Partial display Scroll function Interlaced scan Graphics operation function External display interface Not available Not available Not available Not available Internal display operation Available Available Available Available 2. VSYNC, HSYNC, and DOTCLK signals must be supplied throughout a display operation period. 3. The periods set with the NO1-0 bits (gate output non-overlap period), STD1-0 bits (source output delay period) and EQ1-0 bits (equalization period) are not based on the internal clock but based on DOTCLK in RGB interface mode. 4. In 6-bit RGB interface mode, each of RGB dots is transferred in synchronization with a DOTCLK input. In other words, it takes 3 DOTCLK inputs to transfer one pixel. Be sure to complete data transfer in units of 3 DOTCLK inputs in 6-bit RGB interface mode. 5. In 6-bit RGB interface mode, data of one pixel, which consists of RGB dots, are transferred in units of 3 DOTCLK. Accordingly, set the cycle of each signal in 6-bit interface mode (VSYNC, HSYNC ENABLE, DB[17:0]) to contain DOTCLK inputs of a multiple of 3 to complete data transfer in units of pixels. 6. When switching from the internal operation mode to the external display interface mode, or the other way around, follow the sequence below. 7. In RGB interface mode, the front porch period continues until the next VSYNC input is detected after drawing one frame. 8. In RGB interface mode, a RAM address (AD15-0) is set in the address counter every frame on the falling edge of VSYNC. Figure 46: Internal clock operation/RGB interface mode switching sequence 88 LGDP4525 Rev 0.9.0 Figure 47: Switching RAM access modes (between system interface and RGB interface modes) 89 LGDP4525 Rev 0.9.0 Interfacing Timing with LCD Panel The following are diagrams of interfacing timing with LCD panel control signals in internal operation and RGB interface modes. RGB I/F Mode Figure 48 RGB Inteface Timing Diagram 90 LGDP4525 Rev 0.9.0 Internal Clock Operation Mode Figure 49 : Internal Clock Operation Timing diagram 91 LGDP4525 Rev 0.9.0 Scan Mode Setting SM 0 GS 0 Scan direction Odd-numbered lines G1 G2 Even-numbered lines G1, G2, G3, G4, …, G218, G219, G220 TFT panel G219 G1 G220 G219 G220 G2 LGDP4525 0 1 Odd-numbered lines G1 G2 Even-numbered lines G220, G219, G218, …, G4, G3, G2, G1 TFT panel G219 G1 G220 G219 G220 G2 LGDP4525 1 0 G1 G1, G3, G5, …, G217, G219, G2, G4, G6, …, G218, G220 TFT panel G219 G2 G220 G1 G219 G220 G2 LGDP4525 1 1 G1 G220, G218, G216, …, G6, G4, G2, G219, G217, G215, …, G5, G3, G1 TFT panel G219 G2 G220 G1 G219 G220 G2 LGDP4525 Figure 50 92 LGDP4525 Rev 0.9.0 γ-Correction Function The LGDP4525 has the γ-correction function to display in 262,144 colors simultaneously. The γcorrection is performed with 3 groups of registers determining eight reference grayscale levels, which are gradient adjustment, amplitude adjustment and fine-adjustment registers. Each register groups further consists of register groups of positive and negative polarities. Each register group is set independently to other register groups, making the LGDP4525 available with liquid crystal panels of various characteristics. Display data Positive Polarity Register Negative Polarity Register VRN03 VRN14 VRN13 PFP01 PFP11 PFP21 PMP01 PKP01 PKP11 PKP21 PKP31 PKP41 PKP51 PRP01 PRP11 VRP01 VRP11 PFP00 PFP10 PFP20 PMP00 PKP00 PKP10 PKP20 PKP30 PKP40 PKP50 PRP00 PRP10 VRP00 VRP10 PFN02 PFN12 PFN22 PMN02 PKN02 PKN12 PKN22 PKN32 PKN42 PKN52 PRN02 PRN12 VRN02 VRN12 PFN01 PFN11 PFN21 PMN01 PKN01 PKN11 PKN21 PKN31 PKN41 PKN51 PRN01 PRN11 VRN01 VRN11 PFN00 PFN10 PFN20 PMN00 PKN00 PKN10 PKN20 PKN30 PKN40 PKN50 PRN00 PRN10 VRN00 VRN10 6 6 6 V0 8 Grayscale Amplifier VRP14 VRP03 VRP13 PFP02 PFP12 PFP22 PMP02 PKP02 PKP12 PKP22 PKP32 PKP42 PKP52 PRP02 PRP12 VRP02 VRP12 V1 64-level grayscale 64-level grayscale Control <R> Control <G> 64-level grayscale Control <B> LCD driver LCD driver LCD driver 64 V63 Figure 51 93 LGDP4525 Rev 0.9.0 Grayscale Amplifier Unit Configuration The following figure illustrates the grayscale amplifier unit of the LGDP4525. To generate 64 grayscale voltages (V0 to V63), the LGDP4525 first generates eight reference grayscale voltages (VINP0-7/VINN0-7). The grayscale amplifier unit then divides eight reference grayscale voltages with the ladder resistors incorporated therein. Increment Adjustment PRP/N0 GVDD 3 3 3 3 Amplitude Adjustment Fine Adjustment(6 X 3 bits) PFP/N0 PFP/N1 PMP/N0 PFP/N2 PRP/N0 3 PFP/N3 3 3 PKP/N0 3 PKP/N1 3 PKP/N2 3 PKP/N3 3 PKP/N4 PKP/N5 3 3 VRP/N0 VRP/N1 5 5 VINP0 /VINN0 V0 V1 VINP1 /VINN1 8 to 1 Selector V2 VINP2 /VINN2 8 to 1 Selector VINP3 /VINN3 8 to 1 Selector VINP4 /VINN4 8 to 1 Selector VINP5 /VINN5 8 to 1 Selector 8 to 1 Selector VINP6 /VINN6 V61 VINP7 /VINN7 V62 V63 VGS Figure 52: Grayscale amplifier unit 94 LGDP4525 GVDD Rev 0.9.0 VRP0 0-31R VRN0 0-31R VR0P 3R~24R VR0N 3R~24R 4R*7 8to1 SEL VRHP 0-28R 1R*7 8to1 SEL 8to1 SEL 8to1 SEL VGS 1R*7 8to1 SEL 1R*7 8to1 SEL VR2N 3R~24R 8to1 SEL VRLP 0-28R 4R*7 8to1 SEL VRMN 8R~64R VR2P 3R~24R 1R*7 1R*7 VR1N 3R~24R VRMP 