STMICROELECTRONICS LRI2K

LRI2K
2048-bit EEPROM tag IC at 13.56 MHz, with 64-bit UID and
kill code, ISO 15693 and ISO 18000-3 Mode 1 compliant
Features
■
ISO 15693 standard fully compliant
■
ISO 18000-3 Mode 1 standard fully compliant
■
13.56 MHz ±7 kHz carrier frequency
■
To tag: 10% or 100% ASK modulation using
1/4 (26 Kbit/s) or 1/256 (1.6 Kbit/s) pulse
position coding
■
From tag: load modulation using Manchester
coding with 423 kHz and 484 kHz subcarriers
in low (6.6 Kbit/s) or high (26 Kbit/s) data rate
mode. Supports the 53 Kbit/s data rate with
Fast commands
■
Internal tuning capacitor (21 pF, 23.5 pF,
28.5 pF, 97 pF)
■
1 000 000 Erase/Write cycles (minimum)
■
40 year data retention (minimum)
■
2048 bits EEPROM with Block Lock feature
■
64-bit unique identifier (UID)
■
Electrical article surveillance capable (software
controlled)
■
Kill function
■
Read & Write (Block of 32 bits)
■
5 ms programming time
■
Packages
– ECOPACK® (RoHS compliant)
Inlay A1
Antenna (A6)
Antenna (A7)
UFDFPN8 (MB)
2 × 3 mm² (MLP)
Wafer
April 2008
Rev 7
1/89
www.st.com
1
Contents
LRI2K
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3
Initial dialogue for vicinity cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1
Power transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3
Operating field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2
Communication signal from VCD to LRI2K . . . . . . . . . . . . . . . . . . . . . 14
3
Data rate and data coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
5
3.1
Data coding mode: 1 out of 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
Data coding mode: 1 out of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3
VCD to LRI2K frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4
Start of frame (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Communications signal from LRI2K to VCD . . . . . . . . . . . . . . . . . . . . 19
4.1
Load modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2
Subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3
Data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Bit representation and coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1
5.2
6
5.1.1
High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.2
Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Bit coding using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.1
High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2
Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
LRI2K to VCD frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1
2/89
Bit coding using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.1
High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.2
Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
LRI2K
Contents
6.2
6.3
6.4
SOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.1
High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.2
Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
EOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.1
High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.2
Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
EOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4.1
High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4.2
Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7
Unique identifier (UID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8
Application family identifier (AFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9
Data storage format identifier (DSFID) . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.1
CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10
LRI2K protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11
LRI2K states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12
13
11.1
Power-off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.2
Ready state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.3
Quiet state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.4
Selected state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
12.1
Addressed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
12.2
Non-Addressed mode (general request) . . . . . . . . . . . . . . . . . . . . . . . . . 34
12.3
Select mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
13.1
14
Request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14.1
Response flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14.2
Response error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3/89
Contents
15
LRI2K
Anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
15.1
Request parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
16
Request processing by the LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
17
Explanation of the possible cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
18
Inventory Initiated command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
19
Timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
20
19.1
t1: LRI2K response delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
19.2
t2: VCD new request delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
19.3
t3: VCD new request delay in the absence of a response from the LRI2K 45
Commands codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
20.1
Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
20.2
Stay Quiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
20.3
Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
20.4
Write Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
20.5
Lock Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
20.6
Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
20.7
Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
20.8
Reset to Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
20.9
Write AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
20.10 Lock AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
20.11 Write DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
20.12 Lock DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
20.13 Get System Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
20.14 Get Multiple Block Security Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
20.15 Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
20.16 Write Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20.17 Lock Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20.18 Fast Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
20.19 Fast Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
20.20 Fast Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4/89
LRI2K
Contents
20.21 Fast Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
20.22 Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
20.23 Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
21
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
22
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
23
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
24
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Appendix A Anticollision algorithm (Informative) . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1
Algorithm for pulsed slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Appendix B CRC (Informative) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.1
CRC error detection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.2
CRC calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.3
Application family identifier (AFI) (informative) . . . . . . . . . . . . . . . . . . . . . 87
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5/89
List of tables
LRI2K
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/89
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
LRI2K memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10% modulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Response data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
UID format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CRC transmission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
VCD request frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
LRI2K response frame format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
LRI2K response depending on request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
General request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Definitions of request flags 1 to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Request flags 5 to 8 when bit 3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Request flags 5 to 8 when bit 3 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
General response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Definitions of response flags 1 to 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Response error code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Inventory request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Example of the addition of 0-bits to an 11-bit mask value . . . . . . . . . . . . . . . . . . . . . . . . . 39
Timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Inventory request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Inventory response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Stay Quiet request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 49
Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 49
Write Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Write Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 51
Write Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 51
Lock Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Lock Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Lock Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . 53
Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . 53
Select request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Select Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . . . . 55
Select response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Reset to Ready request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Reset to Ready response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . 56
Reset to ready response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Write AFI request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Write AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Write AFI response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Lock AFI request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Lock AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
LRI2K
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
List of tables
Lock AFI response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Write DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Write DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 59
Write DSFID response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Lock DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Lock DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . 60
Lock DSFID response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Get System Info request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Get System Info response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . 61
Get System Info response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Get Multiple Block Security Status request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Get Multiple Block Security Status response format when Error_flag is NOT set . . . . . . . 62
Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Get Multiple Block Security Status response format when Error_flag is set . . . . . . . . . . . . 62
Kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Kill response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Kill response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Write Kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Write Kill response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Write Kill response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Lock Kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Lock Kill response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Lock Kill response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Fast Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Fast Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . 68
Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Fast Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . 68
Fast Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Fast Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Fast Initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Fast Initiate response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Fast Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Fast Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . 72
Block Locking status if Option_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Fast Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . 72
Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Initiate Initiated response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A1 antenna on tape mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A6 antenna on tape mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A7 antenna on tape mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP)
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CRC definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
AFI coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7/89
List of figures
LRI2K
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
8/89
Pad connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
MLP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
100% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
10% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1 out of 256 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Detail of one time period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1 out of 4 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1 out of 4 coding example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SOF to select 1 out of 256 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SOF to select 1 out of 4 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
EOF for either data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Logic 0, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Logic 1, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Logic 0, low data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Logic 1, low data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Start of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Start of frame, high data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Start of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Start of frame, low data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Start of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Start of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
End of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
End of frame, high data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
End of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
End of frame, low data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
End of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
End of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
LRI2K decision tree for AFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
LRI2K protocol timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LRI2K state transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Principle of comparison between the mask, the slot number and the UID . . . . . . . . . . . . . 40
Description of a possible anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Stay Quiet frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
READ Single Block frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . 50
Write Single Block frame exchange between VCD and LRI2K. . . . . . . . . . . . . . . . . . . . . . 51
Lock Block frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Read Multiple Block frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . 54
Select frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Reset to Ready frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . 56
Write AFI frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
LRI2K
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
List of figures
Lock AFI frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Write DSFID frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Lock DSFID frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Get System Info frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . 61
Get Multiple Block Security Status frame exchange between VCD and LRI2K . . . . . . . . . 63
Kill frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Write Kill frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Lock Kill frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Fast Read Single Block frame exchange between VCD and LRI2K. . . . . . . . . . . . . . . . . . 69
Fast Initiate frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Fast Read Multiple Block frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . 73
Initiate frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LRI2K synchronous timing, transmit and receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A1 antenna on tape outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A6 antenna on tape outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A7 antenna on tape outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP) outline . . . . . . . . 82
9/89
Description
1
LRI2K
Description
The LRI2K is a contactless memory powered by the received carrier electromagnetic wave.
It is a 2048-bit electrically erasable programmable memory (EEPROM). The memory is
organized as 64 blocks of 32 bits. The LRI2K is accessed via the 13.56 MHz carrier
electromagnetic wave on which incoming data are demodulated from the received signal
amplitude modulation (ASK: amplitude shift keying). The received ASK wave is 10% or
100% modulated with a data rate of 1.6 Kbit/s using the 1/256 pulse coding mode or a data
rate of 26 Kbit/s using the 1/4 pulse coding mode.
Outgoing data are generated by the LRI2K load variation using Manchester coding with one
or two subcarrier frequencies at 423 kHz and 484 kHz. Data are transferred from the LRI2K
at 6.6 Kbit/s in low data rate mode and 26 Kbit/s fast data rate mode. The LRI2K supports
53 Kbit/s in high data rate mode with one subcarrier frequency at 423 kHz.
The LRI2K follows the ISO 15693 recommendation for radio-frequency power and signal
interface.
Figure 1.
Pad connections
LRI2K
Power
Supply
Regulator
AC1
ASK
Demodulator
2048 bit
EEPROM
memory
Manchester
Load
Modulator
AC0
AI12065
Table 1.
Signal names
Signal name
Function
AC1
Antenna coil
AC0
Antenna coil
Figure 2.
MLP connections
AC0
n/c
n/c
n/c
1
2
3
4
8
7
6
5
AC1
n/c
n/c
n/c
AI11612
1. n/c means not connected internally.
10/89
LRI2K
1.1
Description
Memory mapping
The LRI2K is divided into 64 blocks of 32 bits. Each block can be individually write-protected
using the Lock command.
Table 2.
Add
LRI2K memory map
0
7 8
15 16
0
User area
1
User area
2
User area
3
User area
4
User area
5
User area
6
User area
7
User area
8
User area
23 24
31
User area
User area
User area
60
User area
61
User area
62
User area
63
User area
UID 0
UID 1
UID 2
UID 3
UID 4
UID 5
UID 6
UID 7
AFI
DSFID
Kill code
The User area consists of blocks that are always accessible in read mode. Write operations
are possible if the addressed block is not protected. During a write operation, the 32 bits of
the block are replaced by the new 32-bit value.
