STMICROELECTRONICS LM358YD

LM158-LM258-LM358
Low power dual operational amplifiers
Features
■
Internally frequency compensated
■
Large DC voltage gain: 100 dB
■
Wide bandwidth (unity gain): 1.1 MHz
(temperature compensated)
■
Very low supply current per operator
essentially independent of supply voltage
■
Low input bias current: 20 nA
(temperature compensated)
■
Low input offset voltage: 2 mV
■
Low input offset current: 2 nA
■
Input common-mode voltage range includes
negative rails
■
Differential input voltage range equal to the
power supply voltage
■
Large output voltage swing 0 V to (VCC+ - 1.5V)
N
DIP8
(Plastic package)
D&S
SO-8 & miniSO-8
(Plastic micropackage)
P
TSSOP8
(Thin shrink small outline package)
Description
These circuits consist of two independent, highgain, internally frequency-compensated op-amps
which are designed specifically to operate from a
single power supply over a wide range of
voltages. The low power supply drain is
independent of the magnitude of the power supply
voltage.
Pin connections
(Top view)
1
Application areas include transducer amplifiers,
DC gain blocks and all the conventional op-amp
circuits which now can be more easily
implemented in single power supply systems. For
example, these circuits can be directly supplied
with the standard +5 V which is used in logic
systems and will easily provide the required
interface electronics without requiring any
additional power supply.
2
-
3
+
4
7
-
6
+
5
1 - Output 1
2 - Inverting input
3 - Non-inverting input
4 - VCC5 - Non-inverting input 2
6 - Inverting input 2
7 - Output 2
8 - VCC+
In linear mode, the input common-mode voltage
range includes ground and the output voltage can
also swing to ground, even though operated from
only a single power supply voltage.
February 2008
8
Rev 7
1/19
www.st.com
19
Schematic diagram
1
LM158-LM258-LM358
Schematic diagram
Figure 1.
Schematic diagram (1/2 LM158)
V CC
6μA
4μA
100μA
Q5
Q6
CC
Inverting
input
Q2
Q3
Q1
Q7
Q4
R SC
Q11
Non-inverting
input
Output
Q13
Q10
Q8
Q12
Q9
50μA
GND
2/19
LM158-LM258-LM358
2
Absolute maximum ratings
Absolute maximum ratings
Table 1.
Absolute maximum ratings
Symbol
VCC
Parameter
LM158,A
Supply voltage
LM258,A
LM358,A
Unit
+/-16 or 32
V
Vi
Input voltage
32
V
Vid
Differential input voltage
32
V
Output short-circuit duation (1)
Iin
Input current
Infinite
(2)
50
Toper
Operating free-air temperature range
Tstg
Storage temperature range
Tj
Maximum junction temperature
-55 to +125 -40 to +105
mA
0 to +70
°C
-65 to +150
°C
150
°C
ambient(3)
Rthja
Thermal resistance junction to
SO-8
MiniSO-8
TSSOP8
DIP8
Rthjc
Thermal resistance junction to case (3)
SO-8
MiniSO-8
TSSOP8
DIP8
40
39
37
41
HBM: human body model(4)
300
V
200
V
1.5
kV
ESD
MM: machine model(5)
CDM: charged device model
(6)
125
190
120
85
°C/W
°C/W
1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output
current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result
from simultaneous short-circuits on all amplifiers.
2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input
diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This
transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground
for a large overdrive) for the time during which an input is driven negative.
This is not destructive and normal output is restored for input voltages above -0.3 V.
3. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values.
4. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
5. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
6. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
3/19
Operating conditions
3
LM158-LM258-LM358
Operating conditions
Table 2.
Operating conditions
Symbol
VCC
4/19
Parameter
Value
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
LM158
LM258
LM358
Unit
3 to 30
VCC
- -0.3
V
+
to VCC -1.5
-55 to +125
-40 to +105
0 to +70
V
°C
LM158-LM258-LM358
Electrical characteristics
4
Electrical characteristics
Table 3.
Electrical characteristics for VCC+ = +5V, VCC- = Ground, Vo = 1.4V, Tamb = +25°C
(unless otherwise specified)
Symbol
Vio
Parameter
Min.
