MITSUBISHI RF MOSFET MODULE ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS RA45H8994M1 RoHS Compliance, 896-941MHz 45W 12.8V, 2 Stage Amp. For MOBILE RADIO DESCRIPTION The RA45H8994M1 is a 45-watt RF MOSFET Amplifier Module for 12.8-volt mobile radios that operate in the 896- to 941-MHz range. The battery can be connected directly to the drain of the enhancement-mode MOSFET transistors. Without the gate voltage 1 and the gate voltage 2(VGG1=VGG2=0V), only a small leakage current flows into the drain and the nominal output signal (Pout=45W) attenuates up to 60 dB. When fixed i.e. 3.4V, is supplied to the gate voltage 1, the output power and the drain current increase as the gate voltage 2 increases. The output power and the drain current increase substantially with the gate voltage 2 around 0V (minimum) under the condition when the gate voltage 1 is kept in 3.4V. The nominal output power becomes available at the state that VGG2 is 4V (typical) and 5V (maximum). At this point, VGG1 has to be kept in 3.4V. At VGG1=3.4V & VGG2=5V, the typical gate currents are 0.4mA. This module is designed for non-linear FM modulation, but may also be used for linear modulation by setting the drain quiescent current with the gate voltages and controlling the output power with the input power. FEATURES • Enhancement-Mode MOSFET Transistors (IDD≅0 @ VDD=12.8V, VGG1=VGG2=0V) BLOCK DIAGRAM 2 3 1 4 5 1 RF Input added Gate Voltage 1(Pin&VGG1) 2 Gate Voltage 2(VGG2), Power Control 3 Drain Voltage (VDD), Battery 4 RF Output (Pout) 5 RF Ground (Case) • Pout>45W, ηT>33% @VDD=12.8V, VGG1=3.4V, VGG2=5V, Pin=50mW • Broadband Frequency Range: 896-941MHz • Metal cap structure that makes the improvements of RF radiation simple • Low-Power Control Current IGG1+IGG2=0.4mA(typ) @ VGG1=3.4V, VGG2=5V • Module Size: 67 x 18 x 9.9 mm • Linear operation is possible by setting the quiescent drain current with the gate voltages and controlling the output power with the input power. PACKAGE CODE: H2M RoHS COMPLIANCE • RA45H8994M1 is a RoHS compliant product. • RoHS compliance is indicate by the letter “G” after the Lot Marking. • This product include the lead in the Glass of electronic parts and the lead in electronic Ceramic parts. How ever, it is applicable to the following exceptions of RoHS Directions. 1.Lead in the Glass of a cathode-ray tube, electronic parts, and fluorescent tubes. 2.Lead in electronic Ceramic parts. ORDERING INFORMATION: ORDER NUMBER SUPPLY FORM RA45H8994M1-101 Antistatic tray, 10 modules/tray RA45H8994M1 MITSUBISHI ELECTRIC 1/9 th 20 Dec 2006 MITSUBISHI RF POWER MODULE ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS RoHS COMPLIANCE RA45H8994M1 MAXIMUM RATINGS (Tcase=+25°C, ZG=ZL=50Ω, unless otherwise specified) SYMBOL PARAMETER CONDITIONS RATING UNIT VDD Drain Voltage VGG1=3.4V ± 7%, VGG2<5V, Pin=0W 17 V VGG1 Gate Voltage 1 VGG2<5V, VDD<12.8V, Pin=50mW 4.5 V VGG2 Gate Voltage 2 VGG1=3.4V ± 7%, VDD<12.8V, Pin=50mW 6 V 100 mW 60 W Pin Input Power Pout Output Power Tcase(OP) Tstg f=896-941MHz, VGG1=3.4V ± 7%, VGG2<5V Operation Case Temperature Range Storage Temperature Range -30 to +100 °C -40 to +110 °C The above parameters are independently guaranteed. ELECTRICAL CHARACTERISTICS (Tcase=+25°C, ZG=ZL=50Ω, unless otherwise