The LRI2K also has a 64-bit block that is used to store the 64-bit unique identifier (UID). The
UID is compliant to the ISO 15963 description, and its value is used during the anticollision
sequence (Inventory). This block is not accessible by the user and its value is written by ST
on the production line.
The LRI2K also includes an AFI register in which the application family identifier is stored,
and a DSFID register in which the data storage family identifier used in the anticollision
algorithm is stored. The LRI2K has an additional 32-bit block in which the kill code is stored.
11/89
Description
1.2
LRI2K
Commands
The LRI2K supports the following commands:
12/89
●
Inventory, used to perform the anticollision sequence.
●
Stay Quiet, used to put the LRI2K in quiet mode, where it does not respond to any
inventory command.
●
Select, used to select the LRI2K. After this command, the LRI2K processes all
Read/Write commands with Select_flag set.
●
Reset To Ready, used to put the LRI2K in the ready state.
●
Read Block, used to output the 32 bits of the selected block and its locking status.
●
Write Block, used to write the 32-bit value in the selected block, provided that it is not
locked.
●
Lock Block, used to lock the selected block. After this command, the block cannot be
modified.
●
Read Multiple Blocks, used to read the selected blocks and send back their value.
●
Write AFI, used to write the 8-bit value in the AFI register.
●
Lock AFI, used to lock the AFI register.
●
Write DSFID, used to write the 8-bit value in the DSFID register.
●
Lock DSFID, used to lock the DSFID register.
●
Get System Info, used to provide the system information value
●
Get Multiple Block Security Status, used to send the security status of the selected
block.
●
Initiate, used to trigger the tag response to the Inventory Initiated sequence.
●
Inventory Initiated, used to perform the anticollision sequence triggered by the Initiate
command.
●
Kill, used to definitively deactivate the tag.
●
Write Kill, used to write the 32-bit Kill code value
●
Lock Kill, used to lock the Kill Code register.
●
Fast Initiate, used to trigger the tag response to the Inventory Initiated sequence.
●
Fast Inventory Initiated, used to perform the anticollision sequence triggered by the
Initiate command.
●
Fast Read Block, used to output the 32 bits of the selected block and its locking status.
●
Fast Read Multiple Blocks, used to read the selected blocks and send back their
value.
LRI2K
1.3
Description
Initial dialogue for vicinity cards
The dialog between the vicinity coupling device (VCD) and the vicinity integrated circuit card
or VICC (LRI2K) takes place as follows:
●
activation of the LRI2K by the RF operating field of the VCD
●
transmission of a command by the VCD
●
transmission of a response by the LRI2K
These operations use the RF power transfer and communication signal interface described
below (see Power transfer, Frequency and Operating field). This technique is called RTF
(reader talk first).
1.3.1
Power transfer
Power is transferred to the LRI2K by radio frequency at 13.56 MHz via coupling antennas in
the LRI2K and the VCD. The RF operating field of the VCD is transformed on the LRI2K
antenna as an AC voltage which is rectified, filtered and internally regulated. The amplitude
modulation (ASK) on this received signal is demodulated by the ASK demodulator.
1.3.2
Frequency
The ISO 15693 standard defines the carrier frequency (fc) of the operating field as
13.56 MHz ±7 kHz.
1.3.3
Operating field
The LRI2K operates continuously between Hmin and Hmax.
●
The minimum operating field is Hmin and has a value of 150 mA/m rms.
●
The maximum operating field is Hmax and has a value of 5 A/m rms.
A VCD must generate a field of at least Hmin and not exceeding Hmax in the operating
volume.
13/89
Communication signal from VCD to LRI2K
2
LRI2K
Communication signal from VCD to LRI2K
Communications between the VCD and the LRI2K take place using the modulation principle
of ASK (amplitude shift keying). Two modulation indexes are used, 10% and 100%. The
LRI2K decodes both. The VCD determines which index is used.
The modulation index is defined as [a – b]/[a + b] where a is the peak signal amplitude and b
the minimum signal amplitude of the carrier frequency.
Depending on the choice made by the VCD, a "pause" will be created as described in
Figure 3 and Figure 4.
The LRI2K is operational for any degree of modulation index between 10% and 30%.
Figure 3.
100% modulation waveform
a
105%
100%
95%
60%
5%
tRFF
t
tRFR
tRFSBL
AI06683
Table 3.
10% modulation parameters
Symbol
Parameter definition
Value
hr
0.1 x (a – b)
max
hf
0.1 x (a – b)
max
Figure 4.
10% modulation waveform
hf
hr
tRFF
a
tRFSFL
b
tRFR
t
AI06655
14/89
LRI2K
Data rate and data coding
3
Data rate and data coding
The data coding implemented in the LRI2K uses pulse position modulation. Both data
coding modes that are described in the ISO 15693 are supported by the LRI2K. The
selection is made by the VCD and indicated to the LRI2K within the start of frame (SOF).
3.1
Data coding mode: 1 out of 256
The value of one single byte is represented by the position of one pause. The position of the
pause on 1 of 256 successive time periods of 18.88 µs (256/fC), determines the value of the
byte. In this case the transmission of one byte takes 4.833 ms and the resulting data rate is
1.65 Kbits/s (fC/8192).
Figure 5 illustrates this pulse position modulation technique. In this Figure, data E1h (225
decimal) is sent by the VCD to the LRI2K.
The pause occurs during the second half of the position of the time period that determines
the value, as shown in Figure 6.
A pause during the first period transmits the data value 00h. A pause during the last period
transmits the data value FFh (255 decimal).
Figure 5.
1 out of 256 coding mode
9.44 µs
Pulse
Modulated
Carrier
18.88 µs
0 1
2
3
. . . . . . . .
. . . . . . . . .
. . . . . . . . .
2
2
5
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
2
5
2
2
5
3
2
5
4
2
5
5
4.833 ms
AI06656
15/89
Data rate and data coding
Figure 6.
LRI2K
Detail of one time period
9.44 µs
18.88 µs
Pulse
Modulated
Carrier
.
.
.
.
.
.
.
.
2
2
4
2
2
5
.
.
.
.
.
2
2
6
Time Period
one of 256
16/89
.
AI06657
LRI2K
3.2
Data rate and data coding
Data coding mode: 1 out of 4
The value of 2 bits is represented by the position of one pause. The position of the pause on
1 of 4 successive time periods of 18.88 µs (256/fC) determines the value of the 2 bits. Four
successive pairs of bits form a byte, where the least significant pair of bits is transmitted first.
In this case the transmission of one byte takes 302.08 µs and the resulting data rate is
26.48 Kbit/s (fC/512). Figure 7 illustrates the 1 out of 4 pulse position technique and coding.
Figure 8 shows the transmission of E1h (225d - 1110 0001b) by the VCD.
Figure 7.
1 out of 4 coding mode
Pulse position for "00"
9.44 µs
9.44 µs
75.52 µs
Pulse position for "01" (1=LSB)
28.32 µs
9.44 µs
75.52 µs
Pulse position for "10" (0=LSB)
47.20 µs
Pulse position for "11"
9.44 µs
75.52 µs
66.08 µs
9.44 µs
75.52 µs
AI06658
Figure 8.
1 out of 4 coding example
10
00
01
11
75.52 µs
75.52 µs
75.52 µs
75.52 µs
AI06659
17/89
Data rate and data coding
3.3
LRI2K
VCD to LRI2K frames
Frames are delimited by a start of frame (SOF) and an end of frame (EOF). They are
implemented using code violation. Unused options are reserved for future use.
The LRI2K is ready to receive a new command frame from the VCD 311.5 µs (t2) after
sending a response frame to the VCD.
The LRI2K takes a Power-On time of 0.1 ms after being activated by the powering field.
After this delay, the LRI2K is ready to receive a command frame from the VCD.
3.4
Start of frame (SOF)
The SOF defines the data coding mode the VCD is to use for the following command frame.
The SOF sequence described in Figure 9 selects the 1 out of 256 data coding mode.
The SOF sequence described in Figure 10 selects the 1 out of 4 data coding mode.
The EOF sequence for either coding mode is described in Figure 11.
Figure 9.
SOF to select 1 out of 256 data coding mode
9.44 µs
9.44 µs
37.76 µs
37.76 µs
AI06661
Figure 10. SOF to select 1 out of 4 data coding mode
9.44 µs
9.44 µs
9.44 µs
37.76 µs
37.76 µs
AI06660
Figure 11. EOF for either data coding mode
9.44 µs
9.44 µs
37.76 µs
AI06662
18/89
LRI2K
4
Communications signal from LRI2K to VCD
Communications signal from LRI2K to VCD
The LRI2K has several modes defined for some parameters, owing to which it can operate
in different noise environments and meet different application requirements.
4.1
Load modulation
The LRI2K is capable of communication with the VCD via an inductive coupling area
whereby the carrier is loaded to generate a subcarrier with frequency fS. The subcarrier is
generated by switching a load in the LRI2K.
The load-modulated amplitude received on the VCD antenna shall be at least 10 mV when
measured as described in the test methods defined in International Standard ISO 10373-7.
4.2
Subcarrier
The LRI2K supports the one-subcarrier and two-subcarrier response formats. These
formats are selected by the VCD using the first bit in the protocol header. When one
subcarrier is used, the frequency fS1 of the subcarrier load modulation is 423.75 kHz (fC/32).