8R~64R 1R*7 8to1 SEL VRHN 0-28R VR1P 3R~24R 1R*7 4R*7 1R*7 8to1 SEL VRLN 0-28R 8to1 SEL 4R*7 VR3P 3R~24R VR3N 3R~24R VRP1 0-31R VRN1 0-31R 8R 8R 8to1 SEL Figure 53: Ladder resistor units and 8-to-1 selectors 95 LGDP4525 Rev 0.9.0 γ-Correction Register Grayscale voltage Grayscale voltage Grayscale voltage The γ-correction registers of the LGDP4525 consist of gradient adjustment, amplitude adjustment, and fine adjustment registers, each of which has registers of positive and negative polarities. Each different register group can be set independently to others, enabling adjustment of grayscale voltage levels in relation to grayscales set optimally for γ-characteristics of a liquid crystal panel. These γ-correction register settings and the reference levels of the 64 grayscales to which the three kinds of adjustments are made (bold lines in the following figure) are common to all RGB dots. Figure 54 1. Gradient adjustment registers The gradient adjustment registers are used to adjust the gradient of the curve representing the relationship between the grayscale and the grayscale voltage level around middle grayscales without changing the dynamic range. To adjust the gradient, the resistance values of grayscale reference voltage generating variable resistors (VRHP(N)/VRLP(N)) in the middle of the ladder resistor unit are adjusted. The registers consist of positive and negative polarity registers, allowing asymmetric drive. 2. Amplitude adjustment registers The amplitude adjustment registers are used to adjust the amplitude of grayscale voltages. To adjust the amplitude, the resistance values of the grayscale voltage generating variable resistors (VRP(N)1/0) at the top and bottom of the ladder resistor unit are adjusted. Same with the gradient registers, the amplitude adjustment registers consist of positive and negative polarity registers. 3. Fine adjustment registers The fine adjustment registers are used to fine-adjust grayscale voltage levels. To fine-adjust grayscale voltage levels, fine adjustment registers adjust the reference voltage levels, 8 levels for each register generated from the ladder resistor unit, in respective 8-to-1 selectors. Same with other registers, the fine adjustment registers consist of positive and negative polarity registers. 96 LGDP4525 Rev 0.9.0 Table 58 Register Groups Gradient adjustment Amplitude adjustment Fine adjustment Positive Polarity PRP0[2:0] PRP1[2:0] PFP0[2:0] PFP1[2:0] PFP2[2:0] PFP3[2:0] PMP[2:0] VRP0[3:0] VRP1[4:0] PKP0[2:0] PKP1[2:0] PKP2[2:0] PKP3[2:0] PKP4[2:0] PKP5[2:0] Negative Polarity PRN0[2:0] PRN1[2:0] PFN0[2:0] PFN1[2:0] PFN2[2:0] PFN3[2:0] PMN[2:0] VRN0[3:0] VRN1[4:0] PKN0[2:0] PKN1[2:0] PKN2[2:0] PKN3[2:0] PKN4[2:0] PKN5[2:0] Description Variable resistor VRHP(N) Variable resistor VRHP(N) Variable resistor VR0P(N) Variable resistor VR1P(N) Variable resistor VR2P(N) Variable resistor VR3P(N) Variable resistor VRMP(N) Variable resistor VRP(N)0 Variable resistor VRP(N)1 8-to-1 selector ( voltage level of grayscale 1) 8-to-1 selector ( voltage level of grayscale 8) 8-to-1 selector ( voltage level of grayscale 20) 8-to-1 selector ( voltage level of grayscale 43) 8-to-1 selector ( voltage level of grayscale 55) 8-to-1 selector ( voltage level of grayscale 62) 97 LGDP4525 Rev 0.9.0 Ladder Resistors and 8-to-1 Selector Block Configuration The reference voltage generating unit as illustrated in page 100 consists of two ladder resistor units including variable resistors and 8-to-1 selectors. Each 8-to-1 selector selects one of the 8 voltage levels generated from the ladder resistor unit to output as a grayscale reference voltage. Both variable resistors and 8-to-1 selectors are controlled according to the γ correction registers. This unit has pins to connect a volume resistor externally to compensate differences in various characteristics of panels. Variable Resistors The LGDP4525 uses variable resistors of the following three purposes: gradient adjustment (VRHP(N)/VRLP(N)); amplitude adjustment (1) (VRP(N)0); and the amplitude adjustment (2) (VRP(N)1). The resistance values of these variable resistors are set by gradient adjustment registers and amplitude adjustment registers as follows. Table 59: Gradient adjustment(1) Gradient adjustment(2) Gradient adjustment(3) Contents of register PRP(N)0/1[2:0] 000 001 010 011 100 101 110 111 Contents of register PFP0/1/2/3(N) 000 001 010 011 100 101 110 111 Contents of register VRP(N)1[4:0] 000 001 010 011 100 101 110 111 Resistance VRHP(N) VRLP(N) 0R 4R 8R 12R 16R 20R 24R 28R Resistance VR0/1P(N) VR2/3P(N) 3R 6R 9R 12R 15R 18R 21R 24R Resistance VRMP(N) 8R 16R 24R 32R 40R 48R 56R 64R Table 60: Amplitude adjustment Contents of register VRP(N)0[4:0] 00000 00001 00010 : : 11101 11110 11111 Resistance VRP(N)0 VRP(N)1 0R 1R 2R : : 29R 30R 31R 8-to-1 Selectors The 8-to-1 selector selects one of eight voltage levels generated from the ladder resistor unit according to the fine adjustment register, and output the selected voltage level as a reference grayscale voltage (VINP(N)1~ VINP(N 