STMICROELECTRONICS LM324APT

LM224A-LM324A
Low power quad operational amplifiers
Features
■
Wide gain bandwidth: 1.3 MHz
■
Input common-mode voltage range includes
ground
■
Large voltage gain: 100 dB
■
Very low supply current/amplifier: 375 µA
■
Low input bias current: 20 nA
■
Low input offset voltage: 3 mV max.
■
Low input offset current: 2 nA
■
Wide power supply range:
Single supply: +3 V to +30 V
Dual supplies: ±1.5 V to ±15 V
N
DIP14
(Plastic package)
D
SO-14
(Plastic micropackage)
Description
These circuits consist of four independent, high
gain, internally frequency compensated
operational amplifiers. They operate from a single
power supply over a wide range of voltages.
P
TSSOP-14
(Thin shrink small outline package)
Operation from split power supplies is also
possible and the low power supply current drain is
independent of the magnitude of the power supply
voltage.
Order codes
Part number
LM224AN
LM224AD/ADT
Temperature range
-40° C, +105° C
LM224APT
LM324AN
LM324AD/ADT
LM324APT
September 2006
0° C, +70° C
Package
Packaging
DIP
SO
TSSOP
(Thin shrink outline package)
DIP
SO
TSSOP
(Thin shrink outline package)
Tube
Tube or tape & reel
Rev 4
Tape & reel
Tube
Tube or tape & reel
Tape & reel
1/20
www.st.com
20
Contents
LM224A-LM324A
Contents
1
Pin connections and schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Typical single-supply applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5
Macromodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7
2/20
6.1
DIP14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2
SO-14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3
TSSOP14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
LM224A-LM324A
1
Pin connections and schematic diagram
Pin connections and schematic diagram
Figure 1.
Pin connections (top view)
Output 1 1
14 Output 4
Inverting Input 1 2
-
-
13 Inverting Input 4
Non-inverting Input 1 3
+
+
12 Non-inverting Input 4
11 VCC -
VCC + 4
Non-inverting Input 2
5
+
+
10 Non-inverting Input 3
Inverting Input 2
6
-
-
9
Inverting Input 3
8
Output 3
Output 2 7
Figure 2.
Schematic diagram (1/4 LM124)
3/20
Absolute maximum ratings
2
LM224A-LM324A
Absolute maximum ratings
Table 1.
Absolute maximum ratings
Symbol
VCC
Vi
Parameter
LM224A
Supply voltage
Input voltage
Vid
Differential input voltage
Ptot
Power dissipation:
N suffix
D suffix
V
-0.3 to VCC + 0.3
V
32
V
(1)
500
400
500
400
50
Operating free-air temperature range
Tstg
Storage temperature range
mW
Infinite
Input current (3)
Toper
Unit
±16 or 32
Output short-circuit duration (2)
Iin
LM324A
-40 to +105
mA
0 to +70
°C
-65 to +150
°C
Maximum junction temperature
150
°C
Rthja
Thermal resistance junction to ambient(4):
SO14
TSSOP14
DIP14
103
100
83
Rthjc
Thermal resistance junction to case:
SO14
TSSOP14
DIP14
31
32
33
HBM: human body model(5)
700
Tj
ESD
MM: machine model
(6)
CDM: charged device model
150
°C/W
°C/W
V
1500
1. Neither of the input voltages must exceed the magnitude of VCC+ or VCC-.
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output
current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result
from simultaneous short-circuits on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input
diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This
transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground
for a large overdrive) for the time during which an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3 V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous shortcircuits on all amplifiers. These are typical values given for a single layer board (except for TSSOP which is
a two-layer board).
5. Human body model, 100 pF discharged through a 1.5 kΩ resistor into pin of device.
6. Machine model ESD, a 200 pF cap is charged to the specified voltage, then discharged directly into the IC
with no external series resistor (internal resistor < 5Ω), into pin-to-pin of device.
4/20
LM224A-LM324A
3
Electrical characteristics
Electrical characteristics
Table 2.
VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise
specified)
Symbol
Typ.
Max.
Unit
Vio
Input offset voltage (1):
Tamb = +25° C
Tmin ≤ Tamb ≤ Tmax
2
3
5
mV
Iio
Input offset current:
Tamb = +25° C
Tmin ≤ Tamb ≤ Tmax
2
20
40
nA
20
100
200
nA
Iib
Parameter
Min.