When two subcarriers are used, frequency fS1 is 423.75 kHz (fC/32), and frequency fS2 is
484.28 kHz (fC/28). When using the two-subcarrier mode, the LRI2K generates a
continuous phase relationship between fS1 and fS2.
4.3
Data rates
The LRI2K can respond using the low or the high data rate format. The selection of the data
rate is made by the VCD using the second bit in the protocol header. It also supports the x2
mode available on all the Fast commands. Table 4 shows the different data rates produced
by the LRI2K using the different response format combinations.
Table 4.
Response data rate
Data rate
One subcarrier
Two subcarriers
Standard commands
6.62 kbits/s (fc/2048)
6.67 kbits/s (fc/2032)
Fast commands
13.24 kbits/s (fc/1024)
not applicable
Standard commands
26.48 kbits/s (fc/512)
26.69 kbits/s (fc/508)
Fast commands
52.97 kbits/s (fc/256)
not applicable
Low
High
19/89
Bit representation and coding
5
LRI2K
Bit representation and coding
Data bits are encoded using Manchester coding, according to the following schemes. For
the low data rate, the same subcarrier frequency or frequencies is/are used, in this case the
number of pulses is multiplied by 4 and all times are increased by this factor. For the Fast
commands using one subcarrier, all pulse numbers and times are divided by 2.
5.1
Bit coding using one subcarrier
5.1.1
High data rate
A logic 0 starts with 8 pulses at 423.75 kHz (fC/32) followed by an unmodulated time of
18.88 µs as shown in Figure 12.
Figure 12. Logic 0, high data rate
37.76µs
ai12076
For the Fast commands, a logic 0 starts with 4 pulses at 423.75 kHz (fC/32) followed by an
unmodulated time of 9.44 µs as shown in Figure 13.
Figure 13. Logic 0, high data rate x2
18.88µs
ai12066
A logic 1 starts with an unmodulated time of 18.88 µs followed by 8 pulses at 423.75 kHz
(fC/32) as shown in Figure 14.
Figure 14. Logic 1, high data rate
37.76µs
ai12077
For the Fast commands, a logic 1 starts with an unmodulated time of 9.44 µs followed by 4
pulses at 423.75 kHz (fC/32) as shown in Figure 15.
Figure 15. Logic 1, high data rate x2
18.88µs
ai12067
20/89
LRI2K
5.1.2
Bit representation and coding
Low data rate
A logic 0 starts with 32 pulses at 423.75 kHz (fC/32) followed by an unmodulated time of
75.52 µs as shown in Figure 16.
Figure 16. Logic 0, low data rate
151.04µs
ai12068
For the fast commands, a logic 0 starts with 16 pulses of 423,75 kHz (fC/32) followed by an
unmodulated time of 37,76 µs as shown in Figure 17.
Figure 17. Logic 0, low data rate x2
75.52µs
ai12069
A logic 1 starts with an unmodulated time of 75,52 µs followed by 32 pulses of 423,75 kHz
(fC/32) as shown in Figure 18.
Figure 18. Logic 1, low data rate
151.04µs
ai12070
For the Fast commands, a logic 1 starts with an unmodulated time of 37.76 µs followed by
16 pulses at 423.75 kHz (fC/32) as shown in Figure 19.
Figure 19. Logic 1, low data rate x2
75.52µs
ai12071
21/89
Bit representation and coding
LRI2K
5.2
Bit coding using two subcarriers
5.2.1
High data rate
A logic 0 starts with 8 pulses at 423.75 kHz (fC/32) followed by 9 pulses at 484.28 kHz
(fC/28) as shown in Figure 20. For the Fast commands, the x2 mode is not available.
Figure 20. Logic 0, high data rate
37.46µs
ai12074
A logic 1 starts with 9 pulses at 484.28 kHz (fC/28) followed by 8 pulses at 423.75 kHz
(fC/32) as shown in Figure 21. For the Fast commands, the x2 mode is not available.
Figure 21. Logic 1, high data rate
37.46µs
5.2.2
ai12073
Low data rate
A logic 0 starts with 32 pulses at 423.75 kHz (fC/32) followed by 36 pulses at 484.28 kHz
(fC/28) as shown in Figure 22. For the Fast commands, the x2 mode is not available.
Figure 22. Logic 0, low data rate
149.84µs
ai12072
A logic 1 starts with 36 pulses at 484.28kHz (fC/28) followed by 32 pulses at 423.75kHz
(fC/32) as shown in Figure 23. For the fast commands, the x2 mode is not available.
Figure 23. Logic 1, low data rate
149.84µs
22/89
ai12075
LRI2K
6
LRI2K to VCD frames
LRI2K to VCD frames
Frames are delimited by an SOF and an EOF. They are implemented using code violation.
Unused options are reserved for future use. For the low data rate, the same subcarrier
frequency or frequencies is/are used. In this case the number of pulses is multiplied by 4.
For the Fast commands using one subcarrier, all pulse numbers and times are divided by 2.
6.1
SOF when using one subcarrier
6.1.1
High data rate
The SOF includes an unmodulated time of 56.64 µs followed by 24 pulses at 423.75 kHz
(fC/32), and a logic 1 that consists of an unmodulated time of 18.88 µs followed by 8 pulses
at 423.75 kHz. The SOF is shown in Figure 24.
Figure 24. Start of frame, high data rate, one subcarrier
37.76µs
113.28µs
ai12078
For the Fast commands, the SOF comprises an unmodulated time of 28.32 µs, followed by
12 pulses at 423.75 kHz (fC/32), and a logic 1 that consists of an unmodulated time of
9.44 µs followed by 4 pulses at 423.75 kHz as shown in Figure 25.
Figure 25. Start of frame, high data rate, one subcarrier x2
56.64µs
18.88µs
ai12079
23/89
LRI2K to VCD frames
6.1.2
LRI2K
Low data rate
SOF comprises an unmodulated time of 226.56 µs, followed by 96 pulses at 423.75 kHz
(fC/32), and a logic 1 that consists of an unmodulated time of 75.52 µs followed by 32 pulses
at 423.75 kHz as shown in Figure 26.
Figure 26. Start of frame, low data rate, one subcarrier
453.12µs
151.04µs
ai12080
For the Fast commands, the SOF comprises an unmodulated time of 113.28 µs followed by
48 pulses at 423.75 kHz (fC/32), and a logic 1 that includes an unmodulated time of 37.76 µs
followed by 16 pulses at 423.75 kHz as shown in Figure 27.
Figure 27. Start of frame, low data rate, one subcarrier x2
226.56µs
75.52µs
ai12081
6.2
SOF when using two subcarriers
6.2.1
High data rate
The SOF comprises 27 pulses at 484.28 kHz (fC/28), followed by 24 pulses at 423.75 kHz
(fC/32), and a logic 1 that includes 9 pulses at 484.28 kHz followed by 8 pulses at 423.75
kHz as shown in Figure 28.
For the Fast commands, the x2 mode is not available.
Figure 28. Start of frame, high data rate, two subcarriers
112.39µs
6.2.2
37.46µs
ai12082
Low data rate
The SOF comprises 108 pulses at 484.28 kHz (fC/28) followed by 96 pulses at 423.75 kHz
(fC/32), and a logic 1 that includes 36 pulses at 484.28 kHz followed by 32 pulses at
423.75 kHz as shown in Figure 29.
For the Fast commands, the x2 mode is not available.
Figure 29. Start of frame, low data rate, two subcarriers
449.56µs
149.84µs
ai12083
24/89
LRI2K
LRI2K to VCD frames
6.3
EOF when using one subcarrier
6.3.1
High data rate
The EOF comprises a logic 0 that includes 8 pulses at 423.75 kHz and an unmodulated time
of 18.88 µs, followed by 24 pulses at 423.75 kHz (fC/32) and by an unmodulated time of
56.64 µs as shown in Figure 30.
Figure 30. End of frame, high data rate, one subcarrier
37.76µs
113.28µs
ai12084
For the Fast commands, the EOF comprises a logic 0 that includes 4 pulses at 423.75 kHz
and an unmodulated time of 9.44 µs, followed by 12 pulses at 423.75 kHz (fC/32) and an
unmodulated time of 28.32 µs as shown in Figure 31.
Figure 31. End of frame, high data rate, one subcarrier x2
18.88µs
56.64µs
ai12085
6.3.2
Low data rate
The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and an unmodulated
time of 75.52 µs, followed by 96 pulses at 423.75 kHz (fC/32) and an unmodulated time of
226.56 µs as shown in Figure 32.
Figure 32. End of frame, low data rate, one subcarrier
453.12µs
151.04µs
ai12086
For the Fast commands, the EOF comprises a logic 0 that includes 16 pulses at 423.75 kHz
and an unmodulated time of 37.76 µs, followed by 48 pulses at 423.75 kHz (fC/32) and an
unmodulated time of 113.28 µs as shown in Figure 33.
Figure 33. End of frame, low data rate, one subcarrier x2
75.52µs
226.56µs
ai12087
25/89
LRI2K to VCD frames
LRI2K
6.4
EOF when using two subcarriers
6.4.1
High data rate
The EOF comprises a logic 0 that includes 8 pulses at 423.75 kHz and 9 pulses at
484.28 kHz, followed by 24 pulses at 423.75 kHz (fC/32) and 27 pulses at 484.28 kHz
(fC/28) as shown in Figure 34.
For the Fast commands, the x2 mode is not available.