6). The table below shows the setting in the fine adjustment register and the selected voltage levels for respective reference grayscale voltages 98 LGDP4525 Rev 0.9.0 Table 61: Fine adjustment registers and selected voltage PKP(N)[2:0] 0 1 2 3 4 5 6 7 Selected Voltage VINP(N)1 VINP(N)2 KVP(N)1 KVP(N)9 KVP(N)2 KVP(N)10 KVP(N)3 KVP(N)11 KVP(N)4 KVP(N)12 KVP(N)5 KVP(N)13 KVP(N)6 KVP(N)14 KVP(N)7 KVP(N)15 KVP(N)8 KVP(N)16 VINP(N3 KVP(N)17 KVP(N)18 KVP(N)19 KVP(N)20 KVP(N)21 KVP(N)22 KVP(N)23 KVP(N)24 VINP(N)4 KVP(N)25 KVP(N)26 KVP(N)27 KVP(N)28 KVP(N)29 KVP(N)30 KVP(N)31 KVP(N)32 VINP(N)5 KVP(N)33 KVP(N)34 KVP(N)35 KVP(N)36 KVP(N)37 KVP(N)38 KVP(N)39 KVP(N)40 VINP(N)6 KVP(N)41 KVP(N)42 KVP(N)43 KVP(N)44 KVP(N)45 KVP(N)46 KVP(N)47 KVP(N)48 99 LGDP4525 Rev 0.9.0 The grayscale voltage levels for V0~V63 grayscales are calculated from the following formulae. Table 62: Formulae for calculating voltage (1) Pin Formula Fine adjustment register value KVP0 KVP1 KVP2 KVP3 KVP4 KVP5 KVP6 KVP7 KVP8 KVP9 KVP10 KVP11 KVP12 KVP13 KVP14 KVP15 KVP16 KVP17 KVP18 KVP19 KVP20 KVP21 KVP22 KVP23 KVP24 KVP25 KVP26 KVP27 KVP28 KVP29 KVP30 KVP31 KVP32 KVP33 KVP34 KVP35 KVP36 KVP37 KVP38 KVP39 KVP40 KVP41 KVP42 KVP43 KVP44 KVP45 KVP46 KVP47 KVP48 KVP49 GVDD - ∆V*VRP0/SUMRP GVDD - ∆V*(VRP0+VR0P+0R)/SUMRP GVDD - ∆V*(VRP0+VR0P+4R)/SUMRP GVDD - ∆V*(VRP0+VR0P+8R)/SUMRP GVDD - ∆V*(VRP0+VR0P+12R)/SUMRP GVDD - ∆V*(VRP0+VR0P+16R)/SUMRP GVDD - ∆V*(VRP0+VR0P+20R)/SUMRP GVDD - ∆V*(VRP0+VR0P+24R)/SUMRP GVDD - ∆V*(VRP0+VR0P+28R)/SUMRP GVDD - ∆V*(VRP0+VR0P+28R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0P+29R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0P+30R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0P+31R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0P+32R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0P+33R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0P+34R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0P+35R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+35R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+36R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+37R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+38R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+39R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+40R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+41R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+42R+VRHP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+42R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+43R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+44R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+45R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+46R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+47R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+48R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1P+49R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+49R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+50R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+51R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+52R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+53R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+54+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+55R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+56R+VRHP +VRMP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+56R+VRHP +VRMP+VRLP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+60R+VRHP +VRMP+VRLP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+64R+VRHP +VRMP+VRLP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+68R+VRHP +VRMP+VRLP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+72R+VRHP +VRMP+VRLP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+76R+VRHP+VRMP +VRLP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+80R+VRHP+VRMP +VRLP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2P+84R+VRHP+VRMP +VRLP)/SUMRP GVDD - ∆V*(VRP0+VR0/1/2/3P+84R+VRHP+VRMP +VRLP)/SUMRP PKP0= 0 PKP0= 1 PKP0= 2 PKP0= 3 PKP0= 4 PKP0= 5 PKP0= 6 PKP0= 7 PKP1= 0 PKP1= 1 PKP1= 2 PKP1= 3 PKP1= 4 PKP1= 5 PKP1= 6 PKP1= 7 PKP2= 0 PKP2= 1 PKP2= 2 PKP2= 3 PKP2= 4 PKP2= 5 PKP2= 6 PKP2= 7 PKP3= 0 PKP3= 1 PKP3= 2 PKP3= 3 PKP3= 4 PKP3= 5 PKP3= 6 PKP3= 7 PKP4= 0 PKP4= 1 PKP4= 2 PKP4= 3 PKP4= 4 PKP4= 5 PKP4= 6 PKP4= 7 PKP5= 0 PKP5= 1 PKP5= 2 PKP5= 3 PKP5= 4 PKP5= 5 PKP5= 6 PKP5= 7 - Referenc e voltage VINP0 VINP1 VINP2 VINP3 VINP4 VINP5 VINP6 VINP7 SUMRP: Sum of positive ladder resistors = 92R+VRHP+VRLP+VRP0+VRP1+VR0P+VR1P+VR2P +VR3P+VRMP ∆V : Difference in electrical potential between VDH and VGS 100 LGDP4525 Rev 0.9.0 Table 63: Formulae for calculating voltage (2) Grayscal e voltage V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 Formula VINP0 VINP1 VINP2+(VINP1-VINP2)*(30/48) VINP2+(VINP1-VINP2)*(23/48) VINP2+(VINP1-VINP2)*(16/48) VINP2+(VINP1-VINP2)*(12/48) VINP2+(VINP1-VINP2)*(8/48) VINP2+(VINP1-VINP2)*(4/48) VINP2 