Target Spec R61509V 260k-color, 240RGB x 432-dot graphics liquid crystal controller driver for Amorphous-Silicon TFT Panel REJxxxxxxx-xxxx Rev.0.11 April 25, 2008 Description ......................................................................................................... 6 Features ......................................................................................................... 7 Power Supply Specifications .............................................................................. 8 Differences Between R61509 and R61509V...................................................... 9 Block Diagram .................................................................................................... 10 Block Function.................................................................................................... 11 1. System Interface.....................................................................................................................................................11 2. External Display Interface (RGB, VSYNC interfaces)........................................................................................12 3. Address Counter (AC) ...........................................................................................................................................12 4. Graphics RAM (GRAM)........................................................................................................................................13 5. Grayscale Voltage Generating Circuit..................................................................................................................13 6. Liquid Crystal Drive Power Supply Circuit..........................................................................................................13 7. Timing Generator ..................................................................................................................................................13 8. Oscillator (OSC).....................................................................................................................................................13 9. Liquid crystal driver Circuit ..................................................................................................................................13 10. Internal Logic Power Supply Regulator...............................................................................................................13 Pin Function ........................................................................................................ 14 Pad Arrangement ................................................................................................ 19 Pad coordinate..................................................................................................... 21 Bump Arrangement............................................................................................. 36 Connection Example........................................................................................... 37 GRAM Address Map .......................................................................................... 38 Instruction ......................................................................................................... 40 Rev. 0.11 April 25, 2008, page 1 of 181 R61509V Target Spec Outline ..........................................................................................................................................................................40 Instruction Data Format..............................................................................................................................................40 Index (IR) .....................................................................................................................................................................41 Display control .............................................................................................................................................................41 Device code read (R000h)......................................................................................................................................41 Driver Output Control (R001h)..............................................................................................................................41 LCD Drive Wave Control (R002h).........................................................................................................................42 Entry Mode (R003h) ...............................................................................................................................................42 Display Control 1 (R007h) .....................................................................................................................................45 Display Control 2 (R008h) .....................................................................................................................................46 Display Control 3 (R009h) .....................................................................................................................................48 8 Color Control (R00Bh)........................................................................................................................................49 External Display Interface Control 1 (R00Ch)......................................................................................................50 External Display Interface Control 2 (R00Fh) ......................................................................................................52 Panel Interface Control 1 (R010h).........................................................................................................................53 Panel Interface Control 2 (R011h).........................................................................................................................55 Panel Interface Control 3 (R012h).........................................................................................................................56 Panel Interface Control 4 (R013h).........................................................................................................................58 Panel Interface Control 5 (R014h).........................................................................................................................59 Panel Interface Control 6 (R020h).........................................................................................................................60 Panel Interface Control 7 (R021h).........................................................................................................................62 Panel Interface Control 8 (R022h).........................................................................................................................63 Panel Interface Control 9 (R023h).........................................................................................................................65 Frame Marker Control (R090h).............................................................................................................................66 Power Control...............................................................................................................................................................67 Power Control 1 (R100h) .......................................................................................................................................67 Power Control 2 (R101h) .......................................................................................................................................69 Power Control3 (R102h) ........................................................................................................................................73 Power Control 4 (R103h) .......................................................................................................................................74 RAM Access..................................................................................................................................................................75 RAM Address Set (Horizontal Address) (R200h) RAM Address Set (Vertical Address) (R201h) ........................75 GRAM Data Write (R202h) ....................................................................................................................................76 GRAM Data Read (R202h).....................................................................................................................................77 NVM Data Read / NVM Data Write (R280h).........................................................................................................78 Window Address Control .............................................................................................................................................81 Window Horizontal RAM Address Start (R210h), Window Horizontal RAM Address End (R211h) ...................81 Window Vertical RAM Address Start (R212h), Window Vertical RAM Address End (R213h) ............................81 γ Control .......................................................................................................................................................................82 γ Control 1 ~ 14 (R300h to R309h) ........................................................................................................................82 Base Image Display Control ........................................................................................................................................84 Base Image Number of Line (R400h).....................................................................................................................84 Base Image Display Control (R401h) ....................................................................................................................84 Base Image Vertical Scroll Control (R404h) .........................................................................................................84 Partial Display Control ................................................................................................................................................88 Partial Image 1: Display Position (R500h), RAM Address 1 (Start Line Address) (R501h), RAM Address 1 (End Line Address) (R502h) ................................................................................................................................................................88 Pin Control ...................................................................................................................................................................89 Test Register (Software Reset) (R600h) .................................................................................................................89 Rev. 0.11 April 25, 2008, page 2 of 181 R61509V Target Spec NVM Control ................................................................................................................................................................90 NVM Access Control 1 (R6F0h), NVM Access Control 2 (R6F1h), NVM Access Control 3 (R6F2h).................90 Instruction List .................................................................................................... 92 Reset Function .................................................................................................... 93 Basic Mode Operation of the R61509V.............................................................. 95 Interface and Data Format .................................................................................. 96 System Interface.................................................................................................. 99 80-System 18-bit Bus Interface ...................................................................................................................................100 80-System 16-bit Bus Interface ...................................................................................................................................101 80-System 9-bit Bus Interface .....................................................................................................................................104 Data Transfer Synchronization in 9-bit Bus Interface Operation ............................................................................105 80-System 8-bit Bus Interface .....................................................................................................................................106 Serial Interface.............................................................................................................................................................109 VSYNC Interface................................................................................................ 112 Notes to VSYNC Interface Operation .........................................................................................................................114 FMARK Interface ............................................................................................... 116 FMP Setting Example..................................................................................................................................................120 RGB Interface ..................................................................................................... 121 RGB Interface ..............................................................................................................................................................121 Polarities of VSYNCX, HSYNCX, ENABLE, and DOTCLK Signals.......................................................................122 Setting Example of Display Control Clock in RGB Interface Operation .................................................................123 RGB Interface Timing .................................................................................................................................................124 16-/18-Bit RGB Interface Timing ...........................................................................................................................124 RAM access via system interface in RGB interface operation ..................................................................................125 16-Bit RGB Interface ...................................................................................................................................................126 18-bit RGB Interface....................................................................................................................................................127 Notes to RGB Interface Operation ..............................................................................................................................128 RAM Address and Display Position on the Panel .............................................. 129 Instruction Setting Example........................................................................................................................................132 Window Address Function ................................................................................. 134 Scan Mode Setting .............................................................................................. 135 8-Color Display Mode ........................................................................................ 136 Frame-Frequency Adjustment Function ............................................................. 137 Relationship between Liquid Crystal Drive Duty and Frame Frequency.................................................................137 Rev. 0.11 April 25, 2008, page 3 of 181 R61509V Target Spec Partial Display Function ..................................................................................... 139 Liquid Crystal Panel Interface Timing ............................................................... 140 Internal Clock Operation.............................................................................................................................................140 RGB Interface Operation.............................................................................................................................................141 γ Correction Function.......................................................................................... 142 γ Correction Function..................................................................................................................................................142 γ Correction Circuit......................................................................................................................................................142 γ Correction Registers ..................................................................................................................................................143 Reference level adjustment registers...........................................................................................................................143 Interpolation Registers.................................................................................................................................................145 Frame Memory Data and the Grayscale Voltage.......................................................................................................148 Power Supply Generating Circuit ....................................................................... 149 Power Supply Circuit Connection Example 1 (VCI1 = VCIOUT)............................................................................149 Power Supply Circuit Connection Example 2 (VCI1 = VCI Direct Input)...............................................................150 Specifications of Power-supply Circuit External Elements................................ 151 Voltage Setting Pattern Diagram ........................................................................ 152 Liquid Crystal Application Voltage Waveform and Electrical Potential ..................................................................153 VCOMH and VREG1OUT Voltage Adjustment Sequence ............................... 154 NVM Control ...................................................................................................... 155 NVM Load (Register Resetting) Sequence .................................................................................................................156 NVM Write Sequence...................................................................................................................................................157 NVM Erase Sequence ..................................................................................................................................................158 Power Supply Setting Sequence ......................................................................... 159 Notes to Power Supply ON Sequence ................................................................ 161 Instruction Setting Sequence and Refresh Sequence .......................................... 162 Display ON/OFF Sequences and Refresh Sequence .................................................................................................162 Shutdown Mode Sequences .........................................................................................................................................163 Partial Display Setting .................................................................................................................................................166 Absolute Maximum Ratings ............................................................................... 167 Electrical Characteristics .................................................................................... 168 DC Characteristics .......................................................................................................................................................168 Step-up Circuit Characteristics..............................................................................................................................170 Internal Reference Voltage: Condition ..................................................................................................................170 Power Supply Voltage Range .................................................................................................................................171 Output Voltage Range ............................................................................................................................................171 AC Characteristics .......................................................................................................................................................172 Rev. 0.11 April 25, 2008, page 4 of 181 R61509V Target Spec Clock Characteristics .............................................................................................................................................172 80-system 18-/16-/9-/8-bit Bus interface Timing Characteristics .........................................................................172 Clock Synchronous Serial Interface Timing Characteristics.................................................................................173 RGB Interface Timing Characteristics...................................................................................................................173 LCD Driver Output Characteristics.......................................................................................................................174 Reset Timing Characteristics .................................................................................................................................174 Notes to Electrical Characteristics ..............................................................................................................................175 Test Circuits..................................................................................................................................................................176 Timing Characteristics.................................................................................................................................................177 80-system Bus Interface..........................................................................................................................................177 Clock Synchronous Serial Interface .......................................................................................................................178 Reset Operation ......................................................................................................................................................178 LCD Driver and VCOM Output Characteristics ...................................................................................................179 Rev. 0.11 April 25, 2008, page 5 of 181 R61509V Target Spec Description The R61509V is a single-chip liquid crystal controller driver LSI for a-Si TFT panel, incorporating RAM for a maximum 240 RGB x 432 dot graphics display, gate driver, source driver and power supply circuits. For efficient data transfer, the R61509V supports high-speed interface via 8-/9-/16-/18-bit ports as system interface to the microcomputer. As moving picture interface, the R61509V also supports RGB interface (VSYNCX, HSYNCX, DOTCLK, ENABLE and DB17-0). The power supply circuit incorporates step-up circuit and voltage follower circuit to generate TFT liquid crystal panel drive voltages. The R61509V’s power management functions such as 8-color display and shut down and so on make this LSI an ideal driver for the medium or small sized portable products with color display systems such as digital cellular phones or small PDAs, where long battery life is a major concern. Rev. 0.11 April 25, 2008, page 6 of 181 R61509V Target Spec Features • • • • • • • • • • • • • • A single-chip controller driver incorporating a gate circuit and a power supply circuit for a maximum 240RGB x 432dots graphics display on amorphous TFT panel in 262k colors System interface – High-speed interfaces via 8-, 9-, 16-, 18-bit parallel ports – Clock synchronous serial interface Moving picture display interface – 16-/18-bit RGB interface (VSYNCX, HSYNCX, DOTCLK, ENABLE, DB17-0) – VSYNC interface (System interface + VSYNCX) – FMARK interface (System interface + FMARK) Window address function to specify a rectangular area in the internal RAM to write data Write data within a rectangular area in the internal RAM via moving picture interface – Reduce data transfer by specifying the area in the RAM to rewrite data – Enable displaying the data in the still picture RAM area with a moving picture simultaneously Abundant color display and drawing functions – Programmable for 262k-color display – Partial display function Low -power consumption architecture (allowing direct input of interface I/O power supply) – Shut down function – 8-color display function Input power supply voltages: IOVCC (interface I/O power supply) VCC (logic regulator power supply) VCI (liquid crystal analog circuit power supply) Incorporates a liquid crystal drive power supply circuit – Source driver liquid crystal drive/VCOM power supply: DDVDH VCL – Gate drive power supply: VGH VGL – VCOM drive (VCOM power supply): VCOMH VCOML Liquid crystal power supply startup sequencer TFT storage capacitance: Cst only (common VCOM formula) 233,280-byte internal RAM Internal 720-channel source driver and 432-channel gate driver Single-chip solution for COG module with the arrangement of gate circuits on both sides of the glass substrate Internal NVM User identification code: 8 bits VCOM level adjustment: 7 bits x 2. Rewriting is available up to 5 times Rev. 0.11 April 25, 2008, page 7 of 181 R61509V Target Spec Power Supply Specifications Table 1 No. 1 Item TFT data lines R61509V 720 output 2 TFT gate lines 432 output 3 TFT display storage capacitance Cst only (Common VCOM formula) 4 Liquid crystal drive output V0 ~ V63 grayscales 5 6 Input voltage Liquid crystal drive voltages S1~S720 G1~G432 VGH-VGL VCOM Change VCOMH-VCOML amplitude with electronic volume Change VCOMH with either electronic volume or from VCOMR IOVCC (interface voltage) 1.65V ~ 3.3V Power supply to IM0_ID, IM1-2, RESETX, DB17-0, RDX, SDI, SDO, WR_SCL, RS, CSX, VSYNCX, HSYNCX, DOTCLK, ENABLE, FMARK Connect to VCC and VCI on the FPC when the electrical potentials are the same. VCC (logic regulator power supply) 2.5V ~ 3.3V Connect to IOVCC and VCI on the FPC when the electrical potentials are the same. VCI (liquid crystal drive power supply voltage) 2.5V ~ 3.3V Connect to IOVCC and VCC on the FPC when the electrical potentials are the same. DDVDH 4.5 ~ 6.0V (VCI1 x 2) VGH 10 ~ 18.0 V (VCI1 x 5, 6) VGL -4.5 ~ -13.5V (VCI1 x –3, -4, -5) VGH-VGL max. 28V VCL -1.9 ~ -3.0V (VCI1 x -1) VCI-VCL max. 6V See “DC characteristics” in Chapter “Electrical Characteristics” for voltage spec. Rev. 0.11 April 25, 2008, page 8 of 181 Difference Between R61509 and R61509V 2008.04.18 R61509V Deleted B509H 1 line inversion Deleted Index (Pin) R000h R002h R003h Command System Interface Device Code Read LCD Drive Waveform Control Entry Mode NW[1-0] --> NW bit is deleted. HWM R006h R007h Outline Sharpening Control Display Control 1 EPF[1-0] EGMODE, AVST[2:0], ADST[2:0]DTHU[1:0], DTHL[1:0] PTDE[1-0]-->PTDE0 High Speed RAM Write Sets data format when writing 16bit data in 18bit format. Outline Sharpening Function Controls partial image 1 and 2. VON Starts VCOM output Manual setting GON Sets gate output to OFF level. Manual setting DTE Starts gate scan Manual setting D[1-0] FP[3-0] BP[3-0] PTG[1-0] --> Deleted. ISC[3:0] PTS[2-0] -->PTS VEM[0] --> VEM[1-0] Manual setting 2-14 lines (in units of 1 line) 2-14 lines (in units of 1 line) Normal scan / interval scan 3, 5, 7, 9, 11, 13 or 15 frames V0-V31 VCOMH to VCOML only Deleted Deleted Partial image 1 Deleted. (Because the sequence is changed. See "Power Supply Setting Sequence" for detail. ) Deleted. (Because the sequence is changed. See "Power Supply Setting Sequence" for detail. ) Deleted. (Because the sequence is changed. See "Power Supply Setting Sequence" for detail. ) Deleted. (Because the sequence is changed. See "Power Supply Setting Sequence" for detail. ) 3-128 lines (in units of 1 line) 3-128 lines (in units of 1 line) Normal scan only (Interval scan is not available) Deleted V0-V63 VCOML to VCOMH / VCOMH to VCOML (See description) Supported 0, 1, 2 or 3 clock period 16-127 clocks 0 - 15 clocks 0 - 15 clocks Deleted 0, 1, 2, 3, 4, 5, 6 or 7 clock period 16 - 63 clocks 0 - 7 clocks 0 - 7 clocks Supported Deleted Deleted. (Because the sequence is changed. See "Power Supply Setting Sequence" for detail. ) Deleted. (Because the sequence is changed. See "Power Supply Setting Sequence" for detail. ) DDVDH: x2, VCL: x-1, VGH: x5, x6, VGL: x-3, x-4, x-5 Deleted. (Because the sequence is changed. See "Power Supply Setting Sequence" for detail. ) Deleted Synchronized with internal clock (Default) Synchronized with internal clock (Default) 5bit (VRH [4:0]). Enables minute setting. Code IM2-0=011, TRI=1, DFM=0 Function 8bit 3 transfer (2bit-8bit-8bit) R61509 Supported 1509H 1, 2, 3 or 4 line inversion Supported Supported Supported Partial image 1 and 2 R008h Display Control 2 R009h Display Control 3 R00Bh Low Power Control R00Ch R012h R020h R021h External Display Interface Control Panel Interface Control 3 Panel Interface Control 4 Panel Interface Control 5 RIM[1-0]=10 VEQWI[1-0]-->VEQWI[2-0] RTNE[6-0]-->RTNE[5-0] NOWE[3-0]-->NOWE[2-0] SDTE[3-0]-->SDTE[2-0] R092h MDDI Sub-display Control SIM[1:0] --> Deleted. R100h Power Control 1 SAP[1-0] Starts/halts display operation Defines front porch Defines back porch Sets gate scan mode Sets gate scan cycle Sets source output level Execute VCOM equalize. Selects 6bit 3 transfer via RGB interface Defines VCOM equalize period. Defines number of clock per line. Defines gate non overlap period. Defines source output delay period. Defines data format for sub display interface operation. Adjusts bias current in source amplifier. SAP --> SOAPON BT[2-0] Enables source amplifier Defines step-up factor Supported DDVDH: x2, VCL:x-1, VGH: x6, x7, VGL: x-3, x-4, x-5 Supported Supported Not synchronized with internal clock (Default) Not synchronized with internal clock (Default) 4bit (VRH [3:0]) Selects external or internal reference voltage. VCOML can be set at GND level Supported R101h Power Control 2 R102h Power Control 3 APE --> Deleted. SLP --> Deleted. DC1[2-0] DC2[2-0] VRH[3-0] R103h Power Control 4 VRG1R --> Deleted. VCOMG Enables power supply circuit Selects sleep mode. Defines step-up factor for DCDC1. Defines step-up factor for DCDC2. Sets a factor to generate Defines reference level to generate VREG1OUT Defines VCOM amplitude R110h Power Control 6 PSE Enables power supply sequencer Supported R112h R280h R281h Power Control 7 NVM Data Read / NVM Data Write TBT[1-0] UID[3:0] VCM1[4-0] Used in power supply sequencer User code Defines VCOMH 1level Supported UID[3:0] VCMSEL , VCM2[4-0] Gamma Control NL0[5-0] Defines VCOMH 2level Gamma control method changed. Specifies LCD drive line. Defines source output level in non-lit display area Inverts grayscale level in the display area Settings for partial image 2. Software Reset Selects the order of receiving data. VCMSEL VCM2 84 bit 16 - 432 line (in units of 8 lines) Internal reference voltage only Deleted Deleted. (Because the sequence is changed. See "Power Supply Setting Sequence" for detail. ) Deleted. (Because the sequence is changed. See "Power Supply Setting Sequence" for detail. ) VCM[6-0] UID[7-0] NVM specification changed. VCM bit is moved to R280h. Deleted. (Because the R61509V supports both NVM write and erase functions). 