Input offset voltage (1)
LM158A
LM258A, LM358A
LM158, LM258
LM358
Typ.
1
2
Tmin ≤ Tamb ≤ Tmax
LM158A, LM258A, LM358A
LM158, LM258
LM358
DVio
Input offset voltage drift
LM158A, LM258A, LM358A
LM158, LM258, LM358
Iio
Input offset current
LM158A, LM258A, LM358A
LM158, LM258, LM358
Tmin ≤ Tamb ≤ Tmax
LM158A, LM258A, LM358A
LM158, LM258, LM358
DIio
Input offset current drift
LM158A, LM258A, LM358A
LM158, LM258, LM358
Iib
Input bias current (2)
LM158A, LM258A, LM358A
LM158, LM258, LM358
Tmin ≤ Tamb ≤ Tmax
LM158A, LM258A, LM358A
LM158, LM258, LM358
Max.
Unit
2
3
5
7
mV
4
7
9
7
7
15
30
2
2
10
30
µV/°C
nA
30
40
10
10
200
300
20
20
50
150
pA/°C
nA
100
200
Avd
Large signal voltage gain
VCC+= +15 V, RL = 2 kΩ, Vo = 1.4 V to 11.4 V
Tmin ≤ Tamb ≤ Tmax
50
25
100
V/mV
SVR
Supply voltage rejection ratio
VCC+ = 5 V to 30 V, Rs ≤ 10 kΩ
Tmin ≤ Tamb ≤ Tmax
65
65
100
dB
ICC
Supply current, all amp, no load
Tmin ≤ Tamb ≤ Tmax VCC+ = +5 V
Tmin ≤ Tamb ≤ Tmax VCC+ = +30 V
Vicm
Input common mode voltage range
VCC+= +30 V (3)
Tmin ≤ Tamb ≤ Tmax
0.7
0
0
1.2
2
mA
VCC+ -1.5
VCC+ -2
V
5/19
Electrical characteristics
Table 3.
Symbol
LM158-LM258-LM358
Electrical characteristics for VCC+ = +5V, VCC- = Ground, Vo = 1.4V, Tamb = +25°C
(unless otherwise specified)
Parameter
CMR
Common mode rejection ratio
Rs ≤ 10 kΩ
Tmin ≤ Tamb ≤ Tmax
Isource
Output current source
VCC+ = +15 V, Vo = +2 V, Vid = +1 V
Min.
Typ.
70
60
85
20
40
Isink
Output sink current
VCC+ = +15V, Vo = +2V, Vid = -1V
VCC+ = +15V, Vo = +0.2V, Vid = -1V
10
12
20
50
26
26
27
27
27
VOH
High level output voltage
RL = 2 kΩ, VCC+ = 30 V
Tmin ≤ Tamb ≤ Tmax
RL = 10 kΩ, VCC+ = 30 V
Tmin ≤ Tamb ≤ Tmax
Max.
Unit
dB
60
mA
mA
µA
V
28
VOL
Low level output voltage
RL = 10 kΩ
Tmin ≤ Tamb ≤ Tmax
SR
Slew rate
VCC+ = 15V, Vi = 0.5 to 3V, RL = 2kΩ,
CL = 100pF, unity Gain
0.3
0.6
V/µs
GBP
Gain bandwidth product
VCC+ = 30 V, f = 100 kHz,Vin = 10 mV,
RL = 2 kΩ, CL = 100 pF
0.7
1.1
MHz
THD
Total harmonic distortion
f = 1 kHz, Av = 20 dB, RL = 2 kΩ, Vo = 2 Vpp,
CL = 100 pF, VO = 2 Vpp
0.02
%
Equivalent input noise voltage
f = 1 kHz, Rs = 100 Ω, VCC+ = 30 V
55
nV
-----------Hz
Channel separation(4)
1kHz ≤ f ≤ 20 kHz
120
dB
en
Vo1/Vo2
5
20
20
mV
1. Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC+ < 30 V, 0 < Vic < VCC+ - 1.5 V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output
so there is no change in the load on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V.