VINP3+(VINP2-VINP3)*(22/24) VINP3+(VINP2-VINP3)*(20/24) VINP3+(VINP2-VINP3)*(18/24) VINP3+(VINP2-VINP3)*(16/24) VINP3+(VINP2-VINP3)*(14/24) VINP3+(VINP2-VINP3)*(12/24) VINP3+(VINP2-VINP3)*(10/24) VINP3+(VINP2-VINP3)*(8/24) VINP3+(VINP2-VINP3)*(6/24) VINP3+(VINP2-VINP3)*(4/24) VINP3+(VINP2-VINP3)*(2/24) VINP3 VINP4+(VINP3-VINP4)*(22/23) VINP4+(VINP3-VINP4)*(21/23) VINP4+(VINP3-VINP4)*(20/23) VINP4+(VINP3-VINP4)*(19/23) VINP4+(VINP3-VINP4)*(18/23) VINP4+(VINP3-VINP4)*(17/23) VINP4+(VINP3-VINP4)*(16/23) VINP4+(VINP3-VINP4)*(15/23) VINP4+(VINP3-VINP4)*(14/23) VINP4+(VINP3-VINP4)*(13/23) VINP4+(VINP3-VINP4)*(12/23) Grayscale voltage V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57 V58 V59 V60 V61 V62 V63 Formula VINP4+(VINP3-VINP4)*(11/23) VINP4+(VINP3-VINP4)*(10/23) VINP4+(VINP3-VINP4)*(9/23) VINP4+(VINP3-VINP4)*(8/23) VINP4+(VINP3-VINP4)*(7/23) VINP4+(VINP3-VINP4)*(6/23) VINP4+(VINP3-VINP4)*(5/23) VINP4+(VINP3-VINP4)*(4/23) VINP4+(VINP3-VINP4)*(3/23) VINP4+(VINP3-VINP4)*(2/23) VINP4+(VINP3-VINP4)*(1/23) VINP4 VINP5+(VINP4-VINP5)*(22/24) VINP5+(VINP4-VINP5)*(20/24) VINP5+(VINP4-VINP5)*(18/24) VINP5+(VINP4-VINP5)*(16/24) VINP5+(VINP4-VINP5)*(14/24) VINP5+(VINP4-VINP5)*(12/24) VINP5+(VINP4-VINP5)*(10/24) VINP5+(VINP4-VINP5)*(8/24) VINP5+(VINP4-VINP5)*(6/24) VINP5+(VINP4-VINP5)*(4/24) VINP5+(VINP4-VINP5)*(2/24) VINP5 VINP6+(VINP5-VINP6)*(44/48) VINP6+(VINP5-VINP6)*(40/48) VINP6+(VINP5-VINP6)*(36/48) VINP6+(VINP5-VINP6)*(32/48) VINP6+(VINP5-VINP6)*(25/48) VINP6+(VINP5-VINP6)*(18/48) VINP6 VINP7 Note: Make sure AVDD-V0 > 0.5V 101 LGDP4525 Rev 0.9.0 Relationship between RAM Data and Voltage Output Levels The relationship between RAM data and source output voltage levels is as follows. See also Table 47: GRAM data and LCD output level. Negative polarity V0 V63 Positive polarity 000000 RAM data (Common for each RGB pixel) 111111 Figure 55: RAM data and the output voltage (REV = “0”) Sn Negative polarity VCOM Positive polarity Figure 56: Source output and VCOM 102 LGDP4525 Rev 0.9.0 8-Color Display Mode `The LGDP4525 has a function to display in 8colors. In 8-color mode, available grayscale levels are V0 and V63, and the power supplies of other grayscales (V1 to V62) are halted to reduce power consumption. In 8-color display mode, the MSBs of the respective dot data (R5, G5, B5) are written to the rest of the dot data in order to display in 8 colors without rewriting the RAM data. The γ- correction registers, PKP0-PKP5 and PKN0-PKN5, are disabled in 8-color display mode. Display data Positive Polarity Register VRP03 VRP14 VRP13 Negative Polarity Register VRN03 VRN14 VRN13 PFP02 PFP12 PFP22 PMP02 PKP02 PKP12 PKP22 PKP32 PKP42 PKP52 PFP01 PFP11 PFP21 PMP01 PKP01 PKP11 PKP21 PKP31 PKP41 PKP51 PFP00 PFP10 PFP20 PMP00 PKP00 PKP10 PKP20 PKP30 PKP40 PKP50 PRP02 PRP12 VRP02 VRP12 PRP01 PRP11 VRP01 VRP11 PRP00 PRP10 VRP00 VRP10 PFN02 PFN12 PFN22 PMN02 PKN02 PKN12 PKN22 PKN32 PFN01 PFN11 PFN21 PMN01 PKN01 PKN11 PKN21 PKN31 PFN00 PFN10 PFN20 PMN00 PKN00 PKN10 PKN20 PKN30 PKN42 PKN52 PRN02 PRN12 VRN02 VRN12 PKN41 PKN51 PRN01 PRN11 VRN01 VRN11 PKN40 PKN50 PRN00 PRN10 VRN00 VRN10 6 6 6 V0 2- level grayscale2- level grayscale 2- level grayscale Control <R> Control <G> Control <B> 8 2 LCD driver LCD driver LCD driver V63 Figure 57 103 LGDP4525 Rev 0.9.0 To switch between the 262,144-color mode and 8-color mode, follow the sequence below. 262,144 color to 8 color mode 8 color to 262,144 color mode Display OFF GON = 1 DTE = 1 D1-0 = 10 Display OFF GON = 1 DTE = 1 D1-0 = 10 Wait for lat least 2 frames Wait for lat least 2 frames Display OFF GON = 1 DTE = 0 D1-0 = 10 Display OFF GON = 1 DTE = 0 D1-0 = 10 Wait for lat least 2 frames Wait for lat least 2 frames Display OFF GON = 0 DTE = 0 D1-0 = 00 Display OFF GON = 0 DTE = 0 D1-0 = 00 RAM setting RAM setting CL = 1 CL = 0 Wait for at least 40 ms Wait for at least 40 ms Display ON GON = 0 DTE = 0 D1-0 = 01 Display ON GON = 0 DTE = 0 D1-0 = 01 Wait for lat least 2 frames Wait for lat least 2 frames Display ON GON = 1 DTE = 0 D1-0 = 01 Display ON GON = 1 DTE = 0 D1-0 = 01 Display ON GON = 1 DTE = 0 D1-0 = 11 Display ON GON = 1 DTE = 0 D1-0 = 11 Wait for lat least 2 H periods Wait for lat least 2 H periods Display ON GON = 1 DTE = 1 D1-0 = 11 Display ON GON = 1 DTE = 1 D1-0 = 11 8 color mode display ON 262,144 color mode display ON Figure 58 104 LGDP4525 Rev 0.9.0 Configuration of Power Supply Circuit The follow are the configuration of power supply circuit to generate liquid crystal panel drive levels. CB9 GVDD VCOMR VGH Voltage adjustment circuit VCI CB1 VCI1 Gate driver G1-220 Source driver S1-528 VCI1 AMP Grayscale voltage generation circuit VCOMH adjustment circuit C11P C12M see Note 4 C12 VGL REGP C11M C11 Amplifier1 ( VDH adjustment ) C12P Step-up Circuit 1 VCOMH output AMP AVDD CB2 VCOMH CB6 VCOM C31M see Note 1 C31 D1 VCOM amplitude adjustment C31P C21M C21 Step-up Circuit 2 VCI C22P VGH see Note 1,2 CB7 see Note 3 VREF VREF_BUF RVDD VDD Regulator IREF/VREF D2 VGL Bandgap Reference VCI CB3 CB4 VCOML C21P C22M C22 VCOML output AMP VDD CB8 VSSC, AVSS, VSS VCL OSC1 CB5 RC-OSC OSC2 Rf Note 1) Place a shottkey diode ( VF=about 0.4/20mA, VR = 80V ) Note 2) The