100 bit (New gamma correction method) 240 - 432 lines (in units of 8 lines) V31-V0 V63-V0 V31-V0 Partial image 1 and 2 Software Reset Supported V63-V0 Partial image 1 only Only secret test registers are initialized. Deleted R282h R300h-R309h R400h R401h VCOM High Voltage 1 VCOM High Voltage 2 Gamma Control Base Image Number of Line Base Image Display Control R503h-R505h Partial Image Control R600h Software Reset R606h i80-I/F Endian Control See each register's description for detail. NDL0 REV0 PTDP1[8-0] PTSA1[8-0] PTEA1[8-0] --> Deleted. SRST--> TRSR TCREV[1] , TCREV[0] VCM1[4-0] R61509V Target Spec Block Diagram GND Control 㩷 Register (CR) AGND 18 㩷 㩷 18 bit 16 bit 9 bit 8 bit Serial Write data latch 㩷 18 㩷 18 Read data 㩷 latch 㩷 18 Graphic RAM (GRAM) 233,280byte 18 㩷 18 㩷 㩷 External display㩷 㩷 interface 㩷 Gate line drive circuit 㩷 Oscillator VGS 㩷 Timing generator Grayscale voltage generating circuit V63-0 㩷 㩷 Gamma correction circuit 㩷 CSX 㩷 RS WR_SCL 㩷 RDX 㩷 SDI 㩷 SDO DB17-0 㩷 VSYNCX 㩷 HSYNCX 㩷 DOTCLK ENABLE 㩷 㩷 RESETX 㩷 FMARK PROTECT 㩷 㩷 㩷 㩷 㩷 㩷 㩷 Source line drive circuit System 㩷 interface Latch Circuit IOVCC 㩷 IM2-1, IM0_ID 㩷 M alternation Address Counter Latch circuit 㩷 Latch circuit Index 㩷 Register (IR) VMON G1-G432 㩷 Sc 㩷 Internal reference 㩷 voltage generating 㩷 circuit 㩷 Internal logic power supply 㩷 㩷 circuit NVM VDD Figure 1 Rev. 0.11 April 25, 2008, page 10 of 181 VCOM VCOML VCOMH VCOMR VREG1OUT VCL VGL VGH DDVDH C21P/C21M C22P/C22M VCI1 VCI 㩷 LCD drive level generating circuit C11P/C11M C12P/C12M C13P/C13M 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 VCC VPP1, VPP3A,3B R61509V Target Spec Block Function 1. System Interface The R61509V supports 80-system high-speed interface via 8-, 9-, 16-, 18-bit parallel ports and a clock synchronous serial interface. The interface is selected by setting the IM2-0 pins. The R61509V has 16-bit index register (IR), 18-bit write-data register (WDR), and 18-bit read-data register (RDR). The IR is the register to store index information from control register and internal GRAM. The WDR is the register to temporarily store write data to control register and internal GRAM. The RDR is the register to temporarily store the read data from the GRAM. The write data from the host processor to the internal GRAM is first written to the WDR and then automatically written to the internal GRAM by internal operation. The data is read via RDR from the internal GRAM. Therefore, invalid data is sent to the data bus when the R61509V performs the first read operation from the internal GRAM. Valid data is read out when the R61509V performs the second and subsequent read operation. The R61509V allows writing instructions consecutively by executing the instruction in the same cycle when it is written (0 instruction cycle). Table 2 Register Selection (80-System 8-/9-/16-/18-Bit Parallel Interface) WRX RDX RS Function 0 1 0 Write index to IR 1 0 0 Setting disabled 0 1 1 Write to control register or internal GRAM via WDR 1 0 1 Read from internal GRAM and register via RDR Table 3 Register Selection (Clock Synchronous Serial Interface) Start byte R/W RS Function 0 0 Write index to IR 1 0 Setting disabled 0 1 Write to control register or internal GRAM via WDR 1 1 Read from internal GRAM and register via RDR Rev. 0.11 April 25, 2008, page 11 of 181 R61509V Target Spec Table 4 2. IM2 IM1 IM0 System interface DB pins 0 0 0 80-system 18-bit DB17-0 interface Single transfer (18 bits) 0 0 1 80-system 9-bit interface 2-transfer (1st: 9 bits, 2nd: 9 bits) 0 1 0 0 1 1 1 0 * 1 1 1 1 0 1 DB17-9 RAM write data Single transfer (16 bits) 80-system 16-bit DB17-10, 2-transfer (1st: 2 bits, 2nd: 16 bits) interface DB8-1 2-transfer (1st: 16 bits, 2nd: 2 bits) st nd 2-transfer (1 : 8 bits, 2 : 8 bits) 80-system 8-bit st DB17-10 3-transfer (1 : 6 bits, 2nd: 6 bits, 3rd: 6 interface bits) Clock 2-transfer (1st: 8 bits, 2nd: 8 bits) synchronous (SDI, serial interface SDO) Setting disabled Setting disabled - Instruction write transfer Single transfer (16 bits) 2-transfer (1st: 8 bits, 2nd: 8 bits) Single transfer (16 bits) 2-transfer (1st: 8 bits, 2nd: 8 bits) 2-transfer (1st: 8 bits, 2nd: 8 bits) - External Display Interface (RGB, VSYNC interfaces) The R61509V supports RGB and VSYNC interfaces as the external interface to display moving picture. When the RGB interface is selected, the display operation is synchronized with externally supplied synchronous signals (VSYNCX, HSYNCX, and DOTCLK). In RGB interface operation, data (DB17-0) is written in synchronization with these signals when the polarity of enable signal (ENABLE) allows write operation in order to prevent flicker when updating display data. In VSYNC interface operation, the display operation is synchronized with the internal clock except frame synchronization, which synchronizes the display operation with the VSYNCX signal. The display data is written to the internal GRAM via system interface. When writing data via VSYNC interface, there are constraints in speed and method in writing data to the internal RAM. For details, see Section “VSYNC Interface”. The R61509V allows switching interface by instruction according to the display image (still and/or moving picture). This allows data to be transferred only when the data is updated hence less power consumption during moving picture display. 3. Address Counter (AC) The address counter (AC) gives an address to the internal GRAM. When the index of a register is written to the IR, the address information is sent from the IR to the AC. After data is written to GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only within the rectangular area specified in the GRAM. Rev. 0.11 April 25, 2008, page 12 of 181 R61509V 4. Target Spec Graphics RAM (GRAM) GRAM stands for graphics RAM, which can store bit-pattern data of 233,280 (240RGB x 432 (dots) x 18(bits)) bytes at maximum, using 18 bits per pixel. 5. Grayscale Voltage Generating Circuit The grayscale voltage generating circuit generates liquid crystal drive voltages according to the grayscale data in the γ-correction registers to enable 262k-color display. For details, see the γ-Correction Register section. 6. Liquid Crystal Drive Power Supply Circuit The liquid crystal drive power supply circuit generates DDVDH, VGH, VGL and VCOM levels to drive liquid crystal. 7. Timing Generator The timing generator generates a timing signal for the operation of internal circuits such as the internal GRAM. The timing signal for display operations such as RAM read and the timing signal for internal operations such as RAM access from the host processor are generated separately in order to avoid mutual interference. 8. Oscillator (OSC) The R61509V generates the RC oscillation clock internally. Using an external oscillation resistor is not possible. The oscillation frequency is set to 678 kHz before shipment (for details, see Electrical Characteristics). Use the frame frequency adjustment function to change the number of display lines and the frame frequency. While the R61509V is shut down, RC oscillation halts so that reduce power consumption is reduced. 9. Liquid crystal driver Circuit The liquid crystal driver circuit of the R61509V consists of a 720-output source driver (S1 ~ S720) and a 432-output gate driver (G1~G432). The display pattern data is latched when all of 240RGB data are inputted. The latched data control the source driver and output drive waveforms. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 720-bit source output from the source driver can be changed by setting the SS bit and the shift direction of gate output from the gate driver can be changed by setting the GS bit. The scan mode by the gate driver can be changed by setting the SM bit. 10. Internal Logic Power Supply Regulator The internal logic power supply regulator generates internal logic power supply VDD. Rev. 0.11 April 25, 2008, page 13 of 181 R61509V Target Spec Pin Function Table 5 External Power Supply Signal I/O Connect to Function Power supply for Internal VDD regulator. When not used VCC I Power supply IOVCC I Power supply Power supply for interface pins. ― GND I Power supply GND level for internal logic and interface pins. GND=0V. ― VCI I Power supply Power supply for liquid crystal power supply analog circuit. ― VCILVL I Reference power supply Connect to an external power supply at the same level as VCI the power supply for liquid crystal power supply analog circuit. In case of COG, connect to VCI on the FPC to prevent noise. ― AGND I Power supply Analog GND (for logic regulator and liquid crystal power supply). AGND = 0V. In case of COG, connect to GND on the FPC to prevent noise. ― VPP1 I Power supply VPP3A I Power supply VCC≧IOVCC Power supply for internal NVM. See section “NVM Control” for input voltages during write and erase operation using VPP1-VPP3A pins. ― Open or AGND Open or AGND Note 1: VCC, GND and AGND pins are allocated several different places on the chip. Make sure to connect all of them to power following “Connection Example”. Table 6 Bus Interface (Amplitude: IOVCC~GND) Signal I/O Connect to Function When not used Chip selection signal. (Amplitude: IOVCC-GND) Low: The R61509V is selected and accessible. High: The R61509V is not selected and not accessible. IOVCC CSX I Host processor RS I Host processor Register selection signal. (Amplitude: IOVCC-GND) Low: Index register is selected. High: Control register is selected. IOVCC IOVCC WRX_SCL I Host processor Write strobe signal when 80-system bus interface is selected. Data are written when Low level. Synchronous clock signal when clock synchronous serial interface is selected. (Amplitude: IOVCC-GND) RDX I Host processor Read strobe signal when 80-system bus interface is selected. Data are read when Low level. (Amplitude: IOVCC-GND) IOVCC SDI I Host processor Serial data input pin when clock synchronous serial interface is selected. Data are inputted on the rising edge of SCL signal. (Amplitude: IOVCC-GND) GND /IOVCC SDO O Host processor Serial data output pin when clock synchronous serial interface is selected. Data are outputted on the falling edge of SCL signal. (Amplitude: IOVCC-GND) Open Rev. 0.11 April 25, 2008, page 14 of 181 R61509V DB[17:0] Target Spec I/O Host processor 18-bit parallel bi-directional data bus for 80-system interface operation (Amplitude: IOVCC-GND). 8-bit I/F: DB17-DB10 are used. 9-bit I/F: DB17-DB9 are used. 16-bit I/F: DB17-DB10 and DB8-1 are used. 18-bit I/F: DB17-DB0 are used. 18-bit parallel bi-directional data bus for RGB interface operation (Amplitude: IOVCC-GND). 16-bit I/F: DB17-DB13 and DB11-1 are used. 18-bit I/F: DB17-DB0 are used. GND / IOVCC ENABLE I Host processor Data enable signal for RGB interface operation. Low: accessible (selected) High: Not accessible (Not selected) The polarity of ENABLE signal can be inverted by setting the EPL bit. (Amplitude: IOVCC-GND). VSYNCX I Host processor Frame synchronous signal. Low active. (Amplitude: IOVCCGND). GND / IOVCC HSYNCX I Host processor Line synchronous signal, Low active. (Amplitude: IOVCC-GND) GND / IOVCC DOTCLK I Host processor Dot clock signal. Data is input on the rising edge of DOTCLK. (Amplitude: IOVCC-GND) GND / IOVCC FMARK O Host processor Frame head pulse. (Amplitude: IOVCC-GND) FMARK is used when writing data to the internal RAM. Open GND / IOVCC Select host processor interface. (Amplitude: IOVCC-GND) DB pins IM2 IM1 IM0 System Interface Colors in use IM2-1, IM0_ID I GND / IOVCC (ID) 80-system 18-bit interface 80-system 9-bit interface 80-system 16-bit interface 80-system 8-bit interface Clock synchronous serial interface 1 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 * DB17-0 262,144 DB17-9 262,144 DB17-10, 8-1 262,144 (Note 1) 262,144 (Note 2) DB17-10 ― 65536 Setting inhibited ― ― Setting inhibited ― ― ― Note 1: 65,536 colors in one-transfer operation. Note 2: 65,536 colors in two-transfer operation. RESETX I Host processor or external RC circuit Reset pin. The R61509V is reset when RESETX is low. Make sure to execute a power on reset after turning power on. (Amplitude: IOVCC-GND) Rev. 0.11 April 25, 2008, page 15 of 181 ― R61509V PROTECT Target Spec I Host processor Reset protect pin. The R61509V enters a reset protect status by fixing PROTECT to GND level disabling hardware reset. With this, erroneous operations caused by noise are prevented. Low: Hardware reset is disabled (Reset protect status) High: Hardware reset is enabled. (Normal status) IOVCC Table 7 Internal Power Supply Circuit Signal I/O Connect to Function When not used VDD O Stabilizing capacitor Output from internal logic regulator. Connect to a stabilizing capacitor. ― VCI1 O Stabilizing capacitor Reference voltage for step-up circuit 1. Make sure that DDVDH, VGH and VGL output voltages do no go exceed the ratings. ― DDVDH O Stabilizing capacitor Power supply for the source driver liquid crystal drive unit and VCOM drive. Connect to a stabilizing capacitor. ― VGH O Stabilizing capacitor Power supply for the gate driver liquid crystal drive unit. Connect to a stabilizing capacitor. ― VGL O Stabilizing capacitor Power supply for the gate driver liquid crystal drive unit. Connect to a stabilizing capacitor. ― VCL O Stabilizing capacitor Power supply for VCOML drive. ― C11P, C11M, C12P, C12M I/O Step-up capacitor Make sure to connect capacitors for internal step-up circuit 1. ― C13P, C13M, C21P, C21M, C22P, C22M I/O Step-up capacitor Make sure to connect capacitors for internal step-up circuit 2. ― Rev. 0.11 April 25, 2008, page 16 of 181 R61509V Target Spec Table 8 LCD drive Signal I/O VREG1OUT O VCOM O Connect to Function When not in use Stabilizing Output voltage generated from the reference voltage VCIR. The factor capacitor is determined by instruction (VRH bits). VREG1OUT is used for (1) source driver grayscale reference voltage VREG1OUT, (2) VCOMH level reference voltage, and (3) VCOM amplitude reference voltage. Connect to a stabilizing capacitor. VREG1OUT =4.0V ~ (DDVDH – 0.5)V ― TFT panel Power supply to the TFT panel’s common electrode. VCOM alternates common between VCOMH and VCOML. The alternating cycle is set by internal electrode register. Also, the VCOM output can be started and halted by register setting. ― VCOMH O Stabilizing The High level of VCOM amplitude. The output level can be adjusted capacitor by either external resistor (VCOMR) or electronic volume. ― VCOML O Stabilizing The Low level of VCOM amplitude. The output level can be adjusted capacitor by instruction (VDV bits). VCOML = (VCL+0.5) V ~ 0V ― VCOMR I Variable Connect a variable resistor when adjusting the VCOMH level between resistor or VREG1OUT and GND. open Open VGS I GND Reference level for the grayscale voltage generating circuit. ― S1~S720 O LCD Liquid crystal application voltages. Open G1~G432 O LCD Gate line output signals. VGH: The gate line is selected. VGL: The gate line is not selected. Open Rev. 0.11 April 25, 2008, page 17 of 181 R61509V Target Spec Table 9 Others (test, dummy pins) When not in use Signal I/O Connect to Function VTEST O Open Test pin. Leave open. VREFC I GND Test pin. Make sure to fix to the GND level. VREFD O Open Test pin. Leave open. Open Open VREF O Open Test pin. Leave open. VDDTEST I GND Test pin. Make sure to fix to the GND level. VMON O Open Test pin. Leave open. VCIR O Open - Open Open Test pin. Leave open. Open GNDDUM1- O 10, AGNDDUM1 -5, VCCDUM, IOVCCDUM 1-2 - Pins to fix the electrical potentials of unused interface and test pins. Open DUMMYR 1-4 - - DUMMYR1 and DUMMYR4, DUMMYR2 and DUMMYR3 are shortcircuited within the chip for COG contact resistance measurement. Open VGLDMY 1-4 O Unused gate line Output VGL level. Use when fixing unused gate line of the panel. Open DUMMYA ― Open Dummy pad. Leave open. OPEN DUMMYB ― Open Dummy pad. Leave open. OPEN DUMMYC ― Open Dummy pad. Leave open. OPEN TESTO1-15 O ― Dummy pad. Leave open. OPEN TEST 1-5 I GND Test pin. Connect to GND. GND TS0-8 O Open Test pin. Leave open. OPEN VPP3B I AGND Test pin. Connect to AGND. ― TSC I GND Test pin. Connect to GND. Patents of dummy pin, which is used to fix to VCC or GND are granted. PATENT ISSUED: United States Patent No. 6,924,868 United States Patent No. 6,323,930 Japanese Patent No. 3,980,066 Korean Patent No. 401,270 Taiwanese Patent No. 175,413 Rev. 0.11 April 25, 2008, page 18 of 181 GND R61509V Pad Arrangement Rev 0.6 (1-a) 7 No □ □ Top View BUMP Chip □ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 DUMMYR1 DUMMYR2 AGNDDUM1 VPP3B 4 VPP3B VPP3B VPP3B AGNDDUM2 VPP3A VPP3A VPP1 VPP1 VPP1 4 VPP1 VPP1 VPP1 VPP1 GNDDUM1 VDDTEST VREFC VREFD VREF VCCDUM1 DUMMYA DUMMYA 5 DUMMYA DUMMYA DUMMYA GNDDUM2 AGND AGND AGND AGND AGND AGND GND GND GND GND GND VCC VCC VCC VCC VCC VCC VCC TS8 TS7 TS6 TS5 TS4 TS3 TS2 TS1 TS0 TEST5 TEST4 TEST3 TEST2 TEST1 5 GNDDUM3 TSC IM2 IM1 8 IM0_ID IOVCCDUM1 PROTECT 8 RESETX GNDDUM4 DUMMYB 5 DUMMYB 8 VSYNCX 8 HSYNCX IOVCCDUM2 ENABLE DOTCLK DB17 DB16 5 GNDDUM5 DB15 DB14 DB13 DB12 5 GNDDUM6 DB11 DB10 DB9 IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC DB8 5 GNDDUM7 DB7 DB6 DB5 DB4 5 GNDDUM8 DB3 DB2 DB1 DB0 5 GNDDUM9 CSX 8 RS 8 WRX_SCL 8 RDX 5 GNDDUM10 FMARK SDI SDO VDD VDD VDD VDD VDD VDD VDD VDD VDD VMON 1 VCOM 1 VCOM 1 VCOM 1 VCOM 1 VCOM 1 VCOM 1 VCOM 1 VCOM VCOMH VCOMH VCOMH VCOMH VCOMH VCOMH VCOML VCOML VCOML VCOML VCOML VCOML GND GND GND GND GND GND GND GND GND VGS AGND AGND AGND AGND AGND AGND AGND AGND AGND VTEST VCIR VREG1OUT VCOMR C11M C11M C11M C11M C11M C11P C11P C11P C11P C11P C12M C12M C12M C12M C12M C12P C12P C12P C12P C12P DDVDH DDVDH 5 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCI1 VCI1 VCI1 VCI1 VCI VCI VCI VCI VCI VCI VCILVL DUMMYC DUMMYC 5 DUMMYC DUMMYC DUMMYC GND GND GND 3 GND GND AGND AGND AGND AGND AGND VGL VGL VGL VGL VGL VGL VGL VGL 5 VGL AGNDDUM3 AGNDDUM4 VGH 5 VGH VGH VGH VGH VGH AGNDDUM5 VCL VCL VCL C13M C13M C13M C13P C13P C13P C21M C21M C21M C21P C21P C21P C22M C22M C22M C22P C22P C22P TESTO1 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ G427 G429 G431 VGLDMY3 1217 1216 1215 1214 Open Open Open Open Open Open Open Open Open Open Open Open Open Open Connect to GNDDUM3 Connect to GNDDUM3 Connect to GNDDUM3 Connect to GNDDUM3 Connect to GNDDUM3 □ □ □ □ Connect to GNDDUM3 Connect to IOVCCDUM1/GNDDUM3 Connect to IOVCCDUM1/GNDDUM3 Connect to IOVCCDUM1/GNDDUM3 1 No PAD Open Open □ TESTO14 S1 S2 S3 S4 S5 1213 1212 1211 1210 1209 1208 S356 S357 S358 S359 S360 TESTO13 TESTO12 TESTO11 TESTO10 857 856 855 854 853 852 851 850 849 TESTO9 TESTO8 TESTO7 TESTO6 S361 S362 S363 S364 S365 848 847 846 845 844 843 842 841 840 □ S716 S717 S718 S719 S720 TESTO5 489 488 487 486 485 484 1 No PAD □ □ □ □ □ □ □ □ Open □ □ □ □ □ □ 840um □ □ □ □ □ □ □ □ □ Open Open □ □ □ □ □ □ □ □ □ Open Open Open Open Open VGLDMY2 G432 G430 G428 483 482 481 480 G10 G8 G6 G4 G2 VGLDMY1 TESTO4 TESTO3 TESTO2 271 270 269 268 267 266 265 264 263 6 □ □ □ □ □ □ □ □ 7 No 1434 1433 1432 1431 1430 1429 1428 1427 1426 Connect to GNDDUM1 Connect to GNDDUM1 Open Open □ (1-b) DUMMYR4 DUMMYR3 TESTO15 VGLDMY4 G1 G3 G5 G7 G9 Rev0.00 2007.12.13 First virsion Rev0.10 2007.12.27 R61517's VCOMA, VCOMB --> R61509V's VCOM Rev0.20 2008.02.13 Rev Mark 1 PAD No. 24~28, 71, 72, 208-217 changed to NC1-NC17 Rev0.21 2008.02.14 Rev Mark 2 NC's application voltage decided. Rev0.30 2008.02.19 Rev Mark 4 VPP3C-->VPP3B, VPP2-->VPP1 Rev0.31 2008.02.27 Rev Mark 5 NC1-5-->DUMMYA NC6-7-->DUMMYB NC8-12-->DUMMYC GNDDUM5-->GNDDUM2 GNDDUM6-->GNDDUM3 GNDDUM7-->GNDDUM4 GNDDUM8-->GNDDUM5 GNDDUM9-->GNDDUM6 GNDDUM10-->GNDDUM7 VLOUT1-->DDVDH VLOUT2-->VGH VLOUT3-->VGL Rev0.4 2008.03.14 Rev Mark 6 DUMMYC's description "Open" added. Rev0.5 2008.04.02 Rev Mark 7 Alignment mark (1-a) (1-b) added. Rev0.6 2008.04.21 Rev Mark 8 Pin names changed. Pad No66 IM0/ID→IM0_ID Pad No69 RESET→RESETX Pad No73 VSYNC→VSYNCX Pad No74 HSYNC→HSYNCX Pad No107 CS→CSX Pad No109 WR/SCL→WRX_SCL Pad No110 RD→RDX R61509V Target Spec ●Chip size: 19.03mm x 0.76mm ●Chip thickness: 280μm (typ) ●Pad coordinates: Pad center ●Coordinate origin: Chip center ●Au bump size 1. 50μm x 90μm (I/O side: No.1-262) 2. 15μm x 100μm (LCD output side: No.263-1434) ●Au bump pitch: See pad coordinate ●Au bump height:12μm ● Alignment mark Table 10 Alignment marks Type A X-axis Y-axis (1-a) -9381.0 -251.0 (1-b) 9381.0 -251.0 1-a: ( Left Alignment Mark ) 1-b: ( Right Alignment Mark ) 150um : Alignment Mark Area X-size 150um : Alignment Mark Area X-size 75um 75um 30um 30um 30um 30um 㩷 Y 㩷 㩷 㩷 30um 30um 30um 30um 30um 20um 30um 30um 30um 30um Y X 30um X Figure 2 Rev. 0.11 April 25, 2008, page 20 of 181 30um 20um 75um 75um 150um : Alignment Mark Area Y-size 20um 㩷 Alignment Mark Area 30um 150um : Alignment Mark Area Y-size Alignment Mark Area 20um 30um 30um 30um 30um R61509V Pad Coordinate (Unit:μm) pad No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 pad name DUMMYR1 DUMMYR2 AGNDDUM1 VPP3B VPP3B VPP3B VPP3B AGNDDUM2 VPP3A VPP3A VPP1 VPP1 VPP1 VPP1 VPP1 VPP1 VPP1 GNDDUM1 VDDTEST VREFC VREFD VREF VCCDUM1 DUMMYA DUMMYA DUMMYA DUMMYA DUMMYA GNDDUM2 AGND AGND AGND AGND AGND AGND GND GND GND GND GND VCC VCC VCC VCC VCC VCC VCC TS8 TS7 TS6 X -9135.0 -9065.0 -8995.0 -8925.0 -8855.0 -8785.0 -8715.0 -8645.0 -8575.0 -8505.0 -8435.0 -8365.0 -8295.0 -8225.0 -8155.0 -8085.0 -8015.0 -7945.0 -7875.0 -7805.0 -7735.0 -7665.0 -7595.0 -7525.0 -7455.0 -7385.0 -7315.0 -7245.0 -7175.0 -7105.0 -7035.0 -6965.0 -6895.0 -6825.0 -6755.0 -6685.0 -6615.0 -6545.0 -6475.0 -6405.0 -6335.0 -6265.0 -6195.0 -6125.0 -6055.0 -5985.0 -5915.0 -5845.0 -5775.0 -5705.0 Y -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 2008.04.21 rev0.1 pad No 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 pad name TS5 TS4 TS3 TS2 TS1 TS0 TEST5 TEST4 TEST3 TEST2 TEST1 GNDDUM3 TSC IM2 IM1 IM0_ID IOVCCDUM1 PROTECT RESETX GNDDUM4 DUMMYB DUMMYB VSYNCX HSYNCX IOVCCDUM2 ENABLE DOTCLK DB17 DB16 GNDDUM5 DB15 DB14 DB13 DB12 GNDDUM6 DB11 DB10 DB9 IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC DB8 GNDDUM7 DB7 DB6 DB5 DB4 X -5635.0 -5565.0 -5495.0 -5425.0 -5355.0 -5285.0 -5215.0 -5145.0 -5075.0 -5005.0 -4935.0 -4865.0 -4795.0 -4725.0 -4655.0 -4585.0 -4515.0 -4445.0 -4375.0 -4305.0 -4235.0 -4165.0 -4095.0 -4025.0 -3955.0 -3885.0 -3815.0 -3745.0 -3675.0 -3605.0 -3535.0 -3465.0 -3395.0 -3325.0 -3255.0 -3185.0 -3115.0 -3045.0 -2975.0 -2905.0 -2835.0 -2765.0 -2695.0 -2625.0 -2555.0 -2485.0 -2415.0 -2345.0 -2275.0 -2205.0 Y -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 R61509V Pad Coordinate (Unit:μm) pad No 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 pad name GNDDUM8 DB3 DB2 DB1 DB0 GNDDUM9 CSX RS WRX_SCL RDX GNDDUM10 FMARK SDI SDO VDD VDD VDD VDD VDD VDD VDD VDD VDD VMON VCOM VCOM VCOM VCOM VCOM VCOM VCOM VCOM VCOMH VCOMH VCOMH VCOMH VCOMH VCOMH VCOML VCOML VCOML VCOML VCOML VCOML GND GND GND GND GND GND X -2135.0 -2065.0 -1995.0 -1925.0 -1855.0 -1785.0 -1715.0 -1645.0 -1575.0 -1505.0 -1435.0 -1365.0 -1295.0 -1225.0 -1155.0 -1085.0 -1015.0 -945.0 -875.0 -805.0 -735.0 -665.0 -595.0 -525.0 -455.0 -385.0 -315.0 -245.0 -175.0 -105.0 -35.0 35.0 105.0 175.0 245.0 315.0 385.0 455.0 525.0 595.0 665.0 735.0 805.0 875.0 945.0 1015.0 1085.0 1155.0 1225.0 1295.0 Y -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 2008.04.21 rev0.1 pad No 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 pad name GND GND GND VGS AGND AGND AGND AGND AGND AGND AGND AGND AGND VTEST VCIR VREG1OUT VCOMR C11M C11M C11M C11M C11M C11P C11P C11P C11P C11P C12M C12M C12M C12M C12M C12P C12P C12P C12P C12P DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCI1 VCI1 VCI1 VCI1 X 1365.0 1435.0 1505.0 1575.0 1645.0 1715.0 1785.0 1855.0 1925.0 1995.0 2065.0 2135.0 2205.0 2275.0 2345.0 2415.0 2485.0 2555.0 2625.0 2695.0 2765.0 2835.0 2905.0 2975.0 3045.0 3115.0 3185.0 3255.0 3325.0 3395.0 3465.0 3535.0 3605.0 3675.0 3745.0 3815.0 3885.0 3955.0 4025.0 4095.0 4165.0 4235.0 4305.0 4375.0 4445.0 4515.0 4585.0 4655.0 4725.0 4795.0 Y -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 R61509V Pad Coordinate (Unit:μm) pad No 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 pad name VCI VCI VCI VCI VCI VCI VCILVL DUMMYC DUMMYC DUMMYC DUMMYC DUMMYC GND GND GND GND GND AGND AGND AGND AGND AGND VGL VGL VGL VGL VGL VGL VGL VGL VGL AGNDDUM3 AGNDDUM4 VGH VGH VGH VGH VGH VGH AGNDDUM5 VCL VCL VCL C13M C13M C13M C13P C13P C13P C21M X 4865.0 4935.0 5005.0 5075.0 5145.0 5215.0 5285.0 5355.0 5425.0 5495.0 5565.0 5635.0 5705.0 5775.0 5845.0 5915.0 5985.0 6055.0 6125.0 6195.0 6265.0 6335.0 6405.0 6475.0 6545.0 6615.0 6685.0 6755.0 6825.0 6895.0 6965.0 7035.0 7105.0 7175.0 7245.0 7315.0 7385.0 7455.0 7525.0 7595.0 7665.0 7735.0 7805.0 7875.0 7945.0 8015.0 8085.0 8155.0 8225.0 8295.0 Y -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 2008.04.21 rev0.1 pad No 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 pad name C21M C21M C21P C21P C21P C22M C22M C22M C22P C22P C22P TESTO1 TESTO2 TESTO3 TESTO4 VGLDMY1 G2 G4 G6 G8 G10 G12 G14 G16 G18 G20 G22 G24 G26 G28 G30 G32 G34 G36 G38 G40 G42 G44 G46 G48 G50 G52 G54 G56 G58 G60 G62 G64 G66 G68 X 8365.0 8435.0 8505.0 8575.0 8645.0 8715.0 8785.0 8855.0 8925.0 8995.0 9065.0 9135.0 9397.5 9382.5 9367.5 9352.5 9337.5 9322.5 9307.5 9292.5 9277.5 9262.5 9247.5 9232.5 9217.5 9202.5 9187.5 9172.5 9157.5 9142.5 9127.5 9112.5 9097.5 9082.5 9067.5 9052.5 9037.5 9022.5 9007.5 8992.5 8977.5 8962.5 8947.5 8932.5 8917.5 8902.5 8887.5 8872.5 8857.5 8842.5 Y -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 -269.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 R61509V Pad Coordinate (Unit:μm) pad No 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 pad name G70 G72 G74 G76 G78 G80 G82 G84 G86 G88 G90 G92 G94 G96 G98 G100 G102 G104 G106 G108 G110 G112 G114 G116 G118 G120 G122 G124 G126 G128 G130 G132 G134 G136 G138 G140 G142 G144 G146 G148 G150 G152 G154 G156 G158 G160 G162 G164 G166 G168 X 8827.5 8812.5 8797.5 8782.5 8767.5 8752.5 8737.5 8722.5 8707.5 8692.5 8677.5 8662.5 8647.5 8632.5 8617.5 8602.5 8587.5 8572.5 8557.5 8542.5 8527.5 8512.5 8497.5 8482.5 8467.5 8452.5 8437.5 8422.5 8407.5 8392.5 8377.5 8362.5 8347.5 8332.5 8317.5 8302.5 8287.5 8272.5 8257.5 8242.5 8227.5 8212.5 8197.5 8182.5 8167.5 8152.5 8137.5 8122.5 8107.5 8092.5 Y 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 2008.04.21 rev0.1 pad No 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 pad name G170 G172 G174 G176 G178 G180 G182 G184 G186 G188 G190 G192 G194 G196 G198 G200 G202 G204 G206 G208 G210 G212 G214 G216 G218 G220 G222 G224 G226 G228 G230 G232 G234 G236 G238 G240 G242 G244 G246 G248 G250 G252 G254 G256 G258 G260 G262 G264 G266 G268 X 8077.5 8062.5 8047.5 8032.5 8017.5 8002.5 7987.5 7972.5 7957.5 7942.5 7927.5 7912.5 7897.5 7882.5 7867.5 7852.5 7837.5 7822.5 7807.5 7792.5 7777.5 7762.5 7747.5 7732.5 7717.5 7702.5 7687.5 7672.5 7657.5 7642.5 7627.5 7612.5 7597.5 7582.5 7567.5 7552.5 7537.5 7522.5 7507.5 7492.5 7477.5 7462.5 7447.5 7432.5 7417.5 7402.5 7387.5 7372.5 7357.5 7342.5 Y 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 R61509V Pad Coordinate (Unit:μm) pad No 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 pad name G270 G272 G274 G276 G278 G280 G282 G284 G286 G288 G290 G292 G294 G296 G298 G300 G302 G304 G306 G308 G310 G312 G314 G316 G318 G320 G322 G324 G326 G328 G330 G332 G334 G336 G338 G340 G342 G344 G346 G348 G350 G352 G354 G356 G358 G360 G362 G364 G366 G368 X 7327.5 7312.5 7297.5 7282.5 7267.5 7252.5 7237.5 7222.5 7207.5 7192.5 7177.5 7162.5 7147.5 7132.5 7117.5 7102.5 7087.5 7072.5 7057.5 7042.5 7027.5 7012.5 6997.5 6982.5 6967.5 6952.5 6937.5 6922.5 6907.5 6892.5 6877.5 6862.5 6847.5 6832.5 6817.5 6802.5 6787.5 6772.5 6757.5 6742.5 6727.5 6712.5 6697.5 6682.5 6667.5 6652.5 6637.5 6622.5 6607.5 6592.5 Y 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 2008.04.21 rev0.1 pad No 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 pad name G370 G372 G374 G376 G378 G380 G382 G384 G386 G388 G390 G392 G394 G396 G398 G400 G402 G404 G406 G408 G410 G412 G414 G416 G418 G420 G422 G424 G426 G428 G430 G432 VGLDMY2 TESTO5 S720 S719 S718 S717 S716 S715 S714 S713 S712 S711 S710 S709 S708 S707 S706 S705 X 6577.5 6562.5 6547.5 6532.5 6517.5 6502.5 6487.5 6472.5 6457.5 6442.5 6427.5 6412.5 6397.5 6382.5 6367.5 6352.5 6337.5 6322.5 6307.5 6292.5 6277.5 6262.5 6247.5 6232.5 6217.5 6202.5 6187.5 6172.5 6157.5 6142.5 6127.5 6112.5 6097.5 5887.5 5872.5 5857.5 5842.5 5827.5 5812.5 5797.5 5782.5 5767.5 5752.5 5737.5 5722.5 5707.5 5692.5 5677.5 5662.5 5647.5 Y 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 R61509V Pad Coordinate (Unit:μm) pad No 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 pad name S704 S703 S702 S701 S700 S699 S698 S697 S696 S695 S694 S693 S692 S691 S690 S689 S688 S687 S686 S685 S684 S683 S682 S681 S680 S679 S678 S677 S676 S675 S674 S673 S672 S671 S670 S669 S668 S667 S666 S665 S664 S663 S662 S661 S660 S659 S658 S657 S656 S655 X 5632.5 5617.5 5602.5 5587.5 5572.5 5557.5 5542.5 5527.5 5512.5 5497.5 5482.5 5467.5 5452.5 5437.5 5422.5 5407.5 5392.5 5377.5 5362.5 5347.5 5332.5 5317.5 5302.5 5287.5 5272.5 5257.5 5242.5 5227.5 5212.5 5197.5 5182.5 5167.5 5152.5 5137.5 5122.5 5107.5 5092.5 5077.5 5062.5 5047.5 5032.5 5017.5 5002.5 4987.5 4972.5 4957.5 4942.5 4927.5 4912.5 4897.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 2008.04.21 rev0.1 pad No 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 pad name S654 S653 S652 S651 S650 S649 S648 S647 S646 S645 S644 S643 S642 S641 S640 S639 S638 S637 S636 S635 S634 S633 S632 S631 S630 S629 S628 S627 S626 S625 S624 S623 S622 S621 S620 S619 S618 S617 S616 S615 S614 S613 S612 S611 S610 S609 S608 S607 S606 S605 X 4882.5 4867.5 4852.5 4837.5 4822.5 4807.5 4792.5 4777.5 4762.5 4747.5 4732.5 4717.5 4702.5 4687.5 4672.5 4657.5 4642.5 4627.5 4612.5 4597.5 4582.5 4567.5 4552.5 4537.5 4522.5 4507.5 4492.5 4477.5 4462.5 4447.5 4432.5 4417.5 4402.5 4387.5 4372.5 4357.5 4342.5 4327.5 4312.5 4297.5 4282.5 4267.5 4252.5 4237.5 4222.5 4207.5 4192.5 4177.5 4162.5 4147.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 R61509V Pad Coordinate (Unit:μm) pad No 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 pad name S604 S603 S602 S601 S600 S599 S598 S597 S596 S595 S594 S593 S592 S591 S590 S589 S588 S587 S586 S585 S584 S583 S582 S581 S580 S579 S578 S577 S576 S575 S574 S573 S572 S571 S570 S569 S568 S567 S566 S565 S564 S563 S562 S561 S560 S559 S558 S557 S556 S555 X 4132.5 4117.5 4102.5 4087.5 4072.5 4057.5 4042.5 4027.5 4012.5 3997.5 3982.5 3967.5 3952.5 3937.5 3922.5 3907.5 3892.5 3877.5 3862.5 3847.5 3832.5 3817.5 3802.5 3787.5 3772.5 3757.5 3742.5 3727.5 3712.5 3697.5 3682.5 3667.5 3652.5 3637.5 3622.5 3607.5 3592.5 3577.5 3562.5 3547.5 3532.5 3517.5 3502.5 3487.5 3472.5 3457.5 3442.5 3427.5 3412.5 3397.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 2008.04.21 rev0.1 pad No 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 pad name S554 S553 S552 S551 S550 S549 S548 S547 S546 S545 S544 S543 S542 S541 S540 S539 S538 S537 S536 S535 S534 S533 S532 S531 S530 S529 S528 S527 S526 S525 S524 S523 S522 S521 S520 S519 S518 S517 S516 S515 S514 S513 S512 S511 S510 S509 S508 S507 S506 S505 X 3382.5 3367.5 3352.5 3337.5 3322.5 3307.5 3292.5 3277.5 3262.5 3247.5 3232.5 3217.5 3202.5 3187.5 3172.5 3157.5 3142.5 3127.5 3112.5 3097.5 3082.5 3067.5 3052.5 3037.5 3022.5 3007.5 2992.5 2977.5 2962.5 2947.5 2932.5 2917.5 2902.5 2887.5 2872.5 2857.5 2842.5 2827.5 2812.5 2797.5 2782.5 2767.5 2752.5 2737.5 2722.5 2707.5 2692.5 2677.5 2662.5 2647.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 R61509V Pad Coordinate (Unit:μm) pad No 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 pad name S504 S503 S502 S501 S500 S499 S498 S497 S496 S495 S494 S493 S492 S491 S490 S489 S488 S487 S486 S485 S484 S483 S482 S481 S480 S479 S478 S477 S476 S475 S474 S473 S472 S471 S470 S469 S468 S467 S466 S465 S464 S463 S462 S461 S460 S459 S458 S457 S456 S455 X 2632.5 2617.5 2602.5 2587.5 2572.5 2557.5 2542.5 2527.5 2512.5 2497.5 2482.5 2467.5 2452.5 2437.5 2422.5 2407.5 2392.5 2377.5 2362.5 2347.5 2332.5 2317.5 2302.5 2287.5 2272.5 2257.5 2242.5 2227.5 2212.5 2197.5 2182.5 2167.5 2152.5 2137.5 2122.5 2107.5 2092.5 2077.5 2062.5 2047.5 2032.5 2017.5 2002.5 1987.5 1972.5 1957.5 1942.5 1927.5 1912.5 1897.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 2008.04.21 rev0.1 pad No 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 pad name S454 S453 S452 S451 S450 S449 S448 S447 S446 S445 S444 S443 S442 S441 S440 S439 S438 S437 S436 S435 S434 S433 S432 S431 S430 S429 S428 S427 S426 S425 S424 S423 S422 S421 S420 S419 S418 S417 S416 S415 S414 S413 S412 S411 S410 S409 S408 S407 S406 S405 X 1882.5 1867.5 1852.5 1837.5 1822.5 1807.5 1792.5 1777.5 1762.5 1747.5 1732.5 1717.5 1702.5 1687.5 1672.5 1657.5 1642.5 1627.5 1612.5 1597.5 1582.5 1567.5 1552.5 1537.5 1522.5 1507.5 1492.5 1477.5 1462.5 1447.5 1432.5 1417.5 1402.5 1387.5 1372.5 1357.5 1342.5 1327.5 1312.5 1297.5 1282.5 1267.5 1252.5 1237.5 1222.5 1207.5 1192.5 1177.5 1162.5 1147.