The upper end of the common-mode voltage range is VCC+ - 1.5 V, but either or both inputs can go to +32 V without
damage.
4. Due to the proximity of external components, ensure that stray capacitance between these external parts does not cause
coupling. Typically, this can be detected because this type of capacitance increases at higher frequencies.
6/19
LM158-LM258-LM358
Figure 2.
Electrical characteristics
Open loop frequency response
Figure 3.
20
140
0.1mF
100
VCC
-
VI
VCC/2
80
VO
+
VCC = 30V &
-55°C Tamb
60
100k W
10M W
OUTPUT SWING (Vpp)
120
VOLTAGE GAIN (dB)
Large signal frequency response
+125°C
40
20
1k W
15
1.0
10
100
1k
5
0
10k
100k
1M
10M
1k
10k
Figure 5.
OUTPUT VOLTAGE (mV)
OUTPUT
VOLTAGE (V)
RL 2 k W
VCC = +15V
3
2
1
INPUT
VOLTAGE (V)
0
3
2
1
Voltage follower pulse response
+
450
eO
el
-
50pF
400
Input
350
Output
300
Tamb = +25°C
VCC = 30 V
250
0
10
20
30
40
0
1
2
Input current
Figure 7.
OUTPUT VOLTAGE (V)
VI = 0 V
70
VCC = +30 V
60
50
VCC = +15 V
40
30
VCC = +5 V
20
4
5
25
45
65
7
8
1
v cc /2
85 105
TEMPERATURE (°C)
125
v cc
-
0.1
IO
VO
+
Tamb = +25°C
0.01
-15
6
VCC = +5V
VCC = +15V
VCC = +30V
10
-55 -35
5
Output characteristics
10
90
80
3
TIME (ms)
TIME (ms)
0
1M
500
4
INPUT CURRENT (mA)
100k
FREQUENCY (Hz)
Voltage follower pulse response
Figure 6.
2k W
10
FREQUENCY (Hz)
Figure 4.
VO
+
+7V
VCC = +10 to + 15V &
-55°C Tamb +125°C
0
+15V
-
VI
0,001
0,01
0,1
1
10
100
OUTPUT SINK CURRENT (mA)
7/19
Electrical characteristics
Output characteristics
Figure 9.
Current limiting
90
8
OUTPUT CURRENT (mA)
V CC
7
6
TO VCC+ (V)
OUTPUT VOLTAGE REFERENCED
Figure 8.
LM158-LM258-LM358
+
V CC /2
5
VO
IO
-
4
3
2
Independent of V CC
T amb = +25°C
-
80
60
+
50
40
30
20
10
0
1
0,001 0,01
0,1
1
10
-55 -35
100
OUTPUT SOURCE CURRENT (mA)
Figure 10. Input voltage range
5
25
45
65
85 105
125
Figure 11. Positive supply voltage
160
10
VOLTAGE GAIN (dB)
INPUT VOLTAGE (V)
-15
TEMPERATURE (°C)
15
Négative
Positive
5
0
5
10
R L = 20k W
120
R L = 2k W
80
40
0
15
POWER SUPPLY VOLTAGE (±V)
10
20
30
40
POSITIVE SUPPLY VOLTAGE (V)
Figure 12. Input voltage range
Figure 13. Supply current
4
160
VCC
R L = 20k W
SUPPLY CURRENT (mA)
VOLTAGE GAIN (dB)
IO
70
120
R L = 2k W
80
40
ID
mA
3
-
2
+
Tamb = 0°C to +125°C
1
Tamb = -55°C
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
8/19
0
10
20
POSITIVE SUPPLY VOLTAGE (V)
30
LM158-LM258-LM358
Electrical characteristics
INPUT CURRENT (nA)
100
75
50
25
Tamb= +25°C
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
POWER SUPPLY REJECTION RATIO (dB)
Figure 16. Power supply rejection ratio
115
110
SVR
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
GAIN BANDWIDTH PRODUCT (MHz)
Figure 15. Gain bandwidth product
1.5
1.35
1.2
1.05
0.9
0.75
0.6
VCC =
15V
0.45
0.3
0.15
0
-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
Figure 17. Common mode rejection ratio
COMMON MODE REJECTION RATIO (dB)
Figure 14. Input current
115
110
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
Figure 18. Phase margin vs. capacitive load
Phase Margin at Vcc=15V and Vicm=7.5V
Vs. Iout and Capacitive load value
9/19
Typical applications
5
LM158-LM258-LM358
Typical applications
Single supply voltage VCC = +5VDC.