Wiring resistance between GND or VGL to the shottkey diode must be 10 or less Note 3) Capacitor connection is unnecessary when operating at VCOMG = 0 ( VcomL = GND ) Note 4) Capacitor connection is necessary only when operating at dual step up1 mode Figure 59 105 LGDP4525 Rev 0.9.0 Specification of External Elements Connected to LGDP4525 Power Supply The follow table shows specifications of external element connected to the LGDP4525’s power supply circuit. Table 64: Capacitor Capacity 1uF (B characteristics) Recommended voltage 6V 10V 25V Pin connection VCI1, C11P/M , C12P/M, C31P/M, VCL(see note), VCOML (see note), VDD GVDD, VCOMH, AVDD, C21P/M , C22P/M VGH, VGL Note: Capacitor connection is not necessary in some operation modes. Table 65: Schottky diode Feature VF < 0.4V/20mA at 25°C , VR>30V Pin connection GND – VGL AVDD – VGH Table 66: Variable resistor Feature > 200k Pin connection VCOMR 106 LGDP4525 Rev 0.9.0 Instruction Setting When setting the following instructions, follow respective sequences below. Display On/Off Display off Display on Power supply EQ = 0 SAP2-0 setting Display off GON = 1 DTE = 1 D1-0 = 10 Wait (2 frames or more) Display off GON = 1 DTE = 0 D1-0 = 10 Wait (2 frames or more) Display off GON = 0 DTE = 0 D1-0 = 00 Power supply off SAP2-0 = 000 AP2-0 = 000 PON = 0 VOMG = 0 Display on VCOM_INIT1-0 = 00 GON = 0 DTE = 0 D1-0 = 01 Wait (2 frames or more) Display on GON = 1 DTE = 0 D1-0 = 01 Display on GON = 1 DTE = 0 D1-0 = 11 Wait (2 frames or more) Display on GON = 1 DTE = 1 D1-0 = 11 Display off Display on Display off flow Display on flow Figure 60 107 LGDP4525 Rev 0.9.0 Standby and Sleep Modes Standby Sleep Display off sequence Display off sequence Sleep set Standby set Standby set (STB=1) Sleep set (SLP=1) Oscillation Start Wait 10 ms Standby canceled Sleep canceled (SLP = 0) Sleep canceled Standby canceled (STB = 0) Power setting Power setting Display on flow Display on flow Figure 61 Deep Standby Mode Deep Standby Display off sequence Deep Standby set Deep Standby set (DSTB=1) 6 times CSB=0 Wait 10 ms Exit from Deep Standby and internal reset generated. Initial instruction setting Ram data setting Display on sequence Figure 62 108 LGDP4525 Rev 0.9.0 Power Supply Setting When supplying and cutting off power, follow the sequence below. The setting time for oscillators, step-up circuits and operational amplifiers depends on external resistance and capacitance. Power supply(VCI, VDD3) ON Normal Display VCI VDD3 Display ON setting DTE = 1, D =11 GON = 1 GND Display OFF sequence VDD3 => VCI Or VDD3, VCI simultaneously Display OFF 1 ms Or more Power ON reset & Display OFF 10 ms Or more Display OFF setting bits DTE = 0, D=00, GON = 0 PON= 0, VCOMG=0 Oscillating circuit Stabilizing period Instructions before starting Up power supply Instructions for starting Up Power supply(1) Power supply(VCI, VDD3) ON Power supply initial setting bits Set VC2-0,VRH3-VCM4-0 , VDV4-0, PON="0”, DK="1" Power Supply Operation Start setting bits BT2-0="000", Set DC12-10, DC02-0, AP2-0, PON = 1 Step-up Circuit Stabilizing Period VCI VDD3 GND VDD3 => VCI Or VDD3, VCI simultaneously Power supply halt Setting bits SAP2-0 = 000 AP2-0 = 000, PON = 0 VCOMG = 0 Power OFF sequence 40ms or more Instructions for starting Up Power supply(2) OP-amp Stabilizing period Instruction for Power supply setting Instructions for other mode settings Power Supply Operation Start setting bits VCOMG = 1 DK="0" Set BT2-0 100 ms Or more Display ON sequence Set SAP2-0 bits Display ON Display ON setting bit DTE=1 , D0-1=11 GON=1 Power ON sequence Figure 63 109 LGDP4525 Rev 0.9.0 Pattern Diagram for Voltage Setting The pattern diagram for the voltages and the waveforms of the voltages of the LGDP4525 are as follows. Figure 64 Note: The AVDD, VGH, VGL, and VCL output voltage levels are lower than their theoretical levels ( ideal voltage levels ) due to current consumption at respective output. The voltage levels in the following relationships (AVDD – GVDD) > 0.5V, (VCOML – VCL) > 0.5V are the actual voltage levels. When the alternating cycles of VCOM are set high (e.g. the polarity inverts every line cycle), current consumption is large. In this case, check the voltage before use. Figure 65: Applied voltage to the TFT display 110 LGDP4525 Rev 0.9.0 Oscillator The LGDP4525 generates oscillation with the LGDP4525’s internal RC oscillators both without an external resistor and with resistor by placing an external oscillation resistor between the OSC1 and OSC2 pins. The oscillation frequency varies due to resistance value of external resistor, wiring distance, and operating supply voltage. For example, placing an Rf resistor of a larger resistance value, or lowering the supply voltage level brings down the oscillation frequency. See the “Notes to Electrical Characteristics” section for the relationship between resistance value of Rf resistor and oscillation frequency. Figure 66 111 LGDP4525 Rev 0.9.0 n-Line Inversion AC Drive The LGDP4525, in addition to the frame-inversion liquid crystal AC