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 R61509V Pad Coordinate (Unit:μm) pad No 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 pad name S404 S403 S402 S401 S400 S399 S398 S397 S396 S395 S394 S393 S392 S391 S390 S389 S388 S387 S386 S385 S384 S383 S382 S381 S380 S379 S378 S377 S376 S375 S374 S373 S372 S371 S370 S369 S368 S367 S366 S365 S364 S363 S362 S361 TESTO6 TESTO7 TESTO8 TESTO9 TESTO10 TESTO11 X 1132.5 1117.5 1102.5 1087.5 1072.5 1057.5 1042.5 1027.5 1012.5 997.5 982.5 967.5 952.5 937.5 922.5 907.5 892.5 877.5 862.5 847.5 832.5 817.5 802.5 787.5 772.5 757.5 742.5 727.5 712.5 697.5 682.5 667.5 652.5 637.5 622.5 607.5 592.5 577.5 562.5 547.5 532.5 517.5 502.5 487.5 472.5 457.5 442.5 427.5 -427.5 -442.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 2008.04.21 rev0.1 pad No 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 pad name TESTO12 TESTO13 S360 S359 S358 S357 S356 S355 S354 S353 S352 S351 S350 S349 S348 S347 S346 S345 S344 S343 S342 S341 S340 S339 S338 S337 S336 S335 S334 S333 S332 S331 S330 S329 S328 S327 S326 S325 S324 S323 S322 S321 S320 S319 S318 S317 S316 S315 S314 S313 X -457.5 -472.5 -487.5 -502.5 -517.5 -532.5 -547.5 -562.5 -577.5 -592.5 -607.5 -622.5 -637.5 -652.5 -667.5 -682.5 -697.5 -712.5 -727.5 -742.5 -757.5 -772.5 -787.5 -802.5 -817.5 -832.5 -847.5 -862.5 -877.5 -892.5 -907.5 -922.5 -937.5 -952.5 -967.5 -982.5 -997.5 -1012.5 -1027.5 -1042.5 -1057.5 -1072.5 -1087.5 -1102.5 -1117.5 -1132.5 -1147.5 -1162.5 -1177.5 -1192.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 R61509V Pad Coordinate (Unit:μm) pad No 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 pad name S312 S311 S310 S309 S308 S307 S306 S305 S304 S303 S302 S301 S300 S299 S298 S297 S296 S295 S294 S293 S292 S291 S290 S289 S288 S287 S286 S285 S284 S283 S282 S281 S280 S279 S278 S277 S276 S275 S274 S273 S272 S271 S270 S269 S268 S267 S266 S265 S264 S263 X -1207.5 -1222.5 -1237.5 -1252.5 -1267.5 -1282.5 -1297.5 -1312.5 -1327.5 -1342.5 -1357.5 -1372.5 -1387.5 -1402.5 -1417.5 -1432.5 -1447.5 -1462.5 -1477.5 -1492.5 -1507.5 -1522.5 -1537.5 -1552.5 -1567.5 -1582.5 -1597.5 -1612.5 -1627.5 -1642.5 -1657.5 -1672.5 -1687.5 -1702.5 -1717.5 -1732.5 -1747.5 -1762.5 -1777.5 -1792.5 -1807.5 -1822.5 -1837.5 -1852.5 -1867.5 -1882.5 -1897.5 -1912.5 -1927.5 -1942.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 2008.04.21 rev0.1 pad No 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 pad name S262 S261 S260 S259 S258 S257 S256 S255 S254 S253 S252 S251 S250 S249 S248 S247 S246 S245 S244 S243 S242 S241 S240 S239 S238 S237 S236 S235 S234 S233 S232 S231 S230 S229 S228 S227 S226 S225 S224 S223 S222 S221 S220 S219 S218 S217 S216 S215 S214 S213 X -1957.5 -1972.5 -1987.5 -2002.5 -2017.5 -2032.5 -2047.5 -2062.5 -2077.5 -2092.5 -2107.5 -2122.5 -2137.5 -2152.5 -2167.5 -2182.5 -2197.5 -2212.5 -2227.5 -2242.5 -2257.5 -2272.5 -2287.5 -2302.5 -2317.5 -2332.5 -2347.5 -2362.5 -2377.5 -2392.5 -2407.5 -2422.5 -2437.5 -2452.5 -2467.5 -2482.5 -2497.5 -2512.5 -2527.5 -2542.5 -2557.5 -2572.5 -2587.5 -2602.5 -2617.5 -2632.5 -2647.5 -2662.5 -2677.5 -2692.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 R61509V Pad Coordinate (Unit:μm) pad No 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 pad name S212 S211 S210 S209 S208 S207 S206 S205 S204 S203 S202 S201 S200 S199 S198 S197 S196 S195 S194 S193 S192 S191 S190 S189 S188 S187 S186 S185 S184 S183 S182 S181 S180 S179 S178 S177 S176 S175 S174 S173 S172 S171 S170 S169 S168 S167 S166 S165 S164 S163 X -2707.5 -2722.5 -2737.5 -2752.5 -2767.5 -2782.5 -2797.5 -2812.5 -2827.5 -2842.5 -2857.5 -2872.5 -2887.5 -2902.5 -2917.5 -2932.5 -2947.5 -2962.5 -2977.5 -2992.5 -3007.5 -3022.5 -3037.5 -3052.5 -3067.5 -3082.5 -3097.5 -3112.5 -3127.5 -3142.5 -3157.5 -3172.5 -3187.5 -3202.5 -3217.5 -3232.5 -3247.5 -3262.5 -3277.5 -3292.5 -3307.5 -3322.5 -3337.5 -3352.5 -3367.5 -3382.5 -3397.5 -3412.5 -3427.5 -3442.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 2008.04.21 rev0.1 pad No 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 pad name S162 S161 S160 S159 S158 S157 S156 S155 S154 S153 S152 S151 S150 S149 S148 S147 S146 S145 S144 S143 S142 S141 S140 S139 S138 S137 S136 S135 S134 S133 S132 S131 S130 S129 S128 S127 S126 S125 S124 S123 S122 S121 S120 S119 S118 S117 S116 S115 S114 S113 X -3457.5 -3472.5 -3487.5 -3502.5 -3517.5 -3532.5 -3547.5 -3562.5 -3577.5 -3592.5 -3607.5 -3622.5 -3637.5 -3652.5 -3667.5 -3682.5 -3697.5 -3712.5 -3727.5 -3742.5 -3757.5 -3772.5 -3787.5 -3802.5 -3817.5 -3832.5 -3847.5 -3862.5 -3877.5 -3892.5 -3907.5 -3922.5 -3937.5 -3952.5 -3967.5 -3982.5 -3997.5 -4012.5 -4027.5 -4042.5 -4057.5 -4072.5 -4087.5 -4102.5 -4117.5 -4132.5 -4147.5 -4162.5 -4177.5 -4192.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 R61509V Pad Coordinate (Unit:μm) pad No 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 pad name S112 S111 S110 S109 S108 S107 S106 S105 S104 S103 S102 S101 S100 S99 S98 S97 S96 S95 S94 S93 S92 S91 S90 S89 S88 S87 S86 S85 S84 S83 S82 S81 S80 S79 S78 S77 S76 S75 S74 S73 S72 S71 S70 S69 S68 S67 S66 S65 S64 S63 X -4207.5 -4222.5 -4237.5 -4252.5 -4267.5 -4282.5 -4297.5 -4312.5 -4327.5 -4342.5 -4357.5 -4372.5 -4387.5 -4402.5 -4417.5 -4432.5 -4447.5 -4462.5 -4477.5 -4492.5 -4507.5 -4522.5 -4537.5 -4552.5 -4567.5 -4582.5 -4597.5 -4612.5 -4627.5 -4642.5 -4657.5 -4672.5 -4687.5 -4702.5 -4717.5 -4732.5 -4747.5 -4762.5 -4777.5 -4792.5 -4807.5 -4822.5 -4837.5 -4852.5 -4867.5 -4882.5 -4897.5 -4912.5 -4927.5 -4942.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 2008.04.21 rev0.1 pad No 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 pad name S62 S61 S60 S59 S58 S57 S56 S55 S54 S53 S52 S51 S50 S49 S48 S47 S46 S45 S44 S43 S42 S41 S40 S39 S38 S37 S36 S35 S34 S33 S32 S31 S30 S29 S28 S27 S26 S25 S24 S23 S22 S21 S20 S19 S18 S17 S16 S15 S14 S13 X -4957.5 -4972.5 -4987.5 -5002.5 -5017.5 -5032.5 -5047.5 -5062.5 -5077.5 -5092.5 -5107.5 -5122.5 -5137.5 -5152.5 -5167.5 -5182.5 -5197.5 -5212.5 -5227.5 -5242.5 -5257.5 -5272.5 -5287.5 -5302.5 -5317.5 -5332.5 -5347.5 -5362.5 -5377.5 -5392.5 -5407.5 -5422.5 -5437.5 -5452.5 -5467.5 -5482.5 -5497.5 -5512.5 -5527.5 -5542.5 -5557.5 -5572.5 -5587.5 -5602.5 -5617.5 -5632.5 -5647.5 -5662.5 -5677.5 -5692.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 R61509V Pad Coordinate (Unit:μm) pad No 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 pad name S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 TESTO14 VGLDMY3 G431 G429 G427 G425 G423 G421 G419 G417 G415 G413 G411 G409 G407 G405 G403 G401 G399 G397 G395 G393 G391 G389 G387 G385 G383 G381 G379 G377 G375 G373 G371 G369 G367 G365 G363 G361 X -5707.5 -5722.5 -5737.5 -5752.5 -5767.5 -5782.5 -5797.5 -5812.5 -5827.5 -5842.5 -5857.5 -5872.5 -5887.5 -6097.5 -6112.5 -6127.5 -6142.5 -6157.5 -6172.5 -6187.5 -6202.5 -6217.5 -6232.5 -6247.5 -6262.5 -6277.5 -6292.5 -6307.5 -6322.5 -6337.5 -6352.5 -6367.5 -6382.5 -6397.5 -6412.5 -6427.5 -6442.5 -6457.5 -6472.5 -6487.5 -6502.5 -6517.5 -6532.5 -6547.5 -6562.5 -6577.5 -6592.5 -6607.5 -6622.5 -6637.5 Y 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 2008.04.21 rev0.1 pad No 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 pad name G359 G357 G355 G353 G351 G349 G347 G345 G343 G341 G339 G337 G335 G333 G331 G329 G327 G325 G323 G321 G319 G317 G315 G313 G311 G309 G307 G305 G303 G301 G299 G297 G295 G293 G291 G289 G287 G285 G283 G281 G279 G277 G275 G273 G271 G269 G267 G265 G263 G261 X -6652.5 -6667.5 -6682.5 -6697.5 -6712.5 -6727.5 -6742.5 -6757.5 -6772.5 -6787.5 -6802.5 -6817.5 -6832.5 -6847.5 -6862.5 -6877.5 -6892.5 -6907.5 -6922.5 -6937.5 -6952.5 -6967.5 -6982.5 -6997.5 -7012.5 -7027.5 -7042.5 -7057.5 -7072.5 -7087.5 -7102.5 -7117.5 -7132.5 -7147.5 -7162.5 -7177.5 -7192.5 -7207.5 -7222.5 -7237.5 -7252.5 -7267.5 -7282.5 -7297.5 -7312.5 -7327.5 -7342.5 -7357.5 -7372.5 -7387.5 Y 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 R61509V Pad Coordinate (Unit:μm) pad No 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 pad name G259 G257 G255 G253 G251 G249 G247 G245 G243 G241 G239 G237 G235 G233 G231 G229 G227 G225 G223 G221 G219 G217 G215 G213 G211 G209 G207 G205 G203 G201 G199 G197 G195 G193 G191 G189 G187 G185 G183 G181 G179 G177 G175 G173 G171 G169 G167 G165 G163 G161 X -7402.5 -7417.5 -7432.5 -7447.5 -7462.5 -7477.5 -7492.5 -7507.5 -7522.5 -7537.5 -7552.5 -7567.5 -7582.5 -7597.5 -7612.5 -7627.5 -7642.5 -7657.5 -7672.5 -7687.5 -7702.5 -7717.5 -7732.5 -7747.5 -7762.5 -7777.5 -7792.5 -7807.5 -7822.5 -7837.5 -7852.5 -7867.5 -7882.5 -7897.5 -7912.5 -7927.5 -7942.5 -7957.5 -7972.5 -7987.5 -8002.5 -8017.5 -8032.5 -8047.5 -8062.5 -8077.5 -8092.5 -8107.5 -8122.5 -8137.5 Y 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 2008.04.21 rev0.1 pad No 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 pad name G159 G157 G155 G153 G151 G149 G147 G145 G143 G141 G139 G137 G135 G133 G131 G129 G127 G125 G123 G121 G119 G117 G115 G113 G111 G109 G107 G105 G103 G101 G99 G97 G95 G93 G91 G89 G87 G85 G83 G81 G79 G77 G75 G73 G71 G69 G67 G65 G63 G61 X -8152.5 -8167.5 -8182.5 -8197.5 -8212.5 -8227.5 -8242.5 -8257.5 -8272.5 -8287.5 -8302.5 -8317.5 -8332.5 -8347.5 -8362.5 -8377.5 -8392.5 -8407.5 -8422.5 -8437.5 -8452.5 -8467.5 -8482.5 -8497.5 -8512.5 -8527.5 -8542.5 -8557.5 -8572.5 -8587.5 -8602.5 -8617.5 -8632.5 -8647.5 -8662.5 -8677.5 -8692.5 -8707.5 -8722.5 -8737.5 -8752.5 -8767.5 -8782.5 -8797.5 -8812.5 -8827.5 -8842.5 -8857.5 -8872.5 -8887.5 Y 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 R61509V Pad Coordinate (Unit:μm) pad No 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 pad name G59 G57 G55 G53 G51 G49 G47 G45 G43 G41 G39 G37 G35 G33 G31 G29 G27 G25 G23 G21 G19 G17 G15 G13 G11 G9 G7 G5 G3 G1 VGLDMY4 TESTO15 DUMMYR3 DUMMYR4 X -8902.5 -8917.5 -8932.5 -8947.5 -8962.5 -8977.5 -8992.5 -9007.5 -9022.5 -9037.5 -9052.5 -9067.5 -9082.5 -9097.5 -9112.5 -9127.5 -9142.5 -9157.5 -9172.5 -9187.5 -9202.5 -9217.5 -9232.5 -9247.5 -9262.5 -9277.5 -9292.5 -9307.5 -9322.5 -9337.5 -9352.5 -9367.5 -9382.5 -9397.5 Y 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 2008.04.21 rev0.1 Alignment mark 1-a 1-b X -9381.0 9381.0 Y -251.0 -251.0 Rev0.1 2008.04.21 Pad No66 IM0/ID→IM0_ID (rename) Pad No69 RESET→RESETX (rename) Pad No73 VSYNC→VSYNCX (rename) Pad No74 HSYNC→HSYNCX (rename) Pad No107 CS→CSX (rename) Pad No109 WR/SCL →WRX_SCL (rename) Pad No110 RD→RDX (rename) R61509V Target Spec Bump Arrangement 㪪㪈䌾㪪㪎㪉㪇䋬㩷 㪞㪈䌾㪞㪋㪊㪉䋬㩷 㪛㪬㪤㪤㪰㪩㪎㪄㪈㪇㪃㩷 㪫㪜㪪㪫㪦㪈㪈㪄㪈㪏㪃㩷 㪭㪞㪣㪛㪤㪰㪈㪄㪋㩷 㩿㪥㫆㩷㪉㪍㪊㪄㪈㪋㪊㪋㪀 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 㩷 15 15 100 19 219 12 Unit : um 50 50 20 S=4,500um2 90 㪠㪆㪦㩷㫇㫀㫅㫊㩷 㩿㪥㫆㪈㩷㵨㩷㪉㪍㪉㪀㩷 12 70 Figure 3 Rev. 0.11 April 25, 2008, page 36 of 181 S=1,500um2 Unit : um R61509V Wiring Example & Recommended Wiring Resistance (Pad Arrangement Rev0.6) 2008.04.21 Rev0.5 Rev0.1 2008.02.14 Made for PR Rev0.11 2008.02.19 VPP3C-->VPP3B, VPP2-->VPP1 Rev0.2 2008.02.28 Pad names changed. Rev0.3 2008.0314 Instruction changed. Rev0.4 2008.0402 R61517's EEPROM IF deleted. R61509V VPP2--> VPP1 Rev0.5 2008.04.21 Pad names changed. Pad No66 IM0/ID→IM0_ID Pad No69 RESET→RESETX Pad No73 VSYNC→VSYNCX Pad No74 HSYNC→HSYNCX Pad No107 CS→CSX Pad No109 WR/SCL→WRX_SCL Pad No110 RD→RDX R61517 outline VCOM Pad No. Recommended max.Rcog [ohm] R61509V outline R61509V Pad name □ TP TP VPP3A p VPP1 p 30 8 10 12 GND p 9 IM2 IM1 IM0 in in in 60 60 60 PROTECT RESX in in out out in in 60 60 60 60 60 60 60 DE PCLK DB17 DB16 in in io io 60 60 60 60 DB15 DB14 DB13 DB12 io io io io 60 60 60 60 DB11 DB10 DB9 io io io 60 60 60 LEDON LEDPWM VSYNC HSYNC 10 IOVCC (MIPI name: VDDI) p DB8 io 60 DB7 DB6 DB5 DB4 io io io io 60 60 60 60 DB3 DB2 DB1 DB0 io io io io 60 60 60 60 CSX DCX WRX/SCL RDX in in in in 60 60 60 60 60 60 60 TE out DIN in DOUT out 1uF/6V/B 7 8 1uF/6V/B 10 1uF/6V/B 10 7 60 7 1uF/6V/B 60 60 When VCOMH is adjusted using variable resisrance > 200kΩ 12 1uF/6V/B 12 1uF/6V/B 12 12 1uF/6V/B 7 Capacitor is not required when VCI voltage is directly applied to VCI1 pin 15 When VCI1 is adjusted by register 1uF/6V/B 0ohm VCI (MIPI name: VDDI) p 10 60 12 12 1uF/25V/B 6 VF<0.38V/5mA@25℃, VR≧25V 1uF/25V/B 6 VF<0.38V/5mA@25℃, VR≧25V 20 1uF/6V/B 20 1uF/6V/B 20 20 1uF/10V/B 20 20 1uF/10V/B 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 DUMMYR1 DUMMYR2 AGNDDUM1 VPP3B VPP3B VPP3B VPP3B AGNDDUM2 VPP3A VPP3A VPP1 VPP1 VPP1 VPP1 VPP1 VPP1 VPP1 GNDDUM1 VDDTEST VREFC VREFD VREF VCCDUM1 DUMMYA DUMMYA DUMMYA DUMMYA DUMMYA GNDDUM2 AGND AGND AGND AGND AGND AGND GND GND GND GND GND VCC VCC VCC VCC VCC VCC VCC TS8 TS7 TS6 TS5 TS4 TS3 TS2 TS1 TS0 TEST5 TEST4 TEST3 TEST2 TEST1 GNDDUM3 TSC IM2 IM1 IM0_ID IOVCCDUM1 PROTECT RESETX GNDDUM4 DUMMYB DUMMYB VSYNCX HSYNCX IOVCCDUM2 ENABLE DOTCLK DB17 DB16 GNDDUM5 DB15 DB14 DB13 DB12 GNDDUM6 DB11 DB10 DB9 IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC DB8 GNDDUM7 DB7 DB6 DB5 DB4 GNDDUM8 DB3 DB2 DB1 DB0 GNDDUM9 CSX RS WRX_SCL RDX GNDDUM10 FMARK SDI SDO VDD VDD VDD VDD VDD VDD VDD VDD VDD VMON VCOM VCOM VCOM VCOM VCOM VCOM VCOM VCOM VCOMH VCOMH VCOMH VCOMH VCOMH VCOMH VCOML VCOML VCOML VCOML VCOML VCOML GND GND GND GND GND GND GND GND GND VGS AGND AGND AGND AGND AGND AGND AGND AGND AGND VTEST VCIR VREG1OUT VCOMR C11M C11M C11M C11M C11M C11P C11P C11P C11P C11P C12M C12M C12M C12M C12M C12P C12P C12P C12P C12P DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCI1 VCI1 VCI1 VCI1 VCI VCI VCI VCI VCI VCI VCILVL DUMMYC DUMMYC DUMMYC DUMMYC DUMMYC GND GND GND GND GND AGND AGND AGND AGND AGND VGL VGL VGL VGL VGL VGL VGL VGL VGL AGNDDUM3 AGNDDUM4 VGH VGH VGH VGH VGH VGH AGNDDUM5 VCL VCL VCL C13M C13M C13M C13P C13P C13P C21M C21M C21M C21P C21P C21P C22M C22M C22M C22P C22P C22P TESTO1 □ □ □ Connect Connect Connect Connect to to to to AGNDDUM1/2 AGNDDUM1/2 AGNDDUM1/2 AGNDDUM1/2 □ □ □ □ □ BUMP Top View □ □ Connect to GNDDUM1 Connect to GNDDUM1 Open Open □ □ □ □ □ Open Open Open Open Open □ □ □ □ □ □ □ □ □ Open Open Open Open Open Open Open Open Open Connect Connect Connect Connect Connect Chip to to to to to GNDDUM3 GNDDUM3 GNDDUM3 GNDDUM3 GNDDUM3 □ □ 30um_Space □ □ Connect Connect Connect Connect to to to to GNDDUM3 IOVCCDUM1/GNDDUM3 IOVCCDUM1/GNDDUM3 IOVCCDUM1/GNDDUM3 VCOM Glass substrate G427 G429 G431 VGLDMY3 30um 1 VCOM □ □ Open Open 30um □ □ 30um_Space □ □ □ □ TESTO14 S1 S2 S3 S4 S5 Note: When using same glass substrate for the R61517 and the R61509V, make sure that the R61517's VCOMA and VCOMB for VCOM drive mode are same polarity. The R61509V does not have VCOM output pin on the output side (the area is just flat surface). When supplying voltage to panel from four corners of it, draw wires from VCOM pins on the I/O side. □ □ □ Open □ □ □ □ □ □ □ S356 S357 S358 S359 S360 TESTO13 TESTO12 TESTO11 TESTO10 840um □ □ □ □ □ □ □ □ □ □ □ TESTO9 TESTO8 TESTO7 TESTO6 S361 S362 S363 S364 S365 Open Open □ □ □ □ 30um_Space □ □ S716 S717 S718 S719 S720 TESTO5 30um VCOM 30um □ □ 30um_Space □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ VGLDMY2 G432 G430 G428 Open Open Open Open Open Open □ □ FPC DUMMYR4 DUMMYR3 TESTO15 VGLDMY4 G1 G3 G5 G7 G9 G10 G8 G6 G4 G2 VGLDMY1 TESTO4 TESTO3 TESTO2 R61509V Target Spec GRAM Address Map GS=0 GS=1 S720 S719 S718 S717 S716 S715 S714 S713 S712 S711 S710 ・・・・・ S709 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S/G pin S1 Table 11 GRAM address and display position on the panel (SS = 0, BGR = 0) WD[17:0] WD[17:0] WD[17:0] WD[17:0] ・・・・・ WD[17:0] WD[17:0] WD[17:0] WD[17:0] G1 G432 h00000 h00001 h00002 h00003 ・・・・・ h000EC h000ED h000EE h000EF G2 G431 h00100 h00101 h00102 h00103 ・・・・・ h001EC h001ED h001EE h001EF G3 G430 h00200 h00201 h00202 h00203 ・・・・・ h002EC h002ED h002EE h002EF G4 G429 h00300 h00301 h00302 h00303 ・・・・・ h003EC h003ED h003EE h003EF G5 G428 h00400 h00401 h00402 h00403 ・・・・・ h004EC h004ED h004EE h004EF G6 G427 h00500 h00501 h00502 h00503 ・・・・・ h005EC h005ED h005EE h005EF G7 G426 h00600 h00601 h00602 h00603 ・・・・・ h006EC h006ED h006EE h006EF G8 G425 h00700 h00701 h00702 h00703 ・・・・・ h007EC h007ED h007EE h007EF G9 G424 h00800 h00801 h00802 h00803 ・・・・・ h008EC h008ED h008EE h008EF G10 G423 h00900 h00901 h00902 h00903 ・・・・・ h009EC h009ED h009EE h009EF G11 G422 h00A00 h00A01 h00A02 h00A03 ・・・・・ h00AEC h00AED h00AEE h00AEF G12 G421 h00B00 h00B01 h00B02 h00B03 ・・・・・ h00BEC h00BED h00BEE h00BEF G13 G420 h00C00 h00C01 h00C02 h00C03 ・・・・・ h00CEC h00CED h00CEE h00CEF G14 G419 h00D00 h00D01 h00D02 h00D03 ・・・・・ h00DEC h00DED h00DEE h00DEF G15 G418 h00E00 h00E01 h00E02 h00E03 ・・・・・ h00EEC h00EED h00EEE h00EEF G16 G417 h00F00 h00F01 h00F02 h00F03 ・・・・・ h00FEC h00FED h00FEE h00FEF G17 G416 h01000 h01001 h01002 h01003 ・・・・・ h010EC h010ED h010EE h010EF G18 G415 h01100 h01101 h01102 h01103 ・・・・・ h011EC h011ED h011EE h011EF G19 G414 h01200 h01201 h01202 h01203 ・・・・・ h012EC h012ED h012EE h012EF G20 G413 h01300 h01301 h01302 h01303 ・・・・・ h013EC h013ED h013EE h013EF : : : : : : : : : : : : : : : : : : : : G417 G16 h1A000 h1A001 h1A002 h1A003 ・・・・・ h1A0EC h1A0ED h1A0EE h1A0EF G418 G15 h1A100 h1A101 h1A102 h1A103 ・・・・・ h1A1EC h1A1ED h1A1EE h1A1EF G419 G14 h1A200 h1A201 h1A202 h1A203 ・・・・・ h1A2EC h1A2ED h1A2EE h1A2EF G420 G13 h1A300 h1A301 h1A302 h1A303 ・・・・・ h1A3EC h1A3ED h1A3EE h1A3EF G421 G12 h1A400 h1A401 h1A402 h1A403 ・・・・・ h1A4EC h1A4ED h1A4EE h1A4EF G422 G11 h1A500 h1A501 h1A502 h1A503 ・・・・・ h1A5EC h1A5ED h1A5EE h1A5EF G423 G10 h1A600 h1A601 h1A602 h1A603 ・・・・・ h1A6EC h1A6ED h1A6EE h1A6EF G424 G9 h1A700 h1A701 h1A702 h1A703 ・・・・・ h1A7EC h1A7ED h1A7EE h1A7EF G425 G8 h1A800 h1A801 h1A802 h1A803 ・・・・・ h1A8EC h1A8ED h1A8EE h1A8EF G426 G7 h1A900 h1A901 h1A902 h1A903 ・・・・・ h1A9EC h1A9ED h1A9EE h1A9EF G427 G6 h1AA00 h1AA01 h1AA02 h1AA03 ・・・・・ h1AAEC h1AAED h1AAEE h1AAEF G428 G5 h1AB00 h1AB01 h1AB02 h1AB03 ・・・・・ h1ABEC h1ABED h1ABEE h1ABEF G429 G4 h1AC00 h1AC01 h1AC02 h1AC03 ・・・・・ h1ACEC h1ACED h1ACEE h1ACEF G430 G3 h1AD00 h1AD01 h1AD02 h1AD03 ・・・・・ h1ADEC h1ADED h1ADEE h1ADEF G431 G2 h1AE00 h1AE01 h1AE02 h1AE03 ・・・・・ h1AEEC h1AEED h1AEEE h1AEEF G432 G1 h1AF00 h1AF01 h1AF02 h1AF03 ・・・・・ h1AFEC h1AFED h1AFEE h1AFEF Rev. 0.11 April 25, 2008, page 38 of 181 R61509V Target Spec GS=0 GS=1 WD[17:0] S1 S3 S2 S4 S5 S6 S7 S8 S9 S10 S11 ・・・・・ S12 S709 S710 S711 S712 S713 S714 S715 S716 S717 S718 S719 S/G pin S720 Table 12 GRAM address and display position on the panel (SS = 1, BGR = 1) WD[17:0] WD[17:0] WD[17:0] ・・・・・ WD[17:0] WD[17:0] WD[17:0] WD[17:0] G1 G432 h00000 h00001 h00002 h00003 ・・・・・ h000EC h000ED h000EE h000EF G2 G431 h00100 h00101 h00102 h00103 ・・・・・ h001EC h001ED h001EE h001EF G3 G430 h00200 h00201 h00202 h00203 ・・・・・ h002EC h002ED h002EE h002EF G4 G429 h00300 h00301 h00302 h00303 ・・・・・ h003EC h003ED h003EE h003EF G5 G428 h00400 h00401 h00402 h00403 ・・・・・ h004EC h004ED h004EE h004EF G6 G427 h00500 h00501 h00502 h00503 ・・・・・ h005EC h005ED h005EE h005EF G7 G426 h00600 h00601 h00602 h00603 ・・・・・ h006EC h006ED h006EE h006EF G8 G425 h00700 h00701 h00702 h00703 ・・・・・ h007EC h007ED h007EE h007EF G9 G424 h00800 h00801 h00802 h00803 ・・・・・ h008EC h008ED h008EE h008EF G10 G423 h00900 h00901 h00902 h00903 ・・・・・ h009EC h009ED h009EE h009EF G11 G422 h00A00 h00A01 h00A02 h00A03 ・・・・・ h00AEC h00AED h00AEE h00AEF G12 G421 h00B00 h00B01 h00B02 h00B03 ・・・・・ h00BEC h00BED h00BEE h00BEF G13 G420 h00C00 h00C01 h00C02 h00C03 ・・・・・ h00CEC h00CED h00CEE h00CEF G14 G419 h00D00 h00D01 h00D02 h00D03 ・・・・・ h00DEC h00DED h00DEE h00DEF G15 G418 h00E00 h00E01 h00E02 h00E03 ・・・・・ h00EEC h00EED h00EEE h00EEF G16 G417 h00F00 h00F01 h00F02 h00F03 ・・・・・ h00FEC h00FED h00FEE h00FEF G17 G416 h01000 h01001 h01002 h01003 ・・・・・ h010EC h010ED h010EE h010EF G18 G415 h01100 h01101 h01102 h01103 ・・・・・ h011EC h011ED h011EE h011EF G19 G414 h01200 h01201 h01202 h01203 ・・・・・ h012EC h012ED h012EE h012EF G20 G413 h01300 h01301 h01302 h01303 ・・・・・ h013EC h013ED h013EE h013EF : : : : : : : : : : : : : : : : : : : : G417 G16 h1A000 h1A001 h1A002 h1A003 ・・・・・ h1A0EC h1A0ED h1A0EE h1A0EF G418 G15 h1A100 h1A101 h1A102 h1A103 ・・・・・ h1A1EC h1A1ED h1A1EE h1A1EF G419 G14 h1A200 h1A201 h1A202 h1A203 ・・・・・ h1A2EC h1A2ED h1A2EE h1A2EF G420 G13 h1A300 h1A301 h1A302 h1A303 ・・・・・ h1A3EC h1A3ED h1A3EE h1A3EF G421 G12 h1A400 h1A401 h1A402 h1A403 ・・・・・ h1A4EC h1A4ED h1A4EE h1A4EF G422 G11 h1A500 h1A501 h1A502 h1A503 ・・・・・ h1A5EC h1A5ED h1A5EE h1A5EF G423 G10 h1A600 h1A601 h1A602 h1A603 ・・・・・ h1A6EC h1A6ED h1A6EE h1A6EF G424 G9 h1A700 h1A701 h1A702 h1A703 ・・・・・ h1A7EC h1A7ED h1A7EE h1A7EF G425 G8 h1A800 h1A801 h1A802 h1A803 ・・・・・ h1A8EC h1A8ED h1A8EE h1A8EF G426 G7 h1A900 h1A901 h1A902 h1A903 ・・・・・ h1A9EC h1A9ED h1A9EE h1A9EF G427 G6 h1AA00 h1AA01 h1AA02 h1AA03 ・・・・・ h1AAEC h1AAED h1AAEE h1AAEF G428 G5 h1AB00 h1AB01 h1AB02 h1AB03 ・・・・・ h1ABEC h1ABED h1ABEE h1ABEF G429 G4 h1AC00 h1AC01 h1AC02 h1AC03 ・・・・・ h1ACEC h1ACED h1ACEE h1ACEF G430 G3 h1AD00 h1AD01 h1AD02 h1AD03 ・・・・・ h1ADEC h1ADED h1ADEE h1ADEF G431 G2 h1AE00 h1AE01 h1AE02 h1AE03 ・・・・・ h1AEEC h1AEED h1AEEE h1AEEF G432 G1 h1AF00 h1AF01 h1AF02 h1AF03 ・・・・・ h1AFEC h1AFED h1AFEE h1AFEF Rev. 0.11 April 25, 2008, page 39 of 181 R61509V Target Spec Instruction Outline The R61509V adopts 18-bit bus architecture in order to interface to high-performance microcomputer in high speed. The R61509V starts internal processing after storing control information (18, 16, 9, 8, 1 bit(s)), sent from the microcomputer, in the instruction register (IR) and the data register (DR). Since the internal operation of the R61509V is controlled by the signals sent from the microcomputer, the register selection signal (RS), the read/write signal (R/W), and the internal 16-bit data bus signals (IB15 ~ IB0) are called instructions. The following are the kinds of instruction of the R61509V. 1. 2. 3. 4. Specify index Display control Power management control Set internal GRAM addresssss 5. 6. 7. 8. Transfer data to and from the internal GRAM Window address control γ-correction Panel Display Control Normally, the data write instructions (5) are used the most frequently. The internal GRAM address is updated automatically as data is written to the internal GRAM, which, in combination with the window address function, contributes to minimizing data transfer and thereby lessens the load on the microcomputer. The R61509V writes instructions consecutively by executing the instruction within the cycle when it is written (instruction execution time: 0 cycle). Instruction Data Format As the following figure shows, the data bus used to transfer 16 instruction bits (IB[15:0]) is different according to the data format of a selected interface. Make sure to transfer the instruction bits according to the format of the selected interface. The bits to which no instruction is assigned must be set to either “0” or “1” according to the following register tables. When changing only one instruction bit setting, the setting values in other bits in the register must be written. Rev. 0.11 April 25, 2008, page 40 of 181 R61509V Target Spec Index (IR) R/W RS IB15 IB14 IB13 IB12 IB11 W 0 0 0 0 0 0 IB10 ID [10] IB9 ID [9] IB8 ID [8] IB7 ID [7] IB6 ID [6] IB5 ID [5] IB4 ID [4] IB3 ID [3] IB2 ID [2] IB1 ID [1] IB0 ID [0] The index register specifies the indexes of control register or RAM control to be accessed. It is prohibited to access registers and instruction bits to which no index register is assigned. Display control Device code read (R000h) R/W R RS 1 IB15 IB14 IB13 IB12 IB11 IB10 1 0 1 1 0 1 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 1 0 0 0 0 1 0 0 1 The device code “B509”H is read out when this register is read forcibly. Driver Output Control (R001h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 R/W 1 0 0 0 0 0 SM 0 SS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value SS: Sets the shift direction of output from the source driver. When SS = “0”, the source driver output shift from S1 to S720. When SS = “1”, the source driver output shift from S720 to S1. The combination of SS and BGR settings determines the RGB assignment to the source driver pins S1 ~ S720. When SS = “0” and BGR = “0”, RGB dots are assigned one to one from S1 to S720. When SS = “1” and BGR = “1”, RGB dots are assigned one to one from S720 to S1. When changing the SS and BGR bits, RAM data must be rewritten. SM: Controls the scan mode in combination with GS setting. See “ Scan mode setting”. Rev. 0.11 April 25, 2008, page 41 of 181 R61509V Target Spec LCD Drive Wave Control (R002h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 R/W 1 0 0 0 0 0 0 0 BC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IB3 IB2 IB1 IB0 AM 0 0 0 0 0 0 0 Default value BC: Selects the liquid crystal drive waveform VCOM. BC = 0: frame inversion waveform is selected. BC = 1: line inversion waveform is selected. Entry Mode (R003h) R/W RS R/W 1 Default value IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 TRI DF M 0 BGR 0 0 0 0 OR G 0 0 0 0 0 0 0 0 0 0 0 IB5 IB4 ID ID [1] [0] 1 1 The entry mode registers include instruction bits for setting how to write data from the microcomputer to the internal GRAM of the R61509V. AM: Sets either horizontal or vertical direction in updating the address counter automatically as the R61509V writes data to the internal GRAM. AM = “0”, sets the horizontal direction. AM = “1”, sets the vertical direction. When specifying window address area, the data is written only within the area in the direction determined by ID and AM bits. ID[1:0]: Either increments (+1) or decrements (-1) the address counter (AC) automatically as the data is written to the GRAM. The ID[0] bit sets either increment or decrement in horizontal direction (updates the address AD[7:0]). The ID[1] bit sets either increment or decrement in vertical direction (updates the address AD[8:16]). The AM bit sets either horizontal or vertical direction in updating RAM address counter automatically when writing data to the internal RAM. ORG: Moves the origin address according to the ID setting when a window address area is described. This function is enabled when executing burst data transfer within the window address area. ORG = 0: The origin address is not moved. In this case, specify the address to start write operation according to the GRAM address map within the window address area. ORG = 1: The origin address “h00000” is moved according to the ID[1:0] setting. Notes: 1. When ORG = 1, the origin address can be set only at “h00000”. 2. In RAM read operation, make sure to set ORG = 0. Rev. 0.11 April 25, 2008, page 42 of 181 R61509V Target Spec BGR: Reverses the order from RGB to BGR in writing 18-bit pixel data in the GRAM. BGR = 0: BGR = 1: Write data in the order of RGB to the GRAM. Reverse the order from RGB to BGR in writing data to the GRAM. DFM: In combination with the TRI setting, DFM sets the format to develop 16-/8-bit data to 18-bit data when using either 16- or 8-bit bus interface. Make sure to set DFM = 0 when not transferring data via 16bit or 8-bit interface. Set DFM in accordance with selected interface and image data format in RAM write operation. DFM=0: 18bpp (R:G:B = 6:6:6), DFM=1: 16bpp (R:G:B = 5:6:5) TRI: Selects the format to transfer data bits via 16-bit or 8-bit interface. In 8-bit interface operation, TRI = 0: 16-bit RAM data is transferred in two transfers. TRI = 1: 18-bit RAM data is transferred in three transfers. In 16-bit bus interface operation, TRI = 0: 16-bit RAM data is transferred in one transfer. TRI = 1: 18-bit RAM data is transferred in two transfers. Make sure TRI = 0 when not transferring data via 16- or 8-bit interface. Also, set TRI = 0 during read operation. Rev. 0.11 April 25, 2008, page 43 of 181 R61509V ORG = 0 AM = 0 Horizontal Target Spec ID1-0 = 00 Horizontal: Decrement Vertical: Decrement 17'h00000 ID1-0 = 01 Horizontal: Increment Vertical: Decrement 17'h00000 17'h00000 17'hAFEF AM = 1 Vertical AM = 0 Horizontal ID1-0 = 00 Horizontal: Decrement Vertical: Decrement 17'hAFEF 17'h00000 17'h00000 17'hAFEF 17'hAFEF ID1-0 = 10 Horizontal: Decrement Vertical: Increment ID1-0 = 11 Horizontal: Increment Vertical: Increment 17'h00000 17'h00000 S S 17'hAFEF 17'hAFEF 17'hAFEF 17'h00000 17'hAFEF 17'h00000 S S AM = 1 Vertical 17'h00000 17'h00000 ID1-0 = 01 Horizontal: Increment Vertical: Decrement ID1-0 = 11 Horizontal: Increment Vertical: Increment 17'hAFEF 17'hAFEF 17'h00000 17'h00000 17'hAFEF ORG = 1 ID1-0 = 10 Horizontal: Decrement Vertical: Increment 17'h00000 S S 17'hAFEF 17'h00000 17'h00000 S S 17'hAFEF 17'hAFEF Figure 4 Automatic Address Update Rev. 0.11 April 25, 2008, page 44 of 181 17'hAFEF 17'hAFEF R61509V Target Spec Display Control 1 (R007h) R/W RS R/W 1 Default IB15 IB14 IB13 IB12 IB11 IB10 PTD 0 0 0 0 0 E 0 0 0 0 0 0 IB9 0 0 IB8 BAS EE IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BASEE: Base image display enable bit. BASEE = 0: No base image is displayed. The R61509V drives the LCD at non-lit display level or displays partial images. BASEE = 1: A base image is displayed. PTDE: Partial display 1 enable bit. PTDE=0: Partial display is turned off. Only a base image is displayed on the panel. PTDE=1: Partial image is displayed. Set BASEE = 0 to turn off the base image. Rev. 0.11 April 25, 2008, page 45 of 181 R61509V Target Spec Display Control 2 (R008h) R/W RS R/W 1 IB15 IB14 IB13 IB12 IB11 IB10 FP FP FP FP FP FP [7] [6] [5] [4] [3] [2] Default 0 0 0 0 1 0 IB9 FP [1] IB8 FP [0] IB7 BP [7] IB6 BP [6] IB5 BP [5] IB4 BP [4] IB3 BP [3] IB2 BP [2] IB1 BP [1] IB0 BP [0] 0 0 0 0 0 0 1 0 0 0 FP[7:0]: Sets the number of lines for front porch period (a blank period made after the end of display). BP[7:0]: Sets the number of lines for back porch period (a blank period made before the beginning of display). In external display interface operation, a back porch (BP) period starts on the falling edge of the VSYNCX signal and the display operation starts after the back porch period. After the front porch period, a blank period continues until next VSYNCX input is detected. Table 13 FP [7:0] BP [7:0] Number of front porch line Number of back porch line 8’h00 Setting inhibited Setting inhibited 8’h01 Setting inhibited Setting inhibited 8’h02 Setting inhibited 2 lines 8’h03 3 lines 3 lines 8’h04 4 lines 4 lines 8’h05 5 lines 5 lines 8’h06 6 lines 6 lines 8’h07 7 lines 7 lines 8’h08 8 lines 8 lines 8’h09 9 lines 9 lines 8’h0A 10 lines 10 lines 8’h0B 11 lines 11 lines 8’h0C 12 lines 12 lines 8’h0D 13 lines 13 lines 8’h0E 14 lines 14 lines 8’h0F 15 lines 15 lines : : : 8’h7F 127 lines 127 lines 8’h80 128 lines 128 lines 8’h81 Setting inhibited Setting inhibited : : : 8’hFF Setting inhibited Setting inhibited Rev. 0.11 April 25, 2008, page 46 of 181 R61509V Target Spec VSYNCX BP Back porch NL Display Area Front porch FP Note: The output timing to the panel is delayed by 2 line period from the synchronous signal (VSYNCX) input. Figure 5 Front and Back Porch Periods Note on Setting BP and FP: Set the BP and FP bits as follows in the following operation modes, respectively. Table 14 BP ≥ 2 lines FP ≥ 3 lines FP + BP ≤ 256 lines Rev. 0.11 April 25, 2008, page 47 of 181 R61509V Target Spec Display Control 3 (R009h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 R/W 1 0 0 0 0 PTV Default 0 0 0 0 0 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 PTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 PTS: Sets the source output level to drive non-display area. PTS also selects operation of grayscale amplifier and step-up clock frequency. Table 15 Source output in non-lit display area (Note) PTS Positive polarity Negative polarity Non-lit display area Grayscale amplifier in operation Step-up clock frequency 0 V63 V0 V0 to V63 Register setting (DC0, DC1) 1 V63 V0 V0, V63 Register setting (DC0) x 1/2 Note: The power efficiency improved by halting grayscale amplifiers and slowing down the step-up clock frequency can be obtained in non-display drive period. PTV: Sets the VCOM output in non-lit display area. When PTV=1, frame inversion in non-lit display area is selected. Table 16 PTV VCOM operation in non-lit display drive period 0 BC setting 1 Frame inversion Rev. 0.11 April 25, 2008, page 48 of 181 R61509V Target Spec 8 Color Control (R00Bh) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 W/R 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 COL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value COL: When COL = 1, the R61509V enters the eight-color display mode. RAM data rewrite operation is not required when setting the eight-color display mode. Set the 8-color mode instruction according to the 8-color mode sequence. The electrical potential of liquid crystal drive in 8-color display mode is V0/V63. Selecting frame inversion is recommended to reduce power consumption. Table 17 COL Display Color 1’h0 262,144 colors 1’h 1 8 colors Rev. 0.11 April 25, 2008, page 49 of 181 R61509V Target Spec External Display Interface Control 1 (R00Ch) R/W RS R/W IB15 IB14 IB13 IB12 IB11 IB10 IB9 1 0 Default 0 ENC ENC ENC [2] [1] [0] 0 0 0 IB8 IB7 IB6 0 0 0 RM 0 0 0 0 0 0 0 0 IB5 IB4 DM DM [1] [0] 0 0 IB3 IB2 IB1 IB0 0 0 0 RIM 0 0 0 0 RIM: Sets the interface format when RGB interface is selected by RM and DM bits. Set RIM bit before starting display operation via the external display interface. Do not change the setting while the R61509V performs display operation. Table 18 RIM RGB interface operation Color 0 18-bt RGB interface (1 transfer/pixel) DB17-0 262,144 1 16-bit RGB interface (1 transfer / pixel) DB17-13, 11-1 65536 Notes: 1: Instruction bits are set via system interface. 