Figure 34. End of frame, high data rate, two subcarriers
37.46µs
6.4.2
112.39µs
ai12088
Low data rate
The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and 36 pulses at
484.28 kHz, followed by 96 pulses at 423.75 kHz (fC/32) and 108 pulses at 484.28 kHz
(fC/28) as shown in Figure 35
For the fast commands, the x2 mode is not available.
Figure 35. End of frame, low data rate, two subcarriers
149.84µs
449.56µs
ai12089
26/89
LRI2K
7
Unique identifier (UID)
Unique identifier (UID)
The LRI2Ks are uniquely identified by a 64-bit Unique Identifier (UID). This UID complies
with ISO/IEC 15963 and ISO/IEC 7816-6. The UID is a read-only code, and comprises:
●
the 8 MSBs are E0h
●
the IC manufacturer code of ST 02h, on 8 bits (ISO/IEC 7816-6/AM1)
●
a unique serial number on 48 bits.
Table 5.
UID format
MSB
LSB
63
56
E0h
55
48
02h
47
0
Unique serial number
With the UID each LRI2K can be addressed uniquely and individually during the anticollision
loop and for one-to-one exchanges between a VCD and an LRI2K.
27/89
Application family identifier (AFI)
8
LRI2K
Application family identifier (AFI)
The AFI (application family identifier) represents the type of application targeted by the VCD
and is used to identify, among all the LRI2Ks present, only the LRI2Ks that meet the
required application criteria.
Figure 36. LRI2K decision tree for AFI
Inventory Request
Received
No
AFI Flag
Set ?
Yes
AFI value
=0?
No
Yes
AFI value
= Internal
value ?
No
Yes
Answer given by the LRI2K
to the Inventory Request
No Answer
AI12091
The AFI is programmed by the LRI2K issuer (or purchaser) in the AFI register. Once
programmed and Locked, it can no longer be modified.
The most significant nibble of the AFI is used to code one specific or all application families.
The least significant nibble of the AFI is used to code one specific or all application
subfamilies. subfamily codes different from 0 are proprietary.
(See ISO 15693-3 documentation)
28/89
LRI2K
9
Data storage format identifier (DSFID)
Data storage format identifier (DSFID)
The data storage format identifier indicates how the data is structured in the LRI2K memory.
The logical organization of data can be known instantly using the DSFID.
It can be programmed and locked using the Write DSFID and Lock DSFID commands,
respectively. It is coded on one byte.
9.1
CRC
The CRC used in the LRI2K is calculated as per the definition in ISO/IEC 13239.
The initial register contents are all ones: "FFFF".
The two-byte CRC is appended to each request and response, within each frame, before
the EOF. The CRC is calculated on all the bytes between the SOF and the CRC field.
Upon reception of a request from the VCD, the LRI2K verifies that the CRC value is valid. If
it is invalid, the LRI2K discards the frame and does not answer to the VCD.
Upon reception of a response from the LRI2K, it is recommended that the VCD verifies
whether the CRC value is valid. If it is invalid, actions to be performed are left to the
discretion of the VCD designers.
The CRC is transmitted least significant byte first.
Each byte is transmitted least significant bit first.
Table 6.
CRC transmission rules
LSByte
LSBit
MSByte
MSBit LSBit
CRC 16 (8bits)
MSBit
CRC 16 (8 bits)
29/89
LRI2K protocol description
10
LRI2K
LRI2K protocol description
The transmission protocol (or simply protocol) defines the mechanism used to exchange
instructions and data between the VCD and the LRI2K, in both directions. It is based on the
concept of "VCD talks first".
This means that an LRI2K will not start transmitting unless it has received and properly
decoded an instruction sent by the VCD. The protocol is based on an exchange of:
●
a request from the VCD to the LRI2K
●
a response from the LRI2K to the VCD
Each request and each response are contained in a frame. The frame delimiters (SOF,
EOF) are described in Section 6: LRI2K to VCD frames.
Each request consists of:
●
a request SOF (see Figure 9 and Figure 10)
●
flags
●
a command code
●
parameters, depending on the command
●
application data
●
a 2-byte CRC
●
a request EOF (see Figure 11)
Each response consists of:
●
an answer SOF (see Figure 24 to Figure 29)
●
flags
●
parameters, depending on the command
●
application data
●
a 2-byte CRC
●
an Answer EOF (see Figure 30 to Figure 35)
The protocol is bit-oriented. The number of bits transmitted in a frame is a multiple of eight
(8), i.e. an integer number of bytes.
A single-byte field is transmitted least significant bit (LSBit) first. A multiple-byte field is
transmitted least significant byte (LSByte) first, with each byte transmitted least significant
bit (LSBit) first.
The setting of the flags indicates the presence of the optional fields. When the flag is set (to
one), the field is present. When the flag is reset (to zero), the field is absent.
Table 7.
VCD request frame format
Request SOF Request Flags
Table 8.
Response
SOF
30/89
Command
code
Parameters
Data
2 byte CRC
Request
EOF
2 byte CRC
Response
EOF
LRI2K response frame format
Response
Flags
Parameters
Data
LRI2K
LRI2K protocol description
Figure 37. LRI2K protocol timing
VCD
Request
frame
(Table 7)
Request
frame
(Table 7)
Response frame
(Table 8)
LRI2K
Timing
t1
Response
frame (Table 8)
t2
t1
t2
31/89
LRI2K states
11
LRI2K
LRI2K states
An LRI2K can be in one of 4 states:
●
Power-off
●
Ready
●
Quiet
●
Selected
Transitions between these states are specified in Figure 38: LRI2K state transition diagram
and Table 9: LRI2K response depending on request flags.
11.1
Power-off state
The LRI2K is in the Power-off state when it does not receive enough energy from the VCD.
11.2
Ready state
The LRI2K is in the Ready state when it receives enough energy from the VCD. When in the
Ready state, the LRI2K answers any request where the Select_flag is not set.
11.3
Quiet state
When in the Quiet state, the LRI2K answers any request except for Inventory requests with
the Address_flag set.
11.4
Selected state
In the Selected state, the LRI2K answers any request in all modes (see Section 12: Modes):
32/89
●
request in Select mode with the Select flag set
●
request in Addressed mode if the UID matches
●
request in Non-Addressed mode as it is the mode for general requests
LRI2K
LRI2K states
Table 9.
LRI2K response depending on request flags
Address_flag
Flags
Select_flag
1
0
1
0
Addressed
Non addressed
Selected
Non selected
LRI2K in Ready or Selected state
(Devices in Quiet state don’t
answer)
X
LRI2K in Selected state
X
LRI2K in Ready, Quiet or Selected
state (the device which match the
UID)
X
Error (03h)
X
X
X
X
X
Figure 38. LRI2K state transition diagram
Power Off
In field
Out of field
Out of field
Any other Command
where Select_Flag
is not set
(U
iet
qu
ay
St
y
ad
re
o
tt
se
Re
e
er r
)
ID
wh o
y et D)
(U
ad s UI
ct
le
re is t
o ag en
Se
t t Fl er
se ct_ diff
Re ele ect(
S el
S
ID
)
Out of field
Ready
Select (UID)
Quiet
Stay quiet(UID)
Any other command where the
Address_Flag is set AND
where Inventory_Flag is not set
Selected
Any other command
AI06681
1. The intention of the state transition method is that only one LRI2K should be in the selected state at a time.
33/89
Modes
12
LRI2K
Modes
The term “mode” refers to the mechanism used in a request to specify the set of LRI2Ks that
will answer the request.
12.1
Addressed mode
When the Address_flag is set to 1 (Addressed mode), the request contains the Unique ID
(UID) of the addressed LRI2K.
Any LRI2K that receives a request with the Address_flag set to 1 compares the received
Unique ID to its own. If it matches, then the LRI2K executes the request (if possible) and
returns a response to the VCD as specified in the command description.
If its UID does not match, then it remains silent.
12.2
Non-Addressed mode (general request)
When the Address_flag is set to 0 (Non-Addressed mode), the request does not contain a
Unique ID. Any LRI2K receiving a request with the Address_flag set to 0 executes it and
returns a response to the VCD as specified in the command description.
12.3
Select mode
When the Select_flag is set to 1 (Select mode), the request does not contain an LRI2K
Unique ID. The LRI2K in the Selected state that receives a request with the Select_flag set
to 1 executes it and returns a response to the VCD as specified in the command description.
Only LRI2Ks in the Selected state answer to a request where the Select Flag is set to 1.
The system design ensures in theory that only one LRI2K can be in the Select state at a
time.
34/89
LRI2K
13
Request format
Request format
The request consists of:
●
an SOF
●
flags
●
a command code
●
parameters and data
●
a CRC
●
an EOF
Table 10.
S
O
F
13.1
General request format
Request flags
Command code
Parameters
Data
E
O
F
CRC
Request flags
In a request, the "flags" field specifies the actions to be performed by the LRI2K and
whether corresponding fields are present or not.
The flags field consists of eight bits.
The bit 3 (Inventory_flag) of the request flag defines the contents of the 4 MSBs (bits 5 to 8).
When bit 3 is reset (0), bits 5 to 8 define the LRI2K selection criteria.
When bit 3 is set (1), bits 5 to 8 define the LRI2K Inventory parameters.
Table 11.