drive, supports the n-line inversion AC drive, in which the polarity of liquid crystal is inverted in units of n lines, where n takes a number from 1 to 64. The quality of display will be improved by using n-line inversion AC drive. In determining n (the value set with the NW bits +1), which represents the number of lines that determines the timing of liquid crystal polarity inversion, check the quality of display on the liquid crystal panel in use. Note that setting a smaller number of lines will raise the frequency of liquid crystal polarity inversion and increase charging/discharging current on liquid crystal cells. Figure 67 112 LGDP4525 Rev 0.9.0 Interlaced Scan The LGDP4525 supports interlaced scan for driving a frame by splitting it into n fields in order to prevent flicker. To determine the number of fields (n: value set with the FLD bits), check the quality of display on the liquid crystal panel in use. The following table shows the scanned (gate) lines in each field. When FLD[1:0] = “01”, the number of fields in one frame is one. When FLD[1:0] = “11”, the number of fields in one frame is three. The figure illustrates the output waveforms of 3-field interlaced scan. Table 67: Interlaced scan (GS = “0”) Table 68: Interlaced scan (GS = “1”) FLD[1:0] FLD[1:0] Field 01 - Gate G1 G2 G3 G4 G5 G6 G7 G8 : G217 G218 G219 G220 1 * * * * * * * * * * * * * * 11 2 3 Field Gate G220 G219 G218 G217 G216 G215 G214 G213 : G4 G3 G2 G1 * * * * * * * * * * 01 - 1 * * * * * * * * * * * * * * 11 2 3 * * * * * * * * * * *: scanned gate lines Alternating polarity Field 1 1 frame Blank period Field 2 Field 3 Field 1 G1 G2 G3 G4 G5 G6 ••• G(3n+1) G(3n+2) G(3n+3) Figure 68: Gate output timing of 3-field interlaced scan 113 LGDP4525 Rev 0.9.0 Alternating Timing The following figure illustrates the timing of liquid crystal polarity inversion in different driving formulae. In case of frame-inversion AC drive, the polarity is inverted after drawing one frame, followed by a blank period lasting for a 16H period, where all outputs from the gate lines become the VGL level. In case of 3-field interlaced scan, polarity is inverted after drawing one field, followed by blank periods that add up to a 16H period in one frame. In case of n-line inversion AC drive, polarity is inverted as drawing n lines, and a blank period lasting for a 16H period is inserted after drawing one frame. 1 frame period In the interlaced scan, be sure to set the numbers of back and front porches as follows: BP = 3, FP = 5. Figure 69 114 LGDP4525 Rev 0.9.0 Frame Frequency Adjustment Function The LGDP4525 has a frame frequency adjustment function. The frame frequency for driving LCDs can be adjusted by instructions (using the DIV, RTN bits) without changing the oscillation frequency. To switch frame frequencies between when displaying a moving picture and when displaying a still picture, set a high oscillation frequency in advance. By doing so, it becomes possible to set a low frame frequency when displaying a still picture for saving power consumption and to set a high frame frequency when displaying a moving picture. Relationship between Liquid Crystal Drive Duty and Frame Frequency The relationship between the liquid crystal drive duty and the frame frequency is calculated from the following formula. The frame frequency is adjusted by instruction using the 1H period adjustment bits (RTN bits) and the operation clock division bits (DIV bits). frame frequency = fosc clock cycles per line * division ratio * (Line + BP + FP) where fosc = RC oscillation frequency, Line = number of lines to drive the LCD (NL bits), clock cycle per line = RTN bits, division ratio: DIV bits, FP = number of lines for front porch and BP = number of lines for back porch. Example of Calculation: when maximum frame frequency = 60 Hz Number of lines to drive the LCD: 220 lines 1H period: 44 clock cycle (RTN[6:0] = 2Ch) Operational clock division ratio: 1/1 fosc = 60 Hz × (0 + 44) clocks × 1/1 × (220 + 16) lines = 623 kHz In this case, the RC oscillation frequency is 676 kHz. Adjust the external resistor of the RC oscillator to 623 kHz. 115 LGDP4525 Rev 0.9.0 Partial Display Function The LGDP4525 allows selectively driving two images on the screen at arbitrary positions set in the screen drive position registers (R42h and R43h). Only the lines for displaying two images are selectively driven in order to reduce current consumption. The first display drive position register (R42h) includes the start line setting bits (SS1) and the end line setting bits (SE1) for displaying the first image. The second display drive position register (R43h) includes the start line setting bits (SS2) and the end line setting bits (SE2) for displaying the second image. The second display control is effective when the SPT bit is set to “1”. The total number of lines driven for displaying the first and second display must be less than the number of lines set with the NL bits. G1 1 G7 st Screen: 7 lines Non-display area G26 G42 OCT 14th 10:18am nd 2 Screen: 17 lines Non-display