specified) SYMBOL PARAMETER F CONDITIONS Frequency Range MIN 896 Pout 1 Output Power 1 VDD=12.8V, VGG1=3.4V, VGG2=5V, Pin=50mW 45 ηT Total Efficiency VDD=12.8V 33 2fo 2 3fo 3 ρin Input VSWR IDD Leakage Current Pout 2 Output Power 2* — TYP MAX UNIT 941 MHz W % nd Harmonic VGG1=3.4V -40 dBc nd Harmonic VGG2=5V -40 dBc Pin=50mW 3:1 — VDD=17V, VGG1=VGG2=0V, Pin=0W 1 mA VDD=15.2V, VGG1=3.4V, VGG2=1V, Pin=4dBm 2 W Stability — Load VSWR Tolerance VDD=10.0-15.2V, Pin=1-100mW, 1.5<Pout <50W (VGG2 control, VGG1=3.4V), Load VSWR=3:1 VDD=15.2V, Pin=50mW, Pout=45W (VGG2 control, VGG1=3.4V), Load VSWR=20:1 No parasitic oscillation — No degradation or destroy — *: This is guaranteed as design value. All parameters, conditions, ratings, and limits are subject to change without notice. RA45H8994M1 MITSUBISHI ELECTRIC 2/9 th 20 Dec 2006 MITSUBISHI RF POWER MODULE ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS RA45H8994M1 RoHS COMPLIANCE nd O U T P U T P O W E R , T O T AL E F F IC IE N C Y , v e rsu s F R E Q U E N C Y 2 80 -3 0 70 P out HARMONICS (dBc) TOTAL EFFICIENCY(%) OUTPUT POWER Pout (W) TYPICAL PERFORMANCE (Tcase=+25°C, ZG=ZL=50Ω, unless otherwise specified) 60 50 40 η 30 T V D D = 1 2 .8 V V G G 1 = 3 .4 V V GG2= 5 V P in = 5 0 m W 20 10 , 3 rd H AR M O N IC S v e r s u s F R E Q U E N C Y V D D = 1 2 .8 V V G G 1 = 3 .4 V V GG2= 5 V P in = 5 0 m W -4 0 3 rd -5 0 -6 0 -7 0 2 nd -8 0 860 870 880 890 900 910 920 930 940 950 960 F R E Q U E N C Y f(M H z ) 860 870 880 890 900 910 920 930 940 950 960 F R E Q U E N C Y f(M H z ) IN P U T V S W R v e r s u s F R E Q U E N C Y INPUT VSWR ρ in (-) 5 V D D = 1 2 .8 V V G G 1 = 3 .4 V V GG2= 5 V P in = 5 0 m W 4 3 2 ρ in 1 860 870 880 890 900 910 920 930 940 950 960 F R E Q U E N C Y f(M H z ) O U T P U T P O W E R , P O W E R G AIN a n d D R AIN C U R R E N T v e r s u s IN P U T P O W E R 60 30 12 20 8 f=896M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V V GG2= 5 V ID D 10 0 0 5 10 15 50 16 30 12 20 0 0 -1 0 20 -5 12 20 8 f=925M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V V GG2= 5 V -1 0 -5 0 5 10 15 4 POWER GAIN Gp(dB) 30 OUTPUT POWER Pout (dBm) 16 DRAIN CURRENT IDD (A) POWER GAIN Gp(dB) OUTPUT POWER Pout (dBm) 20 Gp 0 24 50 12 20 0 -1 0 -5 80 14 12 ID D 8 6 P out 4 10 2 0 0 2 RA45H8994M1 4 6 8 10 12 D R A IN V O L T A G E V D D (V ) 14 16 OUTPUT POWER Pout (W) 90 16 DRAIN CURRENT IDD (A) OUTPUT POWER Pout (W) 18 10 20 5 10 15 4 0 20 O U T P U T P O W E R a n d D R AIN C U R R E N T v e r s u s D R AIN V O L T AG E 50 30 0 8 f=9 4 1 M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V V GG2= 5 V ID D 10 IN P U T P O W E R P in (d B m ) f=896M Hz V G G 1 = 3 .4 V V GG2= 5 V P in= 5 0 m W 40 16 30 0 90 60 20 Gp 40 20 O U T P U T P O W E R a n d D R AIN C U R R E N T v e r s u s D R AIN V O L T AG E 70 0 20 P out IN P U T P O W E R P in (d B m ) 80 15 60 24 P out ID D 10 O U T P U T P O W E R , P O W E R G AIN a n d D R AIN C U R R E N T v e r s u s IN P U T P O W E R 60 10 5 4 IN P U T P O W E R P in (d B m ) O U T P U T P O W E R , P O W E R G AIN a n d D R AIN C U R R E N T v e r s u s IN P U T P O W E R 40 0 8 f=9 1 5 M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V V GG2= 5 V ID D 10 IN P U T P O W E R P in (d B m ) 50 20 Gp 40 DRAIN CURRENT IDD (A) -5 24 