Bit No
Bit 1
Bit 2
Bit 3
Bit 4
Definitions of request flags 1 to 4
Flag
Subcarrier_flag(1)
Data_rate_flag(2)
Level
Description
0
A single subcarrier frequency is used by the LRI2K
1
Two subcarriers are used by the LRI2K
0
Low data rate is used
1
High data rate is used
0
The meaning of Flags 5 to 8 is described in Table 12
1
The meaning of Flags 5 to 8 is described in Table 13
0
No Protocol format extension
Inventory flag
Protocol Extension flag
1. Subcarrier_flag refers to the LRI2K-to-VCD communication.
2. Data_rate_flag refers to the LRI2K-to-VCD communication
35/89
Request format
LRI2K
Table 12.
Request flags 5 to 8 when bit 3 = 0
Bit No
Bit 5
Bit 6
Flag
Select_flag(1)
Level
Description
0
Request is executed by any LRI2K according to the setting of
Address_flag
1
Request is executed only by the LRI2K in Selected state
0
Request is not addressed. UID field is not present. The request is
executed by all LRI2Ks.
1
Request is addressed. UID field is present. The request is
executed only by the LRI2K whose UID matches the UID
specified in the request.
Address_flag(1)
Bit 7
Option flag
0
Bit 8
RFU
0
1. If the Select_flag is set to 1, the Address_flag is set to 0 and the UID field is not present in the request.
Table 13.
Request flags 5 to 8 when bit 3 = 1
Bit No
Bit 5
Bit 6
36/89
Flag
Level
Description
0
AFI field is not present
1
AFI field is present
0
16 slots
1
1 slot
AFI flag
Nb_slots flag
Bit 7
Option flag
0
Bit 8
RFU
0
LRI2K
14
Response format
Response format
The response consists of:
●
an SOF
●
flags
●
parameters and data
●
a CRC
●
an EOF
Table 14.
S
O
F
14.1
General response format
Response flags
Parameters
Data
E
O
F
CRC
Response flags
In a response, the flags indicate how actions have been performed by the LRI2K and
whether corresponding fields are present or not. The response flags consist of eight bits.
Table 15.
Definitions of response flags 1 to 8
Bit No.
Flag
Level
Description
0
No error
1
Error detected. Error code is in the "Error" field.
Bit 1
Error_flag
Bit 2
RFU
0
Bit 3
RFU
0
Bit 4
Extension flag
0
Bit 5
RFU
0
Bit 6
RFU
0
Bit 7
RFU
0
Bit 8
RFU
0
No extension
37/89
Response format
14.2
LRI2K
Response error code
If the Error_flag is set by the LRI2K in the response, the Error code field is present and
provides information about the error that occurred.
Error codes not specified in Table 16 are reserved for future use.
Table 16.
Response error code definition
Error code
38/89
Meaning
03h
The command option is not supported
0F
Error with no information given or a specific error code is not supported.
10h
The specified block is not available (does not exist).
11h
The specified block is already locked and thus cannot be locked again
12h
The specified block is locked and its contents cannot be changed.
13h
The specified block was not successfully programmed.
14h
The specified block was not successfully locked.
LRI2K
15
Anticollision
Anticollision
The purpose of the anticollision sequence is to inventory the LRI2Ks present in the VCD
field using their unique ID (UID).
The VCD is the master of communications with one or several LRI2Ks. It initiates LRI2K
communication by issuing the Inventory request.
The LRI2K sends its response in the determined slot or does not respond.
15.1
Request parameters
When issuing the Inventory command, the VCD:
●
sets the Nb_slots_flag as desired,
●
adds the mask length and the mask value after the command field,
The mask length is the number of significant bits of the mask value.
The mask value is contained in an integer number of bytes. The mask length indicates the
number of significant bits. The LSB is transmitted first.
If the mask length is not a multiple of 8 (bits), as many 0-bits as required will be added to the
mask value MSB so that the mask value is contained in an integer number of bytes.
The next field starts on the next byte boundary.
Table 17.
Inventory request format
MSB
SOF
LSB
Request_
flags
Command
Optional AFI
Mask
length
Mask value
CRC
8 bits
8 bits
8 bits
8 bits
0 to 8 bytes
16 bits
EOF
In the example of Table 18 and Figure 39, the mask length is 11 bits. Five 0-bits are added
to the mask value MSB. The 11-bit Mask and the current slot number are compared to the
UID.
Table 18.
Example of the addition of 0-bits to an 11-bit mask value
(b15) MSB
LSB (b0)
0000 0
100 1100 1111
0-bits added
11-bit mask value
39/89
Anticollision
LRI2K
Figure 39. Principle of comparison between the mask, the slot number and the UID
MSB
LSB
0000 0100 1100 1111 b 16 bits
Mask value received in the Inventory command
MSB
LSB
100 1100 1111 b 11 bits
The Mask value less the padding 0s is loaded
into the Tag comparator
MSB LSB
xxxx
The Slot counter is calculated
Nb_slots_flags = 0 (16 slots), Slot Counter is 4 bits
The Slot counter is concatened to the Mask value
Nb_slots_flags = 0
The concatenated result is compared with
the least significant bits of the Tag UID.
4 bits
MSB
LSB
xxxx 100 1100 1111 b 15 bits
UID
b63
b0
xxxx xxxx ..... xxxx xxxx x xxx xxxx xxxx xxxx b
Bits ignored
64 bits
Compare
AI06682
The AFI field is present if the AFI_flag is set.
The pulse is generated according to the definition of the EOF in ISO/IEC 15693-2.
The first slot starts immediately after the reception of the request EOF. To switch to the next
slot, the VCD sends an EOF.
The following rules and restrictions apply:
40/89
●
if no LRI2K answer is detected, the VCD may switch to the next slot by sending an EOF,
●
if one or more LRI2K answers are detected, the VCD waits until the complete frame
has been received before sending an EOF for switching to the next slot.
LRI2K
16
Request processing by the LRI2K
Request processing by the LRI2K
Upon reception of a valid request, the LRI2K performs the following algorithm:
●
NbS is the total number of slots (1 or 16)
●
SN is the current slot number (0 to 15)
●
LSB (value, n) function returns the n Less Significant Bits of value
●
MSB (value, n) function returns the n Most Significant Bits of value
●
"&" is the concatenation operator
●
Slot_Frame is either an SOF or an EOF
SN = 0
if (Nb_slots_flag)
then NbS = 1
SN_length = 0
endif
else NbS = 16
SN_length = 4
endif
label1:
if LSB(UID, SN_length + Mask_length) =
LSB(SN,SN_length)&LSB(Mask,Mask_length)
then answer to inventory request
endif
wait (Slot_Frame)
if Slot_Frame = SOF
then Stop Anticollision
decode/process request
exit
endif
if Slot_Frame = EOF
if SN < NbS-1
then SN = SN + 1
goto label1
exit
endif
endif
41/89
Explanation of the possible cases
17
LRI2K
Explanation of the possible cases
Figure 40 summarizes the main possible cases that can occur during an anticollision
sequence when the slot number is 16.
The different steps are:
Note:
42/89
●
The VCD sends an Inventory request, in a frame terminated by an EOF. The number of
slots is 16.
●
LRI2K 1 transmits its response in Slot 0. It is the only one to do so, therefore no
collision occurs and its UID is received and registered by the VCD;
●
The VCD sends an EOF in order to switch to the next slot.
●
In slot 1, two LRI2Ks, LRI2K 2 and LRI2K 3 transmit a response, thus generating a
collision. The VCD records the event and remembers that a collision was detected in
Slot 1.
●
The VCD sends an EOF in order to switch to the next slot.
●
In Slot 2, no LRI2K transmits a response. Therefore the VCD does not detect any
LRI2K SOF and decides to switch to the next slot by sending an EOF.
●
In slot 3, there is another collision caused by responses from LRI2K 4 and LRI2K 5
●
The VCD then decides to send a request (for instance a Read Block) to LRI2K 1 whose
UID has already been correctly received.
●
All LRI2Ks detect an SOF and exit the anticollision sequence. They process this
request and since the request is addressed to LRI2K 1, only LRI2K 1 transmits a
response.
●
All LRI2Ks are ready to receive another request. If it is an Inventory command, the slot
numbering sequence restarts from 0.
The decision to interrupt the anticollision sequence is made by the VCD. It could have
continued to send EOFs until Slot 16 and only then sent the request to LRI2K 1.
Time
Comment
Timing
LRI2Ks
VCD
SOF
Inventory
EOF
Request
t1
No
collision
Response
1
Slot 0
t2
EOF
t1
Collision
Response
3
Response
2
Slot 1
t2
EOF
No
Response
t3
Slot 2
EOF
t1
Collision
Response
5
Response
4
Slot 3
t2
SOF
Request to
EOF
LRI2K 1
t1
AI12090
Response
from
LRI2K 1
LRI2K
Explanation of the possible cases
Figure 40. Description of a possible anticollision sequence
43/89
Inventory Initiated command
18
LRI2K
Inventory Initiated command
The LRI2K provides a special feature to improve the inventory time response of moving tags
using the Initiate_flag value. This flag, controlled by the Initiate command, allows tags to
answer to Inventory Initiated commands.
For applications in which multiple tags are moving in front of a reader, it is possible to miss
tags using the standard inventory command. The reason is that the inventory sequence has
to be performed on a global tree search. For example, a tag with a particular UID value may
have to wait the run of a long tree search before being inventoried. If the delay is too long,
the tag may be out of the field before it has been detected.
Using the Initiate command, the inventory sequence is optimized. When multiple tags are
moving in front of a reader, the ones which are within the reader field will be initiated by the
Initiate command. In this case, a small batch of tags will answer to the Inventory Initiated
command which will optimize the time necessary to identify all the tags. When finished, the
reader has to issue a new Initiate command in order to initiate a new small batch of tags
which are new inside the reader field.