Input bias current (2):
Tamb = +25° C
Tmin ≤ Tamb ≤ Tmax
Avd
Large signal voltage gain:
VCC+ = +15 V, RL = 2 kΩ, Vo = 1.4 V to 11.4 V
Tamb = +25° C
Tmin ≤ Tamb ≤ Tmax
50
25
100
SVR
Supply voltage rejection ratio (Rs ≤ 10 kΩ):
VCC+ = 5 V to 30 V
Tamb = +25° C
Tmin ≤ Tamb ≤ Tmax
65
65
110
ICC
Supply current, all Amp, no load:
– Tamb = +25° C
VCC = +5V
VCC = +30 V
– Tmin ≤ Tamb ≤ Tmax
VCC = +5 V
VCC = +30 V
dB
0.7
1.5
1.2
3
0.8
1.5
1.2
3
Vicm
Input common mode voltage range:
VCC = +30 V (3)
Tamb = +25° C
Tmin ≤ Tamb ≤ Tmax
0
0
CMR
Common mode rejection ratio (Rs ≤10 kΩ):
Tamb = +25° C
Tmin ≤ Tamb ≤ Tmax
70
60
80
Isource
Output current source (Vid = +1 V):
VCC = +15 V, Vo = +2 V
20
40
Output sink current (Vid = -1 V):
VCC = +15 V, Vo = +2 V
VCC = +15 V, Vo = +0.2 V
10
12
20
50
Isink
V/mV
VCC -1.5
VCC -2
mA
V
dB
70
mA
mA
µA
5/20
Electrical characteristics
Table 2.
Symbol
VOH
LM224A-LM324A
VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise
specified)
Parameter
Min.
Typ.
High level output voltage VCC = +30 V, RL = 2 kΩ
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax
26
26
27
V
VCC = +30 V, RL = 10 kΩ
Tamb = +25° C
Tmin ≤ Tamb ≤ Tmax
27
27
28
V
VCC = +5 V, RL = 2 kΩ
Tamb = +25° C
Tmin ≤ Tamb ≤ Tmax
3.5
3
VOL
Low level output voltage (RL = 10kΩ):
Tamb = +25°C
Tmin ≤Tamb ≤Tmax
SR
Slew rate:
VCC = 15 V, Vi = 0.5 to 3 V, RL = 2 kΩ, CL = 100 pF,
unity gain
GBP
Gain bandwidth product:
VCC = 30 V, f =100 kHz, Vin = 10 mV, RL = 2 kΩ,
CL = 100pF
THD
Total harmonic distortion:
f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL =
100pF, VCC = 30V
Max.
Unit
V
5
20
20
mV
V/µs
0.4
MHz
1.3
%
0.015
Equivalent input noise voltage:
f = 1 kHz, Rs = 100 Ω, VCC = 30 V
40
DVio
Input offset voltage drift
7
30
μV/°C
DIio
Input offset current drift
10
200
pA/°C
en
Vo1/Vo2 Channel separation(4) - 1kHz ≤ f ≤ 20 kHZ
nV
-----------Hz
120
dB
1. Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC+ < 30 V, 0 < Vic < VCC+ - 1.5 V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the
state of the output so there is no load change on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by
more than 0.3 V. The upper end of the common-mode voltage range is VCC+ - 1.5 V, but either or both
inputs can go to +32 V without damage.
4. Due to the proximity of external components, ensure that there is no coupling originating from stray
capacitance between these external parts. Typically, this can be detected at higher frequencies because
this type of capacitance increases.
6/20
LM224A-LM324A
Figure 3.
Input bias current vs. ambient
temperature
Electrical characteristics
Figure 4.
Current limiting
INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
IB (nA)
24
21
18
15
12
9
6
3
0
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
Figure 5.
Input voltage range
Figure 6.
Supply current
Figure 7.
Gain bandwidth product
Figure 8.
Common mode rejection ratio
7/20
Electrical characteristics
Figure 9.
Input bias current vs. ambient
temperature
LM224A-LM324A
Figure 10. Current limiting
INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
IB (nA)
24
21
18
15
12
9
6
3
0
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
Figure 11. Input voltage range
Figure 12. Supply current
Figure 13. Gain bandwidth product
Figure 14. Common mode rejection ratio
8/20
LM224A-LM324A
Electrical characteristics
Figure 15. Electrical curves
9/20
Electrical characteristics
LM224A-LM324A
Figure 16. Input current
Figure 17. Large signal voltage gain
Figure 18. Power supply & common mode
rejection ratio
Figure 19. Voltage gain
10/20
LM224A-LM324A
4
Typical single-supply applications
Typical single-supply applications
Figure 20. AC coupled inverting amplifier
Figure 21. High input Z adjustable gain DC
instrumentation amplifier
if R1 = R5 and R3 = R4 = R6 = R7
2R
e0 = 1 + ----------1- (e2 -e1)
R
2
As shown e0 = 101 (e2 - e1).
