LM158-LM258-LM358 Low power dual operational amplifiers Features ■ Internally frequency compensated ■ Large DC voltage gain: 100 dB ■ Wide bandwidth (unity gain): 1.1 MHz (temperature compensated) ■ Very low supply current per operator essentially independent of supply voltage ■ Low input bias current: 20 nA (temperature compensated) ■ Low input offset voltage: 2 mV ■ Low input offset current: 2 nA ■ Input common-mode voltage range includes negative rails ■ Differential input voltage range equal to the power supply voltage ■ Large output voltage swing 0 V to (VCC+ - 1.5V) N DIP8 (Plastic package) D&S SO-8 & miniSO-8 (Plastic micropackage) P TSSOP8 (Thin shrink small outline package) Description These circuits consist of two independent, highgain, internally frequency-compensated op-amps which are designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Pin connections (Top view) 1 Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. 2 - 3 + 4 7 - 6 + 5 1 - Output 1 2 - Inverting input 3 - Non-inverting input 4 - VCC5 - Non-inverting input 2 6 - Inverting input 2 7 - Output 2 8 - VCC+ In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. February 2008 8 Rev 7 1/19 www.st.com 19 Schematic diagram 1 LM158-LM258-LM358 Schematic diagram Figure 1. Schematic diagram (1/2 LM158) V CC 6μA 4μA 100μA Q5 Q6 CC Inverting input Q2 Q3 Q1 Q7 Q4 R SC Q11 Non-inverting input Output Q13 Q10 Q8 Q12 Q9 50μA GND 2/19 LM158-LM258-LM358 2 Absolute maximum ratings Absolute maximum ratings Table 1. Absolute maximum ratings Symbol VCC Parameter LM158,A Supply voltage LM258,A LM358,A Unit +/-16 or 32 V Vi Input voltage 32 V Vid Differential input voltage 32 V Output short-circuit duation (1) Iin Input current Infinite (2) 50 Toper Operating free-air temperature range Tstg Storage temperature range Tj Maximum junction temperature -55 to +125 -40 to +105 mA 0 to +70 °C -65 to +150 °C 150 °C ambient(3) Rthja Thermal resistance junction to SO-8 MiniSO-8 TSSOP8 DIP8 Rthjc Thermal resistance junction to case (3) SO-8 MiniSO-8 TSSOP8 DIP8 40 39 37 41 HBM: human body model(4) 300 V 200 V 1.5 kV ESD MM: machine model(5) CDM: charged device model (6) 125 190 120 85 °C/W °C/W 1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. 2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V. 3. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values. 4. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 5. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating. 6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 3/19 Operating conditions 3 LM158-LM258-LM358 Operating conditions Table 2. Operating conditions Symbol VCC 4/19 Parameter Value Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range LM158 LM258 LM358 Unit 3 to 30 VCC - -0.3 V + to VCC -1.5 -55 to +125 -40 to +105 0 to +70 V °C LM158-LM258-LM358 Electrical characteristics 4 Electrical characteristics Table 3. Electrical characteristics for VCC+ = +5V, VCC- = Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Symbol Vio Parameter Min. Input offset voltage (1) LM158A LM258A, LM358A LM158, LM258 LM358 Typ. 1 2 Tmin ≤ Tamb ≤ Tmax LM158A, LM258A, LM358A LM158, LM258 LM358 DVio Input offset voltage drift LM158A, LM258A, LM358A LM158, LM258, LM358 Iio Input offset current LM158A, LM258A, LM358A LM158, LM258, LM358 Tmin ≤ Tamb ≤ Tmax LM158A, LM258A, LM358A LM158, LM258, LM358 DIio Input offset current drift LM158A, LM258A, LM358A LM158, LM258, LM358 Iib Input bias current (2) LM158A, LM258A, LM358A LM158, LM258, LM358 Tmin ≤ Tamb ≤ Tmax LM158A, LM258A, LM358A LM158, LM258, LM358 Max. Unit 2 3 5 7 mV 4 7 9 7 7 15 30 2 2 10 30 µV/°C nA 30 40 10 10 200 300 20 20 50 150 pA/°C nA 100 200 Avd Large signal voltage gain VCC+= +15 V, RL = 2 kΩ, Vo = 1.4 V to 11.4 V Tmin ≤ Tamb ≤ Tmax 50 25 100 V/mV SVR Supply voltage rejection ratio VCC+ = 5 V to 30 V, Rs ≤ 10 kΩ Tmin ≤ Tamb ≤ Tmax 65 65 100 dB ICC Supply current, all amp, no load Tmin ≤ Tamb ≤ Tmax VCC+ = +5 V Tmin ≤ Tamb ≤ Tmax VCC+ = +30 V Vicm Input common mode voltage range VCC+= +30 V (3) Tmin ≤ Tamb ≤ Tmax 0.7 0 0 1.2 2 mA VCC+ -1.5 VCC+ -2 V 5/19 Electrical characteristics Table 3. Symbol LM158-LM258-LM358 Electrical characteristics for VCC+ = +5V, VCC- = Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Parameter CMR Common mode rejection ratio Rs ≤ 10 kΩ Tmin ≤ Tamb ≤ Tmax Isource Output current source VCC+ = +15 V, Vo = +2 V, Vid = +1 V Min. Typ. 70 60 85 20 40 Isink Output sink current VCC+ = +15V, Vo = +2V, Vid = -1V VCC+ = +15V, Vo = +0.2V, Vid = -1V 10 12 20 50 26 26 27 27 27 VOH High level output voltage RL = 2 kΩ, VCC+ = 30 V Tmin ≤ Tamb ≤ Tmax RL = 10 kΩ, VCC+ = 30 V Tmin ≤ Tamb ≤ Tmax Max. Unit dB 60 mA mA µA V 28 VOL Low level output voltage RL = 10 kΩ Tmin ≤ Tamb ≤ Tmax SR Slew rate VCC+ = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity Gain 0.3 0.6 V/µs GBP Gain bandwidth product VCC+ = 30 V, f = 100 kHz,Vin = 10 mV, RL = 2 kΩ, CL = 100 pF 0.7 1.1 MHz THD Total harmonic distortion f = 1 kHz, Av = 20 dB, RL = 2 kΩ, Vo = 2 Vpp, CL = 100 pF, VO = 2 Vpp 0.02 % Equivalent input noise voltage f = 1 kHz, Rs = 100 Ω, VCC+ = 30 V 55 nV -----------Hz Channel separation(4) 1kHz ≤ f ≤ 20 kHz 120 dB en Vo1/Vo2 5 20 20 mV 1. Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC+ < 30 V, 0 < Vic < VCC+ - 1.5 V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is VCC+ - 1.5 V, but either or both inputs can go to +32 V without damage. 4. Due to the proximity of external components, ensure that stray capacitance between these external parts does not cause coupling. Typically, this can be detected because this type of capacitance increases at higher frequencies. 6/19 LM158-LM258-LM358 Figure 2. Electrical characteristics Open loop frequency response Figure 3. 20 140 0.1mF 100 VCC - VI VCC/2 80 VO + VCC = 30V & -55°C Tamb 60 100k W 10M W OUTPUT SWING (Vpp) 120 VOLTAGE GAIN (dB) Large signal frequency response +125°C 40 20 1k W 15 1.0 10 100 1k 5 0 10k 100k 1M 10M 1k 10k Figure 5. OUTPUT VOLTAGE (mV) OUTPUT VOLTAGE (V) RL 2 k W VCC = +15V 3 2 1 INPUT VOLTAGE (V) 0 3 2 1 Voltage follower pulse response + 450 eO el - 50pF 400 Input 350 Output 300 Tamb = +25°C VCC = 30 V 250 0 10 20 30 40 0 1 2 Input current Figure 7. OUTPUT VOLTAGE (V) VI = 0 V 70 VCC = +30 V 60 50 VCC = +15 V 40 30 VCC = +5 V 20 4 5 25 45 65 7 8 1 v cc /2 85 105 TEMPERATURE (°C) 125 v cc - 0.1 IO VO + Tamb = +25°C 0.01 -15 6 VCC = +5V VCC = +15V VCC = +30V 10 -55 -35 5 Output characteristics 10 90 80 3 TIME (ms) TIME (ms) 0 1M 500 4 INPUT CURRENT (mA) 100k FREQUENCY (Hz) Voltage follower pulse response Figure 6. 