P out 18 f=915M Hz V G G 1 = 3 .4 V V GG2= 5 V P in = 5 0 m W 70 60 50 16 14 12 10 ID D 40 30 8 6 P out 20 4 10 DRAIN CURRENT IDD (A) -1 0 4 POWER GAIN Gp(dB) 16 OUTPUT POWER Pout (dBm) 20 Gp 40 DRAIN CURRENT IDD (A) 24 P out 50 POWER GAIN Gp(dB) OUTPUT POWER Pout (dBm) 60 DRAIN CURRENT IDD(A) O U T P U T P O W E R , P O W E R G AIN a n d D R AIN C U R R E N T v e r s u s IN P U T P O W E R 2 0 0 2 MITSUBISHI ELECTRIC 3/9 4 6 8 10 12 D R A IN V O L T A G E V D D (V ) 14 16 th 20 Dec 2006 MITSUBISHI RF POWER MODULE ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS RoHS COMPLIANCE RA45H8994M1 TYPICAL PERFORMANCE (Tcase=+25°C, ZG=ZL=50Ω, unless otherwise specified) O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s D R A IN V O L T A G E 14 12 10 ID D 8 30 6 P out 20 4 10 2 0 0 2 4 6 8 10 12 14 70 60 50 4 10 2 0 4 6 6 4 f=896M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V P in= 5 0 m W 2 0 OUTPUT POWER Pout (W) (dBm) 8 DRAIN CURRENT IDD (A) OUTPUT POWER Pout (W) (dBm) 10 P out ( W ) 0 1 2 3 4 40 8 ID D 30 6 P out ( W ) 20 4 f=925M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V P in = 5 0 m W 3 4 G A TE V O L TA G E V G G 2 (V 2 OUTPUT POWER Pout (W) (dBm) ID D DRAIN CURRENT DI D (A) OUTPUT POWER Pout (W) (dBm) 8 2 0 1 4 2 P out ( W ) 0 OUTPUT POWER Pout(W) (dBm) 6 DRAIN CURRENT DI D (A) OUTPUT POWER Pout (W) (dBm) 8 ID D 0 1 2 3 G A TE V O L TA G E V 4 G G 2 (V 4 2 P out ( W ) 0 0 2 3 G A TE V O L TA G E V RA45H8994M1 4 G G 2 (V 5 OUTPUT POWER Pout (W) (dBm) 6 DRAIN CURRENT DI D (A) OUTPUT POWER Pout(W) (dBm) 8 ID D 1 4 f=941M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V P in= 5 0 m W 10 1 2 3 4 G G 2 (V 2 0 5 ) 60 12 f=915M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V P in = 4 d B m 50 40 10 8 P out ( d B m ) 30 6 20 4 ID D 10 2 P out ( W ) 0 1 2 3 4 G G 2 (V 5 ) O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s G AT E V O L T AG E 2 P out ( d B m ) 0 20 G A TE V O L TA G E V 10 10 6 P out ( W ) 0 12 20 8 ID D 30 ) f=925M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V P in= 4 d B m 30 40 5 60 40 10 P out ( d B m ) 0 O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s G AT E V O L T AG E 2 50 50 O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s G AT E V O L T AG E 2 P out ( d B m ) 0 0 5 12 0 10 10 4 0 12 20 3 G A TE V O L TA G E V f=896M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V P in = 4 d B m 30 2 2 60 ) 60 40 4 f=915M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V P in = 5 0 m W 10 5 O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s G AT E V O L T AG E 2 50 6 P out ( W ) 20 0 10 P out ( d B m ) 1 10 O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s G AT E V O L T AG E 2 40 0 16 P out ( d B m ) 0 12 0 14 G A T E V O L T A G E V G G 2 (V ) 60 10 12 12 50 5 O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s G AT E V O L T AG E 2 30 10 60 G A T E V O L T A G E V G G 2 (V ) 50 8 O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s G AT E V O L T AG E 2 ID D 0 6 P out D R A IN V O L T A G E V D D (V ) P out ( d B m ) 10 8 20 2 12 20 10 30 16 60 30 12 0 O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s G AT E V O L T AG E 2 40 14 ID D 40 D R A IN V O L T A G E V D D (V ) 50 16 DRAIN CURRENT IDD (A) 40 18 f=9 4 1 M Hz