2: Transfer the RGB dot data one by one in synchronization with DOTCLK. DM[1:0]: The DM[1:0] setting allows switching between internal clock operation mode and external display interface operation mode. However, switching between the RGB interface operation and the VSYNCX interface operation is prohibited. Table 19 Display Interface DM[1:0] 2’h0 Display Interface Internal clock operations 2’h1 RGB interface 2’h2 VSYNC interface 2’h3 Setting inhibited RM: Selects the interface for RAM access operation. RAM access is possible only via the interface selected by the RM bit. Set RM = 1 when writing display data via RGB interface. When RM = 0, it is possible to write data via system interface while performing display operation via RGB interface. Table 20 RAM Access Interface RM RAM Access Interface 0 System interface/VSYNC interface 1 RGB interface * Transfer instruction commands via clock synchronous serial interface. Rev. 0.11 April 25, 2008, page 50 of 181 R61509V Target Spec ENC[2:0]: Sets the RAM write cycle via RGB interface. Table 21 ENC[2:0] RAM Write Cycle (frame periods) 3’h0 1 frame 3’h1 2 frames 3’h2 3 frames 3’h3 4 frames 3’h4 5 frames 3’h5 6 frames 3’h6 7 frames 3’h7 8 frames Rev. 0.11 April 25, 2008, page 51 of 181 R61509V Target Spec External Display Interface Control 2 (R00Fh) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 R/W 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Default value IB4 0 DPL: Sets the signal polarity of DOTCLK pin. DPL = 0: input data on the rising edge of DOTCLK DPL = 1: input data on the falling edge of DOTCLK EPL: Sets the signal polarity of ENABLE pin. EPL = 0: writes data DB17-0 when ENABLE = “0” and disables data write operation when ENABLE = “1”. EPL = 1: writes data DB17-0 when ENABLE = “1” and disables data write operation when ENABLE = “0”. HSPL: Sets the signal polarity of HSYNCX pin. HSPL = 0: low active HSPL = 1: high active VSPL: Sets the signal polarity of VSYNCX pin. VSPL = 0: low active VSPL = 1: high active Rev. 0.11 April 25, 2008, page 52 of 181 IB3 VSPL HSPL 0 IB2 IB1 IB0 0 EPL DPL 0 0 0 R61509V Target Spec Panel Interface Control 1 (R010h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 R/W 1 0 0 0 0 0 0 Default 0 0 0 0 0 0 IB9 DIV I [1] 0 IB8 DIV I [0] 0 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 0 0 RTNI [4] RTNI [3] RTNI [2] RTNI [1] RTNI [0] 0 0 0 1 1 0 0 1 RTNI[4:0]: Sets 1H (line) period. This setting is valid when the R61509V’s display operation is synchronized with internal clock signal. Table 22 Clocks per Line (Internal Clock Operation) RTNI[4:0] Clocks per Line RTNI[4:0] Clocks per Line 5’h00-5’h0F Setting inhibited 5’h18 24 clocks 5’h10 16 clocks 5’h19 25 clocks 5’h11 17 clocks 5’h1A 26 clocks 5’h12 18 clocks 5’h1B 27 clocks 5’h13 19 clocks 5’h1C 28 clocks 5’h14 20 clocks 5’h1D 29 clocks 5’h15 21 clocks 5’h1E 30 clocks 5’h16 22 clocks 5’h1F 31 clocks 5’h17 23 clocks Note: In Power Supply Instruction Setting, Deep Standby Exit Sequence and Sleep Mode Exit Sequence, RTNI bit must be set at the “Initial instruction setting” state. See “Power Supply Setting Sequence” and “Instruction Setting Sequence and Refresh Sequence”. DIVI[1:0]: Sets the division ratio of the internal clock frequency. The R61509V’s internal operation is synchronized with the frequency divided internal clock, which is set according to the division ratio determined by DIVI[1:0] setting. The frame frequency can be changed by setting RTNI and DIVI bits. When changing the number of lines to drive the LCD panel, adjust the frame frequency too. For details, see Frame-Frequency Adjustment Function. In RGB interface operation, the DIVI[1:0] setting has no effect. Table 23 Division Ratio (Internal Operation) DIVI[1:0] Division Ratio Internal Operation Clock Unit 2’h0 1/1 1 x OSC 2’h1 1/2 2 x OSC 2’h2 1/4 4 x OSC 2’h3 1/8 8 x OSC Note: In Power Supply Instruction Setting, Deep Standby Exit Sequence and Sleep Mode Exit Sequence, RTNI bit must be set at the “Initial instruction setting” state. See “Power Supply Setting Sequence” and “Instruction Setting Sequence and Refresh Sequence”. Rev. 0.11 April 25, 2008, page 53 of 181 R61509V Target Spec Frame Frequency Calculation Frame frequency = fosc Clocks per line x division ratio x (line + BP + FP) fosc : RC oscillation frequency Line: Number of lines to drive the LCD (NL bits) Division ratio: DIVI Clocks per line: RTNI Rev. 0.11 April 25, 2008, page 54 of 181 [Hz] R61509V Target Spec Panel Interface Control 2 (R011h) R/W R/W RS IB15 IB14 IB13 IB12 IB11 1 0 0 0 0 0 Default 0 0 0 0 0 IB10 IB9 IB8 IB7 NOW NOW NOW I[2] I[1] I[0] 0 0 1 IB6 IB5 IB4 IB3 0 0 0 0 0 0 0 0 0 0 IB2 IB1 NOWI[2:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled when the R61509V’s display operation is synchronized with internal clock signals. Table 24 NOWI[2:0] Non-overlap period NOWI[2:0] Non-overlap period 3'h0 0 (internal clock *see note) 3'h4 4 (internal clock *see note) 3'h1 1 3'h5 5 3'h2 2 3'h6 6 3'h3 Note: 3 3'h7 7 The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits. SDTI[2:0]: Sets the source output delay period from the reference point. For the relationships between gate interface signals, see Liquid Crystal Panel Interface Timing. Table 25 SDTI[2:0] Source output delay period 3’h0 0 clocks 3’h1 1 clock 3’h2 2 clocks 3’h3 3 clocks 3’h4 4 clocks 3’h5 5 clocks 3’h6 6 clocks 3’h7 7 clocks Notes: 1. The number of clocks in the table setting is measured from the reference point. 2. 1 clock = (internal oscillation clock (OSC1) period) x (division ratio) 3. The reference point is the falling edge of gate output. Rev. 0.11 April 25, 2008, page 55 of 181 IB0 SDTI SDTI SDTI [2] [1] [0] 0 0 1 R61509V Target Spec Panel Interface Control 3 (R012h) R/W RS R/W 1 Default value IB15 IB14 IB12 IB11 0 0 IB13 0 0 0 0 0 0 0 0 IB10 IB9 IB8 VEQ VEQ VEQ WI[2] WI[1] WI[0] 0 0 0 IB7 IB6 IB5 IB4 IB3 0 0 0 0 0 0 0 0 0 0 IB2 IB1 IB0 SEQ SEQ SEQ WI[2] WI[1] WI[0] 0 0 VEQWI[2:0]: Sets VCOM equalize period. The VCOM equalize operation is executed from VCOM alternating point defined by MCPI [2:0] for the period defined by VEQWI [2:0]. This function is disabled when RGB interface is selected. Table 26 VEQWI [2:0] VCOM Equalize period 3’h0 0 clocks 3’h1 1 clock 3’h2 2 clocks 3’h3 3 clocks 3’h4 4 clocks 3’h5 5 clocks 3’h6 6 clocks 3’h7 7 clocks Note: The clock is the frequency divided clock, which is set by DIVI[[1:0] bits. 㪭㪚㪦㪤㩷㫆㫌㫋㫇㫌㫋 㩷 1) VEQW [2:0]=0h 㪭㪜㪨㪮㪠㪲㪉㪑㪇㪴 㪭㪚㪦㪤㩷㫆㫌㫋㫇㫌㫋 㪭㪜㪨㪮㪠㪲㪉㪑㪇㪴 㪭㪚㪠㩷㫃㪼㫍㪼㫃㩷 㩷 㩷 㪞㪥㪛㩷㫃㪼㫍㪼㫃㩷 2) VEQWI [2:0] ≠0h Figure 6 Rev. 0.11 April 25, 2008, page 56 of 181 0 R61509V Target Spec SEQWI[2:0]: Sets source equalize period. SEQWI setting is enabled only when the R61509V executes display operation in synchronization with internal clock. Table 27 SEQWI[2:0] Source Equalize Period 3'h0 0 clocks 3'h1 1 clock 3'h2 2 clocks 3'h3 3 clocks 3'h4 4 clocks 3'h5 5 clocks 3'h6 6 clocks 3'h7 7 clocks Note: The clock is the frequency divided clock, which is set by DIVI[[1:0] bits. Rev. 0.11 April 25, 2008, page 57 of 181 R61509V Target Spec Panel Interface Control 4 (R013h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 R/W 1 0 0 0 0 0 Default 0 0 0 0 0 IB9 IB8 IB7 IB6 IB5 IB4 IB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IB2 IB1 MC MC PI PI[2] [1] 0 0 IB0 MC PI [0] 1 MCPI: Defines VCOM alternating timing. This bit is enabled when displaying in synchronization with internal clock. MCP cannot be used in RGB interface operation. Table 28 MCPI [2:0] VCOM alternating timing 3’h0 Setting inhibited 3’h1 1 clock 3’h2 2 clocks 3’h3 3 clocks 3’h4 4 clocks 3’h5 5 clocks 3’h6 6 clocks 3’h7 7 clocks Note: The clock is the frequency divided clock, which is set by DIVI [1:0] bits. Rev. 0.11 April 25, 2008, page 58 of 181 R61509V Target Spec Panel Interface Control 5 (R014h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 R/W 1 0 0 0 0 0 Default 0 0 0 0 0 IB9 IB8 IB7 0 0 0 0 0 0 0 0 IB6 PC DIV H [2] 1 IB5 PC DIV H [1] 0 IB4 PC DIV H [0] 1 IB3 0 0 IB2 PC DIV L [2] 1 IB1 PC DIV L [1] 0 IB0 PC DIV L [0] 1 PCDIVH[2:0], PCDIVL[2:0]: When DM=1 and RGB I/F is selected, display operation is executed using DOTCLKD. PCDIVH and PCDIVL define division ratio of DOTCLK to generate DOTCLKD. PCDIVH is used to define number of DOTCLK in High period in units of one clock. PCDIVL is used to define number of DOTCLK in Low period in units of one clock. Make sure that PCDIVL=PCDIVH or PCDIVH-1. Write PCDIVH and PCDIVL values so that DOTCLKD frequency is the closest to internal oscillation clock frequency 678KHz. For details, see “Setting Example of Display Control Clock in RGB Interface Operation”. Table 29 PCDIVH[2:0] Table 30 Number of DOTCLK in High period Number of DOTCLK in Low period PCDIVL[2:0] 3’h0 Setting inhibited 3’h0 Setting inhibited 3’h1 1 clock 3’h1 1 clock 3’h2 2 clocks 3’h2 2 clocks 3’h3 3 clocks 3’h3 3 clocks 3’h4 4 clocks 3’h4 4 clocks 3’h5 5 clocks 3’h5 5 clocks 3’h6 6 clocks 3’h6 6 clocks 3’h7 7 clocks 3’h7 7 clocks Rev. 0.11 April 25, 2008, page 59 of 181 R61509V Target Spec Panel Interface Control 6 (R020h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 R/W 1 0 0 0 0 0 0 Default 0 0 0 0 0 0 IB9 DIV E[1] 0 IB8 DIV E[0] 0 IB7 IB6 0 0] 0 0 IB5 IB4 IB3 IB2 IB1 IB0 RTN RTN RTN RTN RTN RTN E[5] E[4] E[3] E[2] E[1] E[0] 0 1 1 0 0 1 DIVE[1:0]: Sets the division ratio of DOTCLK. The R61509V’s internal operation is synchronized with the frequency-divided DOTCLK, the frequency of which is divided by the division ratio set by DIVE[1:0]. This setting is enabled while the R61509V’s display operation is synchronized with RGB interface signals. Table 31 Division Ratio of DOTCLK (RGB interface operation) DIVE[1:0] Division ratio 2’h0 1/1 2’h1 1/2 2’h2 1/4 2’h3 1/8 Note: Clock frequency for internal operation = DOTCLK / (( DIVE x (PCDIVL + PCDIVH) ). For details, see R014h. Rev. 0.11 April 25, 2008, page 60 of 181 R61509V Target Spec RTNE[5:0]: Sets RTNE in combination with PCDIVH and PCDIVL to decide the number of DOTCLK in 1H (1 line) period according to the following formula. RTNE is enabled when RGB interface is selected. DOTCLKD x RTNE (Number of clock) ≤ DOTCLK in 1H period. Table 32 DOTCLKD in 1H period (RGB interface operation) RTNE[5:0] Clocks per line period (1H) RTNE[5:0] Clocks per line period (1H) 6'h00 Setting inhibited 6'h20 32 clocks 6'h01 Setting inhibited 6'h21 33 clocks 6'h02 Setting inhibited 6'h22 34 clocks 6'h03 Setting inhibited 6'h23 35 clocks 6'h04 Setting inhibited 6'h24 36 clocks 6'h05 Setting inhibited 6'h25 37 clocks 6'h06 Setting inhibited 6'h26 38 clocks 6'h07 Setting inhibited 6'h27 39 clocks 6'h08 Setting inhibited 6'h28 40 clocks 6'h09 Setting inhibited 6'h29 41 clocks 6'h0A Setting inhibited 6'h2A 42 clocks 6'h0B Setting inhibited 6'h2B 43 clocks 6'h0C Setting inhibited 6'h2C 44 clocks 6'h0D Setting inhibited 6'h2D 45 clocks 6'h0E Setting inhibited 6'h2E 46 clocks 6'h0F Setting inhibited 6'h2F 47 clocks 6'h10 16 clocks 6'h30 48 clocks 6'h11 17 clocks 6'h31 49 clocks 6'h12 18 clocks 6'h32 50 clocks 6'h13 19 clocks 6'h33 51 clocks 6'h14 20 clocks 6'h34 52 clocks 6'h15 21 clocks 6'h35 53 clocks 6'h16 22 clocks 6'h36 54 clocks 6'h17 23 clocks 6'h37 55 clocks 6'h18 24 clocks 6'h38 56 clocks 6'h19 25 clocks 6'h39 57 clocks 6'h1A 26 clocks 6'h3A 58 clocks 6'h1B 27 clocks 6'h3B 59 clocks 6'h1C 28 clocks 6'h3C 60 clocks 6'h1D 29 clocks 6'h3D 61 clocks 6'h1E 30 clocks 6'h3E 62 clocks 6'h1F 31 clocks 6'h3F 63 clocks Rev. 0.11 April 25, 2008, page 61 of 181 R61509V Target Spec Panel Interface Control 7 (R021h) R/W RS R/W 1 Default IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 NOW NOW NOW 0 0 0 0 0 0 E[2] E[1] E[0] 0 0 0 0 0 0 0 1 0 IB6 IB5 IB4 IB3 0 0 0 0 0 0 0 0 IB2 IB1 IB0 SDTE SDTE SDTE [2] [1] [0] 0 0 1 NOWE[2:0]: Sets the non-overlap period of adjacent gate outputs. NOWE is enabled when RGB interface is selected. Table 33 NOWE[2:0] Non-overlap period 3’h0 0 clocks 3’h1 1 clock 3’h2 2 clocks 3’h3 3 clocks 3’h4 4 clocks 3’h5 5 clocks 3’h6 6 clocks 3’h7 Note: 7 clocks 1 clock = (number of data transfer/pixel) x DIVE (division ratio) x (PCDIVL + PCDIVH) [DOTCLK] SDTE[2:0]: Sets the source output delay period from the reference point when the R61509V’s display operation is synchronized with DOTCLK (DM = 2’h1). For the relationships between signals, see Liquid Crystal Panel Interface Timing. Table 34 SDTE[2:0] Source output delay period 3’h0 0 clocks 3’h1 1 clock 3’h2 2 clocks 3’h3 3 clocks 3’h4 4 clocks 3’h5 5 clocks 3’h6 6 clocks 3’h7 7 clocks Notes: 1. The number of clocks in the table setting is measured from the reference point. 2. 1 clock = DOTCLKD (when pixel data is transferred in one- transfer) 3. The reference point is falling edge of gate control signals. Rev. 0.11 April 25, 2008, page 62 of 181 R61509V Target Spec Panel Interface Control 8 (R022h) R/W RS R/W 1 Default IB15 IB14 IB13 IB12 IB11 IB10 0 0 0 0 0 0 0 0 IB9 IB8 IB7 IB6 IB5 IB4 IB3 0 0 0 0 0 VEQ VEQ VEQ WE WE WE 0 0 [2] [1] [0] 0 0 0 0 0 0 0 0 IB2 IB1 IB0 SEQ SEQ SEQ WE WE WE [2] [1] [0] 0 0 0 VEQWE[2:0]: Sets low power VCOM drive period. The setting is enabled when RGB interface is selected. Table 35 VEQWE[2:0] Source output delay period VEQWE[2:0] Source output delay period 3’h0 0 clocks (*see Notes) 3’h1 1 clock 3’h5 5 clocks 3’h2 2 clocks 3’h6 6 clocks 3’h4 4 clocks 3’h3 3 clocks 3’h7 7 clocks Notes: 1. 1 clock = (Number of data transfer/pixel) x DIVE (division ratio) x (PCDIVL + PCDIVH)) [DOTCLK] 2. The number of clocks is measured from the reference point. The reference point is the alternating position of VCOM, which is set by SDTE bits. 㪭㪚㪦㪤㩷㫆㫌㫋㫇㫌㫋 㩷 1) VEQW [2:0]=0h 㪭㪜㪨㪮㪠㪲㪉㪑㪇㪴 㪭㪚㪦㪤㩷㫆㫌㫋㫇㫌㫋 㪭㪜㪨㪮㪠㪲㪉㪑㪇㪴 㪭㪚㪠㩷㫃㪼㫍㪼㫃㩷 㩷 㩷 㪞㪥㪛㩷㫃㪼㫍㪼㫃㩷 2) VEQWI [2:0] ≠0h Figure 7 Rev. 0.11 April 25, 2008, page 63 of 181 R61509V Target Spec SEQWE[2:0]: Sets source equalize period. SEQWE setting is enabled when the R61509V executes display operation via RGB interface. Table 36 SEQWE[2:0] Source Equalize Period 3'h0 0 clocks 3'h1 1 clock 3'h2 2 clocks 3'h3 3 clocks 3'h4 4 clocks 3'h5 5 clocks 3'h6 6 clocks 3'h7 7 clocks Note: 1 clock = (number of data transfer/pixel) x DIVE(Division ratio) x (PCDIVL + PCDIVH)) Rev. 0.11 April 25, 2008, page 64 of 181 [DOTCLK] R61509V Target Spec Panel Interface Control 9 (R023h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 R/W 1 0 0 0 0 0 Default 0 0 0 0 0 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 0 0 0 0 0 0 0 MC PE [2] MC PE [1] MC PE [0] 0 0 0 0 0 0 0 0 0 0 1 MCPE [2:0]: Specifies VCOM alternating point. MCPE is enabled when RGB interface is selected. Table 37 MCPE [2:0] VCOM alternating point 3’h0 Setting inhibited 3’h1 1 clock 3’h2 2 clocks 3’h3 3 clocks 3’h4 4 clocks 3’h5 5 clocks 3’h6 6 clocks 3’h7 7 clocks Note: 1 clock = (number of data transfer/pixel) x DIVE(Division ratio) x (PCDIVL + PCDIVH)) Rev. 0.11 April 25, 2008, page 65 of 181 [DOTCLK] R61509V Target Spec Frame Marker Control (R090h) R/W RS R/W 1 IB15 IB14 IB13 IB12 IB11 IB10 Default FM KM FMI FMI FMI [2] [1] [0] 0 0 0 0 IB9 0 0 0 0 0 0 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 FMP FMP FMP FMP FMP FMP FMP FMP FMP [8] [7] [6] [5] [4] [3] [2] [1] [0] 0 0 0 0 0 0 0 0 0 FMI[2:0]: Sets FMARK output interval by FMI register setting according to the update period of display data and transfer rate. Set FMKM = 1 if FMARK signal is output from FMARK pin. See “FMARK Interface” for detail. Table 38 FMI[2] FMI[1] FMI[0] Output interval 0 0 0 1 frame 0 0 1 2 frames 0 1 1 4 frames 1 0 1 Other settings 6 frames Setting inhibited FMP[8:0]: Sets the output position of frame synchronous signal (frame marker). A pulse (FMARK) is output by starting from back porch during a 1H period when FMP[8:0] = 9’h000 (high active, amplitude: IOVCC1-GND). FMP[8:0] is used as a trigger signal for write operation in synchronization with frame. Setting range: 9’h000 ≤ FMP ≤ BP + NL + FP For details, see “FMARK Interface”. Table 39 FMP[8:0] FMARK output position 9’h000 0 9’h001 1 9’h002 2 : 9’h1BE 446 9’h1BF 447 9’h1C0 ~ 9’h1FF Setting inhibited Rev. 0.11 April 25, 2008, page 66 of 181 R61509V Target Spec Power Control Power Control 1 (R100h) R/W R/W RS IB15 IB14 IB13 IB12 IB11 IB10 1 0 0 0 0 0 Default 0 0 0 0 0 IB9 IB8 BT BT BT [2] [1] [0] 0 1 1 IB7 IB6 0 0 0 0 IB5 IB4 AP AP [1] [0] 1 1 IB3 IB2 IB1 IB0 0 DST B 0 0 0 0 0 0 DSTB: When DSTB = 1, the R61509V enters the shut down mode. In shut down mode, the internal logic power supply is turned off to reduce power consumption. The GRAM data and instruction setting are not maintained when the R61509V is in the shut down mode. Set the instruction again after the shut down mode is exited. GND level is outputted to the panel in the shut down mode. AP[1:0]: Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. The larger constant current, the better the drivability of the LCD, but it also increases the current consumption. Adjust the constant current taking the trade-off between the display quality and the current consumption into account. In no-display period, set AP[1:0]=2’h0 to halt operational amplifiers and stepup circuits to reduce power consumption. Table 40 Constant Current in Operational Amplifiers AP[1:0] Electricity in LCD drive power supply amplifiers 2’h0 Operational amplifiers and step-up circuits halt 2’h1 0.5 2’h2 0.75 2’h3 1 Note: The values in the table represent the ratios of currents in respective settings to the current when AP[1:0]=2’h3. Rev. 0.11 April 25, 2008, page 67 of 181 R61509V Target Spec BT[2:0]: Sets the factor used in the step-up circuits. Select the optimal step-up factor for the operating voltage. To reduce power consumption, set a smaller factor. Table 41 Step-Up Factor for Step-Up Circuits BT[2:0] DDVDH VCL 3’h0 Setting inhibited VGH 3’h1 3’h2 VCI1 x2 [x 2] -VCI1 [x –1] DDVDH x 3 [x 6] 3’h3 3’h4 -(VCI1+DDVDH x 2) [x –5] -(DDVDH x 2) [x –4] -(VCI1+DDVDH) [x –3] Setting inhibited 3’h5 3’h6 VGL VCI1 x2 [x 2] -VCI1 [x –1] VCI1+DDVDH x2 [x 5] 3’h7 -(VCI1+DDVDH x 2) [x –5] -(DDVDH x 2) [x –4] -(VCI1+DDVDH) [x –3] Notes: 1. The factors in the brackets show the step-up factors from VCI1. 2. Make sure DDVDH=max.6.0V, VGH=max.18.0V, VGL=max -13.5V, VGH-VGL=max. 28.0V, and VCL=max -3.0V. Rev. 0.11 April 25, 2008, page 68 of 181 R61509V Target Spec Power Control 2 (R101h) R/W RS IB15 IB14 IB13 IB12 IB11 IB10 R/W 1 0 0 0 0 0 Default 0 0 0 0 0 IB9 IB8 DC1 DC1 DC1 [2] [1] [0] 0 1 0 IB7 0 0 IB6 IB5 IB4 DC0 DC0 DC0 [2] [1] [0] 1 0 0 IB3 IB2 IB1 IB0 0 VC [2] VC [1] VC [0] 0 1 1 1 DC1 [2:0]: Sets step-up clock frequency for Step-up Circuit 2. The step-up clock is in synchronization with internal clock. Table 42 Step-up Frequency (Step-up Circuit 1) DC1[2:0] Step-up Circuit 2 Step-up frequency (fDCDC2) 3’h0 Step-up Circuit 2 halts 3’h1 Setting inhibited 3’h2 Line frequency / 4 3’h3 Line frequency / 8 3’h4 Line frequency / 16 3’h5 Setting inhibited 3’h6 Setting inhibited 3’h7 Setting inhibited [Step-up clock frequency for Step-up Circuit 2] Line frequency 2(N) Internal clock frequency fOSC Step-up clock frequency (fDCDC2) = [Hz] [Hz] = Number of clock per line x Division ratio x 2(N) fosc : Number of clock per line : Internal clock frequency RTN*[4:0] (RTNI or RTNE) Division ratio : DIV*[1:0] (DIVI or DIVE) N : DC1 [2:0] Rev. 0.11 April 25, 2008, page 69 of 181 R61509V Target Spec DC0 [2:0]: Sets step-up clock frequency for Step-up Circuit 1. The step-up clock is in synchronization with internal clock. Table 43 Step-up Frequency (Step-up Circuit 2) DC0[2:0] Step-up Circuit 1 Step-up frequency (fDCDC1) 3’h0 Step-up circuit 1 halts 3’h1 Setting inhibited 3’h2 Setting inhibited 3’h3 Setting inhibited 3’h4 FOSC / 8 3’h5 FOSC / 16 3’h6 FOSC / 32 3’h7 Setting inhibited Note 1: Make sure that fDCDC1 ≥ fDCDC2. Note 2: Set DC0 and RTN* so that ((DCDC1 step-up frequency) ≤ (Line frequency). If not, step-up operation may not be completed satisfactory. [Step-up clock frequency for Step-up Circuit 1] Step-up clock frequency (fDCDC1) = Line frequency 2(N-1) Internal clock frequency fOSC [Hz] [Hz] = Number of clock per line x Division ratio x 2(N-1) fosc Division ratio N : Internal clock frequency : DIV*[1:0] ((DIVI or DIVE) : DC1 [2:0] The step-up frequencies synchronize with display operation. Clock count is reset at the beginning of 1H period. Rev. 0.11 April 25, 2008, page 70 of 181 R61509V Target Spec VC[2:0]: Sets VCI voltage level. VC[2:0] VCI1 voltage (Reference voltage for step-up operation) 3’h0 Setting inhibited 3’h1 0.94 x VCILVL 3’h2 0.89 x VCILVL 3’h3 Setting inhibited 3’h4 Setting inhibited 3’h5 0.76 x VCILVL 3’h6 Setting inhibited 3’h7 1.00 x VCILVL Rev. 0.11 April 25, 2008, page 71 of 181 ■DC0x Value and DCDC1 Step-up Clock Signal Waveform Example DCDC1 performs charge operation and boost operation with the step-up clock generated from the timing generator. The DCDC1 step-up clock frequency is adjusted by setting the division ratio of the reference clock frequency with DC0x register. (To prevent flickering, the DCDC1 step-up clock signal is synchronized with the reference point of display operation in unit of lines.) Note: Set DC0x and RTNx so that (DCDC1 step-up clock frequency) ≧ (line clock frequency) If the above restriction is not followed, the duty cycle during the boost period is less than 50%. As a result, the step-up circuit may not operate normally. Example) DIVn=2'h0, RTN=5'h19 (reference clock period = 1/1 of internal operation clock, 1H period = 25 clocks) Reference point Reference point 1H period Reference clock Reference clock counter 5'h10 5'h00 5'h01 5'h02 5'h03 5'h04 5'h05 5'h06 5'h07 5'h08 5'h09 5'h0A 5'h0B 5'h0C 5'h0D 5'h0E 5'h0F 5'h10 5'h11 5'h12 5'h13 5'h14 5'h15 5'h16 5'h17 5'h18 5'h00 5'h01 5'h02 5'h03 5'h04 5'h05 5'h06 5'h07 5'h08 Synchronized with the reference point in unit of lines Synchronized with the reference point in unit of lines a) DC0x=3'h4 8 clock cycles (1/8 of reference clock frequency) 8 clock cycles 8 clock cycles DCDC1 step-up clock b) DC0x=3'h5 16 clock cycles (1/16 of reference clock frequency) DCDC1 step-up clock c) DC0x=3'h6 32 clock cycles (As the number of clocks per 1H period is less than 32, the duty cycle of the step-up clock is not 50%. (1/32 of reference clock frequency) DCDC1 step-up clock Note: The duty cycle of the step-up clock should be close to 50%. ■DC1x Value and DCDC2 Step-up Clock Signal Waveform Example DCDC2 performs charge operation and boost operation with the step-up clock generated from the timing generator. The DCDC2 step-up clock frequency is adjusted by setting the division ratio of the reference clock frequency with DC1x register. (To prevent flicker, the DCDC2 step-up clock signal is synchronized with the head of BP period in unit of lines.) Example) BP=FP=8'h08, NL=7'h6B (front porch = back porch 8 lines, the number of lines to drive the LCD = 432 lines) Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference point point point point point point point point point point point point point point point point point point point point point point point point point point point point 1H period 1H period 1H period Reference clock Line clock Counter for the number of lines 'h1BE 'h1BF 'h000 'h001 'h002 'h003 'h004 'h005 'h006 'h007 'h008 'h009 'h00A 'h00B 'h00C 'h00D 'h00E 'h00F 'h010 'h011 'h012 'h013 'h014 'h015 'h016 'h017 'h018 'h019 Front Porch Back Porch Display Area Synchronized with the head of BP period a) DC1x=3'h2 (1/4 of line clock frequency) 4H cycles 4H cycles 4H cycles 4H cycles DCDC2 step-up clock b) DC1x=3'h3 (1/8 of line clock frequency) 8H cycles 8H cycles DCDC2 step-up clock c) DC0x=3'h4 (1/16 of line clock frequency) DCDC2 step-up clock 16H cycles R61509V Target Spec Power Control3 (R102h) R/W RS R/W 1 Default IB15 IB14 IB13 IB12 IB11 IB10 VRH VRH VRH VRH VRH 0 [4] [3] [2] [1] [0] R/W R/W R/W R/W R/W 0 0 0 0 0 0 IB9 0 0 IB8 IB7 VCM 1 R R/W R/W 1 1 IB6 0 0 IB5 IB4 PSON PON W W 0 0 IB3 IB2 IB1 IB0 0 0 0 0 0 0 0 0 Note: True values of PSON and PON are not read when instruction read is executed. PON, PSON: Turn power supply ON. PON and PSON must be written to power supply ON and start the internal power supply operation. Follow power supply sequencer to set PON and PSON bits. VCMR: Selects either external resistance (VCOMR pin) or internal electronic volume (VCM[4:0]) to set the electrical potential of VCOMH. The internal electronic volume is set by VCM bits Table 44 VCMR0[0] VCOMH Electrical Potential setting 0 VCOMR (externally supplied) 1 Internal electronic volume VRH[3:0]: Sets the factor to generate VREG1OUT. Table 45 VRH[4:0] VREG1OUT 5’h00 Halt (Hiz) 5’h01-5’h0F Setting inhibited 5’h10 VCIR x 1.600 5’h11 VCIR x 1.625 5’h12 VCIR x 1.650 5’h13 VCIR x 1.675 5’h14 VCIR x 1.700 5’h15 VCIR x 1.725 5’h16 VCIR x 1.750 5’h17 VCIR x 1.775 5’h18 VCIR x 1.800 5’h19 VCIR x 1.825 5’h1A VCIR x 1.850 5’h1B VCIR x 1.875 5’h1C VCIR x 1.900 5’h1D VCIR x 1.925 5’h1E VCIR x 1.950 5’h1F VCIR x 1.975 Rev. 0.11 April 25, 2008, page 73 of 181 Note: Write VC and VRH bits so that VREG1OUT ≤ DDVDH0.5V. R61509V Target Spec Power Control 4 (R103h) R/W R/W RS IB15 IB14 IB13 IB12 IB11 IB10 1 0 0 0 Default 0 0 0 IB9 IB8 VDV VDV VDV VDV VDV [4] [3] [2] [1] [0] 0 0 0 0 0 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VDV[4:0]: Selects the factor of VREG1OUT to set the amplitude of VCOM alternating voltage from 0.70 to 1.32. Table 46 VDV[4:0] VCOM amplitude VDV[4:0] VCOM amplitude 5’h0 VREG1OUT x 0.70 5’h10 VREG1OUT x 1.02 5’h1 VREG1OUT x 0.72 5’h11 VREG1OUT x 1.04 5’h2 VREG1OUT x 0.74 5’h12 VREG1OUT x 1.06 5’h3 VREG1OUT x 0.76 5’h13 VREG1OUT x 1.08 5’h4 VREG1OUT x 0.78 5’h14 VREG1OUT x 1.10 5’h5 VREG1OUT x 0.80 5’h15 VREG1OUT x 1.12 5’h6 VREG1OUT x 0.82 5’h16 VREG1OUT x 1.14 5’h7 VREG1OUT x 0.84 5’h17 VREG1OUT x 1.16 5’h8 VREG1OUT x 0.86 5’h18 VREG1OUT x 1.18 5’h9 VREG1OUT x 0.88 5’h19 VREG1OUT x 1.20 5’hA VREG1OUT x 0.90 5’h1A VREG1OUT x 1.22 5’hB VREG1OUT x 0.92 5’h1B VREG1OUT x 1.24 5’hC VREG1OUT x 0.94 5’h1C VREG1OUT x 1.26 5’hD VREG1OUT x 0.96 5’h1D VREG1OUT x 1.28 5’hE VREG1OUT x 0.98 5’h1E VREG1OUT x 1.30 5’hF VREG1OUT x 1.00 5’h1F VREG1OUT x 1.32 Note 1: Note 2: Set VDV[4:0] so that VCOM amplitude becomes 6.0V or less. Set VCOML (VCOMH-VCOM amplitude) ≤ 0V. Rev. 0.11 April 25, 2008, page 74 of 181 R61509V Target Spec RAM Access RAM Address Set (Horizontal Address) (R200h) RAM Address Set (Vertical Address) (R201h) R/W R 200 R 201 R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 AD AD AD AD AD AD AD AD [7] [6] [5] [4] [3] [2] [1] [0] 1 0 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AD AD AD AD AD AD AD AD AD [16] [15] [14] [13] [12] [11] [10] [9] [8] 0 0 0 0 0 0 0 0 0 R/W 1 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 AD[16:0]: Sets a GRAM address in the AC (Address Counter) which is automatically updated according to the combination of AM, ID[1:0] settings as the R61509V writes data to the internal GRAM. Data can be written consecutively without resetting the address in the AC. The address is not automatically updated after reading data from the internal GRAM. Note 1: In RGB interface operation (RM = “1”), the address AD16-0 is set in the address counter every frame on the falling edge of VSYNCX. Note 2: In internal clock operation and VSYNC interface operation (RM = “0”), the address AD16-0 is set when executing the instruction. Table 47 GRAM Address setting range AD[16:0] GRAM Data Setting 17’h00000 – 17’h000EF Bitmap data on the first line 17’h00100 – 17’h001EF Bitmap data on the second line 17’h00200 – 17’h002EF Bitmap data on the third line 17’h00300 – 17’h003EF Bitmap data on the fourth line 17’h00400 – 17’h004EF Bitmap data on the fifth line : : 17’h1AC00 – 17’h1ACEF Bitmap data on the 429th line 17’h1AD00 – 17’h1ADEF Bitmap data on the 430th line 17’h1AE00 – 17’h1AEEF Bitmap data on the 431st line 17’h1AF00 – 17’h1AFEF Bitmap data on the 432 Rev. 0.11 April 25, 2008, page 75 of 181 nd line R61509V Target Spec GRAM Data Write (R202h) R/W RS W 1 RAM write data WD[17:0] is transferred via different data bus in different interface operation. RGB interface RAM write data WD[17:0] is transferred via different data bus in different interface operation. WD[17:0]: The R61509V develops data into 18 bits internally in write operation. The format to develop data into 18 bits is different in different interface operation. The GRAM data represents the grayscale level. The R61509V automatically updates the address according to AM and ID[1:0] settings as it writes data in the GRAM. The DFM bit sets the format to develop 16-bit data into the 18-bit data in 16-bit or 8-bit interface operation. Note: When writing data in the GRAM via system interface while using the RGB interface, make sure that write operations via two interfaces that do not conflict one another. Rev. 0.11 April 25, 2008, page 76 of 181 R61509V Target Spec GRAM Data Read (R202h) R/W RS R 1 RAM read data RD[17:0] is transferred via different data bus in different interface operation. RD[17:0]: 18-bit data read from the GRAM. RAM read data RD[17:0] is transferred via different data bus in different interface operation. When the R61509V reads data from the GRAM to the microcomputer, the first word read immediately after RAM address set is not outputted. Therefore, data on the data bus is invalid. Valid data is sent to the data bus when the R61509V reads out the second and subsequent words. When either 8-bit or 16-bit interface is selected, the LSBs of R and B dot data are not read out. Note: This register is disabled in RGB interface operation Set ID, AM, HSA, HEA, VSA, and VEA bits Set address N First word Second word Dummy read (invalid data to DB17-0) From GRAM to read data latch Read (data of address N) From read data latch to DB17-0 Set address M First word Dummy read (invalid data to DB17-0) From GRAM to read data latch Second word Read (data of address M) From read data latch to DB17-0 Read out data to the microcomputer Figure 8 GRAM Read Sequence Rev. 0.11 April 25, 2008, page 77 of 181 R61509V Target Spec NVM Data Read / NVM Data Write (R280h) R 280h R/W RS IB15 IB14 IB13 IB12 IB11 IB10 R/W 1 1 VC M [6] VC M [5] VC M [4] VC M [3] Default 1 1 1 1 1 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 VC M [2] VC M [1] VC M [0] UID UID UID UID UID UID UID UID [7] [6] [5] [4] [3] [2] [1] [0] 1 1 1 1 1 1 1 1 1 1 1 UID[3:0]: Used to temporarily store NVM data such as used identification code. The write data is loaded to NVM data write register (NVDAT [7:0]) and then is written to NVM. NVM data is loaded to UID[7:0] when power on reset, when shutdown mode is exited or when CALB=1 is written. When NVM data write is not executed, UID[7:0] = 8’hFF (Default). VCM[6:0]: Used to control VCOMH. To use NVM data to adjust VCOMH, specify the VCOMH level using VCM [6:0], write the same value to the NVM data write register NVDAT [14:8] (R6F1h) and then write the data to NVM. NVM data is loaded to VCM[6:0] when power on reset, when shutdown mode is exited or when CALB=1 is written. When NVM data write is not executed, VCM[6:0]= 7’h7F (Default). Rev. 0.11 April 25, 2008, page 78 of 181 R61509V Target Spec Table 