2k W 10 FREQUENCY (Hz) Figure 4. VO + +7V VCC = +10 to + 15V & -55°C Tamb +125°C 0 +15V - VI 0,001 0,01 0,1 1 10 100 OUTPUT SINK CURRENT (mA) 7/19 Electrical characteristics Output characteristics Figure 9. Current limiting 90 8 OUTPUT CURRENT (mA) V CC 7 6 TO VCC+ (V) OUTPUT VOLTAGE REFERENCED Figure 8. LM158-LM258-LM358 + V CC /2 5 VO IO - 4 3 2 Independent of V CC T amb = +25°C - 80 60 + 50 40 30 20 10 0 1 0,001 0,01 0,1 1 10 -55 -35 100 OUTPUT SOURCE CURRENT (mA) Figure 10. Input voltage range 5 25 45 65 85 105 125 Figure 11. Positive supply voltage 160 10 VOLTAGE GAIN (dB) INPUT VOLTAGE (V) -15 TEMPERATURE (°C) 15 Négative Positive 5 0 5 10 R L = 20k W 120 R L = 2k W 80 40 0 15 POWER SUPPLY VOLTAGE (±V) 10 20 30 40 POSITIVE SUPPLY VOLTAGE (V) Figure 12. Input voltage range Figure 13. Supply current 4 160 VCC R L = 20k W SUPPLY CURRENT (mA) VOLTAGE GAIN (dB) IO 70 120 R L = 2k W 80 40 ID mA 3 - 2 + Tamb = 0°C to +125°C 1 Tamb = -55°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) 8/19 0 10 20 POSITIVE SUPPLY VOLTAGE (V) 30 LM158-LM258-LM358 Electrical characteristics INPUT CURRENT (nA) 100 75 50 25 Tamb= +25°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) POWER SUPPLY REJECTION RATIO (dB) Figure 16. Power supply rejection ratio 115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) GAIN BANDWIDTH PRODUCT (MHz) Figure 15. Gain bandwidth product 1.5 1.35 1.2 1.05 0.9 0.75 0.6 VCC = 15V 0.45 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) Figure 17. Common mode rejection ratio COMMON MODE REJECTION RATIO (dB) Figure 14. Input current 115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) Figure 18. Phase margin vs. capacitive load Phase Margin at Vcc=15V and Vicm=7.5V Vs. Iout and Capacitive load value 9/19 Typical applications 5 LM158-LM258-LM358 Typical applications Single supply voltage VCC = +5VDC. Figure 19. AC coupled inverting amplifier Rf 100k W R1 10kW 10k W 2VPP 0 eo RB 6.2kW R3 100kW eO 1/2 LM158 Co 1/2 LM158 eI ~ R2 VCC 100k W A V = 1 + R2 R1 (As shown A V = 101) Rf R1 (as shown A V = -10) +5V RL 10k W R2 1M W e O R1 10k W (V) CI AV= - Figure 20. Non-inverting DC amplifier C1 10mF 0 e I (mV) Figure 21. AC coupled non-inverting amplifier Figure 22. DC summing amplifier R1 100kW e1 R2 1MW C1 0.1mF CI Co 1/2 LM158 100kW eI ~ 2VPP 0 eo RB 6.2kW R3 1M W RL 10k W e2 100k W e3 100kW 1/2 LM158 eO 100kW R4 100kW e4 VCC C2 10mF 100kW A = 1 + R2 V R1 (as shown A V = 11) R5 100kW 100kW eo = e1 + e2 - e3 - e4 where (e1 + e2) ≥ (e3 + e4) to keep eo ≥ 0V Figure 23. High input Z, DC differential amplifier Figure 24. High input Z adjustable gain DC instrumentation amplifier R1 100k W R4 100kW R2 100kW e1 R1 100kW 1/2 LM158 R3 100kW +V1 +V2 R2 2k W 1/2 LM158 1/2 LM158 R5 100k W Vo e2 R2 if R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2R1 ----------- ] ( (e2 + e1) R2 As shown eo = 101 (e2 + e1) As shown eo = 101 (e2 + e1) 10/19 R4 100k W 1/2 LM158 Gain adjust 1/2 LM158 if R1 = R5 and R3 = R4 = R6 = R7 eo = [1 + 2R1 ----------- ] ( (e2 + e1) R3 100k W R6 100k W R7 100k W eO LM158-LM258-LM358 Typical applications Figure 25. Using symmetrical amplifiers to reduce input current I eI IB I IB 1/2 LM158 Figure 26. Low drift peak detector IB eo 2N 929 IB 1mF ZI IB 3MW C eI 0.001mF IB IB 1/2 LM158 Input current compensation 1.5MW R 1MW eo Zo 2I B 2N 929 2IB 1/2 LM158 1/2 LM158 0.001mF IB 3R 3MW IB 1/2 LM158 Input current compensation Figure 27. Active band-pass filter R1 100kW C1 330pF R2 100kW +V1 1/2 LM158 R5 470kW R4 10MW 1/2 LM158 C2 R3 100kW 330 pF R6 470kW Vo 1/2 LM158 R7 100kW VCC R8 100kW C3 10mF 11/19 Package information 6 LM158-LM258-LM358 Package information In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 12/19 LM158-LM258-LM358 6.1 Package information DIP8 package information Figure 28. DIP8 package mechanical