Figure 19. AC coupled inverting amplifier
Rf
100k W
R1
10kW
10k W
2VPP
0
eo
RB
6.2kW
R3
100kW
eO
1/2
LM158
Co
1/2
LM158
eI ~
R2
VCC 100k W
A V = 1 + R2
R1
(As shown A V = 101)
Rf
R1
(as shown A V = -10)
+5V
RL
10k W
R2
1M W
e
O
R1
10k W
(V)
CI
AV= -
Figure 20. Non-inverting DC amplifier
C1
10mF
0
e I (mV)
Figure 21. AC coupled non-inverting amplifier Figure 22. DC summing amplifier
R1
100kW
e1
R2
1MW
C1
0.1mF
CI
Co
1/2
LM158
100kW
eI ~
2VPP
0
eo
RB
6.2kW
R3
1M W
RL
10k W
e2
100k W
e3
100kW
1/2
LM158
eO
100kW
R4
100kW
e4
VCC
C2
10mF
100kW
A = 1 + R2
V
R1
(as shown A V = 11)
R5
100kW
100kW
eo = e1 + e2 - e3 - e4
where (e1 + e2) ≥ (e3 + e4)
to keep eo ≥ 0V
Figure 23. High input Z, DC differential
amplifier
Figure 24. High input Z adjustable gain DC
instrumentation amplifier
R1
100k W
R4
100kW
R2
100kW
e1
R1
100kW
1/2
LM158
R3
100kW
+V1
+V2
R2
2k W
1/2
LM158
1/2
LM158
R5
100k W
Vo
e2
R2
if R1 = R5 and
R3 = R4 = R6 = R7
eo = [ 1 + 2R1
----------- ] ( (e2 + e1)
R2
As shown eo = 101 (e2 + e1)
As shown eo = 101 (e2 + e1)
10/19
R4
100k W
1/2
LM158
Gain adjust
1/2
LM158
if R1 = R5 and R3 = R4 = R6 = R7
eo = [1 + 2R1
----------- ] ( (e2 + e1)
R3
100k W
R6
100k W
R7
100k W
eO
LM158-LM258-LM358
Typical applications
Figure 25. Using symmetrical amplifiers to
reduce input current
I
eI
IB
I
IB
1/2
LM158
Figure 26. Low drift peak detector
IB
eo
2N 929
IB
1mF
ZI
IB
3MW
C
eI
0.001mF
IB
IB
1/2
LM158
Input current compensation
1.5MW
R
1MW
eo
Zo
2I B
2N 929
2IB
1/2
LM158
1/2
LM158
0.001mF
IB
3R
3MW
IB
1/2
LM158
Input current
compensation
Figure 27. Active band-pass filter
R1
100kW
C1
330pF
R2
100kW
+V1
1/2
LM158
R5
470kW
R4
10MW
1/2
LM158
C2
R3
100kW
330 pF
R6
470kW
Vo
1/2
LM158
R7
100kW
VCC
R8
100kW
C3
10mF
11/19
Package information
6
LM158-LM258-LM358
Package information
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
12/19
LM158-LM258-LM358
6.1
Package information
DIP8 package information
Figure 28. DIP8 package mechanical drawing
Table 4.
DIP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
5.33
Max.