48 VCM [6:0] VCOMH voltage VCM [6:0] VCOMH voltage 7’h00 VREG1OUT x 0.492 7’h40 VREG1OUT x 0.748 7’h01 VREG1OUT x 0.496 7’h41 VREG1OUT x 0.752 7’h02 VREG1OUT x 0.500 7’h42 VREG1OUT x 0.756 7’h03 VREG1OUT x 0.504 7’h43 VREG1OUT x 0.760 7’h04 VREG1OUT x 0.508 7’h44 VREG1OUT x 0.764 7’h05 VREG1OUT x 0.512 7’h45 VREG1OUT x 0.768 7’h06 VREG1OUT x 0.516 7’h46 VREG1OUT x 0.772 7’h07 VREG1OUT x 0.520 7’h47 VREG1OUT x 0.776 7’h08 VREG1OUT x 0.524 7’h48 VREG1OUT x 0.780 7’h09 VREG1OUT x 0.528 7’h49 VREG1OUT x 0.784 7’h0A VREG1OUT x 0.532 7’h4A VREG1OUT x 0.788 7’h0B VREG1OUT x 0.536 7’h4B VREG1OUT x 0.792 7’h0C VREG1OUT x 0.540 7’h4C VREG1OUT x 0.796 7’h0D VREG1OUT x 0.544 7’h4D VREG1OUT x 0.800 7’h0E VREG1OUT x 0.548 7’h4E VREG1OUT x 0.804 7’h0F VREG1OUT x 0.552 7’h4F VREG1OUT x 0.808 7’h10 VREG1OUT x 0.556 7’h50 VREG1OUT x 0.812 7’h11 VREG1OUT x 0.560 7’h51 VREG1OUT x 0.816 7’h12 VREG1OUT x 0.564 7’h52 VREG1OUT x 0.820 7’h13 VREG1OUT x 0.568 7’h53 VREG1OUT x 0.824 7’h14 VREG1OUT x 0.572 7’h54 VREG1OUT x 0.828 7’h15 VREG1OUT x 0.576 7’h55 VREG1OUT x 0.832 7’h16 VREG1OUT x 0.580 7’h56 VREG1OUT x 0.836 7’h17 VREG1OUT x 0.584 7’h57 VREG1OUT x 0.840 7’h18 VREG1OUT x 0.588 7’h58 VREG1OUT x 0.844 7’h19 VREG1OUT x 0.592 7’h59 VREG1OUT x 0.848 7’h1A VREG1OUT x 0.596 7’h5A VREG1OUT x 0.852 7’h1B VREG1OUT x 0.600 7’h5B VREG1OUT x 0.856 7’h1C VREG1OUT x 0.604 7’h5C VREG1OUT x 0.860 7’h1D VREG1OUT x 0.608 7’h5D VREG1OUT x 0.864 7’h1E VREG1OUT x 0.612 7’h5E VREG1OUT x 0.868 7’h1F VREG1OUT x 0.616 7’h5F VREG1OUT x 0.872 7’h20 VREG1OUT x 0.620 7’h60 VREG1OUT x 0.876 7’h21 VREG1OUT x 0.624 7’h61 VREG1OUT x 0.880 7’h22 VREG1OUT x 0.628 7’h62 VREG1OUT x 0.884 7’h23 VREG1OUT x 0.632 7’h63 VREG1OUT x 0.888 7’h24 VREG1OUT x 0.636 7’h64 VREG1OUT x 0.892 7’h25 VREG1OUT x 0.640 7’h65 VREG1OUT x 0.896 7’h26 VREG1OUT x 0.644 7’h66 VREG1OUT x 0.900 7’h27 VREG1OUT x 0.648 7’h67 VREG1OUT x 0.904 7’h28 VREG1OUT x 0.652 7’h68 VREG1OUT x 0.908 7’h29 VREG1OUT x 0.656 7’h69 VREG1OUT x 0.912 7’h2A VREG1OUT x 0.660 7’h6A VREG1OUT x 0.916 7’h2B VREG1OUT x 0.664 7’h6B VREG1OUT x 0.920 7’h2C VREG1OUT x 0.668 7’h6C VREG1OUT x 0.924 7’h2D VREG1OUT x 0.672 7’h6D VREG1OUT x 0.928 7’h2E VREG1OUT x 0.676 7’h6E VREG1OUT x 0.932 7’h2F VREG1OUT x 0.680 7’h6F VREG1OUT x 0.936 7’h30 VREG1OUT x 0.684 7’h70 VREG1OUT x 0.940 7’h31 VREG1OUT x 0.688 7’h71 VREG1OUT x 0.944 7’h32 VREG1OUT x 0.692 7’h72 VREG1OUT x 0.948 7’h33 VREG1OUT x 0.696 7’h73 VREG1OUT x 0.952 7’h34 VREG1OUT x 0.700 7’h74 VREG1OUT x 0.956 7’h35 VREG1OUT x 0.704 7’h75 VREG1OUT x 0.960 7’h36 VREG1OUT x 0.708 7’h76 VREG1OUT x 0.964 7’h37 VREG1OUT x 0.712 7’h77 VREG1OUT x 0.968 Rev. 0.11 April 25, 2008, page 79 of 181 R61509V Target Spec 7’h38 VREG1OUT x 0.716 7’h78 7’h39 VREG1OUT x 0.720 7’h79 VREG1OUT x 0.972 VREG1OUT x 0.976 7’h3A VREG1OUT x 0.724 7’h7A VREG1OUT x 0.980 7’h3B VREG1OUT x 0.728 7’h7B VREG1OUT x 0.984 7’h3C VREG1OUT x 0.732 7’h7C VREG1OUT x 0.988 7’h3D VREG1OUT x 0.736 7’h7D VREG1OUT x 0.992 7’h3E VREG1OUT x 0.740 7’h7E VREG1OUT x 0.996 7’h3F VREG1OUT x 0.744 7’h7F VREG1OUT x 1.000 Notes: 1. Make sure the VCOMH level is between 3.0V to (DDVDH-0.5)V. 2. The above setting is enabled when internal electronic volume is selected for setting the VCOMH level. Rev. 0.11 April 25, 2008, page 80 of 181 R61509V Target Spec Window Address Control Window Horizontal RAM Address Start (R210h), Window Horizontal RAM Address End (R211h) Window Vertical RAM Address Start (R212h), Window Vertical RAM Address End (R213h) R 210 R 211 R 212 R 213 R/W RS R/W 1 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 R/W R/W R/W IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 HSA [7] 0 0 HEA 0 [7] 0 1 VSA VSA [8] [7] 0 0 VEA VEA [8] [7] 1 1 0 IB6 HSA [6] 0 HEA [6] 1 VSA [6] 0 VEA [6] 0 IB5 HSA [5] 0 HEA [5] 1 VSA [5] 0 VEA [5] 1 IB4 HSA [4] 0 HEA [4] 0 VSA [4] 0 VEA [4] 0 IB3 HSA [3] 0 HEA [3] 1 VSA [3] 0 VEA [3] 1 IB2 HSA [2] 0 HEA [2] 1 VSA [2] 0 VEA [2] 1 IB1 HSA [1] 0 HEA [1] 1 VSA [1] 0 VEA [1] 1 IB0 HSA [0] 0 HEA [0] 1 VSA [0] 0 VEA [0] 1 HSA[7:0], HEA[7:0]: HSA[7:0] and HEA[7:0] specify the start and end addresses of the window address area in horizontal direction, respectively. See GRAM Address Map. HSA[7:0] and HEA[7:0] specify the horizontal range to write data. Set HSA[7:0] and HEA[7:0] before starting RAM write operation. In setting, make sure that 8’h00 ≤ HSA < HEA ≤ 8’hEF. VSA[8:0], VEA[8:0]: VSA[8:0] and VEA[8:0] specify the start and end addresses of the window address area in vertical direction, respectively. See GRAM Address Map. VSA[8:0] and VEA[8:0] specify the vertical range to write data. Set VSA[8:0] and VEA[8:0] before starting RAM write operation. In setting, make sure that 9’h000 ≤ VSA < VEA ≤ 9’h1AF. 17'h000-00 HSA HEA Window address area setting range: HSA HEA 8'hEF, 8'h00 HEA - HSA 8'h4, VSA VEA 9'h1AF 9'h000 VSA Window address area Notes: 1. Make an window address area within the GRAM address area. 2. Set an address within the window address area. VEA 17'h1AF-EF Figure 9 GRAM Address Map and Window Address Area Rev. 0.11 April 25, 2008, page 81 of 181 R61509V Target Spec γ Control γ Control 1 ~ 14 (R300h to R309h) R/W R 300 W RS 1 Default R 301 W 1 Default R 302 R 303 R 304 R 305 W R R R 308 R 309 0 0 PR0 P01 [3] PR0 P01 [2] IB8 PR0 P01 [1] PR0 P01 [0] IB5 0 0 0 0 0 0 IB4 IB1 IB0 PR0 PR0P PR0P PR0P P00 00[4] 00[3] 00[2] [1] PR0 P00 [0] 0 0 0 0 0 0 0 0 PR0 P04 [3] PR0 P04 [2] PR0 P04 [1] PR0 P04 [0] PR0 P03 [3] PR0 P03 [2] PR0 P03 [1] PR0 P03 [0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PR0 P06 [4] PR0 P06 [3] PR0 P06 [2] PR0 P06 [1] PR0 P06 [0] 0 0 0 0 0 0 0 0 IB3 0 IB2 0 0 PR0 PR0P PR0P PR0P P02 02[4] 02[3] 02[2] [1] 0 0 0 0 PR0 PR0P PR0P P05 05[3] 05[2] [1] 0 PR0 P02 [0] 0 PR0 P05 [0] 0 0 0 Default 0 0 0 0 0 0 0 0 0 PR0 P08 [4] PR0 P08 [3] PR0 P08 [2] PR0 P08 [1] PR0 P08 [0] 0 0 0 0 0 0 0 0 0 0 0 PI0 P2 [1] PI0 P2 [0] 0 0 PI0 P1 [1] PI0 P1 [0] 0 0 0 0 0 0 0 0 PR0 N00 [4] PR0 N00 [3] PR0 N00 [2] PR0 N00 [1] PR0 N00 [0] W 1 0 0 Default 0 0 0 0 PI0 P3 [0] 0 0 0 0 PR0 PR0P PR0P PR0P P07 07[4] 07[3] 07[2] [1] 0 0 PR0 P07 [0] 0 0 0 0 PI0 P0 [1] PI0 P0 [0] 1 0 0 PI0 P3 [1] Default 0 0 0 0 0 0 0 0 0 PR0 N01 [4] PR0 N01 [3] PR0 N01 [2] PR0 N01 [1] PR0 N01 [0] 0 0 0 0 0 0 0 0 0 0 0 PR0 N02 [3] PR0 N02 [2] PR0 N02 [1] PR0 N02 [0] W W 1 W 1 Default 307 0 PR0 P01 [4] IB7 IB 6 IB9 1 Default 306 IB15 IB14 IB13 IB12 IB11 IB10 W 0 0 0 0 0 0 0 0 0 0 0 0 PR0 N04 [3] PR0 N04 [2] PR0 N04 [1] PR0 N04 [0] PR0 N03 [3] PR0 N03 [2] PR0 N03 [1] PR0 N03 [0] 0 0 0 PR0 N02 [4] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PR0 N06 [4] PR0 N06 [3] PR0 N06 [2] PR0 N06 [1] PR0 N06 [0] 0 0 0 0 PR0 N05 [3] PR0 N05 [2] PR0 N05 [1] PR0 N05 [0] 0 0 0 0 0 0 0 0 0 PR0 N07 [4] PR0 N07 [3] PR0 N07 [2] PR0 N07 [1] PR0 N07 [0] 0 0 0 0 PI0 N0 [0] 0 1 0 0 0 Default 0 0 0 0 0 0 0 0 0 PR0 N08 [4] PR0 N08 [3] PR0 N08 [2] PR0 N08 [1] PR0 N08 [0] 0 0 0 0 0 0 0 0 0 0 PI0 N2 [0] 0 0 PI0 N1 [1] PI0 N1 [0] 0 0 PI0 N0 [1] 0 0 0 0 0 0 0 0 W 1 0 0 Default 0 0 0 0 PI0 N3 [0] 0 0 PI0 N2 [1] 0 0 0 0 1 0 0 PI0 N3 [1] Default 0 0 0 W Rev. 0.11 April 25, 2008, page 82 of 181 R61509V PR0P00[4:0] PR0N00[4:0] PR0P01[4:0] PR0N01[4:0] PR0P02[4:0] PR0N02[4:0] PR0P03[3:0] PR0N03[3:0] PR0P04[3:0] PR0N04[3:0] PR0P05[3:0] PR0N05[3:0] PR0P06[4:0] PR0N06[4:0] PR0P07[4:0] PR0N07[4:0] PR0P08[4:0] PR0N08[4:0] PI0P0~1[1:0] PI0N0~1[1:0] PI0P2~3[1:0] PI0N2~3[1:0] Target Spec Adjusts reference level for positive polarity output R0 Adjusts reference level for negative polarity output R0 Adjusts reference level for positive polarity output R1 Adjusts reference level for negative polarity output R1 Adjusts reference level for positive polarity output R2 Adjusts reference level for negative polarity output R2 Adjusts reference level for positive polarity output R3 Adjusts reference level for negative polarity output R3 Adjusts reference level for positive polarity output R4 Adjusts reference level for negative polarity output R4 Adjusts reference level for positive polarity output R5 Adjusts reference level for negative polarity output R5 Adjusts reference level for positive polarity output R6 Adjusts reference level for negative polarity output R6 Adjusts reference level for positive polarity output R7 Adjusts reference level for negative polarity output R7 Adjusts reference level for positive polarity output R8 Adjusts reference level for negative polarity output R8 Adjusts interpolation level for positive polarity output (V2~V7) Adjusts interpolation level for negative polarity output (V2~V7) Adjusts interpolation level for positive polarity output (V56~V61) Adjusts interpolation level for negative polarity output (V56~V61) Rev. 0.11 April 25, 2008, page 83 of 181 R61509V Target Spec Base Image Display Control Base Image Number of Line (R400h) Base Image Display Control (R401h) Base Image Vertical Scroll Control (R404h) R/W R 400 RS 401 R 404 IB9 NL NL NL NL NL NL [5] [4] [3] [2] [1] [0] 0 1 1 0 1 0 1 0 0 0 0 0 Default 0 0 0 0 0 R/W 1 Default R IB15 IB14 IB13 IB12 IB11 IB10 R/W R/W GS IB8 IB7 IB6 IB5 IB4 IB3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 IB2 IB1 SCN SCN SCN SCN SCN SCN [3] [2] [1] [0] [5] [4] 0 0 IB0 0 0 NDL VLE REV 0 0 0 0 0 0 0 0 0 VL VL VL VL VL VL VL VL VL [8] [7] [6] [5] [4] [3] [2] [1] [0] 0 0 0 0 0 0 0 0 0 GS: Sets the direction of scan by the gate driver in the range determined by SCN and NL bits. The gate scan direction determined by setting GS = 0 is reversed by setting GS = 1. Set GS bit in combination with SM bits. NL[5:0]: Sets the number of lines to drive the LCD at an interval of 8 lines. The GRAM address mapping is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than the number of lines necessary for the size of the liquid crystal panel. SCN[5:0]: Specifies the gate line where the gate driver starts scan. NDL: Sets the source output level in non-lit display area. Settings are different depending on panel type (i.e. normally black or normally white). Table 49 NDL Non-lit display area Positive Negative 0 V63 V0 1 Note: V0 V63 NDL setting is enabled in non-lit display area in partial display operation. VLE: Vertical scroll display enable bit. When VLE = 1, the R61509V starts displaying the base image from the line (of the physical display) determined by VL[8:0] bits. VL[8:0] sets the amount of scrolling, which is the number of lines to shift the start line of the display from the first line of the physical display. Note that the partial image display position is not affected by the base image scrolling. The vertical scrolling is disabled in external display interface operation. In this case, make sure to set VLE = “0”. Rev. 0.11 April 25, 2008, page 84 of 181 R61509V Target Spec Table 50 VLE Base image 0 Fixed 1 Scrolling enabled REV: Grayscale level of a image is inverted when REV = 1. This enables the R61509V to display the same image from the same set of data both on normally black and white panels. Table 51 REV Source Output Level in Display Area GRAM Data Positive Polarity 18’h00000 V63 : : 0 Negative Polarity V0 : 18’h3FFFFF V0 V63 18’h00000 V0 V63 1 : : 18’h3FFFFF V63 : V0 Note: Source output of non-lit display area is set by NDL bit during partial display mode. VL[8:0]: Sets the amount of scrolling of the base image. The base image is scrolled in vertical direction and displayed from the line which is determined by VL. Table 52 VL [8:0] Line per scrolling 9’h000 0 lines 9’h001 1 line 9’h002 2 lines : : : : 9’h1A0 431 lines 9’h1B0 432 lines 9’h1FF Setting inhibited Rev. 0.11 April 25, 2008, page 85 of 181 R61509V Target Spec Table 53 NL [5:0] 6’h00 Number of drive line NL [5:0] Number of drive line Setting inhibited 6’h1C 6’h01 16 lines 6’h1D 240 lines 6’h02 24 lines 6’h1E 248 lines 6’h03 32 lines 6’h1F 256 lines 6’h04 40 lines 6’h20 264 lines 6’h05 48 lines 6’h21 272 lines 6’h06 56 lines 6’h22 280 lines 6’h07 64 lines 6’h23 288 lines 6’h08 72 lines 6’h24 296 lines 6’h09 80 lines 6’h25 304 lines 6’h0A 88 lines 6’h26 312 lines 6’h0B 96 lines 6’h27 320 lines 6’h0C 104 lines 6'h28 328 lines 6’h0D 112 lines 6'h29 336 lines 6’h0E 120 lines 6'h2A 344 lines 6’h0F 128 lines 6'h2B 352 lines 6’h10 136 lines 6'h2C 360 lines 6’h11 144 lines 6'h2D 368 lines 6’h12 152 lines 6'h2E 376 lines 6’h13 160 lines 6'h2F 384 lines 6’h14 168 lines 6'h30 392 lines 6’h15 176 lines 6'h31 400 lines 6’h16 184 lines 6'h32 408 lines 6’h17 192 lines 6'h33 416 lines 6’h18 200 lines 6'h34 424 lines 6’h19 208 lines 6'h35 432 lines 6’h1A 216 lines 6'h36-6'h3F Setting inhibited 6’h1B 224 lines Rev. 0.11 April 25, 2008, page 86 of 181 232 lines R61509V Target Spec Table 54 Gate scan start position SCN[5:0] SM=0 SM=1 GS=0 GS=1 GS=0 GS=1 6’h00 G1 G(N) G1 G(2N-432) 6’h01 G9 G(N+8) G17 G(2N-416) 6’h02 G17 G(N+16) G33 G(2N-400) 6’h03 G25 G(N+24) G49 G(2N-384) 6’h04 G33 G(N+32) G65 G(2N-368) 6’h05 G41 G(N+40) G81 G(2N-352) 6’h06 G49 G(N+49) G97 G(2N-336) 6’h07 G57 G(N+56) G113 G(2N-320) 6’h08 G65 G(N+64) G129 G(2N-304) 6’h09 G73 G(N+72) G145 G(2N-288) 6’h0A G81 G(N+80) G161 G(2N-272) 6’h0B G89 G(N+88) G177 G(2N-256) 6’h0C G97 G(N+96) G193 G(2N-240) 6’h0D G105 G(N+104) G209 G(2N-224) 6’h0E G113 G(N+112) G225 G(2N-208) 6’h0F G121 G(N+120) G241 G(2N-192) 6’h10 G129 G(N+128) G257 G(2N-176) 6’h11 G137 G(N+136) G273 G(2N-160) 6’h12 G145 G(N+144) G289 G(2N-144) 6’h13 G153 G(N+152) G305 G(2N-128) 6’h14 G161 G(N+160) G321 G(2N-112) 6’h15 G169 G(N+168) G337 G(2N-96) 6’h16 G177 G(N+176) G353 G(2N-80) 6’h17 G185 G(N+184) G369 G(2N-64) 6’h18 G193 G(N+192) G385 G(2N-48) 6’h19 G201 G(N+200) G401 G(2N-32) 6’h1A G209 G(N+208) G417 G(2N-16) 6’h1B G217 G(N+216) G2 G(2N-431) 6’h1C G225 G(N+224) G18 G(2N-415) 6’h1D G233 G(N+232) G34 G(2N-399) 6’h1E G241 G(N+240) G50 G(2N-383) 6’h1F G249 G(N+248) G66 G(2N-367) 6’h20 G257 G(N+256) G82 G(2N-351) 6’h21 G265 G(N+264) G98 G(2N-335) 6’h22 G273 G(N+272) G114 G(2N-319) 6’h23 G281 G(N+280) G130 G(2N-303) 6’h24 G289 G(N+288) G146 G(2N-287) 6’h25 G297 G(N+296) G162 G(2N-271) 6’h26 G305 G(N+304) G178 G(2N-255) 6’h27 G313 G(N+312) G194 G(2N-239) 6’h28 G321 G(N+320) G210 G(2N-223) 6’h29 G329 G(N+328) G226 G(2N-207) 6’h2A G337 G(N+337) G242 G(2N-191) 6’h2B G345 G(N+344) G258 G(2N-175) 6’h2C G353 G(N+352) G274 G(2N-159) 6’h2D G361 G(N+360) G290 G(2N-143) 6’h2E G369 G(N+368) G306 G(2N-127) 6’h2F G377 G(N+376) G322 G(2N-111) 6’h30 G385 G(N+384) G338 G(2N-95) 6’h31 G393 G(N+392) G354 G(2N-79) 6’h32 G401 G(N+400) G370 G(2N-63) 6’h33 G409 G(N+408) G386 G(2N-47) 6’h34 G417 G(N+416) G402 G(2N-31) 6’h35-6’h3F Setting inhibited Setting inhibited Setting inhibited Setting inhibited Note: “N” is the number of line decided by NL [5:0] bit. Make sure that (Gate scan start position + NL = Gate scan end position) does not exceed 432 lines. Rev. 0.11 April 25, 2008, page 87 of 181 R61509V Target Spec Partial Display Control Partial Image 1: Display Position (R500h), RAM Address 1 (Start Line Address) (R501h), RAM Address 1 (End Line Address) (R502h) R/W R 500h R 501h R 502h R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 PTD P [8] PTD P [7] PTD P [6] PTD P [5] PTD P [4] PTD P [3] PTD P [2] PTD P [1] PTD P [0] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 R/W 1 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 R/W 1 0 0 0 0 0 0 0 Default 0 0 0 0 0 0 0 PTS PTS PTS PTS PTS PTS PTS PTS PTS A [8] A [7] A [6] A [5] A [4] A [3] A [2] A [1] A [0] 0 PTE A [8] 0 0 PTE A 0[7] 0 0 0 0 0 0 0 0 PTE PTE PTE PTE PTE PTE PTE A [6] A [5] A [4] A [3] A [2] A [1] A [0] 0 0 0 0 0 0 0 PTDP[8:0]: Sets the display position of partial image 1. If PTDP0 = “9’h000”, the partial image 1 is displayed from the first line of the base image. PTSA[8:0] and PTEA[8:0]: Sets the start line and end line addresses of the RAM area, respectively for the partial image 1. In setting, make sure that PTSA ≤ PTEA. Rev. 0.11 April 25, 2008, page 88 of 181 R61509V Target Spec Pin Control Test Register (Software Reset) (R600h) R/W RS R/W 1 Default value IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TRSR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TRSR: When TRSR = 1, test registers are initialized. When TRSR = 0, initialization of test registers halts. Instruction Write R600h TRSR="1" Test registers are initialized (0.1ms or longer) Instruction Write R600h TRSR="0" 㩷 Figure 10 Rev. 0.11 April 25, 2008, page 89 of 181 R61509V Target Spec NVM Control NVM Access Control 1 (R6F0h), NVM Access Control 2 (R6F1h), NVM Access Control 3 (R6F2h) R/W R 6F0h R/W RS 1 Default R 6F1h R/W 1 Default R 6F2h R/W 1 Default IB15 IB14 0 0 IB13 IB12 0 0 0 0 0 NV NV NV DAT DAT DAT [15] [14] [13] 0 0 0 0 NV DAT [12] 0 IB11 IB10 IB9 IB8 IB7 IB6 IB5 IB4 IB3 IB2 IB1 IB0 EOP EOP 0 0 0 0 TE 0 0 0 0 [1] [0] 0 0 0 0 0 0 0 0 0 0 0 0 NV NV NV NV NV NV NV NV NV NV NV NV DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT [11] [10] [9] [8] [7] [6] [5] [4]] [3] [2]] [1] [0] 0 0 0 0 0 0 0 0 0 0 0 0 CAL B 0 0 0 0 0 0 0 0 0 0 0 0 NVV RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EOP [1:0]: Writes data on R280h to NVM or halts the write operation. Table 55 EOP[1:0] NVM control 2’h0 Halt 2’h1 Write 2’h2 Setting disabled 2’h3 Erase CALB: When CALB=1, all data in NVM is read out and written to internal registers. When finished, CALB is set to 0. TE: Enables internal NVM control bit (EOP). Follow the NVM control sequence when setting TE. NVDAT[15:0]: To write data to NVM, write the data on NVDAT (R6F1h) first, and then start write operation using EOP bit. ・ NVM data written to NVDAT[14:8] are loaded to R280h VCM [6:0] when power on reset is executed or CALB=1. ・ NVM data written to NVDAT[7:0] are loaded to R280h UID [7:0] when power on reset is executed or CALB=1. See “NVM Control” for details of write operation and required settings. Rev. 0.11 April 25, 2008, page 90 of 181 R61509V Target Spec Write “1” to NVDAT[15]. R6F1h Write data to NVM (NVM) Read data from NVM 㪥㪭㩷 㪛㪘㪫㩷 㪲㪈㪌㪴㩷 㪥㪭㩷 㪛㪘㪫㩷 㪲㪈㪋㪴㩷 㪥㪭㩷 㪛㪘㪫㩷 㪲㪈㪉㪴㩷 㪥㪭 㪛㪘㪫 㪲㪈㪈㪴 㪥㪭 㪛㪘㪫 㪲㪈㪇㪴 㪥㪭 㪛㪘㪫 㪲㪐㪴 㪥㪭 㪛㪘㪫 㪲㪏㪴 㪥㪭 㪛㪘㪫 㪲㪎㪴 㪥㪭 㪛㪘㪫 㪲㪍㪴 㪥㪭 㪛㪘㪫 㪲㪌㪴 㪥㪭 㪛㪘㪫 㪲㪋㪴 㪥㪭㩷 㪛㪘㪫㩷 㪲㪊㪴㩷 㪥㪭㩷 㪛㪘㪫㩷 㪲㪉㪴㩷 㪥㪭㩷 㪛㪘㪫㩷 㪲㪈㪴㩷 㪥㪭 㪛㪘㪫 㪲㪇㪴 㸣㩷㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㸣 㩷 㪥㪭㪤㩷 㪲㪈㪌㪴㩷 㪥㪭㪤㩷 㪲㪈㪋㪴㩷 㩷 㪥㪭㪤㩷 㪲㪈㪊㪴㩷 㩷 㪥㪭㪤㩷 㪲㪈㪉㪴㩷 㩷 㪥㪭㪤 㪲㪈㪈㪴 㪥㪭㪤 㪲㪈㪇㪴 㪥㪭㪤 㪲㪐㪴 㪥㪭㪤 㪲㪏㪴 㪥㪭㪤 㪲㪎㪴 㪥㪭㪤 㪲㪍㪴 㪥㪭㪤 㪲㪌㪴 㪥㪭㪤 㪲㪋㪴 㪥㪭㪤㩷 㪲㪊㪴㩷 㩷 㪥㪭㪤㩷 㪲㪉㪴㩷 㩷 㪥㪭㪤㩷 㪲㪈㪴㩷 㪥㪭㪤 㪲㪇㪴 㸣㸣㸣 㸣㸣㸣㸣㸣㸣㸣㸣㸣㸣㸣㸣 㸣 㩷 R280h 㪥㪭㩷 㪛㪘㪫㩷 㪲㪈㪊㪴㩷 㪈㩷 㩷 㪭㪚㪤㩷 㪲㪍㪴㩷 㩷 㪭㪚㪤㩷 㪲㪌㪴㩷 㩷 㪭㪚㪤㩷 㪲㪋㪴㩷 㩷 㪭㪚㪤 㪲㪊㪴 㪭㪚㪤 㪲㪉㪴 㪭㪚㪤 㪲㪈㪴 㪭㪚㪤 㪲㪇㪴 㪬㪠㪛 㪲㪎㪴 㪬㪠㪛 㪲㪍㪴 㪬㪠㪛 㪲㪌㪴 㪬㪠㪛 㪲㪋㪴 㪬㪠㪛㩷 㪲㪊㪴㩷 㩷 㪬㪠㪛㩷 㪲㪉㪴㩷 㩷 㪬㪠㪛㩷 㪲㪈㪴㩷 Figure 11 NVVRF: Enables erase verify. This bit is used only in the NVM erase sequence. See “NVM Erase Sequence” for details. Rev. 0.11 April 25, 2008, page 91 of 181 㪬㪠㪛 㪲㪇㪴 ●R61509V Instruction List Major category Index Upper Index 0** Rev 0.50 2008. 04. 22 Middle category Index Display Control - 00* 000h Device Code Read 001h Driver Output Control 0 0 0 0 0 004h 005h 006h Setting inhibited Setting inhibited Setting inhibited 007h Display Control 1 0 0 0 008h Display Control 2 FP[7] (0) FP[6] (0) 009h Display Control 3 0 00Ah Setting inhibited 00Bh 8 Color Control External Display Interface Control 1 Setting inhibited External Display Interface Control 2 0 0 IB10 IB9 IB8 IB7 IB6 IB5 Lower Code IB4 IB3 IB2 IB1 IB0 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID2 ID21 ID0 0 0 TRI (0) 0 0 0 DFM (0) 0 0 0 0 0 0 0 SM (0) 0 SS (0) 0 0 0 BC (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BASEE (0) 0 0 0 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 0 0 0 0 0 0 - 0 0 0 ID[1] (1) 0 0 0 ID[0] (1) 0 0 0 AM (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - FP[2] (0) FP[1] (0) FP[0] (0) BP[7] (0) BP[6] (0) BP[5] (0) BP[4] (0) BP[3] (1) BP[2] (0) BP[1] (0) BP[0] (0) - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 PTS (0) 0 0 0 PTV (0) 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 COL (0) ENC[1] (0) 0 ENC[0] (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HSPL (0) 0 EPL (0) RIM (0) 0 DPL (0) - 0 DM[0] (0) 0 VSPL (0) 0 0 DM[1] (0) 0 0 0 RM (0) 0 0 0 ENC[2] (0) 0 DIVI[0] (0) 0 0 0 RTNI[4] (1) RTNI[3] (1) RTNI[2] (0) RTNI[1] (0) RTNI[0] (1) - 0 0 0 0 0 SDTI[2] (0) SDTI[1] (0) SDTI[0] (1) - SEQWI[1] (0) SEQWI[0] (0) - MCPI[1] (0) MCPI[0] (1) 0 Panel Interface Control 1 0 0 0 0 0 0 Panel Interface Control 2 0 0 0 0 0 NOWI[2] (0) NOWI[1] (0) NOWI[0] (1) VEQWI[1] (0) VEQWI[0] (0) ORG (0) 0 0 0 0 0 0 0 0 012h Panel Interface Control 3 0 0 0 0 0 VEQWI[2] (0) 0 0 0 0 0 SEQWI[2] (0) 013h Panel Interface Control 4 0 0 0 0 0 0 0 0 0 0 0 0 0 MCPI[2] (0) 014h Panel Interface Control 5 0 0 0 0 0 0 0 0 0 014-01Fh Setting inhibited 0 0 0 0 0 0 020h Panel Interface Control 6 0 0 0 0 0 0 0 DIVE[0] (0) 0 02* 0 DIVE[1] (0) Panel Interface (External Clock) 021h Panel Interface Control 7 0 0 0 0 0 NOWE[2] (0) NOWE[1] (0) NOWE[0] (1) 0 VEQWE[2] VEQWE[1] VEQWE[0] (0) (0) (0) Panel Interface Control 8 0 0 0 0 0 0 0 PCDIVH[2] PCDIVH[1] PCDIVH[0] (1) (0) (1) 0 0 0 RTNE[4] 0 0 (1) 0 0 0 0 0 0 0 0 RTNE[3] (1) 0 0 PCDIVL[2] PCDIVL[1] PCDIVL[0] (1) (0) (1) 0 0 0 RTNE[2] RTNE[1] RTNE[0] (0) (0) (1) SDTE[2] (0) SDTE[1] (0) SDTE[0] (1) SEQWE[2] SEQWE[1] SEQWE[0] (0) (0) (0) MCPE[2] (0) MCPE[1] (0) - - - MCPE[0] (1) 023h Panel Interface Control 9 0 0 0 0 0 0 0 0 0 0 0 0 024h-08Fh Setting inhibited 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 090h Frame Marker Control FMI[2] (0) 0 FMI[1] (0) 0 FMI[0] (0) 0 0 0 0 0 FMP[6] (0) 0 0 0 0 FMP[2] (0) 0 DSTB (0) FMP[0] (0) 0 0 FMP[4] (0) 0 AP[0] (1) FMP[1] (0) 0 0 FMP[5] (0) 0 AP[1] (1) FMP[3] (0) 0 0 0 BT[1] (1) FMP[7] (0) 0 Power Control 1 0 BT[2] (0) FMP[8] (0) 0 BT[0] (1) - Setting inhibited FMKM (0) 0 0 0 - DC1[2] (0) DC1[1] (1) DC1[0] (0) 0 DC0[2] (1) DC0[1] (0) DC0[0] (0) 0 VC[2] (1) VC[1] (1) VC[0] (1) - 0 PSON (0) PON (0) 0 0 0 0 - 100h 101h 102h 0 Power Control 2 0 0 0 0 0 Power Control 3 VRH[4] (0) VRH[3] (0) VRH[2] (0) VRH[1] (0) VRH[0] (0) 0 0 VCMR (1) VDV[3] (0) 0 VDV[2] (0) 0 VDV[1] (0) 0 VDV[0] (0) 0 103h Power Control 4 0 0 0 104-1FFh Setting inhibited RAM Address Set (Horizontal Address) RAM Address Set (Vertical Address) GRAM Data Write/GRAM Data Read Setting inhibited Window Horizontal RAM Address Start Window Horizontal RAM Address End Window Vertical RAM Address Start 0 0 0 VDV[4] (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AD[16] (0) 20* 200h RAM Read/Write 201h 202h 203-20Fh 210h 211h 212h 1 0 0 0 0 0 0 0 0 0 0 0 AD[7] (0) 0 AD[6] (0) 0 AD[5] (0) 0 AD[4] (0) 0 AD[3] (0) 0 AD[2] (0) 0 AD[1] (0) 0 AD[0] (0) AD[15] (0) AD[14] (0) AD[13] (0) AD[12] (0) AD[11] (0) AD[10] (0) AD[9] (0) AD[8] (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HSA[5] (0) 0 HSA[4] (0) 0 HSA[3] (0) 0 HSA[2] (0) 0 HSA[1] (0) 0 HSA[0] (0) - HEA[6] (1) HEA[5] (1) HEA[4] (0) HEA[3] (1) HEA[2] (1) HEA[1] (1) HEA[0] (1) - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VSA[8] (0) VSA[7] (0) VSA[6] (0) VSA[5] (0) VSA[4] (0) VSA[3] (0) VSA[2] (0) VSA[1] (0) VSA[0] (0) - 0 VEA[8] (1) VEA[7] (1) VEA[6] (0) VEA[5] (1) VEA[4] (0) VEA[3] (1) VEA[2] (1) VEA[1] (1) VEA[0] (1) - UID[7] (1) 0 UID[6] (1) 0 UID[5] (1) 0 0 0 0 0 0 280h NVM Data Read / NVM Data Write 1 281-2FFh Setting inhibited 30* 300h Gamma Control (1) Gamma Control 301h Gamma Control (2) PR0P04[3] PR0P04[2] PR0P04[1] PR0P04[0] PR0P03[3] PR0P03[2] PR0P03[1] PR0P03[0] (0) (0) (0) (0) (0) (0) (0) (0) 302h Gamma Control (3) 0 0 0 PR0P06[4] PR0P06[3] PR0P06[2] PR0P06[1] PR0P06[0] (0) (0) (0) (0) (0) 0 303h Gamma Control (4) 0 0 0 PR0P08[4] PR0P08[3] PR0P08[2] PR0P08[1] PR0P08[0] (0) (0) (0) (0) (0) 0 0 0 0 0 VCM[6] (1) 0 VCM[5] (1) 0 0 0 0 0 0 0 - 304h Gamma Control (5) 0 0 PI0P3[1] (0) 305h Gamma Control (6) 0 0 0 VCM[4] VCM[3] VCM[2] VCM[1] VCM[0] (1) (1) (1) (1) (1) 0 0 0 0 0 PR0P01[4] PR0P01[3] PR0P01[2] PR0P01[1] PR0P01[0] (0) (0) (0) (0) (0) PI0P3[0] (0) 0 0 PI0P2[1] (0) PI0P2[0] (0) PR0N01[4] PR0N01[3] PR0N01[2] PR0N01[1] PR0N01[0] (0) (0) (0) (0) (0) PR0N04[3] PR0N04[2] PR0N04[1] PR0N04[0] PR0N03[3] PR0N03[2] PR0N03[1] PR0N03[0] (0) (0) (0) (0) (0) (0) (0) (0) UID[4] UID[3] UID[2] UID[1] UID[0] (1) (1) (1) (1) (1) 0 0 0 0 0 PR0P00[4] PR0P00[3] PR0P00[2] PR0P00[1] PR0P00[0] (0) (0) (0) (0) (0) - 0 PR0P02[4] PR0P02[3] PR0P02[2] PR0P02[1] PR0P02[0] (0) (0) (0) (0) (0) - 0 0 PR0P05[3] PR0P05[2] PR0P05[1] PR0P05[0] (0) (0) (0) (0) - 0 0 PR0P07[4] PR0P07[3] PR0P07[2] PR0P07[1] PR0P07[0] (0) (0) (0) (0) (0) - 0 0 PI0P1[1] (0) 0 0 0 PR0N00[4] PR0N00[3] PR0N00[2] PR0N00[1] PR0N00[0] (0) (0) (0) (0) (0) - PR0N02[4] PR0N02[3] PR0N02[2] PR0N02[1] PR0N02[0] (0) (0) (0) (0) (0) - PR0N05[3] PR0N05[2] PR0N05[1] PR0N05[0] (0) (0) (0) (0) - PR0N07[4] PR0N07[3] PR0N07[2] PR0N07[1] PR0N07[0] (0) (0) (0) (0) (0) - 0 PI0P1[0] (0) 0 306h Gamma Control (7) 0 0 0 307h Gamma Control (8) 0 0 0 PR0N06[4] PR0N06[3] PR0N06[2] PR0N06[1] PR0N06[0] (0) (0) (0) (0) (0) 0 0 0 308h Gamma Control (9) 0 0 0 PR0N08[4] PR0N08[3] PR0N08[2] PR0N08[1] PR0N08[0] (0) (0) (0) (0) (0) 0 0 0 0 0 PI0N3[1] (0) PI0N3[0] (0) 0 PI0N1[0] (0) 0 GS (0) NL[5] (1) NL[4] (1) NL[3] (0) NL[2] (1) SCN[3] (0) SCN[2] (0) Setting inhibited 400h Base Image Number of Line - HEA[7] (1) Setting inhibited Gamma Control (10) - 0 HSA[6] (0) Window Vertical RAM Address End 309h - 0 HSA[7] (0) 213h 30Ah-3FFh - - RAM write data WD[17:0] / RAM read data RD [17:0] is transferred via different data bus in different interface operation. 214-27Fh Base Image Display Control 0 FP[3] (1) 011h 28* 0 FP[4] (0) 010h Window Address 0 Device Code "B509h" FP[5] (0) 0 0 0 01* 21* 0 Note BGR (0) 0 0 0 PTDE (0) 0 Panel Interface (Internal Clock) Power Control ID3 ALMID1[7] ALMID1[6] ALMID1[5] ALMID1[4] ALMID1[3] ALMID1[2] ALMID1[1] ALMID1[0] ALMID0[7] ALMID0[6] ALMID0[5] ALMID0[4] ALMID0[3] ALMID0[2] ALMID0[1] ALMID0[0] (1) (0) (1) (1) (0) (1) (0) (1) (0) (0) (0) (0) (1) (0) (0) (1) Entry Mode Frame Marker Control 091-0FFh 4** 0 Upper Code IB12 IB11 DIVI[1] (0) 09* Gamma Control IB13 LCD Drive Waveform Control 022h 3** IB14 003h 00Fh RAM Access IB15 002h 00D-00Eh 2** Index Display Control in general 00Ch 1** Minor category Command 0 PI0N2[1] (0) PI0N2[0] (0) 0 0 PI0N1[1] (0) NL[1] (0) NL[0] (1) 0 0 SCN[5] (0) SCN[4] (0) 0 0 PI0P0[1] (0) PI0P0[0] (0) - - 0 PI0N0[1] (0) PI0N0[0] (0) SCN[1] (0) SCN[0] (0) 0 - VLE (0) 0 VL[1] (0) 0 REV (0) 0 VL[0] (0) 0 - - 401h Base Image Display Control 0 0 0 0 0 0 0 0 0 0 0 0 0 402h-403h Setting inhibited 0 0 0 0 0 0 0 404h Base Image Vertical Scroll Control 0 0 0 0 0 0 0 405-4FFh Setting inhibited 0 0 0 0 0 0 0 0 VL[8] (0) 0 0 VL[7] (0) 0 0 VL[6] (0) 0 0 VL[5] (0) 0 0 VL[4] (0) 0 0 VL[3] (0) 0 NDL (0) 0 VL[2] (0) 0 500h Partial Image 1: Display Position 0 0 0 0 0 0 0 PTDP[8] (0) PTDP[7] (0) PTDP[6] (0) PTDP[5] (0) PTDP[4] (0) PTDP[3] (0) PTDP[2] (0) PTDP[1] (0) PTDP[0] (0) - 501h RAM Address 1 (Start Line Address) 0 0 0 0 0 0 0 PTSA[8] (0) PTSA[7] (0) PTSA[6] (0) PTSA[5] (0) PTSA[4] (0) PTSA[3] (0) PTSA[2] (0) PTSA[1] (0) PTSA[0] (0) - PTEA[7] (0) PTEA[6] (0) PTEA[5] (0) PTEA[4] (0) PTEA[3] (0) PTEA[2] (0) PTEA[1] (0) PTEA[0] (0) - 5** Partial Display Control 6** Pin Control 60* 6F* NVM-I/F 502h RAM Address 2 (End Line Address) 0 0 0 0 0 0 0 PTEA[8] (0) 503h-5FFh Setting inhibited 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600h Test Register (Software Reset) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 601-6EFh Setting inhibited 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EOP[0] (0) 0 0 0 EOP[1] (0) 0 NVM Access Control 1 0 CALB (0) 0 6F0h 0 TE (0) 0 TRSR (0) 0 0 0 0 0 6F1h NVM Access Control 2 6F2h NVM Access Control 3 6F3-FFFh Setting inhibited NVDAT[15] NVDAT[14] NVDAT[13] NVDAT[12] NVDAT[11] NVDAT[10] NVDAT[9] NVDAT[8] NVDAT[7] NVDAT[6] NVDAT[5] NVDAT[4] NVDAT[3] NVDAT[2] NVDAT[1] NVDAT[0] (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 0 0 0 0 0 0 0 0 0 0 0 NVVRF (0) 0 0 - - 0 - Note 1: Values in parentheses ( ) are default values. Note 2: Do not access instructions that are not shown in the above table. R61509V Target Spec Reset Function The R61509V is initialized by the RESETX input. During reset period, the R61509V is in a busy state and instruction from the microcomputer and GRAM access are not accepted. The R61509V’s internal power supply circuit unit is initialized also by the RESETX input. The RESET period must be secured for at least 1ms. In case of power-on reset, wait until the RC oscillation frequency stabilizes (for 1 ms). During this period, GRAM access and initial instruction setting are prohibited. 1. Initial state of instruction bits (default) See the instruction list. The default value is shown in the parenthesis of each instruction bit cell. 2. RAM Data initialization The RAM data is not automatically initialized by the RESETX input. It must be initialized by software in display-off period (D1-0 = “00”). 3. Output pin initial state * see Note 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. LCD driver S1~S720 G1~G432 VCOM VCOMH VCOML VREG1OUT VCIOUT DDVDH VGH VGL VCL FMARK Oscillator SDO 4. Initial state of input/output pins* see Note : GND : VGL (= GND) : Halt (GND output) : VCI : Halt (GND output) : VGS : Hi-z : VCI : DDVDH (VCI clamp) : GND : GND : Halt (GND output ) : Oscillate : High level (IOVCC1) when IM2-0 = “10*”(serial interface) : Hi-z when IM2-0 ≠ “10*”(other than serial interface) 1. C11P : Hi-z 2. C11M : Hi-z 3. C12P : Hi-z 4. C12M : Hi-z 5. C13P : VCI1 (= Hi-z) 6. C13M : GND 7. C21P : DDVDH ( = VCI) 8. C21M : GND 9. C22P : DDVDH ( = VCI) 10. C22M : GND 11. VDD : VDD Note: The above-mentioned initial states of output and input pins are those of when the R61509V’s power supply circuit is connected as in Connection Example. Rev. 0.11 April 25, 2008, page 93 of 181 R61509V Target Spec 5 When a RESETX input is entered into the R61509V while it is in shutdown mode, the R61509V starts up the inside logic regulator and makes a transition to the initial state. During this period, the state of the interface pins may become unstable. For this reason, do not enter a RESETX input in shutdown mode. 6 When transferring instruction in either two or three transfers via 8-/9-/16-bit interface, make sure to execute data transfer synchronization after reset operation. Rev. 0.11 April 25, 2008, page 94 of 181 R61509V Target Spec Basic Mode Operation of the R61509V The basic operation modes of the R61509V are shown in the following diagram. When making a transition from one mode to another, refer to instruction setting sequence. Initial setting Display OFF Display OFF sequence (Power OFF sequence) moving picture display VSYNC interface VSYNC i/F sequence 2 (DM=10, RM=0) VSYNC i/F sequence 1 (DM=00, RM=0) Display ON sequence (Power ON sequence) Internal clock display operation Partial display sequence 2 Reset state DSTB = 1 Deep standby set Exit shut down mode Shut down mode RGB i/F (1) sequence 1 (DM=01, RM=1) RGB i/F (1) sequence 2 (DM=00, RM=0) Partial display sequence 1 Partial display Display color control 262k-color mode 8 262k color display sequence 262k 8 color display sequence 8-color mode Figure 12 Rev. 0.11 April 25, 2008, page 95 of 181 Reset moving picture display RGB interface (1) RAM access via system i/F while displaying moving picture RGB i/F (2) sequence 1 (DM=01, RM=0) RGB interface (2) RGB i/F (2) sequence 2 (DM=01, RM=1) R61509V Target Spec Interface and Data Format The R61509V supports system interface for making instruction and other settings, and external display interface for displaying a moving picture. The R61509V can select the optimum interface for the display (moving or still picture) in order to transfer data efficiently. As external display interface, the R61509V supports RGB interface and VSYNC interface, which enables data rewrite operation without flickering the moving picture on display. In RGB interface operation, the display operation is executed in synchronization with synchronous signals VSYNCX, HSYNCX, and DOTCLK. In synchronization with these signals, the R61509V writes display data according to data enable signal (ENABLE) via RGB data signal bus (DB17-0). The display data is stored in the R61509V’s GRAM so that data is transferred only when rewriting the frames of moving picture and the data transfer required for moving picture display can be minimized. The window address function specifies the RAM area to write data for moving picture display, which enables displaying a moving picture and RAM data in other than the moving picture area simultaneously. To access the R61509V’s internal RAM in high speed with low power consumption, use high-speed write function (HWM = 1) in RGB or VSYNC interface operation. In VSYNC interface operation, the internal display operation is synchronized with the frame synchronization signal (VSYNCX). The VSYNC interface enables a moving picture display via system interface by writing the data to the GRAM at faster than the minimum calculated speed in synchronization with the falling edge of VSYNCX. In this case, there are restrictions in setting the frequency and the method to write data to the internal RAM. The R61509V operates in either one of the following four modes according to the state of the display. The operation mode is set in the external display interface control register (R0Ch). When switching from one mode to another, make sure to follow the relevant sequence in setting instruction bits. Table 56 Operation Modes Operation Mode RAM Access Setting (RM) Display Operation Mode (DM) Internal clock operation (displaying still pictures) System interface (RM = 0) Internal clock operation (DM1-0 = 00) RGB interface (1) (displaying moving pictures) RGB interface (RM = 1) RGB interface (DM1-0 = 01) RGB interface (2) (rewriting still pictures while displaying moving pictures) System interface (RM = 0) RGB interface (DM1-0 = 01) VSYNC interface (displaying moving pictures) System interface (RM = 0) VSYNC interface (DM1-0 = 10) Notes: 1. Instructions are set only via system interface. 