V G G 1 = 3 .4 V V GG2= 5 V P in = 5 0 m W DRAIN CURRENT DI D (A) 50 80 DRAIN CURRENT DI D (A) 60 90 16 60 12 f=941M Hz V D D = 1 2 .8 V V G G 1 = 3 .4 V P in= 4 d B m 50 40 10 8 P out ( d B m ) 30 6 20 4 ID D 10 2 P out ( W ) 0 DRAIN CURRENT DI D (A) 70 18 OUTPUT POWER Pout (W) f=925M Hz V G G 1 = 3 .4 V V GG2= 5 V P in = 5 0 m W 80 DRAIN CURRENT IDD (A) OUTPUT POWER Pout (W) 90 DRAIN CURRENT IDD (A) O U T P U T P O W E R a n d D R A IN C U R R E N T v e r s u s D R A IN V O L T A G E 0 0 1 2 3 G A TE V O L TA G E V ) MITSUBISHI ELECTRIC 4/9 4 G G 2 (V 5 ) th 20 Dec 2006 MITSUBISHI RF POWER MODULE ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS RoHS COMPLIANCE RA45H8994M1 OUTLINE DRAWING (mm) 67±1 ④ 18±1 10.7±1 ③ 15±1 ① ② 4±0.5 49.8±1 2-R2±0.5 19.4±1 (3.26) 60±1 12.5±1 0.6±0.2 17±1 44±1 (2.6) (9.9) 3.1+0.6/-0.4 7.3±0.5 56±1 1 RF Input added Gate Voltage 1(Pin & VGG1) 2 Gate Voltage 2(VGG2) 3 Drain Voltage (VDD) 4 RF Output (Pout) 5 RF Ground (Case) RA45H8994M1 MITSUBISHI ELECTRIC 5/9 th 20 Dec 2006 MITSUBISHI RF POWER MODULE ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS RoHS COMPLIANCE RA45H8994M1 TEST BLOCK DIAGRAM + DC Pow er Supply V GG1 Signal Generator Attenuator Preamplifier Attenuator Pow er Meter Directional Coupler DUT R1 C1 1 2 3 C3 VA GG1 Directional Coupler Attenuator Pow er Meter C4 + DC Pow er Supply V DD + DC Pow er Supply V GG2 C1: 4700pF, C2: 1000pF, R1: suitable. Please refer the detail below. 4 ZL=50Ω ZG=50Ω C2 Spectrum Analyzer 5 1 RF Input added Gate Voltage 1(Pin & VGG1) C3, C4: 4700pF, 22uF in parallel 2 Gate Voltage 2(VGG2) VGG1=3.4V 3 Drain Voltage (VDD) 4 RF Output (Pout) 5 RF Ground (Case) EQUIVALENT CIRCUIT 3 4 1 5 2 NOTE: Resistance between Gate Voltage 1, where RF is input, and ground equals to 15k ohm. External resistance connected to VGG1; impedance between Pin&VGG1 and ground needs to make high impedance that doesn't prevent RF characteristic on this module. RA45H8994M1 MITSUBISHI ELECTRIC 6/9 th 20 Dec 2006 MITSUBISHI RF POWER MODULE ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS RoHS COMPLIANCE RA45H8994M1 PRECAUTIONS, RECOMMENDATIONS, and APPLICATION INFORMATION: Construction: This module consists of a glass-epoxy substrate soldered onto a copper flange. For mechanical protection, a metal cap is attached (which makes the improvement of RF radiation easy). The MOSFET transistor chips are die bonded onto metal, wire bonded to the substrate, and coated with resin. Lines on the substrate (eventually inductors), chip capacitors, and resistors form the bias and matching circuits. Wire leads soldered onto the glass-epoxy substrate provide the DC and RF connection. Following conditions must be avoided: a) Bending forces on the glass-epoxy substrate (for example, by driving screws or from fast thermal changes) b) Mechanical stress on the wire leads (for example, by first soldering then driving screws or by thermal expansion) c) Defluxing solvents reacting with the resin coating on the MOSFET chips (for example, Trichloroethylene) d) Frequent on/off switching that causes thermal expansion of the resin e) ESD, surge, overvoltage in combination with load VSWR, and oscillation ESD: This MOSFET module is sensitive to ESD voltages down to 1000V. Appropriate ESD precautions are