area The number of lines to drive LCD panel: NL = 1Eh (220 raster-rows) st 1 screen setting : SS1 = 00h, SE1 = 06h nd 2 screen setting : SS2 = 19h, SE2 = 29h, SPT = 1 Figure 70 116 LGDP4525 Rev 0.9.0 Constraints in Setting the 1st/2nd Screen Drive Position Registers When setting the start line setting bits (SS1[7:0]) and the end line setting bits (SE1[7:0]) of the first display drive position register (R42h), and the start line setting bits (SS2[7:0]) and the end line setting bits (SE2[7:0]) of the second display drive position register (R43h), it is necessary to satisfy the following conditions to display screens correctly. Table 69: One screen drive (SPT = “0”) Register Settings (SE1 – SS1) = NL (SE1 – SS1) < NL (SE1 – SS1) > NL Display Operation Full screen display The area of (SE1 – SS1) is normally displayed. Partial screen display The area of (SE1 – SS1) is normally displayed. The rest of the area is a white display irrespective of data in RAM. Setting disabled Table 70: Two screen drive (SPT = “1”) Register Settings ((SE1 – SS1) + (SE2 – SS2)) = NL ((SE1 – SS1) + (SE2 – SS2)) < NL ((SE1 – SS1) + (SE2 – SS2)) > NL Display Operation Full screen display The area of (SE2 – SS1) is normally displayed. Partial screen display The area of (SE2 – SS1) is normally displayed. The rest of the area is a white display irrespective of data in RAM. Setting disabled Note 1) Be sure that SS1 ≤ SE1 ≤ SS2 ≤ SE2 ≤ EFh. Note 2) Be sure that (SE2 – SS1) ≤ NL. The outputs from the source driver in non-display areas of the partial display can be changed as follows. Select the appropriate kind of source outputs according to the characteristics of the display panel. Table 71 PTS Source output in non-display area Positive polarity Negative polarity 000 001 010 011 100 101 110 111 V63 Setting disabled GND High impedance V63 Setting disabled GND High impedance V0 Setting disabled GND High impedance V0 Setting disabled GND High impedance Operating grayscale amplifier in non-display area V0 to V63 V0 to V63 V0 to V63 V0, V63 V0, V63 V0, V63 Table 72 PTG 00 01 10 11 Gate outputs in non-display area Normal scan VGL (fixed) Interval scan Setting disabled Follow the sequences below when using the partial display function. 117 LGDP4525 Rev 0.9.0 Full screen display PTS = 000 Set SS/SE bits Partial display drive setting sequence Wait for 2 frames or more As required PTG = 01 or PTG = 10 or PTG = 11 Partial display ON Set SS/SE bits Full screen display setting sequence Full screen display Figure 71 118 LGDP4525 Rev 0.9.0 Absolute Maximum Ratings Item Power supply voltage (2) Power supply voltage (3) Power supply voltage (4) Power supply voltage (5) Power supply voltage (6) Power supply voltage (7) Input voltage Operating temperature Storage temperature Symbol VCI, VDD3 – GND AVDD – GND GND – VCL VCI –VCL VGH – GND GND – VGL Vt Topr Tstg Unit V V V V V V V ˚C ˚C value -0.3 ~ +4.2 -0.3 ~ +7.7 -0.3 ~ +4.2 -0.3 ~ +7.7 -0.3 ~ +18 -0.3 ~ +18 -0.3 ~ +4.2 -40 ~ +85 -55 ~ +125 Notes 1, 2, 3 1, 4 1 1, 5 1, 6 1, 7 1 1, 8 1 Notes : 1. If used beyond the absolute maximum ratings, the LSI may permanently be damaged. It is strongly recommended to use the LSI at a condition within the electrical characteristics for normal operation. Exposure to a condition not within the electrical characteristics may affect device reliability. 2. Make sure (High) VCI ≥ GND (Low). 3. Make sure (High) VDD3 ≥ GND (Low). 4. Make sure (High) AVDD ≥ GND (Low). 5. Make sure (High) VCI ≥ VCL (Low). 6. Make sure (High) VGH ≥ GND (Low). 7. Make sure (High) GND ≥ VGL (Low). 8. The DC/AC characteristics of die and wafer products is guaranteed at 85 ℃. 119 LGDP4525 Rev 0.9.0 Electrical Characteristics DC Characteristics Table 73: DC Characteristics Item Input high-level voltage Input low-level voltage Output high-level voltage(1) ( DB17-0, SDO, FLM ) Output high-level voltage(2) ( DB17-0, SDO, FLM ) I/O leakage current Current consumption: Standby mode (VDD3-GND) +(VCI-GND) Symbo l VIH VIL Unit Test Condition Min. Typ. Max V V VDD3=1.65~3.3 VDD3=1.65~3.3 0.8VDD3 -0.3 - VDD3 0.2VDD3 Note s 2 ,3 2 ,3 VOH1 V 0.8VDD3 - - 2 VOL1 V - - 0.2VDD3 2 ILi IST uA uA VDD3=1.65~3.3 IOH =0.1mA VDD3=1.65~3.3 IOL =0.1mA Vin=0~VDD3 VDD3=VCI=2.8V Ta=25℃ -1 - 1.4 1 10 4 5 80-System Bus Interface Timing Characteristics (18/16-Bit Bus) Table 74 (Condition: VDD3 = 1.65 to 3.30V,VCI = 2.50 to 3.30V, VDD = 1.7 to 1.9V) Item Bus cycle time Write Read Write Read Write Read Write “Low” level pulse width Read “Low” level pulse width Write “High” level pulse width Read “High” level pulse width Write/Read rise/fall time Setup time Write (RS to CSB/RW_WRB) Read (RS to CSB/E_RDB) Address hold time Write data setup time Write data hold time Read data delay time Read data hold time Symbol tCYCW tCYCR PWLW PWLR PWHW PWHR tWRr, tWRf tAS tAH tDSW tH tDDR tDHR Unit ns ns ns ns ns ns ns ns ns ns Min 100 250 40 150 30 100 0 Typ - Max 25 - 10 - - 2 25 2 5 - 100 - 120 LGDP4525 Rev 0.9.0 80-System Bus Interface Timing Characteristics (8/9-Bit Bus) Table 75 (Condition: VDD3 = 