2. When RGB interface is used, instructions should be transferred via clock synchronous serial interface. 3. RGB and VSYNC interfaces cannot be used simultaneously. 4. Do not make changes to the RGB interface operation setting (RIM1-0) while RGB interface is in operation. 5. See the “External Display Interface” section for the sequences when switching from one mode to another. Rev. 0.11 April 25, 2008, page 96 of 181 R61509V Target Spec CSX System interface RS WRX (RDX) System interface 18/16/9/8 System DB17-0 RGB interface 18/16 R61509V ENABLE VSYNCX RGB interface HSYNCX DOTCLK Figure 13 Internal clock operation The display operation is synchronized with signals generated from internal oscillator’s clock (OSC) in this mode. All input via external display interface is disabled in this operation. The internal RAM can be accessed only via system interface. RGB interface operation (1) The display operation is synchronized with frame synchronous signal (VSYNCX), line synchronous signal (HSYNCX), and dot clock signal (DOTCLK) in RGB interface operation. These signals must be supplied during the display operation via RGB interface. The R61509V transfers display data in units of pixels via DB17-0 pins. The display data is stored in the internal RAM. The combined use of window address function can minimize the total number of data transfer for moving picture display by transferring only the data to be written in the moving picture RAM area when it is written and enables the R61509V to display a moving picture and the data in other than the moving picture RAM area simultaneously. The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated inside the R61509V by counting the number of clocks of line synchronous signal (HSYNCX) from the falling edge of the frame synchronous signal (VSYNCX). Make sure to transfer pixel data via DB17-0 pins in accordance with the setting of these periods. Rev. 0.11 April 25, 2008, page 97 of 181 R61509V Target Spec RGB interface operation (2) This mode enables the R61509V to rewrite RAM data via system interface while using RGB interface for display operation. To rewrite RAM data via system interface, make sure that display data is not transferred via RGB interface (ENABLE = high). To return to the RGB interface operation, change the ENABLE setting first. Then set an address in the RAM address set register and R22h in the index register. VSYNC interface operation The internal display operation is synchronized with the frame synchronous signal (VSYNCX) in this mode. This mode enables the R61509V to display a moving picture via system interface by writing data in the internal RAM at faster than the calculated minimum speed via system interface from the falling edge of frame synchronous (VSYNCX). In this case, there are restrictions in speed and method of writing RAM data. For details, see the “VSYNC Interface” section. As external input, only VSYNCX signal input is valid in this mode. Other input via external display interface becomes disabled. The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated from the frame synchronous signal (VSYNCX) inside the R61509V according to the instruction settings for these periods. FMARK interface operation In the FMARK interface operation, data is written to internal RAM via system interface synchronizing with the frame mark signal (FMARK), realizing tearing-less moving picture while using conventional system interface. In this case, there are restrictions in speed and method of writing RAM data. See “FMARK interface” for detail. Rev. 0.11 April 25, 2008, page 98 of 181 R61509V Target Spec System Interface The following are the kinds of system interfaces available with the R61509V. The interface operation is selected by setting the IM2/1/0 pins. The system interface is used for instruction setting and RAM access. Table 57 IM Bit Settings and System Interface IM2 IM1 IM0 Interfacing Mode with Host Processor DB Pins Colors 0 0 0 80-system 18-bit interface DB17-0 262,144 0 0 1 80-system 9-bit interface DB17-9 262,144 0 1 0 80-system 16-bit interface DB17-10, DB8-1 262,144 *see Note1 0 1 1 80-system 8-bit interface DB17-10 262,144 *see Note2 1 0 * Clock synchronous serial interface - 65,536 1 1 0 Setting inhibited - - 1 1 1 Setting inhibited - - Notes: 1. 65,536 colors in 16-bit single transfer mode. 2. 262,144 colors is 8-bit 3-transfer mode. 65,536 colors in 8-bit 2-transfer mode. Rev. 0.11 April 25, 2008, page 99 of 181 R61509V Target Spec 80-System 18-bit Bus Interface IM[2:0] = 000 CSn CSX A1 RS HOST HWR PROCESSOR R61509V WRX (RDX) (RDX) DB17-0 D31-0 18 Figure 14 18-bit Interface Instruction write Input DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 Instruction IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 DB 9 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 DB 0 Instruction code Device code read / Instruction read Device code IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 Output DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 DB 0 Instruction code Figure 15 18-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read) RAM data write Input DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 DB 0 GRAM write data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 1 pixel Note: Normal display in 262,144 colors. RAM data read GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Read data RD [17] RD [16] RD [15] RD [14] RD [13] RD [12] RD [11] RD [10] RD [9] RD [8] RD [7] RD [6] RD [5] RD [4] RD [3] RD [2] RD [1] RD [0] Output pins DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 DB 0 Figure 16 18-bit Interface Data Format (RAM Data Write / RAM Data Read) Rev. 0.11 April 25, 2008, page 100 of 181 R61509V Target Spec 80-System 16-bit Bus Interface IM[2:0] = 010 CSn CS: A1 RS HOST HWR PROCESSOR R61509V WR: (RD:) (RD:) DB17-10, 8-1 D15-0 16 Figure 17 16-bit Interface Instruction Input DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 Instruction IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 Instruction code Device code read / Instruction read Device code IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 Output DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 Instruction code DB 0 Note: Device code cannot be read in 2 transfer mode. Figure 18 16-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read) Rev. 0.11 April 25, 2008, page 101 of 181 R61509V Target Spec RAM data write (1-transfer mode: TRI = 0) (EPE=2'h0) Input DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 R5 R4 R3 R2 R1 R0 G5 G4 G3 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 G2 G1 G0 B5 B4 B3 B2 B1 1 pixel B0 Note: 65,536 colors are available. RAM data write (2-transfer mode: TRI = 0, DFM = 0) First transfer Second transfer Input pins DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 DB 17 DB 16 GRAM write data WD [17] WD [16] WD [15] WD [14] WD [13] WD [12] WD [11] WD [10] WD [9] WD [8] WD [7] WD [6] WD [5] WD [4] WD [3] WD [2] WD [1] WD [0] RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 1 pixel Note: Normal display in 262,144 colors. RAM data write (2-transfer mode: TRI = 1, DFM = 1) First transfer Second transfer DB DB DB 10 8 7 Input pins DB 2 DB 1 DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 GRAM write data WD [17] WD [16] WD [15] WD [14] WD [13] WD [12] WD [11] WD [10] WD [9] WD [8] WD [7] RGB assignment R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 WD [6] WD [5] WD [4] WD [3] WD [2] WD [1] WD [0] G0 B5 B4 B3 B2 B1 B0 1 pixel Note: Normal display in 262,144 colors. Figure 19 16-bit Interface Data Format (RAM Data Write) RAM data read (1-transfer mode: TRI = 0) GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Read data RD [17] RD [16] RD [15] RD [14] RD [13] RD [12] RD [11] RD [10] RD [9] RD [8] RD [7] RD [6] RD [5] RD [4] RD [3] RD [2] RD [1] RD [0] Output pins DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 Note: RAM data cannot be read in 2-transfer mode. Figure 20 16-bit Interface Data Format (RAM Data Read) Rev. 0.11 April 25, 2008, page 102 of 181 R61509V Target Spec Data Transfer Synchronization in 16-bit Bus Interface Operation The R61509V supports data transfer synchronization function to reset the counters for upper 16-/2-bit and lower 2-/16-bit transfers in 16-bit 2-transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 000H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 2/16 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway. Make sure to execute data transfer synchronization after reset operation before transferring instruction. RS RDX WRX DB17 ~ DB10, DB8 ~ DB1 Upper Lower "000"H "000"H "000"H "000"H Upper Lower Upper (16-bit transfer synchronization) Figure 21 16-bit Data Transfer Synchronization Rev. 0.11 April 25, 2008, page 103 of 181 R61509V Target Spec 80-System 9-bit Bus Interface When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first (the LSB is not used). The RAM write data is also divided into upper and lower 9 bits, and the upper 9 bits are transferred first. The unused DB pins must be fixed at either IOVCC or IOGND level. When transferring the index register setting, make sure to write upper byte (8 bits). IM[2:0] = 001 CSn CS: A1 RS HOST HWR PROCESSOR WR: (RDX) R61509V (RD:) DB17-9 DB8-0 D15-0 9 9 Figure 22 9-bit Interface Instruction write First transfer Second transfer Input DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 Instruction IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 DB 9 DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 DB 17 DB 16 DB 15 DB 14 DB 11 DB 10 DB 9 Instruction code Device code read / Instruction read Instruction IB 15 IB 14 IB 13 IB 12 Output DB 17 DB 16 DB 15 DB 14 IB 11 IB 10 IB 9 IB 8 DB 11 DB 10 First transfer DB 13 DB 12 Second transfer DB 9 DB 13 DB 12 DB 9 instruction code Figure 23 9-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read) Rev. 0.11 April 25, 2008, page 104 of 181 R61509V Target Spec RAM data write Second transfer First transfer Input GRAM write data DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 DB 17 DB 6 DB 5 DB 14 DB 13 DB 12 DB 11 DB 10 DB 9 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 1 pixel Note: Normal display in 262,144 colors. RAM read data GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Read data RD [17] RD [16] RD [15] RD [14] RD [13] RD [12] RD [11] RD [10] RD [9] RD [8] RD [7] RD [6] RD [5] RD [4] RD [3] RD [2] RD [1] RD [0] Output pins DB 17 DB 16 DB 15 DB 14 DB DB 13 12 First transfer DB 11 DB 10 DB 9 DB 17 DB 16 DB 15 DB DB DB 14 13 12 Second transfer DB 11 DB 10 DB 9 Figure 24 9-bit Interface Data Format (RAM Data Write/ RAM Data Read) Data Transfer Synchronization in 9-bit Bus Interface Operation The R61509V supports data transfer synchronization function to reset the counters for upper and lower 9bit transfers in 9-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 9 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway. Make sure to execute data transfer synchronization after reset operation before transferring instruction. RS RDX WRX DB17 ~ DB9 Upper Lower "00"H "00"H "00"H "00"H Upper Lower Upper (9-bit transfer synchronization) Figure 25 9-bit Data Transfer Synchronization Rev. 0.11 April 25, 2008, page 105 of 181 R61509V Target Spec 80-System 8-bit Bus Interface When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is also divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is expanded into 18 bits internally as shown below. The unused DB pins must be fixed at either IOVCC1 or GND level. When transferring the index register setting, make sure to write upper byte (8 bits). IM[2:0] = 001 CSn CSX A1 RS HOST HWR PROCESSOR R61509V WRX (RDX (RDX DB17-10 DB9-0 D15-0 8 10 Figure 26 8-bit Interface Instruction write Second transfer First transfer Input DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 Instruction IB 15 IB 14 IB 13 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 Instruction code Device code read / Instruction read Instruction IB 15 IB 14 IB 13 Input DB 17 DB 16 DB 15 IB 12 IB 11 IB 10 IB 9 IB 8 IB 7 IB 6 IB 5 IB 4 DB 12 DB 11 DB 10 DB 17 DB 16 DB 15 DB 14 First transfer DB 14 DB 13 IB 3 IB 2 IB 1 IB 0 DB 11 DB 10 Second transfer DB 13 DB 12 Note: Device code canot be read out in 3 transfer mode. Figure 27 8-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read) Note: RAM data cannot be read in the 3-transfer mode. Rev. 0.11 April 25, 2008, page 106 of 181 R61509V Target Spec RAM data write (2-transfer mode: TRI = 0) Second transfer First transfer Input DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 R5 R4 R3 R2 R1 R0 G5 G4 G3 DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 G2 G1 G0 B5 B4 B3 B2 B1 1 pixel B0 Note: Normal display in 65,536 colors. RAM data write (3-transfer mode: TRI = 1, DFM = 1) First transfer Input GRAM write data Third transfer Second transfer DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 1 pixel Note: Normal display in 262,144 colors. Figure 28 8-bit Interface Data Format (RAM Data Write) RAM data read GRAM data R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Read data RD [17] RD [16] RD [15] RD [14] RD [13] RD [12] RD [11] RD [10] RD [9] RD [8] RD [7] RD [6] RD [5] RD [4] RD [3] RD [2] RD [1] RD [0] Output pins DB 17 DB 16 DB 15 DB 14 DB DB 13 12 First transfer DB 11 DB 10 DB 17 DB 16 DB 15 DB DB DB 14 13 12 Second transfer DB 11 DB 10 Note: RAM data cannot be read in 3-transfer mode. Figure 29 8-bit Interface Data Format (RAM Data Read) Rev. 0.11 April 25, 2008, page 107 of 181 R61509V Target Spec Data Transfer Synchronization in 8-bit Bus Interface operation The R61509V supports data transfer synchronization function to reset the counters for upper and lower 8bit transfers in 8-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 8 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway. Make sure to execute data transfer synchronization after reset operation before transferring instruction. RS RDX WRX DB17 ~ DB10 Upper Lower "00"H "00"H "00"H "00"H Upper Lower Upper (8-bit transfer synchronization) Figure 30 8-bit Data Transfer Synchronization Rev. 0.11 April 25, 2008, page 108 of 181 R61509V Target Spec Serial Interface The serial interface is selected by setting the IM2/1 pins to the IOVCC/GND levels, respectively. The data is transferred via chip select line (CS), serial transfer clock line (SCL), serial data input line (SDI), and serial data output line (SDO). In serial interface operation, the IM0_ID pin functions as the ID pin, and the DB17-0 pins, not used in this mode, must be fixed at either IOVCC or GND level. The R61509V recognizes the start of data transfer on the falling edge of CSX input and starts transferring the start byte. It recognizes the end of data transfer on the rising edge of CSX input. The R61509V is selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device identification code assigned to the R61509V are compared and both 6-bit data match. Then, the R61509V starts taking in subsequent data. The least significant bit of the device identification code is determined by setting the ID pin. Send "01110” to the five upper bits of the device identification code. Two different chip addresses must be assigned to the R61509V because the seventh bit of the start byte is register select bit (RS). When RS = 0, index register write operation is executed. When RS = 1, either instruction write operation or RAM read/write operation is executed. The eighth bit of the start byte is R/W bit, which selects either read or write operation. The R61509V receives data when the R/W = 0, and transfers data when the R/W = 1. When writing data to the GRAM via serial interface, the data is written to the GRAM after it is transferred in two bytes. The R61509V writes data to the GRAM in units of 18 bits by adding the same bits as the MSBs to the LSB of R and B dot data. After receiving the start byte, the R61509V starts transferring or receiving data in units of bytes. The R61509V transfers data from the MSB. The R61509V’s instruction consists of 16 bits and it is executed inside the R61509V after it is transferred in two bytes (16 bits: DB15-0) from the MSB. The R61509V expands RAM write data into 18 bits when writing them to the internal GRAM. The first byte received by the R61509V following the start byte is recognized as the upper eight bits of instruction and the second byte is recognized as the lower 8 bits of instruction. When reading data from the GRAM, valid data is not transferred to the data bus until first five bytes of data are read from the GRAM following the start byte. The R61509V sends valid data to the data bus when it reads the sixth and subsequent byte data. Table 58 Start Byte Format Transferred Bits Start byte format S Transfer start 1 1 The ID bit is determined by setting the IM0_ID pin. Table 59 Functions of RS, R/W Bits RS R/W Function 0 0 Set index register 0 1 Setting inhibited 1 0 Write instruction or RAM data 1 1 Read instruction or RAM data Rev. 0.11 April 25, 2008, page 109 of 181 3 4 5 6 Device ID code 0 Note: 2 1 1 0 ID 7 8 RS R/W R61509V Target Spec Instruction Input D 15 D 14 D 13 Instruction IB 15 IB 14 IB 13 First transfer (upper) D D D D9 12 11 10 IB 12 IB 11 IB 10 IB 9 Sec on d t ransfer (lower) D8 D7 D6 D5 D4 D3 D2 D1 D0 IB 8 IB 7 IB 6 IB 5 IB 4 IB 3 IB 2 IB 1 IB 0 D 7 D 6 Sec on d t ransfer (lower) D D D D D 1 5 4 3 2 D 0 G2 G1 G0 B1 Instruction code RAM data write Input D 15 D 14 D 13 GRAM write data R5 R4 R3 First tran sfer (upper) D D D 12 11 10 R2 R1 R0 D 9 D 8 G5 G4 G3 1 pixel Figure 31 Serial Interface Data Format Rev. 0.11 April 25, 2008, page 110 of 181 B5 B4 B3 B2 B5 Note: 65,536-color display in SPI R61509V Target Spec (a) Clock synchronization serial data transfer (basic mode) End of transfer Transfer start CSX input 1 2 3 4 5 6 7 “0” “1” “1” “1” “0” ID RS SCL input 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 D9 D8 D7 D6 D5 D4 D3 D2 D1 LSB MSB SDI input Device ID code 24 RW D15 D14 D13 D12 D11 D10 D0 RS RW Start byte Set IR (index register), instruction, write RAM data SDO output D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Read instruction, RAM data (b) Clock synchronization serial consecutive data transfer CSX input SCL input SDI input Start byte Instruction (1) Upper 8 bits Instruction (1) Lower 8 bits Instruction (2) Upper 8 bits Instruction (2) Lower 8 bits End Start Note: The eight bits read after start byte input is recognized as the upper byte of instruction. Instruction execution time (1) (c) RAM read data transfer CSX input SCL input Start byte RS = 1 R/W = 1 SDI input SDO output Dummy read Dummy read Dummy read Dummy read Dummy read RAM read Upper 8 bits 5 1 2 3 4 Start RAM read Lower 8 bits Note: Valid data is not sent until the R61509V reads five bytes from the GRAM after start byte input . The R61509V sends valid data when it reads the sixth and subsequent bytes. (d) Instruction read CSX input SCL input Start byte RS=0 R/W=1 SDI input Instruction read Lower 8 bits SDO output Instruction read Upper 8 bits Instruction read Lower 8 bits End Start Note: Valid RAM data is read out right after the start byte. Figure 32 Data Transfer in Serial Interface Rev. 0.11 April 25, 2008, page 111 of 181 End R61509V Target Spec VSYNC Interface The R61509V supports VSYNC interface, which enables displaying a moving picture via system interface by synchronizing the display operation with the VSYNCX signal. VSYNC interface can realize moving picture display with minimum modification to the conventional system operation. VSYNCX CSX HOST PROCESSOR RS R61509V WRX DB17-0, 8-1 16 Figure 33 VSYNC Interface The VSYNC interface is selected by setting DM1-0 = 10 and RM = 0. In VSYNC interface operation, the internal display operation is synchronized with the VSYNCX signal. By writing data to the internal RAM at faster than the calculated minimum speed (internal display operation speed + margin), it becomes possible to rewrite the moving picture data without flickering the display and display a moving picture via system interface. The display operation is performed in synchronization with the internal clock signal generated from the internal oscillator and the VSYNCX signal. The display data is written in the internal RAM so that the R61509V rewrites the data only within the moving picture area and minimize the number of data transfer required for moving picture display. VSYNCX RAM data write via system interface Display operation synchronized with internal clock Figure 34 Moving Picture Data Transfers via VSYNC Interface Rev. 0.11 April 25, 2008, page 112 of 181 R61509V Target Spec The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which must be more than the values calculated from the following formulas, respectively. Internal clock frequency (fosc) [Hz] = FrameFrequency × ( DisplayLin es( NL ) + FrontPorch( FP ) + BackPorch( BP )) × 23( clocks ) × var iance 240 × DisplayLines( NL ) RAMWriteSpeed (min .)[ Hz ] > ( BackPorch( BP ) + DisplayLines( NL ) − m arg ins ) × 23( clocks ) × 1 fosc Note: When RAM write operation is not started right after the falling edge of VSYNCX, the time from the falling edge of VSYNCX until the start of RAM write operation must also be taken into account. An example of calculating minimum RAM writing speed and internal clock frequency in VSYNC interface operation is as follows. [Example] Panel size Total number of lines (NL) Back/front porch Frame frequency Internal clock frequency 240 RGB × 432 lines (NL = 6’h35: 432 lines) 432 lines 14/2 lines (BP = 4h’E, FP = 4’h2) 60 Hz 678 kHz Internal clock frequency (fosc) [Hz] = 678 kHz × 1.07 / 1.0 = 726 kHz Notes: 1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of ±7% for variances and guarantee that display operation is completed within one VSYNCX cycle. 2. This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in voltage change are not considered in this example. It is necessary to include a margin for these factors. Minimum speed for RAM writing [Hz] > 240 × 432 / {((14 + 432 - 2) lines × 23 clocks) × 1/726 kHz} = 7.4 MHz Notes: 1. In this example, it is assumed that the R61509V starts writing data in the internal RAM on the falling edge of VSYNCX. 2. There must be at least a margin of 2 lines between the line to which the R61509V has just written data and the line where display operation on the LCD is performed. In this example, the RAM write operation at a speed of 7.4 MHz or more, which starts on the falling edge of VSYNCX, guarantees the completion of data write operation in a certain line address before the R61509V starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display. Rev. 0.11 April 25, 2008, page 113 of 181 R61509V Target Spec RAM write VSYNCX Back porch (14 lines) RC oscillation ±7% [line] Display operation 432 Line processing FP = 2H Main panel Moving picture display (432 lines) RAM write 7.4 MHz Display operation 16.67 [ms] 0 Front porch (2 lines) (60 Hz) BP = 14H VSYNCX Blank period Figure 35 Write/Display Operation Timing via VSYNC Interface Notes to VSYNC Interface Operation 1. The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margins in setting RAM write speed for VSYNC interface operation. 2. The above example shows the values when writing over the full screen. Extra margin will be created if the moving picture display area is smaller than that. RAM write Back porch (14 lines) RC oscillation ±7% [line] 432 Display operation FP = 2H (16 lines) 376 Line processing Base image Moving picture display (360 lines) (56 lines) RAM write 7.4MHz 16 0 Front porch (2 lines) BP = 14H VSYNCX VSYNC Figure 36 RAM Write Speed Margins Rev. 0.11 April 25, 2008, page 114 of 181 Display operation [ms] 16.67 (60 Hz) R61509V Target Spec 3. The front porch period continues from the end of one frame period to the next VSYNCX input. 4. The instructions to switch from internal clock operation (DM1-0 = 00) to VSYNC interface operation modes and vice versa are enabled from the next frame period. 5. The partial display and vertical scroll functions are not available in VSYNC interface operation. 6. In VSYNC interface operation, set AM = 0 to transfer display data correctly. Internal Clock Operation to VSYNC Interface VSYNC Interface to Internal Clock Operation Internal clock operation VSYNC interface operation AM = 0 RAM address set Set DM1-0 = 01 and RM = 0 for VSYNC interface Display operation in synchronization with internal clocks *Instruction setting for the RGB interface operation is enebled from the next frame period. Set internal clock operation mode* (DM1-0 = 00 and RM = 0) Wait one frame period or more Internal clock operation Display operation in synchronization with VSYNCX *Instruction setting to the internal clock operation is enebled from the next frame period. Display operation in synchronization with internal clocks Set index register to R202h Note: Continue VSYNC interface signals at least for one frame period after setting DM1-0, RM bits to internal clock operation. Wait one frame period or more Write data to RAM via VSYNC interface Display operation in synchronization with VSYNCX Operation via VSYNC interface Internal clock synchronous operation mode setting (DM[1:0]=00, RM=0) Wait one frame period or more Internal clock operation Note: Input the VSYNC interface signals before setting the DM1-0 and RM bits to the VSYNC interface operation. Figure 37 Sequences to Switch between VSYNC and Internal Clock Operation Modes Rev. 0.11 April 25, 2008, page 115 of 181 R61509V Target Spec FMARK Interface In the FMARK interface operation, data is written to internal RAM via system interface synchronizing with the frame mark signal (FMARK), realizing tearing less video image while using conventional system interface. FMARK output position is set in units of line using FMP bit. Set the bit considering data transfer speed. FMARK HOST PROCESSOR CSX RS R61509V WRX DB17-10, 8-1 16 Figure 38 FMARK Interface In this operation, moving picture display is enabled via system interface by writing data at higher than the internal display operation frequency to a certain degree, which guarantees rewriting the moving picture RAM area without causing flicker on the display. The data is written in the internal RAM. Therefore, when moving picture is displayed, data is written only to the moving picture display area without using RGB or VSYNC interface, minimizing number of data transfer required for moving picture display. 㩷 㩷FMARK 㩷 㩷 RAM data 㩷write via 㩷system interface 㩷Display operation 㩷synchronized with internal clock 㩷 Figure 39 Moving Picture Data Transfers via FMARK Function Rev. 0.11 April 25, 2008, page 116 of 181 R61509V Target Spec When transferring data in synchronization with FMARK signal, minimum RAM data write speed and internal clock frequency must be taken into consideration. They must be more than the values calculated from the following equations. Internal clock frequency (fosc) [Hz] = FrameFrequency × ( DisplayLin es( NL ) + FrontPorch( FP ) + BackPorch( BP )) × 23( clocks ) × var iance 240 × DisplayLin es( NL ) RAMWriteSp eed (min .)[ Hz ] > ( FrontPorch ( FP ) + BackPorch ( BP ) + DisplayLin es( NL ) − m arg ins ) × 16 ( clocks ) × 1 fosc Note: When RAM write operation is not started immediately following the rising edge of FMARK, the time from the rising edge of FMARK until the start of RAM write operation must also be taken into account. Examples of calculating minimum RAM data write speed and internal clock frequency is as follows. [Example] Panel size Total number of lines (NL) Back/front porch Frame marker position (FMP) Frame frequency Internal oscillation frequency 240 RGB × 432 lines (NL = 6’h35: 432 lines) 432 lines 14/2 lines (BP = 4h’E, FP = 4’h2) Display end line: 432nd line (FMP = 9’h1BF) 60 Hz 678kHz Internal oscillation frequency (fosc) [Hz] = 678kHz × 1.07 / 1.0 = 726 kHz (variance is taken into account) Notes: 1.When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of ±7% for variances and guarantee that display operation is completed within one FMARK cycle. 2.This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in external resistors and voltage change are not considered in this example. It is necessary to include a margin for these factors. Minimum speed for RAM writing [Hz] > 240 × 320 / {((2+14 + 320 – 2) lines × 16 clocks) × 1/726 kHz} = 7.4 MHz Notes: 1. In this example, it is assumed that the R61509V starts writing data in the internal RAM on the rising edge of FMARK. 2.There must be at least a margin of 2 lines between the line to which the R61509V has just written data and the line where display operation on the LCD is performed. 3.The FMARK signal output position is set to the line specified by FMP[8:0] bits. In this example, RAM write operation at a speed of 7.4MHz or more, when starting on the rising edge of FMARK, guarantees the completion of data write operation in a certain line address before the R61509V Rev. 0.11 April 25, 2008, page 117 of 181 R61509V Target Spec starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display. RAM write Back porch (14 lines) RC oscillation 7% [line] 432 Front porch (2 lines) Display operation RAM write 7.4MHz Line processing FMARK Main panel Moving picture display (432 lines) Display operation 0 FP+BP=16H [ms] 16.67 (60Hz) FMARK Front porch (2 lines) Back porch (14 lines) Figure 40 Note to display operation synchronous data transfer using FMARK signal The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margin in setting RAM write speed for this operation. FMP bit setting The microcomputer detects FMARK signal outputted at the position defined by FMP bit. The R61509V outputs an FMARK pulse when the R61509V is driving the line specified by FMP bits. The FMARK signal can be used as a trigger signal to write display data in synchronization with display operation by detecting the address where data is read out for display operation. The FMARK output interval is set by FMI bits. Set FMI bits in accordance with display data rewrite cycle and data transfer rate. Rev. 0.11 April 25, 2008, page 118 of 181 R61509V Target Spec Table 60 Table 61 FMP[8:0] FMARK output position FMI[2] FMI[1] FMI[0] FMARK Output interval 9’h000 0 0 0 0 9’h001 1st line One frame period 0 0 1 2nd line 2 frame periods 9’h002 0 1 1 4 frame periods 1 0 1 : 9’h1BD 445th line 9’h1BE 446th line 9’h1BF 447 line 9’h1C0 ~ 1FF Setting disabled th Rev. 0.11 April 25, 2008, page 119 of 181 Other setting 6 frame periods Setting disabled R61509V Target Spec FMP Setting Example FMARK output position FMP=9’h008 FMP=9’h008 NL=6’h35 (432 lines) FP=4’h8 BP=4’h8 VL=8’h00 Line address 0 (1st line) 1 (2nd line) 2 (3rd line) 3 (4th line) 4 (5th line) 5 (6th line) 6 (7th line) 7 (8th line) 8 (1st line) 9 (2nd line) 10 (3rd line) Base image Back porch RAM physical line address AD[16:8]=9’h000 AD[16:8]=9’h001 AD[16:8]=9’h002 Display area NL=6'h35 439 (432nd line) 440 (1st line) 441 (2nd line) 442 (3rd line) 443 (4th line) 444 (5th line) 445 (6th line) 446 (7th line) 447 (8th line) AD[16:8]=9’h13F Front porch Figure 41 Rev. 0.11 April 25, 2008, page 120 of 181 R61509V Target Spec RGB Interface The R61509V supports the RGB interface. The interface format is set by RM[1:0] bits. The internal RAM is accessible via RGB interface. Table 62 RGB interface RIM 0 1 Note: RGB Interface DB Pin 18-bit RGB interface DB17-0 16-bit RGB interface Using multiple interface at a time is prohibited. DB17-13, DB11-1 RGB Interface The display operation via RGB interface is synchronized with VSYNCX, HSYNCX, and DOTCLK. The data can be written only within the specified area with low power consumption by using window address function. In RGB interface operation, front and back porch periods must be made before and after the display period. When RGB interface is used, instructions should be transferred via clock synchronous serial interface. RGB and 80-system bus interfaces cannot be used simultaneously. VSYNCX ENABLE (V) Back porch period (BP) Moving picture display area Display period (NL) Front porch period (FP) HSYNCX DOTCLK ENABLE (H) DB17-0 VSYNCX: Frame synchronization signal HSYNCX: Line synchronization signal DOTCLK: Dot clock ENABLE: Data enable signal DB 17-0: RGB (6:6:6) display data Back porch period (BPP): Front porch period (FPP): Display period: The number of lines for one frame: 14H ҈ BP ҈ 2H 14H ҈ FP ҈ 2H FP + BP ҇ 16H NL ҇ 432H FP + NL + BP Notes: 1. The front porch period continues until next VSYNCX input is detected. 