drawing Table 4. DIP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 5.33 Max. 0.210 A1 0.38 0.015 A2 2.92 3.30 4.95 0.115 0.130 0.195 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.045 0.060 0.070 c 0.20 0.25 0.36 0.008 0.010 0.014 D 9.02 9.27 10.16 0.355 0.365 0.400 E 7.62 7.87 8.26 0.300 0.310 0.325 E1 6.10 6.35 7.11 0.240 0.250 0.280 e 2.54 0.100 eA 7.62 0.300 eB L 10.92 2.92 3.30 3.81 0.430 0.115 0.130 0.150 13/19 Package information 6.2 LM158-LM258-LM358 SO-8 package information Figure 29. SO-8 package mechanical drawing Table 5. SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 H 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 1° 8° 1° 8° ccc 14/19 Inches 0.10 0.004 LM158-LM258-LM358 6.3 Package information MiniSO-8 package information Figure 30. MiniSO-8 package mechanical drawing Table 6. MiniSO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.026 0.80 0.016 0.024 L1 0.95 0.037 L2 0.25 0.010 k ccc 0° 0.037 8° 0.10 0° 0.031 8° 0.004 15/19 Package information 6.4 LM158-LM258-LM358 TSSOP8 package information Figure 31. TSSOP8 package mechanical drawing Table 7. TSSOP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.2 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 16/19 Inches 1.00 0.65 k 0° L 0.45 0.60 0.006 0.039 0.041 0.0256 8° 0° 0.75 0.018 8° 0.024 L1 1 0.039 aaa 0.1 0.004 0.030 LM158-LM258-LM358 Ordering information 7 Ordering information Table 8. Order codes Order code Temperature range LM158N LM158D LM158DT -55°C, +125°C Package Packaging Marking DIP8 Tube LM158N SO-8 Tube or tape & reel LM158YD(1) LM158YDT(1) SO-8 Automotive grade LM258AN DIP8 LM258AD LM258ADT SO-8 Tube LM258A 258A SO-8 Automotive grade 258AY 258 LM258PT LM258APT LM258YPT LM258AYPT(2) 158Y Tube or tape & reel LM258AYD(1) LM258AYDT(1) (2) 158 TSSOP8 258A Tape & reel -40°C, +105°C LM258AST 258Y TSSOP8 Automotive grade 258AY MiniSO-8 Tape & reel K408 LM258N DIP8 Tube LM258N LM258D LM258DT SO-8 258 Tube or tape & reel LM258YD(1) LM258YDT(1) SO-8 Automotive grade 258Y LM358N LM358N LM358AN DIP8 LM358D LM358DT SO-8 Tube LM358AN LM358YD(1) LM358YDT(1) LM358AD LM358ADT LM358PT LM358APT (2) LM358YPT LM358AYPT(2) LM358ST LM358AST SO-8 Automotive grade 0°C, +70°C 358 Tube or tape & reel SO-8 358Y 358A 358 TSSOP8 358A Tape & reel 358Y TSSOP8 Automotive grade 358AY K405 MiniSO-8 Tape & reel K404 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. 2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 17/19 Revision history 8 LM158-LM258-LM358 Revision history Table 9. Document revision history Date Revision 1-Jul- 2003 1 First release. 2-Jan-2005 2 Rthja and Tj parameters added in AMR Table 1 on page 3. 1-Jul-2005 3 ESD protection inserted in Table 1 on page 3. 5-Oct-2006 4 Added Figure 18: Phase margin vs. capacitive load. 30-Nov-2006 5 Added missing ordering information. 6 Removed LM158A, LM258A and LM358A from document title. Corrected error in MiniSO-8 package data. L1 is 0.004 inch. Added automotive grade order codes in Section 7 on page 17. 7 Corrected VCC max (30V instead of 32V) in operating conditions. Changed presentation of electrical characteristics table. Deleted Vopp parameter in electrical characteristics table. Corrected miniSO-8 package information. Corrected temperature range for automotive grade order codes. Updated automotive grade footnotes in order codes table. 25-Apr-2007 12-Feb-2008 18/19 Changes LM158-LM258-LM358 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 19/19