It is also possible to reduce the inventory sequence time using the Fast Initiate and Fast
Inventory Initiated commands. These commands allow the LRI2Ks to increase their
response data rate by a factor of 2, up to 53kbit/s.
44/89
LRI2K
Timing definition
19
Timing definition
19.1
t1: LRI2K response delay
Upon detection of the rising edge of the EOF received from the VCD, the LRI2K waits for a
time t1nom before transmitting its response to a VCD request or before switching to the next
slot during an inventory process. Values of t1 are given in Table 19. The EOF is defined in
Figure 11 on page 18.
19.2
t2: VCD new request delay
t2 is the time after which the VCD may send an EOF to switch to the next slot when one or
more LRI2K responses have been received during an Inventory command. It starts from the
reception of the EOF from the LRI2Ks.
The EOF sent by the VCD may be either 10% or 100% modulated regardless of the
modulation index used for transmitting the VCD request to the LRI2K.
t2 is also the time after which the VCD may send a new request to the LRI2K as described in
Table 37: LRI2K protocol timing.
Values of t2 are given in Table 19.
19.3
t3: VCD new request delay in the absence of a response from
the LRI2K
t3 is the time after which the VCD may send an EOF to switch to the next slot when no
LRI2K response has been received.
The EOF sent by the VCD may be either 10% or 100% modulated regardless of the
modulation index used for transmitting the VCD request to the LRI2K.
From the time the VCD has generated the rising edge of an EOF:
●
If this EOF is 100% modulated, the VCD waits a time at least equal to t3min before
sending a new EOF.
●
If this EOF is 10% modulated, the VCD waits a time at least equal to the sum of t3min +
the LRI2K nominal response time (which depends on the LRI2K data rate and
subcarrier modulation mode) before sending a new EOF.
Table 19.
Timing values(1)
Minimum (min) values
Nominal (nom) values
Maximum (max) values
t1
318.6 µs
320.9 µs
323.3 µs
t2
309.2 µs
No tnom
No tmax
No tnom
No tmax
t3
t1max
(2)
+
tSOF(3)
1. The tolerance of specific timings is ± 32/fC.
2. t1max does not apply for write alike requests. Timing conditions for write alike requests are defined in the
command description.
3. tSOF is the time taken by the LRI2K to transmit an SOF to the VCD. tSOF depends on the current data rate:
High data rate or Low data rate.
45/89
Commands codes
20
LRI2K
Commands codes
The LRI2K supports the commands described in this section. Their codes are given in
Table 20.
Table 20.
Command codes
Command code
Function
standard
46/89
Command code
Function
custom
01h
Inventory
A6h
Kill
02h
Stay Quiet
B1h
Write Kill
20h
Read Single Block
B2h
Lock Kill
21h
Write Single Block
C0h
Fast Read Single Block
22h
Lock Block
C1h
Fast Inventory Initiated
23h
Read Multiple Block
C2h
Fast Initiate
25h
Select
C3h
Fast Read Multiple Block
26h
Reset to Ready
D1h
Inventory Initiated
27h
Write AFI
D2h
Initiate
28h
Lock AFI
29h
Write DSFID
2Ah
Lock DSFID
2Bh
Get System Info
2Ch
Get Multiple Block
Security Status
LRI2K
20.1
Commands codes
Inventory
When receiving the Inventory request, the LRI2K runs the anticollision sequence. The
Inventory_flag is set to 1. The meaning of flags 5 to 8 is shown in Table 13: Request flags 5
to 8 when bit 3 = 1.
The request contains:
●
the flags,
●
the Inventory command code (see Table 20: Command codes)
●
the AFI if the AFI flag is set
●
the mask length
●
the mask value
●
the CRC
The LRI2K does not generate any answer in case of error.
Table 21.
Inventory request format
Request Request
SOF
flags
Inventory
Optional
AFI
Mask
length
Mask value
CRC16
01h
8 bits
8 bits
0 - 64 bits
16 bits
8 bits
Request
EOF
The response contains:
●
the flags
●
the Unique ID
Table 22.
Inventory response format
Response Response
SOF
flags
8 bits
DSFID
UID
CRC16
8 bits
64 bits
16 bits
Response
EOF
During an Inventory process, if the VCD does not receive an RF LRI2K response, it waits a
time t3 before sending an EOF to switch to the next slot. t3 starts from the rising edge of the
request EOF sent by the VCD.
●
If the VCD sends a 100% modulated EOF, the minimum value of t3 is:
t3min = 4384/fC (323.3µs) + tSOF
●
If the VCD sends a 10% modulated EOF, the minimum value of t3 is:
t3min = 4384/fC (323.3µs) + tNRT
where:
●
tSOF is the time required by the LRI2K to transmit an SOF to the VCD
●
tNRT is the nominal response time of the LRI2K
tNRT and tSOF are dependent on the LRI2K-to-VCD data rate and subcarrier modulation
mode.
47/89
Commands codes
20.2
LRI2K
Stay Quiet
On receiving the Stay Quiet command, the LRI2K enters the Quiet state and does NOT
send back a response. There is NO response to the Stay Quiet command even if an error
occurs.
When in the Quiet state:
●
the LRI2K does not process any request if the Inventory_flag is set,
●
the LRI2K processes any Addressed request
The LRI2K exits the Quiet state when:
●
it is reset (power off),
●
receiving a Select request. It then goes to the Selected state,
●
receiving a Reset to Ready request. It then goes to the Ready state.
Table 23.
Request
SOF
Stay Quiet request format
Request flags
Stay Quiet
UID
CRC16
8 bits
02h
64 bits
16 bits
Request
EOF
The Stay Quiet command must always be executed in the Addressed mode (Select_flag is
reset to 0 and Address_flag is set to 1).
Figure 41. Stay Quiet frame exchange between VCD and LRI2K
VCD
LRI2K
Timing
48/89
SOF
Stay Quiet
request
EOF
LRI2K
20.3
Commands codes
Read Single Block
On receiving the Read Single Block command, the LRI2K reads the requested block and
sends back its 32 bits value in the response. The Option_flag is supported.
Table 24.
Request
SOF
Read Single Block request format
Request_flags
Read
Single
Block
UID
Block
number
CRC16
8 bits
20h
64 bits
8 bits
16 bits
Request
EOF
Request parameters:
●
Option_flag
●
UID (Optional)
●
Block number
Table 25.
Read Single Block response format when Error_flag is NOT set
Response Response_
SOF
flags
Block
locking
status
Data
CRC16
8 bits
32 bits
16 bits
8 bits
Response
EOF
Response parameter:
●
Block Locking Status if Option_flag is set (see Table 26: Block Locking status)
●
4 bytes of block data
Table 26.
b7
Block Locking status
b6
b5
b4
b3
b2
b0
0: Current Block not locked
1: Current Block locked
all 0
Table 27.
b1
Read Single Block response format when Error_flag is set
Response SOF
Response_
Flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
0Fh: other error
–
10h: block address not available
49/89
Commands codes
LRI2K
Figure 42. READ Single Block frame exchange between VCD and LRI2K
VCD
LRI2K
50/89
SOF
Read Single
Block request
EOF
<-t1-> SOF
Read Single
Block response
EOF
LRI2K
20.4
Commands codes
Write Single Block
On receiving the Write Single Block Command, the LRI2K writes the data contained in the
request to the requested block and reports whether the write operation was successful in
the response. The Option_flag is supported.
During the write cycle tW, there should be no modulation (neither 100% nor 10%).
Otherwise, the LRI2K may not program correctly the data into the memory. The tW time is
equal to t1nom + 18 × 302µs.
Table 28.
Write Single Block request format
Request Request_
SOF
flags
Write
Single
Block
UID
Block
number
Data
CRC16
21h
64 bits
8 bits
32 bits
16 bits
8 bits
Request
EOF
Request parameters:
●
UID (Optional)
●
Block number
●
Data
Table 29.
Write Single Block response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
No parameter. The response is sent back after the write cycle.
Table 30.
Write Single Block response format when Error_flag is set
Response SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
10h: block address not available
–
12h: block is locked
–
13h: block not programmed
Figure 43. Write Single Block frame exchange between VCD and LRI2K
VCD
SOF
Write Single
Block request
EOF
LRI2K
<-t1->
Write Single
Block response
EOF
Write sequence when error
LRI2K
<------------ tW ------------><- t1 ->
SOF
Write Single
Block response
SOF
EOF
51/89
Commands codes
20.5
LRI2K
Lock Block
On receiving the Lock Block command, the LRI2K permanently locks the selected block.
The Option_flag is supported.
During the write cycle tW, there should be no modulation (neither 100% nor 10%).
Otherwise, the LRI2K may not lock correctly the memory block. The tW time is equal to t1nom
+ 18 × 302µs.
Table 31.
Lock Single Block request format
Request Request_
Lock Block
SOF
flags
8 bits
22h
UID
Block
number
CRC16
64 bits
8 bits
16 bits
Request
EOF
Request parameters:
●
(Optional) UID
●
Block number
Table 32.
Lock Block response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
No parameter.
Table 33.