2. Make sure to match the VSYNCX, HSYNCX, and DOTCLK frequencies to the resolution of liquid crystal panel. Figure 42 Display Operation via RGB Interface Rev. 0.11 April 25, 2008, page 121 of 181 R61509V Target Spec Polarities of VSYNCX, HSYNCX, ENABLE, and DOTCLK Signals The polarities of VSYNCX, HSYNCX, ENABLE, and DOTCLK signals can be changed by setting the DPL, EPL, HSPL, and VSPL bits, respectively for convenience of system configuration. 㪟㫊㫐㫅㪺 㪟㪙㪧 㪟㪘㪻㫉 㪟㪝㪧 㪭㫊㫐㫅㪺 㪙㪧 㪭㪙㪧 㪭㪘㪻㫉 Valid data period 㪭㪝㪧 㪝㪧 Figure 43 Table 63 Parameters Symbols Min. Typ. Max. Step Unit Horizontal Synchronization Hsync 2 10 16 1 DOTCLKCYC Horizontal Back Porch HBP 2 20 24 1 DOTCLKCYC Horizontal Address HAdr - 240 - 1 DOTCLKCYC Horizontal Front Porch HFP 2 10 16 1 DOTCLKCYC Vertical Synchronization Vsync 1 2 4 1 Line Vertical Back Porch VBP 1 2 - 1 Line Vertical Address VAdr - 432 - 1 Line Vertical Front Porch VFP 3 4 - 1 Line Note: The values of typ. are based on the following conditions; the panel resolution is QVGA (240 × 432), the clock frequency is 7.39MHz, and the frame frequency is about 60Hz.) Vsync + VBP = BP. VFP = FP. Vadr = NL. (Number of clocks per 1H) ≥ (Number of RTN clocks) × (1/1 div.) × (PCDIVL + PCDIVH) The setting example is shown in the following page. Rev. 0.11 April 25, 2008, page 122 of 181 R61509V Target Spec Setting Example of Display Control Clock in RGB Interface Operation Register The display operation via DPI is performed in synchronization with the internal clock (PCLKD) that is generated by dividing PCLK frequency. PCDIVH[3:0]: When PCLKD is High, the number of clocks is set in unit of 1 clock. PCDIVL[3:0]: When PCLKD is Low, the number of clocks is set in unit of 1 clock. PCDIVH and PCDIVL (division ratio setting registers) should be set so that the difference between PCLKD frequency and the internal oscillation clock (678kHz) is minimized. Set PCDIVL to PCDIVH or PCDIVH − 1. Make sure (number of PCLK frequency) ≥ (number of RTN clocks) ∗ (division ratio of DIV) ∗ (PCDIVH + PCDIVL) Setting example (frame frequency: 60Hz) Internal clock: PCLK: Internal oscillation clock = 678kHz 1/1 Div. = (DIVE[2:0] = 2’b0) HFP = 10 clocks FP = 8’h8, BP = 8’h8, NL = 6B (432 lines) Æ 59.35Hz Hsync = 10 clocks HBP = 20 clocks HFP = 10 clocks 60Hz × (8+432+8) lines (10+20+240+10) clocks = 7.53MHz PCLK frequency = 7.53MHz 7.53MHz/678kHz = 11.11 (Set PCDIVH and PCDIVL so that PCLK frequency is divided into 11.) 7.53/11 = 685kHz 685kHz / 25 clocks / 448 lines = 61.2Hz PCDIVH = 4’h6 PCDIVL = 4’h5 㪧㪚㪛㪠㪭㪟㪔㪋㩾㪿㪍 㪧㪚㪛㪠㪭㪣㪔㪋㩾㪿㪌 㪧㪚㪣㪢 㪧㪚㪛㪠㪭㪟 㪧㪚㪛㪠㪭㪣 Internal clock 㪧㪚㪣㪢㪛 㪟㪪㪰㪥㪚 Figure 44 Rev. 0.11 April 25, 2008, page 123 of 181 R61509V Target Spec RGB Interface Timing The timing relationship of signals in RGB interface operation is as follows. 16-/18-Bit RGB Interface Timing One frame Back porch period Front porch period VSYNCX HSYNCX DOTCLK ENABLE DB17-0 1H or more VSYNCX 1H HLW ҈ 1CLK HSYNCX 1 clock DOTCLK DTST ҈ 1CLK ENABLE DB17-0 Valid data Figure 45 Note: VLW: HLW: DTST: VSYNCX Low period HSYNCX Low period data transfer setup time Rev. 0.11 April 25, 2008, page 124 of 181 R61509V Target Spec Moving Picture Display via RGB Interface The R61509V supports RGB interface for moving picture display and incorporates RAM for storing display data, which provides the following advantages in displaying a moving picture. 1. 2. 3. 4. The window address function enables transferring data only within the moving picture area It becomes possible to transfer only the data written over the moving picture area By reducing data transfer, it can contribute to lowering the power consumption of the whole system The data in still picture area (icons etc.) can be written over via system interface while displaying a moving picture via RGB interface RAM access via system interface in RGB interface operation The R61509V allows RAM access via system interface in RGB interface operation. In RGB interface operation, data is written to the internal RAM in synchronization with DOTCLK while ENABLE is “Low”. When writing data to the RAM via system interface, set ENABLE “High” to stop writing data via RGB interface. Then set RM = “0” to enable RAM access via system interface. When reverting to the RGB interface operation, wait for the read/write bus cycle time. Then, set RM = “1” and the index register to R22h to start accessing RAM via RGB interface. If there is a conflict between RAM accesses via two interfaces, there is no guarantee that the data is written in the RAM. The following is an example of rewriting still picture data via system interface while displaying a moving picture via RGB interface. updating frame data updating frame data VSYNCX ENABLE DOTCLK DB17-0 Note 3) Note 3) System interface Index R22 RM = 0 RAM address set Index R22 writing moving picture area Notes: Update data in the area other than moving picture area RAM address set RM = 1 Index R22 writing moving picture area writing still picture area 1. In RGB interface operation, RAM address AD16-0 is set in the address counter on the falling edge of VSYNCX. 2. Set AD16-0 bits and the index R22h before starting RAM access via RGB interface. 3. When switching to the system interface operation after writing data via RGB interface, wait at least one write cycle (tcycw). 6/25 00: 6/2 00:00 00 Moving picture area 6/25 00: 6/2 00:00 00 Moving picture area Figure 46 Updating the Still Picture Area while Displaying Moving Picture Rev. 0.11 April 25, 2008, page 125 of 181 R61509V Target Spec 16-Bit RGB Interface The 16-bit RGB interface is selected by setting RIM = 1. The display operation is synchronized with VSYNCX, HSYNCX, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 16-bit ports while data enable signal (ENABLE) allows RAM access via RGB interface. Instruction bits can be transferred only via system interface. RIM = 1 VSYNCX HSYNCX HOST PROCESSOR DOTCLK R61509V ENABLE DB17-13, 11-1 16 DB12,0 2 Data format for the16-bit interface (RIM = 1) Input GRAM data DB 17 R5 DB 16 R4 DB 15 DB 14 DB 13 R3 R2 R1 R0 DB 11 DB 10 DB 9 DB 8 G5 G4 G3 G2 1 pixel DB 7 G1 DB 6 G0 DB 5 B5 DB 4 B4 DB 3 B3 B2 DB 1 B1 B0 Note: 65,536-color display Figure 47 Example of 16-Bit RGB Interface and Data Format Rev. 0.11 April 25, 2008, page 126 of 181 DB 2 R61509V Target Spec 18-bit RGB Interface The 18-bit RGB interface is selected by setting RIM = 0. The display operation is synchronized with VSYNCX, HSYNCX, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 18-bit ports (DB17-0) while data enable signal (ENABLE) allows RAM access via RGB interface. Instruction bits can be transferred only via system interface. RIM = 0 VSYNCX HSYNCX DOTCLK HOST PROCESSOR R61509V ENABLE DB17-0 18 Data format for the 18-bit interface (RIM = 0) Input DB 17 DB 16 DB 15 DB 14 DB 13 DB 12 DB 11 DB 10 GRAM write data R5 R4 R3 R2 R1 R0 G5 G4 DB 9 DB 8 DB 7 DB 6 DB 5 DB 4 DB 3 DB 2 DB 1 DB 0 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 1 pixel Note: Normal display in 262,144 colors Figure 48 Example of 18-Bit RGB Interface and Data Format Rev. 0.11 April 25, 2008, page 127 of 181 R61509V Target Spec Notes to RGB Interface Operation 1. The following functions are not available in RGB interface operation. Table 64 Functions Not Available in RGB Interface operation Function RGB Interface Internal Display Operation Partial display Not available Available Scroll function Not available Available 2. The VSYNCX, HSYNCX, and DOTCLK signals must be supplied during display period. 3. The reference clock to generate liquid crystal panel controlling signals in RGB interface operation is DOTCLK, not the internal clock generated from the internal oscillator. 4. When switching between the internal operation mode and the external display interface operation mode, follow the sequences below in setting instruction. 5. In RGB interface operation, front porch period continues after the end of frame period until next VSYNCX input is detected. 6. RGB and 80-system bus interfaces cannot be used simultaneously. 7. In RGB interface operation, RAM address AD16-0 is set in the address counter every frame on the falling edge of VSYNCX. Internal Clock Operation to RGB Interface (1) RGB Interface (1) to Internal Clock Operation Internal clock operation RGB interface operation Set internal clock operation mode* (DM1-0 = 00 and RM = 0) AM = 0 RAM address set Set DM1-0 = 01 and RM = 1 for RGB interface Display operation in synchronization with internal clocks Wait one frame period or more *Instruction setting for the RGB interface operation is enebled from the next frame period. Internal clock operation Set index register to R202h *Instruction setting to the internal clock operation is enebled from the next frame period. Display operation in synchronization with internal clocks Note: Continue RGB interface signals at least for one frame period after setting DM1-0, RM bits to internal clock operation. Wait one frame period or more Write data to RAM via RGB interface Display operation in synchronization with VSYNCX, HSYNCX, and DOTCLK Display operation in synchronization with VSYNCX, HSYNCX, and DOTCLK Operation via RGB interface Note: Input the RGB interface signals before setting the DM1-0 and RM bits to the RGB interface operation. Figure 49 RGB and Internal Clock Operation Mode Switching Sequences Rev. 0.11 April 25, 2008, page 128 of 181 R61509V Target Spec RAM Address and Display Position on the Panel The R61509V has memory to store display data of 240RGB x 432 lines. The R61509V incorporates a circuit to control partial display, which allows switching driving method between full-screen display mode and partial display mode. The R61509V makes display arrangement setting and panel driving position control setting separately and specifies RAM area for each image displayed on the panel. The following is the sequence of setting full-screen and partial display. 1. 2. 3. Set (PTSA, PTEA) to specify the RAM area for each partial image Set the display position of each partial image on the base image by setting PTDP. Set NL to specify the number of lines to drive the liquid crystal panel to display the base image After display ON, set display enable bits (BASEE, PTDE) to display respective images 4. BASEE = 1, PTDE = 0 BASEE = 0, PTDE = 1 Normal display Partial display 5. Changes BASEE, PTDE settings when turning on and off the full and partial displays 1/2. In driving the liquid crystal panel, the clock signal for gate line scan is supplied consecutively via interface in accordance with the number of lines to drive the liquid crystal panel (NL setting). When switching the display position in horizontal direction, set SS bit when writing RAM data. Table 65 Display ENABLE Numbers of lines RAM area Base image Note: BASEE NL (VSA, VEA) The base image is displayed from the first line of the screen. Table 66 Display ENABLE Partial image PTDE Rev. 0.11 April 25, 2008, page 129 of 181 Display position PTDP RAM area (PTSA, PTEA) R61509V Target Spec Display data output position Panel display position Base image RAM address Partial image RAM address 1 RAM write address (HSA,HEA) 9’h000 Partial image PTSA0 PTDP Scan direction 䇼LCD䇽 PTEA0 Base image Window Address (VSA,VEA) NL 9’h1AF Figure 50 RAM Address, Display Position and Drive Position Restrictions in Setting Display Control Instruction There are restrictions in coordinates setting for display data, display position and partial display. Screen setting In setting the number of lines to drive the liquid crystal panel, make sure that the total number of lines is 432 lines or less (NL ≤ 432 lines). Base image display The base image is displayed from the first line of the screen: Base image display start position = 1st line Rev. 0.11 April 25, 2008, page 130 of 181 R61509V Target Spec The following figure shows the relationship among the RAM address, display position, and the lines driven for the display. LCD panel physical line address Display data output order 0 RAM line address Display screen 0 (1st line) 1 (2nd line) 2 (3rd line) 1 2 3 4 5 9’h000 PTDP Partial image Display area Base image 1 RAM area NL ( n line) NL n-1 NL PTSA Partial image RAM area PTEA 9’h1AF Figure 51 Display RAM Address and Panel Display Position Note: This figure shows the relationship between RAM line address and the display position on the panel. In the R61509V’s internal operation, the data is written in the RAM area specified by the window address setting. Rev. 0.11 April 25, 2008, page 131 of 181 R61509V Target Spec Instruction Setting Example The followings are examples of settings for 240(RGB) x 432(lines) panel. 1. Full screen display (no partial display) The following is an example of settings for full screen display. Table 67 Base image display instruction BASEE 1 NL[5:0] 6’h35 PTDE 0 Display data output order LCD panel physical line address 0 (1st line) 1 (2nd line) 2 (3rd line) 1 2 3 4 5 NL (432 lines) RAM line address BSA=9'h000 9’h000 Base image BASE image RAM area 432 431 (432nd line) BEA = 9’h1AF Figure 52 Full Screen Display (no Partial) Rev. 0.11 April 25, 2008, page 132 of 181 R61509V 2. Target Spec Partial only The following is an example of settings for displaying partial image 1 only and turning off the base image. The partial image 1 is displayed at the position specified by PTDP0 bit. Table 68 Base image display instruction BASEE 0 NL[5:0] 6’h35 partial image 1 display instruction PTDE 1 PTSA[8:0] 9’h000 PTEA[8:0] 9’h00F PTDP[8:0] 9’h080 Display data output order LCD panel physical line address 1 2 3 4 5 RAM line address PTSA=9’000 0 (1st line) 1 (2nd line) 2 (3rd line) Partial image RAM area PTEA=9’00F PTDP Partial image display area NL (432 linrs) 432 Base image RAM area Base image (non-lit display) 431 (432nd line) Figure 53 Partial Display Rev. 0.11 April 25, 2008, page 133 of 181 9’h1AF R61509V Target Spec Window Address Function The window address function enables writing display data consecutively in a rectangular area (a window address area) made in the internal RAM. The window address area is described by the horizontal address register (start: HSA7-0, end: HEA7-0 bits) and the vertical address register (start: VSA8-0, end: VEA8-0 bits). The AM and ID bits set the transition direction of RAM address (either increment or decrement, horizontal or vertical, respectively). Setting these bits enables the R61509V to write data including image data consecutively without taking the data wrap position into account. The window address area must be made within the GRAM address map area. Also, the AD16-0 bits (RAM address set register) must be set to an address within the window address area. [Window address area setting range] (Horizontal direction) (Vertical direction) [RAM Address setting range] (RAM address) 8’h00 ≤ HSA ≤ HEA ≤ 8’hEF 9’h000 ≤ VSA ≤ VEA ≤ 9’h1AF HSA ≤ AD7-0 ≤ HEA VSA ≤ AD16-8 ≤ VEA GRAM address map 17'h00000 17'h000EF Window address area 17'h02010 17'h02110 17'h0202F 17'h05F10 17'h05F2F 17'h0212F 17'h1AF00 17'h1AFEF Window address area HSA = 8'h10, HEA = 8'h2F VSA = 9'h020, VEA = 9'h05F ID = 2'h3 (increment) AM = 1'h0 (horizontal writing) ORG = 0 RAM address set = 17'02010 (arbitrary) ORG = 1 RAM address set = 17'00000 Both are set to the same RAM address. Figure 54 Automatic Address Update within a Window Address Area Rev. 0.11 April 25, 2008, page 134 of 181 R61509V Target Spec Scan Mode Setting The R61509V can set the gate pin assignment and the scan direction in the following 4 different ways by setting SM and GS bits to realize various connections between the R61509V and the LCD panel. Scan direction SM Interchanging backward direction (GS=1) Interchanging forward direction (GS=0) 431 429 432 430 2 4 1 3 main Panel main Panel 432 (GS) (GS) 0 429 176 431 240 430 4 432 2 176 240 3 1 R61509V R61509V (Non-bump view) (Non-bump view) Scan order (Gate line No.) Scan order (Gate line No.) G1ЈG2ЈG3ЈG4.... G429ЈG430ЈG431ЈG432 G432ЈG431ЈG430ЈG3429.... G4ЈG3ЈG2ЈG1 Left/right forward direction (GS=0) Left/right backward direction (GS=1) 1 2 215 216 432 431 main Panel 432 (GS) 218 217 217 main Panel 432 (GS) 218 216 215 1 240 431 432 240 R61509V 2 1 R61509V (Non-bump view) (Non-bump view) Scan order (Gate line No.) Scan order (Gate line No.) G1ЈG3.... G429ЈG431Ј G2ЈG4.... G430ЈG432 G432ЈG430 .... G4ЈG2ЈG431ЈG429 .... G3ЈG1 Note: the numbers in the circles in the figure shows the order of scan. Figure 55 Rev. 0.11 April 25, 2008, page 135 of 181 R61509V Target Spec 8-Color Display Mode The R61509V has a function to display in eight colors. In this display mode, only V0 and V63 are used and power supplies to other grayscales (V1 to V62) are turned off to reduce power consumption. In 8-color display mode, the γ-adjustment registers R300 to R309 are disabled and the power supplies to V1 to V62 are halted. The R61509V does not require GRAM data rewrite for 8-color display by writing the MSB to the rest in each dot data to display in 8 colors. GRAM MSB Display data LS B R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Grayscale amplifier V0 R5 2-level grayscale control 2 <R> V63 LCD driver G5 2-level grayscale control <G> LCD driver B5 2-level grayscale control <B> LCD driver R G B LCD Figure 56 8-Color Display Mode Rev. 0.11 April 25, 2008, page 136 of 181 R61509V Target Spec Frame-Frequency Adjustment Function The R61509V supports a function to adjust frame frequency. The frame frequency for driving liquid crystal can be adjusted by setting the DIVI, RTNI bits without changing the oscillation frequency. By changing the DIVI and RTNI settings, the R61509V can operate at high frame frequency when displaying a moving picture, which requires the R61509V to rewrite data in high speed, and it can operate at low frame frequency when displaying a still picture. Relationship between Liquid Crystal Drive Duty and Frame Frequency The following equation represent the relationship between liquid crystal drive duty and frame frequency. The frame frequency can be changed by setting the 1H period adjustment bit (RTNI) and the operation clock frequency division ratio setting bit (DIVI). Equation for calculating frame frequency FrameFrequency = fosc [ Hz ] NumberofClocks / line × DivisionRatio × ( Line + FP + BP) fosc: RC oscillation frequency Number of clocks per line: RTNI bit Division ratio: DIVI bit Line: number of lines to drive the LCD panel (NL bit) Number of lines for front porch: FP Number of lines for back porch: BP Example of Calculation: when maximum frame frequency = 60 Hz fosc: 678 kHz Number of lines: 432 lines 1H period: 25 clock cycles (RTNI [4:0] = “11001”) Division ratio of operating clock: 1/1 Front porch: 2 lines Back porch: 14 lines fFLM = 678 (kHz) / 25 (clocks) × 1/1 × (432+2+14) (lines) ≒ 60.5 (Hz) Rev. 0.11 April 25, 2008, page 137 of 181 R61509V Target Spec Under the above conditions, the frame frequency can be changed according to the table shown below. Table 69 Frame Frequency Setting (NL = 432 lines, BP = 14 lines, FP = 2 lines, fosc = 678 kHz) RTNI[4:0] DIVI = 2’h0 DIVI = 2’h1 5’h00 - 5’h0F - - 5’h10 95 Hz 47 Hz 5’h11 89 Hz 45 Hz 5’h12 84 Hz 42 Hz 5’h13 80 Hz 40 Hz 5’h14 76 Hz 38 Hz 5’h15 72 Hz 36 Hz 5’h16 69 Hz 34 Hz 5’h17 66 Hz 33 Hz 5’h18 63 Hz 32 Hz 5’h19 61 Hz 30 Hz 5’h1A 58 Hz 29 Hz 5’h1B 56 Hz 28 Hz 5’h1C 54 Hz 27 Hz 5’h1D 52 Hz 26 Hz 5’h1E 50 Hz 25 Hz 5’h1F 49 Hz 24 Hz Rev. 0.11 April 25, 2008, page 138 of 181 R61509V Target Spec Partial Display Function The partial display function allows the R61509V to drive lines selectively to display partial images by setting partial display control registers. The lines not used for displaying partial images are driven at nonlit display level to reduce power consumption. The power efficiency can be enhanced in combination with 8-color display mode. Check the display quality when using low power consumption functions. Non-lit display area G41 Partial image: 20 lines G60 Non-lit display area Number of lines to drive LCD: NL = 6’h35 (432 lines) Base image display enable: BASEE = 0 Partial image display RAM area: (PTSA, PTEA) = (9’h000, 9’h013) Partial image display position: PTDP = 9’h028 Partial image display enable: PTDE = 1 Figure 57 Partial Display Note: See the RAM Address and Display Position on the Panel for details on the relationship between the display positions of partial images and respective RAM area setting. Rev. 0.11 April 25, 2008, page 139 of 181 R61509V Target Spec Liquid Crystal Panel Interface Timing The relationships between RGB interface signals and liquid crystal panel control signals in internal operation and RGB interface operations are as follows. Internal Clock Operation One Frame reference point reference point reference point reference point reference point reference point 1H FMARK (FMP=BP-1) NOWI G1 G2 G432 SDTI S(3n+1) S(3n+2) S(3n+3) SDTI R,G,B R,G,B R,G,B n=0to239 First line Second line VCOM Figure 58 Rev. 0.11 April 25, 2008, page 140 of 181 432nd line reference point reference point R61509V Target Spec RGB Interface Operation One frame BP FP VSYNCX 1H HSYNCX DOTCLK ENABLE DB 1 2 3 4 5 6 430 431 432 1 2 3 5DOTCLK See note Reference point Reference point 1H FMARK (FMP=BP-1) NOWE G1 G2 G3 G432 SDTE S(3n+1) S(3n+2) S(3n+3) RGB RGB RGB 432 n=0 to 239 432nd line Third line FIrst line Second line VCOM Note: Transfer RGB data in one transfer via 16-bit port Figure 59 Rev. 0.11 April 25, 2008, page 141 of 181 1 R61509V Target Spec γ Correction Function γ Correction Function The R61509V supports γ-correction function to make the optimal colors according to the characteristics of the panel. The R61509V has registers for positive and negative polarities. γ Correction Circuit The following figure shows the γ-correction circuit. According to the settings of variable resistors R0 to R8, the voltage level, the difference between VREG1OUT and VGS, is evenly divided into 8 grayscale reference voltages (V0, V1, V8, V20, V43, V55, V62, and V63). Other 56-grayscale voltages are generated by setting the level at a certain interval between the reference voltages. For grayscale voltage, see “Grayscale Voltage Calculation Formula”. VREG1OUT 0~31R (1R) R: Resistor outputting voltage evenly divided into 12 (1R): Trimming step R0 㪭㪇 1~32R (1R) R1 㪭㪈 2~33R (1R) Interpolation adjustment R2 㪭㪏 4~19R (1R) R3 㪭㪉㪇 8~23R (1R) Linear interpolation R4 㪭㪋㪊 4~19R (1R) R5 㪭㪌㪌 2~33R (1R) R6 㪭㪍㪉 1~32R (1R) Interpolation adjustment R7 㪭㪍㪊 2~33R (1R) R8 VGS (=GND) Figure 60 Rev. 0.11 April 25, 2008, page 142 of 181 R61509V Target Spec γ Correction Registers The γ-correction registers include 42 bits for each of R, G, and B dots and 8-bit interpolation adjustment registers. Reference level adjustment registers Table 70 Reference level adjustment registers Resistor Gamma Control Positive polarity Negative polarity R0 PR0P00[4:0] PR0N00[4:0] R1 PR0P01[4:0] PR0N01[4:0] R2 PR0P02[4:0] PR0N02[4:0] R3 PR0P03[3:0] PR0N03[3:0] R4 PR0P04[3:0] PR0N04[3:0] R5 PR0P05[3:0] PR0N05[3:0] R6 PR0P06[4:0] PR0N06[4:0] R7 PR0P07[4:0] PR0N07[4:0] R8 PR0P08[4:0] PR0N08[4:0] Rev. 0.11 April 25, 2008, page 143 of 181 R61509V Target Spec Table 71 Reference Level Adjustment Registers and Resistors Resistor R0 R1 R2 R3 R4 Register Name PR0*00[4:0] PR0*01[4:0] PR0*02[4:0] PR0*03[3:0] PR0*04[3:0] Value Resistance Resistor Register Name Valie Resistance 5'h00 0R 4'h0 4R 5'h01 1R 4'h1 5R 5'h02 2R 4'h2 6R 5'h1F 31R 4'hF 19R 5'h00 1R 5'h00 2R 5'h01 2R 5'h01 3R 5'h02 3R 5'h02 4R 5'h1F 32R 5'h1F 33R 5'h00 2R 5'h00 1R 5'h01 3R 5'h01 2R 5'h02 4R 5'h02 3R 5'h1F 33R 5'h1F 32R 4'h0 4R 5'h00 2R 4'h1 5R 5'h01 3R 4'h2 6R 5'h02 4R 4'hF 19R 5'h1F 33R 4'h0 8R 4'h1 9R 4'h2 10R 4'hF 23R Note: * indicates P / N. Rev. 0.11 April 25, 2008, page 144 of 181 R5 R6 R7 R8 PR0*05[3:0] PR0*06[4:0] PR0*07[4:0] PR0*08[4:0] R61509V Target Spec Interpolation Registers Table 72 Interpolation Registers Gamma Control Interpolation adjustment V2~V7 V56~V61 Positive polarity Negative polarity PI0P0[1:0] PI0N0[1:0] PI0P1[1:0] PI0N1[1:0] PI0P2[1:0] PI0N2[1:0] PI0P3[1:0] PI0N3[1:0] Table 73 Interpolation factor for V2 to V7 (See “Grayscale Voltage Calculation Formula” for IPV* level) PI0*0[1:0] 2'h0 2'h1 2'h2 2'h3 PI0*1[1:0] IPV2 IPV3 IPV4 IPV5 IPV6 IPV7 2'h0 81% 67% 52% 39% 26% 13% 2'h1 78% 61% 43% 33% 22% 11% 2'h2 73% 52% 31% 23% 15% 8% 2'h3 72% 50% 28% 21% 14% 7% 2'h0 80% 68% 56% 42% 28% 14% 2'h1 76% 62% 48% 36% 24% 12% 2'h2 70% 52% 35% 26% 17% 9% 2'h3 69% 50% 31% 23% 16% 8% 2'h0 78% 70% 61% 46% 30% 15% 2'h1 74% 63% 53% 39% 26% 13% 2'h2 66% 53% 39% 29% 20% 10% 2'h3 64% 50% 36% 27% 18% 9% 2'h0 78% 70% 63% 47% 31% 16% 2'h1 73% 64% 54% 41% 27% 14% 2'h2 65% 53% 41% 31% 20% 10% 2'h3 63% 50% 37% 28% 19% 9% Rev. 0.11 April 25, 2008, page 145 of 181 R61509V Target Spec Table 74 Interpolation Factor for V56 to V61 PI0*3[1:0] 2'h0 2'h1 2'h2 2'h3 PI0*2[1:0] IPV56 IPV57 IPV58 IPV59 IPV60 IPV61 2'h0 87% 74% 61% 48% 33% 19% 2'h1 89% 78% 67% 57% 39% 22% 2'h2 92% 85% 77% 69% 48% 27% 2'h3 93% 86% 79% 72% 50% 28% 2'h0 86% 72% 58% 44% 32% 20% 2'h1 88% 76% 64% 52% 38% 24% 2'h2 91% 83% 74% 65% 48% 30% 2'h3 92% 84% 77% 69% 50% 31% 2'h0 85% 70% 54% 39% 30% 22% 2'h1 87% 74% 61% 47% 37% 26% 2'h2 90% 80% 71% 61% 47% 34% 2'h3 91% 82% 73% 64% 50% 36% 2'h0 84% 69% 53% 38% 30% 22% 2'h1 86% 73% 59% 46% 36% 27% 2'h2 90% 80% 69% 59% 47% 35% 91% 81% 72% 63% 50% 37% 2'h3 Note: * indicates P/N. Rev. 0.11 April 25, 2008, page 146 of 181 R61509V Target Spec Table 75 Grayscale Voltage Calculation Formula Grayscale voltage Formula Grayscale voltage Formula V0 ΔV x Σ(R1~R8)/SUMR V32 V43 + (V20 - V43) x 11/23 V1 ΔV x Σ(R2~R8)/SUMR V33 V43 + (V20 - V43) x 10/23 V2 V8 + (V1 - V8) x IPV2 V34 V43 + (V20 - V43) x 9/23 V3 V8 + (V1 - V8) x IPV3 V35 V43 + (V20 - V43) x 8/23 V4 V8 + (V1 - V8) x IPV4 V36 V43 + (V20 - V43) x 7/23 V5 V8 + (V1 - V8) x IPV5 V37 V43 + (V20 - V43) x 6/23 V6 V8 + (V1 - V8) x IPV6 V38 V43 + (V20 - V43) x 5/23 V7 V8 + (V1 - V8) x IPV7 V39 V43 + (V20 - V43) x 4/23 V8 ΔV x Σ(R3~R8)/SUMR V40 V43 + (V20 - V43) x 3/23 V9 V20 + (V8 - V20) x 11/12 V41 V43 + (V20 - V43) x 2/23 V10 V20 + (V8 - V20) x 10/12 V42 V43 + (V20 - V43) x 1/23 V11 V20 + (V8 - V20) x 9/12 V43 ΔV x Σ(R5~R8)/SUMR V12 V20 + (V8 - V20) x 8/12 V44 V55 + (V43 - V55) x 11/12 V13 V20 + (V8 - V20) x 7/12 V45 V55 + (V43 - V55) x 10/12 V14 V20 + (V8 - V20) x 6/12 V46 V55 + (V43 - V55) x 9/12 V15 V20 + (V8 - V20) x 5/12 V47 V55 + (V43 - V55) x 8/12 V16 V20 + (V8 - V20) x 4/12 V48 V55 + (V43 - V55) x 7/12 V17 V20 + (V8 - V20) x 3/12 V49 V55 + (V43 - V55) x 6/12 V18 V20 + (V8 - V20) x 2/12 V50 V55 + (V43 - V55) x 5/12 V19 V20 + (V8 - V20) x 1/12 V51 V55 + (V43 - V55) x 4/12 V20 ΔV x Σ(R4~R8)/SUMR V52 V55 + (V43 - V55) x 3/12 V21 V43 + (V20 - V43) x 22/23 V53 V55 + (V43 - V55) x 2/12 V22 V43 + (V20 - V43) x 21/23 V54 V55 + (V43 - V55) x 1/12 V23 V43 + (V20 - V43) x 20/23 V55 ΔV x Σ(R6~R8)/SUMR V24 V43 + (V20 - V43) x 19/23 V56 V62 + (V55 - V62) x IPV56 V25 V43 + (V20 - V43) x 18/23 V57 V62 + (V55 - V62) x IPV57 V26 V43 + (V20 - V43) x 17/23 V58 V62 + (V55 - V62) x IPV58 V27 V43 + (V20 - V43) x 16/23 V59 V62 + (V55 - V62) x IPV59 V28 V43 + (V20 - V43) x 15/23 V60 V62 + (V55 - V62) x IPV60 V29 V43 + (V20 - V43) x 14/23 V61 V62 + (V55 - V62) x IPV61 V30 V43 + (V20 - V43) x 13/23 V62 ΔV x (R7 + R8)/SUMR V31 V43 + (V20 - V43) x 12/23 V63 ΔV x R8/SUMR Note: Make sure that ΔV = VREG1OUT – VGS SUMR = Σ(R0~R8) ≥ 70R. V63 ≥ 0.2V Rev. 0.11 April 25, 2008, page 147 of 181 R61509V Target Spec Frame Memory Data and the Grayscale Voltage Table 76 Grayscale Voltage Frame memory data REV = 1 Grayscale Voltage REV = 0 Frame memory data REV = 1 REV = 0 Positive polarity Negative polarity Positive polarity Negative polarity 6'h20 V32 V31 V31 V32 V1 6'h21 V33 V30 V30 V33 V61 V2 6'h22 V34 V29 V29 V34 V60 V3 6'h23 V35 V28 V28 V35 V59 V59 V4 6'h24 V36 V27 V27 V36 V5 V58 V58 V5 6'h25 V37 V26 V26 V37 V6 V57 V57 V6 6'h26 V38 V25 V25 V38 6'h07 V7 V56 V56 V7 6'h27 V39 V24 V24 V39 6'h08 V8 V55 V55 V8 6'h28 V40 V23 V23 V40 6'h09 V9 V54 V54 V9 6'h29 V41 V22 V22 V41 6'h0A V10 V53 V53 V10 6'h2A V42 V21 V21 V42 6'h0B V11 V52 V52 V11 6'h2B V43 V20 V20 V43 Positive polarity Negative polarity Positive polarity Negative polarity 6'h00 V0 V63 V63 V0 6'h01 V1 V62 V62 6'h02 V2 V61 6'h03 V3 V60 6'h04 V4 6'h05 6'h06 6'h0C V12 V51 V51 V12 6'h2C V44 V19 V19 V44 6'h0D V13 V50 V50 V13 6'h2D V45 V18 V18 V45 6'h0E V14 V49 V49 V14 6'h2E V46 V17 V17 V46 6'h0F V15 V48 V48 V15 6'h2F V47 V16 V16 V47 6'h10 V16 V47 V47 V16 6'h30 V48 V15 V15 V48 6'h11 V17 V46 V46 V17 6'h31 V49 V14 V14 V49 6'h12 V18 V45 V45 V18 6'h32 V50 V13 V13 V50 6'h13 V19 V44 V44 V19 6'h33 V51 V12 V12 V51 6'h14 V20 V43 V43 V20 6'h34 V52 V11 V11 V52 6'h15 V21 V42 V42 V21 6'h35 V53 V10 V10 V53 6'h16 V22 V41 V41 V22 6'h36 V54 V9 V9 V54 6'h17 V23 V40 V40 V23 6'h37 V55 V8 V8 V55 6'h18 V24 V39 V39 V24 6'h38 V56 V7 V7 V56 6'h19 V25 V38 V38 V25 6'h39 V57 V6 V6 V57 6'h1A V26 V37 V37 V26 6'h3A V58 V5 V5 V58 6'h1B V27 V36 V36 V27 6'h3B V59 V4 V4 V59 6'h1C V28 V35 V35 V28 6'h3C V60 V3 V3 V60 6'h1D V29 V34 V34 V29 6'h3D V61 V2 V2 V61 6'h1E V30 V33 V33 V30 6'h3E V62 V1 V1 V62 6'h1F V31 V32 V32 V31 6'h3F V63 V0 V0 V63 Rev. 0.11 April 25, 2008, page 148 of 181 R61509V Target Spec Power Supply Generating Circuit The following figures show the configurations of liquid crystal drive voltage generating circuit of the R61509V. Power Supply Circuit Connection Example 1 (VCI1 = VCIOUT) In the following example, the VCI1 level can be adjusted. (1) VREG1OUT (2) VREG1 ࠡࡘ࠲ 㓏⺞㔚 ↢ᚑ࿁〝 VCILVL VCIOUT ജ࿁〝 ౝㇱၮḰ 㔚↢ᚑ࿁〝 ࠰ࠬ ࠼ࠗࡃ VCOMR (3) VCI1 S1-720 VCOMH (16) C11M (4) VCOM ജ࿁〝 C11P C12M (5) ࿁〝㧝 VCOM (17) VCOML C12P DDVDH (6) VCOM ࡌ࡞⺞ᢛ࿁〝 R61509V C13M (7) (11) VGH C13P See note 2. VGL ࠥ࠻ ࠼ࠗࡃ G1-432 C21M (8) C21P VCC C22M (9) GND C22P ࿁〝㧞 VCILVL VCI AGND (10) IOVCC VGH GND (12) VGL (13) See note 1. VCL (14) VDD (15) Figure 61 Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be 5Ω or less. 2. The wiring resistances between the schottky diode and DDVDH/VGH must be 5Ω or less. Rev. 0.11 April 25, 2008, page 149 of 181 R61509V Target Spec Power Supply Circuit Connection Example 2 (VCI1 = VCI Direct Input) In the following example, the electrical potential VCI is directly applied to VCI1. In this case, the VCIOUT level cannot be adjusted internally but step-up operation becomes more effective. Make sure that VCI≤ 3.0V. (1) VREG1OUT (2) VREG1 ࠡࡘ࠲ 㓏⺞㔚 ↢ᚑ࿁〝 VCILVL VCIOUT ജ࿁〝 ౝㇱၮḰ 㔚↢ᚑ࿁〝 ࠰ࠬ ࠼ࠗࡃ VCOMR VCI1 VCI S1-720 VCOMH (16) C11M See note 3. (4) VCOM ജ࿁〝 C11P C12M (5) ࿁〝㧝 VCOM (17) VCOML C12P (6) DDVDH VCOM ࡌ࡞⺞ᢛ࿁〝 R61509V C13M (7) (11) VGH C13P See note 2. VGL C21M (8) ࠥ࠻ ࠼ࠗࡃ G1-432 VCC C21P GND C22M (9) C22P ࿁〝㧞 VCILVL VCI AGND (10) VGH IOVCC (12) GND VGL (13) See note 1. VCL (14) VDD (15) Figure 62 Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be 5Ω or less. 2. The wiring resistances between the schottky diode and DDVDH/VGH must be 5Ω or less. 3. When directly applying the VCI level to VCI1, set VC = 3’h7. Capacitor connection to VCIOUT is not necessary. Rev. 0.11 April 25, 2008, page 150 of 181 R61509V Target Spec Specifications of Power-supply Circuit External Elements The specifications of external elements connected to the power-supply circuit of the R61509V are as follows. Table 77 Capacitor Capacitance 1µF (B characteristics) Voltage proof Pin Connection 6V (1) VREG1OUT, (3) VCI1, (4) C11P, C11M, (5) C12P, C12M, (7) C13P, C13M, (14) VCL, (16) VCOMH, (17) VCOML 10 V (6) DDVDH, (8) C21P, C21M, (9) C22P, C22M 25 V (10) VGH, (12) VGL Table 78 Schottky Diode Specification Pin Connection VF < 0.38 V/20 mA@25 °C, VR ≥ 25 V (Recommended diode: HS*226) (13) GND–VGL, (11) DDVDH–VGH, Table 79 Variable Resistor Specification Pin Connection (2) VCOMR > 200 kΩ Table 80 Internal Logic Power Supply Capacitance 1µF (B characteristics) Voltage proof (recommended) 3V Rev. 0.11 April 25, 2008, page 151 of 181 Pin Connection (15) VDD R61509V Target Spec Voltage Setting Pattern Diagram The following are the diagrams of voltage generation in the R61509V and the TFT display application voltage waveforms and electrical potential relationship. VGH BT Internal reference 㩷 voltage (VCIR) VRH VCILVL(2.5~3.3V) VCC(2.5~3.3V) DDVDH VREG1OUT VC VREG1OUT BT VCM/VCOMR IOVCC(1.65~3.3V) VCOMH VCI1 VDV GND(0V) VCOML VCL BT VGL Figure 63 Notes: 1. The DDVDH, VGH, VGL, and VCL output voltages will become lower than their theoretical levels (ideal voltages) due to current consumption at each output level. Make sure that output voltage level in operation maintains the following relationships: (DDVDH – VREG1OUT) > 0.5V, (VCOML – VCL) > 0.5V. Also make sure VGH-VGL ≤ 28V, VCI-VCL ≤ 6V. When the alternating cycle of VCOM is high (e.g. polarity inverts every line cycle), current consumption will increase. In this case, check the voltage before use. 2. In operation, setting voltages within the respective voltage ranges is recommended. Rev. 0.11 April 25, 2008, page 152 of 181 R61509V Target Spec Liquid Crystal Application Voltage Waveform and Electrical Potential VGH VREG1OUT VCOMH VCOM VCOML Sn (source driver output) Gn (panel interface output) Figure 64 Rev. 0.11 April 25, 2008, page 153 of 181 R61509V Target Spec VCOMH and VREG1OUT Voltage Adjustment Sequence When adjusting the VCOMH voltage by setting VCM[6:0] (R280h, internal VCOMH level adjustment circuit), follow the sequence below. The R61509V can retain permanently the VREG1OUT and VCOMH level adjustment setting values in NVM. To write data to NVM, see “NVM Control” and NVM Write Sequence”. Display ON Sequence 㩷 VCOM level adjustment R280h: VCM[6:0] Set VCM[6:0] adjustment value. The display on the panel will flicker when the VCOMH 㩷 level is adjusted internally. Check the display quality. 