Figure 22. AC coupled non inverting amplifier
Figure 23. DC summing amplifier
e0 = e1 +e2 -e3 -e4
Where (e1 +e2) ≥ (e3 +e4)
to keep e0 ≥ 0V
Figure 24. Non-inverting DC gain
Figure 25. Low drift peak detector
11/20
Typical single-supply applications
Figure 26. Active bandpass filter
LM224A-LM324A
Figure 27. High input Z, DC differential
amplifier
R
R
1
4
For ------- = ------R
R
2
3
(CMRR depends on this resistor ratio match)
Fo = 1kHz
Q = 50
Av = 100 (40dB)
Figure 28. Using symmetrical amplifiers to
reduce input current (general
concept)
12/20
e0
⎛ 1 + R-------4⎞
⎝ R3⎠
(e2 - e1)
As shown e0 = (e2 - e1)
LM224A-LM324A
5
Macromodels
Note:
Please consider the following before using this macromodel:
Macromodels
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a
design approach and help to select surrounding component values.
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (i.e. temperature, supply voltage, etc.). Thus the macromodel is often
not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the
product.
Data issued from macromodels that is used outside of the specified conditions (VCC,
temperature, etc.) or even worse, outside of the device operating conditions (VCC, Vicm, etc.)
is not reliable in any way.
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM124 1 3 2 4 5
*******************************************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
13/20
Macromodels
LM224A-LM324A
FIP 5 19 VOFP 3.600000E+02
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
The values provided in Table 3 are derived from this macromodel.
Table 3.
Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Unit
0
mV
Avd
RL = 2 kΩ
100
V/mV
Icc
No load, per amplifier
350
µA
0 to +13.5
V
+13.5
V
5
mV
Vicm
14/20
Value
VOH
RL = 2 kΩ (VCC
VOL
RL = 10 kΩ
+=15
V)
Ios
Vo = +2 V, VCC = +15 V
+40
mA
GBP
RL = 2 kΩ, CL = 100 pF
1.3
MHz
SR
RL = 2 kΩ, CL = 100 pF
0.4
V/µs
LM224A-LM324A
6
Package mechanical data
Package mechanical data
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a Lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
15/20
Package mechanical data
6.1
LM224A-LM324A
DIP14 package
Plastic DIP-14 MECHANICAL DATA
mm.
inch
DIM.
MIN.
a1
0.51
B
1.39
TYP
MAX.
MIN.
TYP.
1.65
0.055
0.065
b
0.5
0.020
b1
0.25
0.010
D
20
0.787
E
8.5
0.335
e
2.54
0.100
e3
15.24
0.600
F
7.1
I
Z
0.280
5.1
L
0.201
3.3
1.27
MAX.
0.020
0.130
2.54
0.050
0.100
P001A
16/20
LM224A-LM324A
6.2
Package mechanical data
SO-14 package
SO-14 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
MAX.
0.003
0.007
1.65
0.064
b
0.35
0.46
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.5
0.019
c1
45˚ (typ.)
D
8.55
8.75
0.336
E
5.8
6.2
0.228
0.344
0.244
e
1.27
0.050
e3
7.62
0.300
F
3.8
4.0
0.149
0.157
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
M
S
0.68
0.050
0.026
8 ˚ (max.)
PO13G
17/20
Package mechanical data
6.3
LM224A-LM324A
TSSOP14 package
TSSOP14 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
MAX.
1.2
A1
0.05
A2
0.8
b
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.9
5
5.1
0.193
0.197
0.201
E
6.2
6.4
6.6
0.244
0.252
0.260
E1
4.3
4.4
4.48
0.169
0.173
0.176
1
e
0.65 BSC
K
0˚
L
0.45
A
0.60
0.0256 BSC
8˚
0˚
0.75
0.018
8˚
0.024
0.030
A2
A1
b
e
K
c
L
E
D
E1
PIN 1 IDENTIFICATION
1
0080337D
18/20
LM224A-LM324A
7
Revision history
Revision history
Table 4.
Document revision history
Date
Revision
Changes
1-Mar-2001
1
1-Feb-2005
2
1-Jun-2005
3
ESD protection inserted in Table 1 on page 4.
25-Sep-2006
4
Editorial update.
First Release
Added explanation of Vid and Vi limits in Table 1 on page 4.
Updated macromodel.
19/20
LM224A-LM324A
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
20/20