Lock Block response format when Error_flag is set
Response
SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response
EOF
Response parameter:
●
Error code as Error_flag is set:
–
10h: block address not available
–
11h: block is locked
–
14h: block not locked
Figure 44. Lock Block frame exchange between VCD and LRI2K
VCD
LRI2K
LRI2K
52/89
SOF
Lock Block
EOF
request
<-t1->
SOF
Lock Block
response
EOF
<------------ tW ------------><- t1 -> SOF
Lock sequence when
error
Lock Block
response
EOF
LRI2K
20.6
Commands codes
Read Multiple Block
When receiving the Read Multiple Block command, the LRI2K reads the selected blocks
and sends back their value in multiples of 32 bits in the response. The blocks are numbered
from '00 to '3F' in the request and the value is minus one (–1) in the field. For example, if the
“number of blocks” field contains the value 06h, 7 blocks will be read. The maximum number
of blocks is fixed at 64. During Sequential Block Read, when the block address reaches 64,
it rolls over to 0. The Option_flag is supported.
Table 34.
Read Multiple Block request format
Read
Request Request_
Multiple
SOF
flags
Block
UID
8 bits
64 bits
23h
First
Number
block
of
number blocks
8 bits
8 bits
Request
EOF
CRC16
16 bits
Request parameters:
●
Option_flag
●
UID (Optional)
●
First block number
●
Number of blocks
Table 35.
Read Multiple Block response format when Error_flag is NOT set
Response Response_
SOF
flags
Block
Locking
Status
Data
CRC16
8 bits(1)
32 bits(1)
16 bits
8 bits
Response
EOF
1. Repeated as needed.
Response parameter:
●
Block Locking Status if Option_flag is set (see Table 36: Block Locking status)
●
N blocks of data
Table 36.
b7
Block Locking status
b6
b5
b4
b3
b2
b1
0: Current Block not locked
1: Current Block locked
All 0
Table 37.
b0
Read Multiple Block response format when Error_flag is set
Response SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
0Fh: other error
–
10h: block address not available
53/89
Commands codes
LRI2K
Figure 45. Read Multiple Block frame exchange between VCD and LRI2K
VCD
LRI2K
54/89
SOF
Read Multiple
EOF
Block request
<-t1-> SOF
Read Multiple
Block
EOF
response
LRI2K
20.7
Commands codes
Select
When receiving the Select command:
●
if the UID is equal to its own UID, the LRI2K enters or stays in the Selected state and
sends a response.
●
if the UID does not match its own, the selected LRI2K returns to the Ready state and
does not send a response.
The LRI2K answers an error code only if the UID is equal to its own UID. If not, no response
is generated.
Table 38.
Select request format
Request Request_
SOF
flags
8 bits
Select
UID
CRC16
25h
64 bits
16 bits
Request
EOF
Request parameter:
●
UID
Table 39.
Select Block response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
No parameter.
Table 40.
Select response format when Error_flag is set
Response SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
0Fh: other error
Figure 46. Select frame exchange between VCD and LRI2K
VCD
LRI2K
SOF
Select
request
EOF
<-t1->
SOF
Select
response
EOF
55/89
Commands codes
20.8
LRI2K
Reset to Ready
On receiving a Reset to Ready command, the LRI2K returns to the Ready state. In the
Addressed mode, the LRI2K answers an error code only if the UID is equal to its own UID. If
not, no response is generated.
Table 41.
Reset to Ready request format
Request Request_
SOF
flags
Reset to Ready
UID
CRC16
26h
64 bits
16 bits
8 bits
Request
EOF
Request parameter:
●
UID (Optional)
Table 42.
Reset to Ready response format when Error_flag is NOT set
Response
SOF
Response_flags
CRC16
8 bits
16 bits
Response
EOF
Response parameter:
●
No parameter.
Table 43.
Reset to ready response format when Error_flag is set
Response SOF
Response_
flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
0Fh: other error
Figure 47. Reset to Ready frame exchange between VCD and LRI2K
VCD
LRI2K
56/89
SOF
Reset to Ready
request
EOF
<-t1-> SOF
Reset to Ready
response
EOF
LRI2K
20.9
Commands codes
Write AFI
On receiving the Write AFI request, the LRI2K writes the AFI byte value into its memory. The
Option_flag is supported.
During the write cycle tW, there should be no modulation (neither 100% nor 10%).
Otherwise, the LRI2K may not write correctly the AFI value into the memory. The tW time is
equal to t1nom + 18 × 302µs.
Table 44.
Write AFI request format
Request Request
SOF
_flags
Write AFI
UID
AFI
CRC16
27h
64 bits
8 bits
16 bits
8 bits
Request
EOF
Request parameters:
●
UID (Optional)
●
AFI
Table 45.
Write AFI response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
No parameter.
Table 46.
Write AFI response format when Error_flag is set
Response SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
12h: block is locked
–
13h: block not programmed
Figure 48. Write AFI frame exchange between VCD and LRI2K
VCD
LRI2
K
LRI2
K
SOF
Write AFI
request
EOF
<-t1->
SOF
Write AFI
response
EOF
<------------ tW ------------><- t1 -> SOF
Write sequence when
error
Write AFI
response
EOF
57/89
Commands codes
20.10
LRI2K
Lock AFI
On receiving the Lock AFI request, the LRI2K locks the AFI value permanently. The
Option_flag is supported.
During the write cycle tW, there should be no modulation (neither 100% nor 10%).
Otherwise, the LRI2K may not Lock correctly the AFI value in memory. The tW time is equal
to t1nom + 18 × 302 µs.
Table 47.
Lock AFI request format
Request SOF
Request_
flags
Lock AFI
UID
CRC16
8 bits
28h
64 bits
16 bits
Request EOF
Request parameter:
●
UID (Optional)
Table 48.
Lock AFI response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
No parameter.
Table 49.
Lock AFI response format when Error_flag is set
Response SOF Response_flags
8 bits
Error code
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
11h: block is locked
–
14h: block not locked
Figure 49. Lock AFI frame exchange between VCD and LRI2K
VCD
58/89
SOF
Lock AFI
request
EOF
Lock AFI
response
LRI2K
<-t1->
LRI2K
<------------ tW ------------><- t1 -> SOF
SOF
EOF
Lock sequence when
error
Lock AFI
response
EOF
LRI2K
20.11
Commands codes
Write DSFID
On receiving the Write DSFID request, the LRI2K writes the DSFID byte value into its
memory. The Option_flag is supported.
During the write cycle tW, there should be no modulation (neither 100% nor 10%).
Otherwise, the LRI2K may not write correctly the DSFID value in memory. The tW time is
equal to t1nom + 18 × 302µs.
Table 50.
Write DSFID request format
Request Request_
SOF
flags
8 bits
Write
DSFID
UID
DSFID
CRC16
29h
64 bits
8 bits
16 bits
Request
EOF
Request parameters:
●
UID (Optional)
●
DSFID
Table 51.
Write DSFID response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
No parameter.
Table 52.
Write DSFID response format when Error_flag is set
Response SOF
Response_
flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
12h: block is locked
–
13h: block not programmed
Figure 50. Write DSFID frame exchange between VCD and LRI2K
VCD
SOF
Write
DSFID
request
EOF
Write DSFID
response
LRI2K
<-t1->
LRI2K
<------------ tW ------------><- t1 -> SOF
SOF
EOF
Write sequence when
error
Write DSFID
EOF
response
59/89
Commands codes
20.12
LRI2K
Lock DSFID
On receiving the Lock DSFID request, the LRI2K locks the DSFID value permanently. The
Option_flag is supported.
During the write cycle tW, there should be no modulation (neither 100% nor 10%).
Otherwise, the LRI2K may not lock correctly the DSFID value in memory. The tW time is
equal to t1nom + 18 × 302µs.
Table 53.
Lock DSFID request format
Request SOF
Request_
flags
Lock DSFID
UID
CRC16
8 bits
2Ah
64 bits
16 bits
Request EOF
Request parameter:
●
UID (Optional)
Table 54.
Lock DSFID response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
No parameter.
Table 55.
Lock DSFID response format when Error_flag is set
Response SOF
Response_
flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
11h: block is locked
–
14h: block not locked
Figure 51. Lock DSFID frame exchange between VCD and LRI2K
VCD
60/89
SOF
Lock
DSFID
request
EOF
Lock DSFID
response
LRI2K
<-t1->
LRI2K
<------------ tW ------------><- t1 -> SOF
SOF
EOF
Lock sequence when
error
Lock DSFID
EOF
response
LRI2K
20.13
Commands codes
Get System Info
When receiving the Get System Info command, the LRI2K sends back its information data in
the response.The Option_flag is supported and must be reset to 0. The Get System Info can
be issued in both Addressed and Non Addressed modes.
Table 56.
Get System Info request format
Request_ Get System
flags
Info
Request SOF
8 bits
2Bh
UID
CRC16
64 bits
16 bits
Request EOF
Request parameter:
●
UID (Optional)
Table 57.
Get System Info response format when Error_flag is NOT set
Response Response_ Information
SOF
flags
flags
00h
0Fh
UID
DSFID AFI
Memory
IC
Response
CRC16
size
reference
EOF
64 bits 8 bits 8 bits 033Fh 001000xxb 16 bits
Response parameters:
●
Information Flags set to 0Fh. DSFID, AFI, Memory Size and IC reference fields are
present.
●
UID code on 64 bits
●
DSFID value
●
AFI value
●
memory size. The LRI2K provides 64 blocks (3Fh) of 4 bytes (03h).
●
IC Reference. Only the 6 MSBs are significant. The product code of the LRI2K is
00 1000b=8d
Table 58.