required. Mounting: A thermal compound between module and heat sink is recommended for low thermal contact resistance and to reduce the bending stress on the glass-epoxy substrate caused by the temperature difference to the heat sink. The module must first be screwed to the heat sink, then the leads can be soldered to the printed circuit board. M3 screws are recommended with a tightening torque of 0.4 to 0.6 Nm. Soldering and Defluxing: This module is designed for manual soldering. The leads must be soldered after the module is screwed onto the heat sink. The temperature of the lead (terminal) soldering should be lower than 350°C and shorter than 3 second. Ethyl Alcohol is recommend for removing flux. Trichloroethylene solvents must not be used (they may cause bubbles in the coating of the transistor chips which can lift off the bond wires). Thermal Design of the Heat Sink: At Pout=45W, VDD=12.8V and Pin=50mW each stage transistor operating conditions are: Pin Pout Rth(ch-case) IDD @ ηT=33% VDD Stage (W) (W) (V) (°C/W) (A) 1st 0.05 3.0 3.5 0.62 12.8 2nd 3.0 45.0 0.6 9.96 The channel temperatures of each stage transistor Tch = Tcase + (VDD x IDD - Pout + Pin) x Rth(ch-case) are: Tch1 = Tcase + (12.8V x 0.62A – 3.0W + 0.05W) x 3.5°C/W = Tcase + 17.5 °C Tch2 = Tcase + (12.8V x 9.96A – 45.0W + 3.0W) x 0.6°C/W = Tcase + 51.3 °C For long-term reliability, it is best to keep the module case temperature (Tcase) below 90°C. For an ambient temperature Tair=60°C and Pout=45W, the required thermal resistance Rth (case-air) = ( Tcase - Tair) / ( (Pout / ηT ) Pout + Pin ) of the heat sink, including the contact resistance, is: Rth(case-air) = (90°C - 60°C) / (45W/33% - 45W + 0.05W) = 0.33 °C/W When mounting the module with the thermal resistance of 0.33 °C/W, the channel temperature of each stage transistor is: Tch1 = Tair + 47.5 °C Tch2 = Tair + 81.3 °C The 175°C maximum rating for the channel temperature ensures application under derated conditions. RA45H8994M1 MITSUBISHI ELECTRIC 7/9 th 20 Dec 2006 MITSUBISHI RF POWER MODULE ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS RoHS COMPLIANCE RA45H8994M1 Output Power Control: Depending on linearity, the following three methods are recommended to control the output power: a) Non-linear FM modulation at high power operating: By the gate voltages (VGG1 and VGG2). When the gate voltages are close to zero, the nominal output signal (Pout=45W) is attenuated up to 60 dB and only a small leakage current flows from the battery into the drain. (On the following, V GG1 has to be kept in 3.4V.) Around VGG2=0V(minimum), the output power and drain current increases substantially. Around VGG2=4V (typical) to VGG2=5V (maximum), the nominal output power becomes available. b) Linear AM modulation: By RF input power Pin. (On the following, V GG1 has to be kept in 3.4V.) VGG2 is used to set the drain’s quiescent current for the required linearity. Oscillation: To test RF characteristics, this module is put on a fixture with two bias decoupling capacitors each on gate and drain, a 4.700 pF chip capacitor, located close to the module, and a 22 µF (or more) electrolytic capacitor. When an amplifier circuit around this module shows oscillation, the following may be checked: a) Do the bias decoupling