㩷 Complete the VCOMH level adjustment. NVM (1) 㪠㫅㪻㪼㫏 㪈㪌 㪈㪋 㪭㪚㪤㩷 㪲㪍㪴 㪉㪏㪇㪿 㪈㪊 㪈㪉 㪈㪈 㪈㪇 㪐 㪏 㪎 㪍 㪌 㪋 㪊 㪭㪚㪤㩷 㪲㪌㪴 㪭㪚㪤 㪲㪋㪴 㪭㪚㪤㩷 㪲㪊㪴 㪭㪚㪤㩷 㪲㪉㪴 㪭㪚㪤 㪲㪈㪴 㪭㪚㪤 㪲㪇㪴 㪬㪠㪛 㪲㪎㪴 㪬㪠㪛 㪲㪍㪴 㪬㪠㪛 㪲㪌㪴 㪬㪠㪛 㪲㪋㪴 㪬㪠㪛 㪲㪊㪴 Set NVDAT[10:4] to the value set in 㩷the VCM[6:0] after VCOMH level adjustment. Then, write data to NVM. 㩷 㪉 㪬㪠㪛 㪲㪉㪴 㪈 㪇 㪬㪠㪛㩷 㪲㪈㪴 㪬㪠㪛㩷 㪲㪇㪴 Adjust VCOMH level 㩷 Set NVDAT[3:0] to the value set 㩷in UID[7:0]. Then, write data to NVM. 㩷 NVM Data Write Register 㪠㫅㪻㪼㫏 㪈㪌 㪈㪋 㪈㪊 㪈㪉 㪍㪝㪈㪿 㪥㪭㪛㪘㪫㩷 㪲㪈㪌㪴 㪥㪭㪛㪘㪫㩷 㪲㪈㪋㪴 㪥㪭㪛㪘㪫㩷 㪲㪈㪊㪴 㪥㪭㪛㪘㪫 㪲㪈㪉㪴 㪈㪈 㪈㪇 㪥㪭㪛㪘㪫㩷 㪥㪭㪛㪘㪫㩷 㪲㪈㪈㪴 㪲㪈㪇㪴 㪐 㪏 㪎 㪍 㪌 㪋 㪊 㪉 㪈 㪇 㪥㪭㪛㪘㪫 㪲㪐㪴 㪥㪭㪛㪘㪫 㪲㪏㪴 㪥㪭㪛㪘㪫 㪲㪎㪴 㪥㪭㪛㪘㪫 㪲㪍㪴 㪥㪭㪛㪘㪫 㪲㪌㪴 㪥㪭㪛㪘㪫 㪲㪋㪴 㪥㪭㪛㪘㪫 㪲㪊㪴 㪥㪭㪛㪘㪫 㪲㪉㪴 㪥㪭㪛㪘㪫㩷 㪲㪈㪴 㪥㪭㪛㪘㪫㩷 㪲㪇㪴 Set NVDAT[15] to 1. Figure 65 Rev. 0.11 April 25, 2008, page 154 of 181 㩷 write data. Set 㩷 R61509V Target Spec NVM Control The R61509V incorporates 16-bit NVM for user’s use. • 7 bits are for VCOM adjustment (VCM register value is stored). • 8 bits are for UID. • 1 bit is for a dummy bit. To write, read and erase data from/to the NVM, follow the sequences below. Data on the NVM is loaded to internal registers automatically when the sequences are performed. • Power On reset • Exit shutdown mode Data stored in the NVM is retained permanently even if power supply is turned off. Table 81 Operation mode Power supply voltage (TBD) Write VPP1 VPP3A Open or AGND Erase VPP1 9.2V±0.3V VPP3A -9.2V±0.3V Remarks Temperature (TBD) Write period: 150ms±50ms - +20°C~+30C° Erase period: 10ms±1ms x n time(s) (N ≤ 30, total ≤ 300ms) Verify erase operation at intervals of 10ms±1ms. +20°C~+30C° −40°C~+85C° VPP3A Open or AGND NVM data rewrite (erase-write) operation should be performed up to 5 times per address. Except Write/Erase Note: 9.2V±0.3V Time (TBD) VPP1 Open or AGND Rev. 0.11 April 25, 2008, page 155 of 181 - - R61509V Target Spec NVM Load (Register Resetting) Sequence Data on the NVM is loaded either automatically or by setting a command. During the following sequence, the data written to the NVM is automatically loaded to the internal register. Except for the shutdown mode Index: 6F0h Command: 16’h0040 TE = 1’b0 CALB = 1’b1 EOP[1:0] = 2’b00 Wait 1ms or more Index: 280h VCM[6:0], UID[7:0] NVM data read Figure 66 NVM Load (Register Resetting) Sequence Rev. 0.11 April 25, 2008, page 156 of 181 R61509V Target Spec NVM Write Sequence Defined 16 bit data is written to the selected address. When “0” is written to these bits, the bits are set to “0”. If the data is erased from the bit, the bit is returned to ”1”. The bit to which data is not written should be set to “1”. NVM Write Sequence NVM Load (Register Resetting) Sequence Power supply (VCC, VCI, IOVCC) ON NVM load 6F0h:16’h0040 (CALB=1) 1msec or more 1ms or more VPP1=9.2r0.3V VPP3A/VPP3B=GND GND NVM load end (Automatically CALB = 0) 1msec or more Power ON reset 2msec or more NVM data read Transfer synchronization RS=0, DB=16’h0000 RS=0, DB=16’h0000 RS=0, DB=16’h0000 RS=0, DB=16’h0000 R280h: VCM[6:0], UID[7:0] Instruction read NVM write data set R6F1:16’h**** (NVDAT=16’hXX (arbitrary data)) NVM write setting R6F0:16’h0010 (TE=0,CALB=0,EOP=2’h1) NVM write start R6F0:16’h0090 (TE=1,CALB=0,EOP=2’h1) 150msr50ms(TBD) NVM write end RA0: 16’h0000 (TE=0, EOP=2’h0, NVAD=2’h0) 1us or more VPP1=9.2r0.3V VPP3A =GND GND Figure 67 NVM Write Sequence Rev. 0.11 April 25, 2008, page 157 of 181 R61509V Target Spec NVM Erase Sequence The data written to the selected 16 bits is erased all together. The bits from which data is erased are set to “1”. To erase data from NVM, make sure VGL < VPP3A, and follow the sequence below after power supply ON sequence. NVM Erase Sequence Power supply ON sequence 㩷 㩷 NVM erase power supply setting 㩷 and BT bits To erase data from NVM, set the VC 㩷 as follows to make sure VGL < VPP3A < -9.5V. (R100h): BT[2:0] = 3’h6 (VGL = -10.8V) (R101h): VC[2:0] = 3’h7 (VCI = 2.7V) NVM power supply ON VPP1 = 9.2±0.3V GND 1ms or more㩷 Fix VPP3B to GND. 㩷 VPP3A = -9.2±0.3V 㩷 㩷 1ms or more R6F0h: TE=1, EOP[1:0]=2’h03 Start of rasing Erase period 10ms±1ms R6F2h: NVVRF=0 R6F0h: TE=0, EOP[1:0]=2’h00㩷 R6F2h: NVVRF=1 㪩㪍㪝㪇㪿 End of erasing Verify ON 㪚㪘㪣㪙㪔㪈 1ms or more NVM power supply OFF R280h: NVM data read VPP1 = 9.2±0.3V NO NVM data read result: 15’h7FFF GND VPP3 = -9.2±0.3V YES NVVRF=0 R6F2h: 1ms or more Verify OFF Power supply OFF sequence Figure 68 NVM Erase Sequence Rev. 0.11 April 25, 2008, page 158 of 181 R61509V Target Spec Power Supply Setting Sequence The following are the sequences for setting power supply ON/OFF instructions. Set power supply ON/OFF instructions according to the following sequences in Display ON/OFF, Sleep set/exit sequences. Power Supply ON Sequence Power supply (VCC, VCI, IOVCC) ON 㪭㪚㪠 㪠㪦㪭㪚㪚 㪭㪚㪚 㪞㪥㪛 VCC → IOVCC → VCI or VCC, IOVCC, VCI simultaneously PON=1 R102h: PSON=1, (1) Other mode setting instruction (2) RAM write instruction, etc. Power ON reset Power supply startup time (6 frames x 1/osc) 1ms or more Automatic NVM data load Access is prohibited 㩷 㩷 1ms after reset. Transfer synchronization RS=0, DB=16’h0000 RS=0, DB=16’h0000 RS=0, DB=16’h0000 RS=0, DB=16’h0000 (B) Liquid crystal power supply ON (DCDC ON) state Display OFF state (A) Liquid crystal power supply OFF (DCDC OFF) state 㩷 Display OFF state Display ON sequence Instruction user setting R400h: NL[5:0] R008h: BP[7:0], FP[7:0] R300h~R309h: γ control R010h: RTNI[4:0], DIVI[1:0] R100h: BT[2:0], AP[1:0] R101h: VC[2:0], DC0[2:0], DC1[2:0] Other user settings: see notes 1 and 2. OR NVM erase sequence (1) To turn the display on, follow “Display ON Sequence” in “Instruction Setting Sequence and Refresh Sequence”. (2) To erase data from NVM, follow “NVM Erase Sequence”. Erase data from NVM according to “NVM Control”. Notes: 1. Set VCMR to 1 when using internal electric volume. 2. When NVM is in the status that the R61509V is shipped out, set the instruction register (R280h: VCM[6:0], and UID[7:0]). If writing values to VCM[6:0] and UID[7:0] has been completed, setting this instruction register is 㩷 unnecessary. Figure 69 Rev. 0.11 April 25, 2008, page 159 of 181 R61509V Target Spec Power Supply OFF Sequence (B) Liquid crystal power supply ON (DCDC ON) state Display OFF state ޣᶧ᥏㔚Ḯ ࠝࡈࡈࡠ R102h: PON=0 PSON=0 ޤ 5 frames or more (A) Liquid crystal power supply OFF (DCDC OFF) Display OFF state Power supply (VCC, VCI, IOVCC) OFF VCI IOVCC VCC 㪞㪥㪛 VCI → IOVCC → VCC or VCC, IOVCC, VCI simultaneously Figure 70 Rev. 0.11 April 25, 2008, page 160 of 181 R61509V Target Spec Notes to Power Supply ON Sequence When voltages do not rise in the order of VCC, IOVCC and then VCI and have to change the order, please follow the following note. Note Internal operation of the R61509V is unstable until VCC rises. If IOVCC rose before VCC rises, the R61509V may be in “output” status. In this case, do not send or receive any data before power supply is completed. Changing order of voltage input will not cause troubles such as latchup or destruction of the LSI. Rev. 0.11 April 25, 2008, page 161 of 181 R61509V Target Spec Instruction Setting Sequence and Refresh Sequence Display ON/OFF Sequences and Refresh Sequence In setting instruction in the R61509V, follow the sequences below. To reduce malfunction caused by noise, execute refresh sequence 1 regularly. To exit shutdown mode, execute refresh sequence 2. Display ON sequence Display OFF sequence (B) Liquid crystal power supply ON (DCDC ON) state 㩷 Display OFF state (C) Liquid crystal power supply ON (DCD ON) state 㩷 Display ON state 㩷 Display ON R007h: BASEE=1 Display OFF 㩷 R007h: BASEE=0 (C) Liquid crystal power supply ON (DCD ON) state Display ON state (B) Liquid crystal power supply ON (DCDC ON) state 㩷 Display OFF state Note: For power supply setting, see “Power Supply Setting Sequence”. Refresh Sequence 1 Refresh Sequence 2 Transfer synchronization RS=0, DB=16’h0000 RS=0, DB=16’h0000 RS=0, DB=16’h0000 RS=0, DB=16’h0000 Transfer synchronization RS=0, DB=16’h0000 RS=0, DB=16’h0000 RS=0, DB=16’h0000 RS=0, DB=16’h0000 Test register initialization 㩷 R600h: TRSR=1 Test register initialization 㩷 R600h: TRSR=1 0.1ms or more NVM data load 㩷 R6F0h: CALB=1 0.3ms or more R600h: TRSR=0 All instruction initial setting and user setting R600h: TRSR=0 All instruction initial setting and user setting Except the following㩷 instructions: R600h: TRSR R6F0h: CALB R6F1h: NVDAT[15:0] Figure 71 Rev. 0.11 April 25, 2008, page 162 of 181 Except the following 㩷 instructions: R600h: TRSR R6F0h: CALB R6F1h: NVDAT[15:0] R61509V Target Spec Shutdown Mode Sequences Shutdown Sequence (Exit shutdown mode by inputting CSX = “Low”) 㩷 18-/16-/9-/8-bit interface operation Display OFF sequence Set shutdown mode Set shutdown mode R100h: DSTB=1 CSX=”Low”(1) CSX=”Low”(2) VDD startup, Oscillation startup period 1ms or more Exit shutdown mode Input CSX = “Low” 6 times. CSX=”Low” (3) CSX=”Low” (4) CSX=”Low” (5) Initialize the R61509V. CSX=”Low” (6) 0.3ms or more Automatic NVM data load User setting Refresh sequence 2 NL, BP, FP, γ control, RTNI, DIVI, and others RAM data setting Executing refresh sequence regularly is recommended. Display ON sequence Notes: 1. See AC characteristics in Electrical Characteristics for details on low width (PWLW), high width (PWHW), and cycle (tCYCW) periods. 2. Leave at least 1 ms between the 2nd and 3rd inputs of CSX = Low in exiting shutdown mode. WRX “High” 㩷 RDX “High” 㩷 RS Data 2 1 CSX Wait 1ms. 3 4 5 6 Don’t care Don’t care Don’t care “Low” or “High” Don’t care Don’t care Don’t care Waveforms in Exiting Shutdown Mode (Input CSX="Low") Figure 72 Rev. 0.11 April 25, 2008, page 163 of 181 㩷 Data and RS = Don’t care R61509V Target Spec Shutdown Sequence (Exit shutdown mode by inputting CSX = “Low” and WRX = “Low” (Index Write)) 㩷 interface operation (1) 18-/16-bit Display OFF sequence Set shutdown mode Set shutdown mode R100h: DSTB=1 Index Write (Data=16’h0000) Index Write (Data=16’h0000) VDD startup, Oscillation startup period 1ms or more Exit shutdown mode Index Write (Data=16’h0000) Initialize the R61509V. Index Write (Data=16’h0000) Index Write (Data=16’h0000) Index Write (Data=16’h0000) 0.3ms or more Automatic NVM data load User setting Refresh sequence 2 NL, BP, FP, γ control, RTNI, DIVI, and others RAM data setting Executing refresh sequence regularly is recommended. Display ON sequence Notes: 1. See AC characteristics in Electrical Characteristics for details on low width (PWLW), high width (PWHW), and cycle (tCYCW) periods. 2. Leave 1 ms or more between the 2nd and 3rd inputs of Index Write. 1 CSX 2 Wait 1ms. 3 4 5 16’h0000 16’h0000 16’h0000 6 WRX RDX “High” RS “Low” Data 16’h0000 16’h0000 Waveforms in Exiting Shutdown Mode (Input RS = “Low”and Index Write) Figure 73 Rev. 0.11 April 25, 2008, page 164 of 181 16’h0000 R61509V Target Spec (2) 9-/8-bit interface operation Display OFF sequence Set shutdown mode Set shutdown mode R100h: DSTB=1 Index Write (Data=8’h00) Index Write (Data=8’h00) VDD startup, Oscillation startup period 1ms or more Exit shutdown mode Index Write (Data=8’h00) Initialize the R61509V. Index Write (Data=8’h00) Index Write (Data=8’h00) Index Write (Data=8’hFF) Index Write (Data=8’h00) Index Write (Data=8’h00) Transfer synchronization command (see note 3) Index Write (Data=8’h00) Index Write (Data=8’h00) 0.3ms or more Automatic NVM data load User setting Refresh sequence 2 NL, BP, FP, γ control, RTNI, DIVI, and others RAM data setting Display ON sequence Executing refresh sequence regularly is recommended. Notes: 1. See AC characteristics in Electrical Characteristics for details on low width (PWLW), high width (PWHW), and cycle (tCYCW) periods. 2. Leave at least 1 ms between the 2nd and 3rd Index write. 3. Set transfer synchronous command data 8'h00 when using 8 bit interface and 9'h000 when using 9-bit interface. 1 CSX 2 Wait 1ms. 3 5 4 6 1 2 3 4 WRX RDX RS Data “High” 㩷 “Low”㩷 Upper IW㩷 Lower IW 00h 00h Upper IW Lower IW Upper IW Lower IW 00h 00h 00h FFh Upper IW㩷 Lower IW㩷 Upper IW㩷 Lower IW 00h 00h 00h 㩷 00h㩷 Execute transfer synchronization command by inputting RS = “Low” and Index Write after exiting shutdown mode. Waveforms in Exiting Shutdown Mode (Input RS = “Low”and Index Write) Figure 74 Rev. 0.11 April 25, 2008, page 165 of 181 Transfer synchronization 㩷 R61509V Target Spec 8-Color Mode Setting 262,144 color to 8 color mode 8 color to 262,144 color mode 262,144-color mode display 8-color mode display R00Bh: COL=1 R00Bh: COL=0 8-color mode display 262,144-color mode display Figure 75 Partial Display Setting Partial Display Setting Sequence Full-screen display Partial display setting R500h: PTDP[8:0] R501h: PTSA[8:0] R502h: PTEA[8:0] Base image display OFF Partial display ON R007h: BASEE=0, PTDE=1 8-color display, low power consumption settings R007h: COL=1, R009h: PTS Partial display Base image display ON Partial display OFF R007h: BASEE=1, PTDE=0 Full-screen display Figure 76 Rev. 0.11 April 25, 2008, page 166 of 181 Set as required R61509V Target Spec Absolute Maximum Ratings Table 82 Items Symbol Unit Value Note Power supply voltage 1 VCC, IOVCC V -0.3 ~ +4.6 1, 2 Power supply voltage 2 VCI – AGND V -0.3 ~ +4.6 1, 3 Power supply voltage 3 DDVDH – AGND V -0.3 ~ +6.5 1, 4 Power supply voltage 4 AGND – VCL V -0.3 ~ +4.6 1 Power supply voltage 5 DDVDH – VCL V -0.3 ~ +9.0 1, 5 Power supply voltage 7 AGND– VGL V -0.3 ~ +13.0 1, 6 Power supply voltage 8 VGH – VGL V -0.3 ~ +30.0 1 1, 7 Power supply voltage 9 VCI – VGL V -0.3 ~ +6.5 Power supply voltage 10 VPP1 V -0.3 ~ +10.0 1 Power supply voltage 11 VPP3A V -0.3 ~ +0.3 1 Input voltage Vt V -0.3 ~ IOVCC + 0.3 Operation temperature Topr ℃ -40 ~ +85 1, 8 Storage temperature Tstg ℃ -55 ~ +110 1 1 Notes: 1. If used beyond the absolute maximum ratings, the LSI may be permanently damaged. It is strongly recommended to use the LSI under the condition within the electrical characteristics in normal operation. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device. 2. Make sure VCC≥GND, and IOVCC≥GND. 3. Make sure VCI≥AGND. 4. Make sure DDVDH ≥ AGND. 5. Make sure DDVDH≥VCL. 6. Make sure AGND≥VGL. 7. Make sure VCI≥VGL. 8. The DC/AC characteristics of the die and wafer products are guaranteed at 85℃. Rev. 0.11 April 25, 2008, page 167 of 181 R61509V Target Spec Electrical Characteristics DC Characteristics (VCC= 2.50V~3.30V, VCI=2.50V~3.30V, IOVCC=1.65V~3.30V, Ta= -40°C~+85°C *See note 1) Table 83 Items Symbol Unit Test condition Min. Typ. Max. Notes Input high-level voltage VIH V IOVCC=1.65V~3.30V 0.80× IOVCC Input low-level voltage VIL V IOVCC=1.65V~3.30V -0.3 - 0.20× IOVCC 2, 3 VOH1 V IOVCC=1.65V~3.30V, 0.8× IOVCC - - 2 VOL1 V - - 0.20× IOVCC 2 ILI1 µA Vin=0~IOVCC -1 - 1 4 IOP1 µA fosc=678kHz (432-line drive), I80-IF, IOVCC=VCC=3.00V, fFLM=60Hz, Ta=25℃, RAM data: 18’h000000, See other as well. - 600 TBD 5, 6 Iop2 µA fosc=678kHz (64-line partial display), IOVCC=VCC=3.00V, fFLM=40Hz, Ta=25℃, RAM data: 18h’000000, see other as well. - 300 - 5, 6 Ishut1 µA IOVCC=VCC=3.00V, I80-IF, Ta=25℃ - 0.1 1.0 5, 6 IRAM1 mA IOVCC=2.40V, VCC=3.00V, tCYCW=110ns, Ta=25℃, I80-8bit-I/F, TRIREG=1’h1, Consecutive RAM access during display operation, BC0=0, FP=5, BP=8, γ register; 0(default), COL=0 - 3.0 - 5 mA IOVCC=1.8V, VCC=VCI=2.8V, 432-line drive, fFLM=60Hz, Ta=25℃, Frame memory data: 18’h00000, REV=0, BC0=0, FP[7:0]=8’h8, BP[7:0]=8’h8, VC[2:0]=3’h1, BT[2:0]=3’h2, VRH[4:0]=5’h18, VCM[6:0]=7’h7F, VDV[4:0]=5’h11, AP[1:0]=2’h3, DC0[2:0]=3’h3, DC1[2:0]=3’h4, PR*P00=PR*N00=5’h00, PR*P01=PR*N01=5’h02, PR*P02=PR*N02=5’h04, PR*P03=PR*N03=4’h8, PR*P04=PR*N04=4’hF, PR*P05=PR*N05=4’h8, PR*P06=PR*N06=5’h04, PR*P07=PR*N07=5’h02, PR*P08=PR*N08=5’h04, PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0 PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0 (*: 0, 1, 2) No load on the panel. - 3.5 TBD 6 Output high voltage 1 (DB0-17,FMARK) Output low voltage 1 (DB0-17,FMARK) I/O leakage current IOH=-0.1mA IOVCC=1.65V~3.30V, IOL=0.1mA - IOVCC 2, 3 Current consumption ((IOVCC-IOGND)+ (VCC-GND)) Normal operation mode (262,144 color display) Current consumption ((IOVCC-IOGND)+ (VCC-GND)) 8-color, 64-line partial display on sub display Current consumption ((IOVCC-IOGND)+ (VCC-GND)) Shutdown mode Current consumption ((IOVCC-IOGND)+ (VCC-GND)) RAM access mode 1 LCD power supply current (VCI-GND) 262,144-color display Ici1 Rev. 0.11 April 25, 2008, page 168 of 181 R61509V Target Spec Ici2 mA IOVCC=1.8V, VCC=VCI=2.8V, 64-line partial, fFLM=40Hz, Ta=25℃, Frame memory data: 18’h00000, REV=0, BC0=0, FP[7:0]=8’h8, BP[7:0]=8’h8, VC[2:0]=3’h1, BT[2:0]=3’h2, VRH[4:0]=5’h18, VCM[6:0]=7’h7F, VDV[4:0]=5’h11, AP[1:0]=2’h3, DC0[2:0]=3’h3, DC1[2:0]=3’h4, PR*P00=PR*N00=5’h00, PR*P01=PR*N01=5’h02, PR*P02=PR*N02=5’h04, PR*P03=PR*N03=4’h8, PR*P04=PR*N04=4’hF, PR*P05=PR*N05=4’h8, PR*P06=PR*N06=5’h04, PR*P07=PR*N07=5’h02, PR*P08=PR*N08=5’h04, PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0 PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0 (*: 0, 1, 2) No load on the panel. VPP1AGND IVPP1W mA VPP1=9.2V VPP3AAGND IVPP3AW mA (Write period) - - 1.0 6 VPP1AGND IVPP1E mA VPP1=9.2V - - 1.0 6 VPP3AAGND IVPP3AE mA (Erase period) - - 1.0 6 Output voltage dispersion ΔVO mV - - 5 - 7 Average output variance ΔVΔ mV - -35 - 35 8 LCD power supply current (VCI-GND) 8-color, 64-line partial display NVM current consumption Write NVM current consumption Erase - 0.8 TBD 5, 6 - - 30.0 6 VPP3A=GND VPP3A=-9.2V Rev. 0.11 April 25, 2008, page 169 of 181 R61509V Target Spec Step-up Circuit Characteristics Table 84 Item Step-up output voltage Unit DDVDH VGH VGL VCLV Test condition Min. Typ. Max. Note V IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25℃, VC=3’h1, AP=3’h3, BT=3’h2, DC0=3’h4 (div. 1/8), DC1=3’h2 (div. 1/4), COL=0, D=2’h0, C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, Iload1=-3 [mA], No load on the panel. 4.8 5.1 - - V IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25℃, VC=3’h1, AP=3’h3, BT=3’h2, DC0=3’h4 (div. 1/8), DC1=3’h2 (div. 1/4), COL=0, D=2’h0, C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, Iload2=-100[uA], No load on the panel. 14.4 15.1 - - V IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25℃, VC=3’h1, AP=3’h3, BT=3’h2, DC0=3’h4 (div. 1/8), DC1=3’h2 (div. 1/4), COL=0, D=2’h0, C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, Iload3=+100[uA], No load on the panel. - -10.0 -9.6 - V IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25℃, VC=3’h1, AP=3’h3, BT=3’h2, DC0=3’h4 (div. 1/8), DC1=3’h2 (div. 1/4), COL=0, D=2’h0, C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, Iload4=+200[uA], No load on the panel. - -2.55 -2.4 - Internal Reference Voltage: Condition (VCC= 2.50V~3.30V, Ta= -40°C~+85°C) Table 85 Item Internal reference voltage Unit Symbol VCIR Rev. 0.11 April 25, 2008, page 170 of 181 V Min. - Typ. 2.50 Max. - Note 12 R61509V Target Spec Power Supply Voltage Range (Ta= -40°C~+85°C, GND=AGND=0V) Table 86 Symbol Unit Min. Typ. Max. Condition Power Supply Voltage IOVCC V 1.65 1.80/2.80 3.30 - Power Supply Voltage VCC V 2.50 2.80 3.30 - Power Supply Voltage VCI Item Power Supply Voltage VPP1 Power Supply Voltage VPP3A V 2.50 2.80 3.30 - V 8.9 9.2 9.5 Write V 8.9 9.2 9.5 Erase V -0.3 0.0 +0.3 Write V -9.5 -9.2 -8.9 Erase Output Voltage Range (Ta= -40°C~+85°C, GND=AGND=0V) Table 87 Item Grayscale, VCOM reference Unit Symbol VREG1O UT V VCOMH output VCOMH VCOML output VCOML Source driver VCOM amplitude Min. Typ. Max. Condition - - DDVDH-0.5 - V GND+0.2 - VREG1OUT - V - - VREG1OUT - V VCL+0.5 - - - V - - 6.0 - Step-up output DDVDH V 4.5 - 6.0 - Step-up output VGH V 10.0 - 18.0 - Step-up output VGL V -13.5 - -4.5 - Step-up output VCL V -3.0 - -1.9 - VCI-VCL V - - 6.0 - VGH-VGL V - - 28.0 - Rev. 0.11 April 25, 2008, page 171 of 181 R61509V Target Spec AC Characteristics (VCC= 2.50V~3.30V, IOVCC=1.65V~3.30V, Ta= -40°C~+85°C *See note 1) Clock Characteristics Table 88 Item Symbol Oscillation clock fosc Unit kHz Test condition Min. VCC=IOVCC=3.0V Typ. 631 Max. 678 725 9 80-system 18-/16-/9-/8-bit Bus interface Timing Characteristics (1-/2-/3-transfer, IOVCC=1.65V~3.30V) TBD Table 89 Items Bus cycle time Symbol Unit Test condition Min. Typ. Max. Write tCYCW ns Figure A 75 (TBD) - - Read tCYCR ns Figure A 450 (TBD) - - Write low- level pulse width PWLW ns Figure A 30 (TBD) - - Read low-level pulse width PWLR ns Figure A 170 (TBD) - - Write high-level pulse width PWHW ns Figure A 25 (TBD) - - Read high-level pulse width PWHR ns Figure A 250 (TBD) - - Write/ Read rise/fall time tWRr, ns Figure A - - 15 ns Figure A 0 (TBD) - - ns Figure A 10 (TBD) - - Setup time Write (RS to CSX, WRX) Read (RS to CSX, RDX) WRf tAS Address hold time tAH ns Figure A 2 (TBD) - - Write data setup time tDSW ns Figure A 25 (TBD) - - Write data hold time tH ns Figure A 10 (TBD) - - Read data delay time tDDR ns Figure A - - 150 Read data hold time tDHR ns Figure A 5 (TBD) - - Rev. 0.11 April 25, 2008, page 172 of 181 Note R61509V Target Spec Clock Synchronous Serial Interface Timing Characteristics (IOVCC=1.65V~3.30V) TBD Table 90 Item Serial clock cycle time Serial clock high-level width Serial clock low-level width Symbol Unit Test condition Min. Typ. Max. Write (receive) tSCYC ns Figure B 100 (TBD) - 20,000 Read (transmit) tSCYC ns Figure B 350 (TBD) - 20,000 Write (receive) tSCH ns Figure B 40 (TBD) - - Read (transmit) tSCH ns Figure B 150 (TBD) - - Write (receive) tSCL ns Figure B 40 (TBD) - - Read (transmit) tSCL ns Figure B 150 (TBD) - - Serial clock rise/fall time tSCr,tSCf ns Figure B - - 15 (TBD) Chip select setup time tCSU ns Figure B 20 (TBD) - - Chip select hold time tCH ns Figure B 60 (TBD) - - Serial input data setup time tSISU ns Figure B 30 (TBD) - - Serial input data hold time tSIH ns Figure B 30 (TBD) - - Serial output data delay time tSOD ns Figure B - - 130 (TBD) Serial output data delay time tSOH ns Figure B 5 (TBD) - - RGB Interface Timing Characteristics (18-/16-bit RGB interface, IOVCC=1.65V~3.30V) TBD Table 91 Item Symbol Unit VSYNC/HSYNC setup time tSYNCS clock Figure D 0.5 (TBD) - 1.5 ENABLE setup time tENS ns Figure D 10 (TBD) - - ENABLE hold time tENH ns Figure D 20 (TBD) - - DOTCLK low-level pulse width PWDL ns Figure D 40 (TBD) - - DOTCLK high-level pulse width PWDH ns Figure D 40 (TBD) - - DOTCLK cycle time tCYCD ns Figure D 100 (TBD) - - Data setup time tPDS ns Figure D 10 (TBD) - - Data hold time tPDH ns Figure D 40 (TBD) - - DOTCLK, VSYNCX and HSYNCX rise/fall time trgbr, trgbf ns Figure D - - 15 Rev. 0.11 April 25, 2008, page 173 of 181 Test condition Min. Typ. Max. R61509V Target Spec LCD Driver Output Characteristics Table 92 Item Symbol Unit Test condition Min. Typ. Max. Note VCC=IOVCC =2.80V, VC[2:0]=3’h7 VRH[4:0]=5’h1F, fosc=678kHz (432-line drive), Ta=25°C, PR*P00=PR*N00=5’h00, PR*P01=PR*N01=5’h02, PR*P02=PR*N02=5’h04, PR*P03=PR*N03=4’h8, PR*P04=PR*N04=4’hF, PR*P05=PR*N05=4’h8, Source driver output delay time tdds µs PR*P06=PR*N06=5’h04, PR*P07=PR*N07=5’h02, - 25 (TBD) - 10 - 25 (TBD) - 11 PR*P08=PR*N08=5’h04, PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0 PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0 Same change from the same grayscale at all time-division source output pins. Time to reach the target voltage ±35mV from VCOM polarity inversion timing. R=10kohm, C=30pF VCC=IOVCC=2.80V, VC[2:0]=3’h7, VRH[4:0] =5’h1F, fosc=678kHz (432-line drive), Ta=25°C, PR*P00=PR*N00=5’h00, PR*P01=PR*N01=5’h02, PR*P02=PR*N02=5’h04, PR*P03=PR*N03=4’h8, VCOM output delay time PR*P04=PR*N04=4’hF, PR*P05=PR*N05=4’h8, tddv µs PR*P06=PR*N06=5’h04, PR*P07=PR*N07=5’h02, PR*P08=PR*N08=5’h04, PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0 PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0 Time to reach ±35mV when shifting between source V0⇔V63 in the worst case of scenario. R=100ohm, C=10nF Reset Timing Characteristics Table 93(IOVCC=1.65V~3.30V) Item Symbol Unit Test condition Min. Typ. Max. Reset ”Low” level width tRES ms Figure C 1 - - Reset rise time trRES µs Figure C - - 10 Rev. 0.11 April 25, 2008, page 174 of 181 R61509V Target Spec Notes to Electrical Characteristics Note 1. The DC/AC electrical characteristics of bare die and wafer products are guaranteed at 85℃. Note 2. The following figures illustrate the configurations of input, I/O, and output pins. Pins: FMARK, SDO Pins: RESETX, IM2-1, IM0_ID VSYNCX, HSYNCX, DOTCLK, ENABLE, CSX, RDX, SDI IOVCC IOVCC PMOS PMOS Output data (Input circuit) NMOS NMOS GND GND Pins: WR_SCL, RDX IOVCC PMOS Input enable (CSX) PMOS (Input circuit) NMOS NMOS GND Pins: DB17-DB0 IOVCC PMOS Input enable (CSX) PMOS (Input circuit) NMOS NMOS GND IOVCC (Output circuit: three states) Output enable PMOS Output data NMOS GND Figure 77 Rev. 0.11 April 25, 2008, page 175 of 181 R61509V Target Spec Note 3: Test 1, 2 and 3 pins must be grounded. The VDDTEST and VREFC must be fixed to AGND. The IM0_ID pin must be fixed to IOVCC or be grounded. Note 4: This excludes the current in the output drive MOS. Note 5: This excludes the current in the input/output lines. Make sure that the input level is fixed because through current will increase in the input circuit when the CMOS input level takes a middle range level. The current consumption is unaffected by whether the CSX pin is high or low while not accessing via interface pins. Note 7: The output voltage deviation is the difference in the voltages from adjacent source pins for the same display area. This value is shown for reference. Note 8: The average output voltage dispersion is the variance source-output voltage of different chips of the same product. The average source output voltage is measured for each chip with same display area. Note 9: This applies to internal oscillators when using an internal RC oscillator. Note 10: The liquid crystal driver output delay time depends on the load on the liquid crystal panel. Adjust the frame frequency and the cycle per line by checking the quality of display on the actual panel in use. Test Circuits <Test circuits for AC characteristics> [Data bus DB17-DB0] <Test circuit for LCD output characteristics> [Liquid output: S1-S720] <Test circuit for VCOM output characteristics> Test Point Test Point Test Point 50pF 10kΩ Figure 78 Rev. 0.11 April 25, 2008, page 176 of 181 Load capacitance C 30pF Load resistance R 100Ω Load capacitance C 10nF R61509V Target Spec Timing Characteristics 80-system Bus Interface VIH VIH VIL VIL RS tAH tAS CSX VIH VIH VIL VIL Note 1 PWLW PWLR PWHW PWHR VIH WRX RDX VIH VIL VIH VIL tWRr tWRf tCYCW tCYCR tDSW tH Note 2 VIH VIH Write Data DB17-0 VIL VIL tDDR Note 2 tDHR VOH VOH Read Data DB17-0 VOL VOL Note 1: PWLW and PWLR are defined by the overlap period when CSX is "Low" and either of WRX or RDX is "Low". Note 2: Unused DB pins must be fixed at "IOVCC" or "GND". Figure A 80-system Bus Interface Rev. 0.11 April 25, 2008, page 177 of 181 R61509V Target Spec Clock Synchronous Serial Interface Start: S End: P VIH CSX VIL tSCYC tscr tscf tCSU tSCH VIH SCL VIH VIL tSCL VIH VIL VIH VIL tSISU VIL tSISH VIH VIH Input Data SDI tCH VIL Input Data VIL tSOD tSOH VOH1 VOH1 Output Data SDO Output Data VOL1 VOL1 Figure B Clock Synchronous Serial Interface Timing Reset Operation trRES tRES VIH RESETX VIL VIL Figure C Reset Timing Rev. 0.11 April 25, 2008, page 178 of 181 R61509V Target Spec RGB Interface trgbf trgbr tSYNCS VSYNCX VIH VIH HSYNCX VIL VIL tENS ENABLE tENH VIH VIH VIL VIL trgbf trgbr PWDL DOTCLK PWDH VIH VIH VIL VIH VIL VIL tCYCD tPDS tPDH VIH DB17-0 VIH Write Data VIL VIL Figure D RGB Interface Timing LCD Driver and VCOM Output Characteristics tDDv Target voltage r35mV VCOM Target voltage r35mV tDDs Target voltage r35mV S1-720 Target voltage r35mV Figure E LCD Driver and VCOM Output Timing Rev. 0.11 April 25, 2008, page 179 of 181 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes: 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document. 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples. 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations. 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com) 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsover for any damages incurred as a result of errors or omissions in the information included in this document. 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products. 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above. 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems (2) surgical implantations (3) healthcare intervention (e.g., excision, administration of medication, etc.) (4) any other purposes that pose a direct threat to human life Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officiers, directors, and employees against any and all damages arising out of such applications. 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges. 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment. 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas. 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries. http://www.renesas.com RENESAS SALES OFFICES Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501 Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900 Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11 Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836 Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2008. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .1.0 R61509V Target Spec Revision Record Rev. 0.11 Date 2008/04/25 Page No. Contents of Modification First issue Rev. 0.11 April 25, 2008, page 181 of 181 Drawn by Approved by