0.210
A1
0.38
0.015
A2
2.92
3.30
4.95
0.115
0.130
0.195
b
0.36
0.46
0.56
0.014
0.018
0.022
b2
1.14
1.52
1.78
0.045
0.060
0.070
c
0.20
0.25
0.36
0.008
0.010
0.014
D
9.02
9.27
10.16
0.355
0.365
0.400
E
7.62
7.87
8.26
0.300
0.310
0.325
E1
6.10
6.35
7.11
0.240
0.250
0.280
e
2.54
0.100
eA
7.62
0.300
eB
L
10.92
2.92
3.30
3.81
0.430
0.115
0.130
0.150
13/19
Package information
6.2
LM158-LM258-LM358
SO-8 package information
Figure 29. SO-8 package mechanical drawing
Table 5.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
H
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
1°
8°
1°
8°
ccc
14/19
Inches
0.10
0.004
LM158-LM258-LM358
6.3
Package information
MiniSO-8 package information
Figure 30. MiniSO-8 package mechanical drawing
Table 6.
MiniSO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.1
A1
0
A2
0.75
b
Max.
0.043
0.15
0
0.95
0.030
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
L
0.85
0.65
0.40
0.60
0.006
0.033
0.026
0.80
0.016
0.024
L1
0.95
0.037
L2
0.25
0.010
k
ccc
0°
0.037
8°
0.10
0°
0.031
8°
0.004
15/19
Package information
6.4
LM158-LM258-LM358
TSSOP8 package information
Figure 31. TSSOP8 package mechanical drawing
Table 7.
TSSOP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.2
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
16/19
Inches
1.00
0.65
k
0°
L
0.45
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
8°
0.024
L1
1
0.039
aaa
0.1
0.004
0.030
LM158-LM258-LM358
Ordering information
7
Ordering information
Table 8.
Order codes
Order code
Temperature range
LM158N
LM158D
LM158DT
-55°C, +125°C
Package
Packaging
Marking
DIP8
Tube
LM158N
SO-8
Tube or tape & reel
LM158YD(1)
LM158YDT(1)
SO-8
Automotive grade
LM258AN
DIP8
LM258AD
LM258ADT
SO-8
Tube
LM258A
258A
SO-8
Automotive grade
258AY
258
LM258PT
LM258APT
LM258YPT
LM258AYPT(2)
158Y
Tube or tape & reel
LM258AYD(1)
LM258AYDT(1)
(2)
158
TSSOP8
258A
Tape & reel
-40°C, +105°C
LM258AST
258Y
TSSOP8
Automotive grade
258AY
MiniSO-8
Tape & reel
K408
LM258N
DIP8
Tube
LM258N
LM258D
LM258DT
SO-8
258
Tube or tape & reel
LM258YD(1)
LM258YDT(1)
SO-8
Automotive grade
258Y
LM358N
LM358N
LM358AN
DIP8
LM358D
LM358DT
SO-8
Tube
LM358AN
LM358YD(1)
LM358YDT(1)
LM358AD
LM358ADT
LM358PT
LM358APT
(2)
LM358YPT
LM358AYPT(2)
LM358ST
LM358AST
SO-8
Automotive grade
0°C, +70°C
358
Tube or tape & reel
SO-8
358Y
358A
358
TSSOP8
358A
Tape & reel
358Y
TSSOP8
Automotive grade
358AY
K405
MiniSO-8
Tape & reel
K404
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001
& Q 002 or equivalent.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC
Q001 & Q 002 or equivalent are on-going.
17/19
Revision history
8
LM158-LM258-LM358
Revision history
Table 9.
Document revision history
Date
Revision
1-Jul- 2003
1
First release.
2-Jan-2005
2
Rthja and Tj parameters added in AMR Table 1 on page 3.
1-Jul-2005
3
ESD protection inserted in Table 1 on page 3.
5-Oct-2006
4
Added Figure 18: Phase margin vs. capacitive load.
30-Nov-2006
5
Added missing ordering information.
6
Removed LM158A, LM258A and LM358A from document title.
Corrected error in MiniSO-8 package data. L1 is 0.004 inch.
Added automotive grade order codes in Section 7 on page 17.
7
Corrected VCC max (30V instead of 32V) in operating conditions.
Changed presentation of electrical characteristics table.
Deleted Vopp parameter in electrical characteristics table.
Corrected miniSO-8 package information.
Corrected temperature range for automotive grade order codes.
Updated automotive grade footnotes in order codes table.
25-Apr-2007
12-Feb-2008
18/19
Changes
LM158-LM258-LM358
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
19/19