1.65 to 3.30V,VCI = 2.50 to 3.30V, VDD = 1.7 to 1.9V) Item Bus cycle time Symbol tCYCW tCYCR PWLW PWLR PWHW PWHR tWRr, tWRf tAS Write Read Write Read Write Read Write “Low” level pulse width Read “Low” level pulse width Write “High” level pulse width Read “High” level pulse width Write/Read rise/fall time Setup time Write (RS to CSB/RW_WRB) Read (RS to CSB/E_RDB) Address hold time Write data setup time Write data hold time Read data delay time Read data hold time tAH tDSW tH tDDR tDHR Unit ns ns ns ns ns ns ns ns ns ns Min 100 250 40 150 30 100 0 Typ - Max 25 - 10 - - 2 25 2 5 - 100 - Serial Peripheral Interface Timing Characteristics Table 76 (Condition: VDD3 = 1.65 to 3.30V,VCI = 2.50 to 3.30V, VDD = 1.7 to 1.9V) Item Serial clock cycle time Serial clock “High” level pulse width Serial clock “Low” level pulse width Write (received) Read (transmitted) Write (received) Read (transmitted) Write (received) Read (transmitted) Serial clock rise/fall time Chip select setup time Chip select hold time Serial input data setup time Serial input data hold time Serial output data setup time Serial output data hold time Symbol tSCYC Unit ns Min 100 350 Typ - Max 20000 20000 tSCH ns 40 150 - - tSCL ns 40 150 - - tscr, tscf tCSU tCH tSISU tSIH tSOD tSOH ns ns ns ns ns ns ns 20 60 30 30 5 - 20 100 - Reset Timing Characteristics Table 77 (Condition: VDD3 = 1.65 to 3.30V,VCI = 2.50 to 3.30V, VDD = 1.7 to 1.9V) Item Reset “Low” level width Reset rise time Symbol tRES trRES Unit us us Min - Typ 10 - Max 10 121 LGDP4525 Rev 0.9.0 RGB Interface Timing Characteristics Table 78 (18/16-bit I/F, VDD3 = 1.65 to 3.30V, VCI = 2.50 to 3.30V, VDD = 1.7 to 1.9V) Item VSYNC/HSYNC setup time ENABLE setup time ENABLE hold time DOTCLK “Low” level pulse width DOTCLK “High” level pulse width DOTCLK cycle time Data setup time Date hold time DOTCLK, VSYNC, HSYNC rise/fall time Symbol tSYNCS tENS tENH PWDL PWDH tCYCD tPDS tPDH trgbr, trgbf Unit ns ns ns ns ns ns ns ns ns Min 0 10 20 40 40 100 10 40 Typ Max 25 Table 79 (6-bit I/F, VDD3 = 1.65 to 3.30V, VCI = 2.50 to 3.30V, VDD = 1.7 to 1.9V) Item VSYNC/HSYNC setup time ENABLE setup time ENABLE hold time DOTCLK “Low” level pulse width DOTCLK “High” level pulse width DOTCLK cycle time Data setup time Date hold time DOTCLK, VSYNC, HSYNC rise/fall time Symbol tSYNCS tENS tENH PWDL PWDH tCYCD tPDS tPDH trgbr, trgbf Unit ns ns ns ns ns ns ns ns ns Min 0 10 20 30 30 100 10 40 Typ Max 25 Notes to Electrical Characteristics 1. The DC/AC electrical characteristics of bare die and wafer products are guaranteed at 85°C. 2. The following are the configurations of I pin, I/O pin, and O pin. 122 LGDP4525 Rev 0.9.0 Pins: RESETB, RESETEN, CSB, RW_WRB, E_RDB, RS, IM[3:0], VSYNC, HSYNC, DOTCLK, ENABLE, SDI, TEST MODE VDD3 Pins:OSC1 VDD VDD3 PMOS PMOS NMOS NMOS GND GND Pins: DB17- DB0 Pins: FLM, SDO GND VDD3 CSB (Input circuit) VDD3 (Output circuit: three states) GND Output enable Output data GND Figure 72 3. The TEST MODE pin must be grounded (GND). The IM[3:0] pins must be fixed at either GND or the VDD3 level. 4. This excludes currents though the output drive MOS. 5. This excludes currents flowing through input/output units. Be sure that input levels are fixed to prevent increase in the transient current in input units when a CMOS input level takes medium range. While not accessing via interface pins, current consumption will not change fixed the CSB pin to “High”, only. 6. This is the case when an external oscillation resistor Rf is used. OSC1 Oscillation frequency varies depending on the capacitances of OSC1 and OSC2 pin. Make the wiring between OSC1 and OSC2 as short as possible. OSC2 Figure 73 123 LGDP4525 Rev 0.9.0 Table 80: Reference Data, Ta=25°C Oscillation Resistance (kΩ) RC Oscillation Frequency: fosc (MHz) @ VDD = 1.8V 27 1.98 30 1.79 33 1.64 36 1.51 39 1.39 43 1.27 47 1.17 51 1.08 56 0.987 62 0.894 68 0.819 75 0.742 82 0.683 124 LGDP4525 Rev 0.9.0 Timing Characteristics Diagram VIH VIL RS VIH VIL tAH tAS VIH VIL CSB See Note 1) PWLW,PWLR VIH VIL RW_WRB E_RDB VIH VIL PWHW,PWHR VIH VIL VIH tWRf tWRr tCYCW, tCYCR tH tDSW VIH VIL See Note 2) DB0toDB17 VIH VIL Write data tDDR tDHR VOH VOL See Note 2) DB0toDB17 VOH VOL Read data Note 1) PWLW and PWLR are defined by the overlap period when CSB is “Low” and RW_WRB or E_RDB is “Low”. Note 2) Unused DB pins must be fixed at “VDD3” or “GND”. Figure 74: 80-system bus interface operation Start: S CSB EndL P VIH VIL VIL tscr tCSU SCL VIH VIL tSOD SDO VIL tSISU VIH VIL SDI tSCH tscf VIH VIL tSIH Input data VOH Output data VOL VIH VIL tSCL tCH VIH VIL Input data tSOH VOH Output data VOL Figure 75: Serial peripheral interface operation 125 LGDP4525 Rev 0.9.0 trRES tRES RESETB VIH VIL VIL No reset (noise less than 10us will be rejected) Reset 5us 10us RESETB Figure 76: Reset operation trgbf trgbr VSYNC HSYNC tSYNCS VIH VIH VIL VIL tENS ENABLE trgbf DOTCLK tENH VIH VIH VIH VIH VIL VIL VIL VIL trgbf PW DH PWDL VIH VIH VIH VIL VIL VIL VIL tCYCD tPDS DB17-0 VIH VIH VIL Write data tPDH VIH VIH VIL VIL Figure 77 RGB interface 126