capacitors have a low inductance pass to the case of the module? b) Is the load impedance ZL=50Ω? c) Is the source impedance ZG=50Ω? Frequent on/off switching: In base stations, frequent on/off switching can cause thermal expansion of the resin that coats the transistor chips and can result in reduced or no output power. The bond wires in the resin will break after long-term thermally induced mechanical stress. Quality: Mitsubishi Electric is not liable for failures resulting from base station operation time or operating conditions exceeding those of mobile radios. This module technology results from more than 20 years of experience, field proven in tens of millions of mobile radios. Currently, most returned modules show failures such as ESD, substrate crack, and transistor burnout, which are caused by improper handling or exceeding recommended operating conditions. Few degradation failures are found. Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material, or (iii) prevention against any malfunction or mishap. RA45H8994M1 MITSUBISHI ELECTRIC 8/9 th 20 Dec 2006 SALES CONTACT JAPAN: Mitsubishi Electric Corporation Semiconductor Sales Promotion Department 2-2-3 Marunouchi, Chiyoda-ku Tokyo, Japan 100 Email: [email protected] Phone: +81-3-3218-4854 Fax: +81-3-3218-4861 GERMANY: Mitsubishi Electric Europe B.V. Semiconductor Gothaer Strasse 8 D-40880 Ratingen, Germany Email: [email protected] Phone: +49-2102-486-0 Fax: +49-2102-486-4140 HONG KONG: Mitsubishi Electric Hong Kong Ltd. Semiconductor Division 41/F. Manulife Tower, 169 Electric Road North Point, Hong Kong Email: [email protected] Phone: +852 2510-0555 Fax: +852 2510-9822 FRANCE: Mitsubishi Electric Europe B.V. Semiconductor 25 Boulevard des Bouvets F-92741 Nanterre Cedex, France Email: [email protected] Phone: +33-1-55685-668 Fax: +33-1-55685-739 SINGAPORE: Mitsubishi Electric Asia PTE Ltd Semiconductor Division 307 Alexandra Road #3-01/02 Mitsubishi Electric Building, Singapore 159943 Email: [email protected] Phone: +65 64 732 308 Fax: +65 64 738 984 ITALY: Mitsubishi Electric Europe B.V. Semiconductor Centro Direzionale Colleoni, Palazzo Perseo 2, Via Paracelso I-20041 Agrate Brianza, Milano, Italy Email: [email protected] Phone: +39-039-6053-10 Fax: +39-039-6053-212 TAIWAN: Mitsubishi Electric Taiwan Company, Ltd., Semiconductor Department 9F, No. 88, Sec. 6 Chung Shan N. Road Taipei, Taiwan, R.O.C. Email: [email protected] Phone: +886-2-2836-5288 Fax: +886-2-2833-9793 U.K.: Mitsubishi Electric Europe B.V. Semiconductor Travellers Lane, Hatfield Hertfordshire, AL10 8XB, England Email: [email protected] Phone: +44-1707-278-900 Fax: +44-1707-278-837 U.S.A.: Mitsubishi Electric & Electronics USA, Inc. Electronic Device Group 1050 East Arques Avenue Sunnyvale, CA 94085 Email: [email protected] Phone: 408-730-5900 Fax: 408-737-1129 AUSTRALIA: Mitsubishi Electric Australia, Semiconductor Division 348 Victoria Road Rydalmere, NSW 2116 Sydney, Australia Email: [email protected] Phone: +61 2 9684-7210 +61 2 9684 7212 +61 2 9684 7214 +61 3 9262 9898 Fax: +61 2 9684-7208 +61 2 9684 7245 CANADA: Mitsubishi Electric Sales Canada, Inc. 4299 14th Avenue Markham, Ontario, Canada L3R OJ2 Phone: 905-475-7728 Fax: 905-475-1918 RA45H8994M1 MITSUBISHI ELECTRIC 9/9 th 20 Dec 2006