Get System Info response format when Error_flag is set
Response SOF
Response_flags
Error code
CRC16
01h
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
03h: Option not supported
–
0Fh: other error
Figure 52. Get System Info frame exchange between VCD and LRI2K
VCD
LRI2K
SOF
Get System
Info request
EOF
<-t1-> SOF
Get System
Info
EOF
response
61/89
Commands codes
20.14
LRI2K
Get Multiple Block Security Status
When receiving the Get Multiple Block Security Status command, the LRI2K sends back the
block security status. The blocks are numbered from '00 to '3F' in the request and the value
is minus one (–1) in the field. For example, a value of '06' in the "Number of blocks" field
requests to return the security status of 7 Blocks.
Table 59.
Get Multiple Block Security Status request format
Request Request_
SOF
flags
Get Multiple
Block
Security
Status
UID
2Ch
64 bits
8 bits
First
Number
block
of
number blocks
8 bits
CRC16
8 bits
Request
EOF
16 bits
Request parameters:
●
UID (Optional)
●
First block number
●
Number of blocks
Table 60.
Get Multiple Block Security Status response format when Error_flag is
NOT set
Response SOF
Response_flags
Block Locking
Status
CRC16
8 bits
8 bits(1)
16 bits
Response EOF
1. Repeated as needed.
Response parameters:
●
Block Locking Status (see Table 61: Block Locking status)
●
N block of data
Table 61.
b7
Block Locking status
b6
b5
b4
b3
b2
b1
0: Current block not locked
1: Current block locked
All 0
Table 62.
Get Multiple Block Security Status response format when Error_flag is
set
Response SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response parameter:
●
62/89
b0
Error code as Error_flag is set:
–
03h: Option not supported
–
0Fh: other error
Response EOF
LRI2K
Commands codes
Figure 53. Get Multiple Block Security Status frame exchange between VCD and
LRI2K
VCD
LRI2K
Get Multiple
Block
SOF
EOF
Security
Status
<-t1-> SOF
Get Multiple
Block Security
Status
EOF
63/89
Commands codes
20.15
LRI2K
Kill
On receiving the Kill command, in the Addressed mode only, the LRI2K compares the kill
code with the data contained in the request and reports whether the operation was
successful in the response. The Option_flag is supported. If the command is received in the
Non Addressed or the Selected mode, the LRI2K returns an error response.
During the comparison cycle equal to tW, there should be no modulation (neither 100% nor
10%). Otherwise, the LRI2K may not match the kill code correctly. The tW time is equal to
t1nom + 18 × 302µs. After a successful Kill command, the LRI2K is deactivated and does not
interpret any other command.
Table 63.
Kill request format
Request Request_
SOF
flags
8 bits
Kill
IC Mfg
code
UID
Kill
access
Kill code
CRC16
A6h
02h
64 bits
00h
32 bits
16 bits
Request
EOF
Request parameters:
●
UID (Optional)
●
Kill Code
Table 64.
Kill response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
No parameter. The response is send back after the writing cycle
Table 65.
Kill response format when Error_flag is set
Response SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
0Fh: other error
–
14h: block not locked
Figure 54. Kill frame exchange between VCD and LRI2K
VCD
LRI2K
LRI2K
64/89
SOF Kill request EOF
<-t1->
SOF
Kill response
EOF
Kill sequence when
error
<------------ tW ------------><- t1 -> SOF Kill response EOF
LRI2K
20.16
Commands codes
Write Kill
On receiving the Write Kill command, the LRI2K writes the kill code with the data contained
in the request and reports whether the operation was successful in the response. The
Option_flag is supported. After a successful write, the kill code must be locked by a Lock Kill
command to activate the protection.
During the write cycle tW, there should be no modulation (neither 100% nor 10%).
Otherwise, the LRI2K may not correctly program the data to the memory. The tW time is
equal to t1nom + 18 × 302 µs.
Table 66.
Write Kill request format
Request Request_
SOF
flags
8 bits
Write
Kill
IC Mfg
code
UID
Kill
access
B1h
02h
64 bits
00h
Kill code CRC16
32 bits
Request
EOF
16 bits
Request parameters:
●
UID (Optional)
●
Kill Address (00h = Kill, other = Error)
●
Data
Table 67.
Write Kill response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
No parameter. The response is send back after the write cycle.
Table 68.
Write Kill response format when Error_flag is set
Response SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response EOF
Response parameter:
●
Error code as Error_flag is set:
–
10h: block address not available
–
12h: block is locked
–
13h: block not programmed
Figure 55. Write Kill frame exchange between VCD and LRI2K
VCD
SOF
Write Kill
request
EOF
Write Kill
response
LRI2K
<-t1-> SOF
LRI2K
<------------ tW ------------><- t1 -> SOF
EOF
Write sequence when
error
Write Kill
response
EOF
65/89
Commands codes
20.17
LRI2K
Lock Kill
On receiving the Lock Kill command, the LRI2K locks the Kill code permanently. The
Option_flag is supported. RFU bit 8 of the request flag must be set to ‘1’.
During the write cycle tW, there should be no modulation (neither 100% nor 10%).
Otherwise, the LRI2K may not lock the memory block correctly. The tW time is equal to
t1nom + 18 × 302 µs.
Table 69.
Lock Kill request format
Request Request_
SOF
flags
Lock
Kill
IC Mfg
code
UID
Kill
access
Protect
Status
CRC16
B2h
02h
64 bits
00f
8 bits
16 bits
8 bits
Request
EOF
Request parameters:
●
(Optional) UID
●
Kill Address (bit 8 = ‘1’: 00h = KILL, other = Error)
●
Protect status (see table below)
b7
b6
b5
b4
b3
b2
b1
b0
0
0
0
0
0
0
0
1
Table 70.
Lock Kill response format when Error_flag is NOT set
Response SOF
Response_flags
CRC16
8 bits
16 bits
Response EOF
Response parameter:
●
No parameter.
Table 71.
Lock Kill response format when Error_flag is set
Response SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response parameter:
●
66/89
Error code as Error_flag is set:
–
10h: block address not available
–
11h: block is locked
–
14h: block not locked
Response EOF
LRI2K
Commands codes
Figure 56. Lock Kill frame exchange between VCD and LRI2K
VCD
SOF
Lock Kill
request
EOF
Lock Kill
response
LRI2K
<-t1->
LRI2K
<------------ tW ------------><- t1 -> SOF
SOF
EOF
Lock sequence when
error
Lock Kill
response
EOF
67/89
Commands codes
20.18
LRI2K
Fast Read Single Block
On receiving the Fast Read Single Block command, the LRI2K reads the requested block
and sends back its 32-bit value in the response. The Option_flag is supported. The data rate
of the response is multiplied by 2.
Table 72.
Request
SOF
Fast Read Single Block request format
Fast Read
IC Mfg
Single
code
Block
Request_
flags
8 bits
C0h
02h
UID
Block
number
CRC16
64 bits
8 bits
16 bits
Request
EOF
Request parameters:
●
Option_flag
●
UID (Optional)
●
Block number
Table 73.
Fast Read Single Block response format when Error_flag is NOT set
Response Response_ Block locking
SOF
flags
status
8 bits
8 bits
Data
CRC16
32 bits
16 bits
Response
EOF
Response parameter:
●
Block Locking Status if Option_flag is set
●
4 bytes of Block Data
Table 74.
b7
Block Locking status
b6
b5
b4
b3
Response_
flags
Error code
CRC16
8 bits
8 bits
16 bits
Response parameter:
68/89
b0
Fast Read Single Block response format when Error_flag is set
Response SOF
●
b1
0: Current Block not locked
1: Current Block locked
All 0
Table 75.
b2
Error code as Error_flag is set:
–
0Fh: other error
–
10h: block address not available
Response EOF
LRI2K
Commands codes
Figure 57. Fast Read Single Block frame exchange between VCD and LRI2K
VCD
LRI2K
SOF
Fast Read Single
EOF
Block request
<-t1-> SOF
Fast Read Single
EOF
Block response
69/89
Commands codes
20.19
LRI2K
Fast Inventory Initiated
Before receiving the Fast Inventory Initiated command, the LRI2K must have received an
Initiate or a Fast Initiate command in order to set the Initiate_ flag. If not, the LRI2K does not
answer to the Fast Inventory Initiated command.
On receiving the Fast Inventory Initiated request, the LRI2K runs the anticollision sequence.
The Inventory_flag must be set to 1. The Meaning of Flags 5 to 8 is shown in Table 13:
Request flags 5 to 8 when bit 3 = 1. The data rate of the response is multiplied by 2.
The request contains:
●
the flags,
●
the Inventory command code
●
the AFI if the AFI flag is set
●
the mask length
●
the mask value
●
the CRC
The LRI2K does not generate any answer if an error occurs.
Table 76.
Fast Inventory Initiated request format
Fast
Request Request
IC Mfg Optiona
Inventory
SOF
Flags
Code
l AFI
Initiated
8 bits
C1h
02h
8 bits
Mask
length
Mask value
CRC16
8 bits
0 - 64 bits
16 bits
Request
EOF
The response contains:
●
The flags
●
the Unique ID
Table 77.
Fast Inventory Initiated response format
Response SOF Response Flags DSFID
8 bits
00h
UID
CRC16
64 bits
16 bits
Response EOF
During an Inventory process, if the VCD does not receive an RF LRI2K response, it waits a
time t3 before sending an EOF to switch to the next slot. t3 starts from the rising edge of the
request EOF sent by the VCD.
●
If the VCD sends a 100% modulated EOF, the minimum value of t3 is:
t3min = 4384/fC (323.3 µs) + tSOF
●
If the VCD sends a 10% modulated EOF, the minimum value of t3 is:
t3min = 4384/fC (323.3 µs) + tNRT
where:
●
tSOF is the time required by the LRI2K to transmit an SOF to the VCD
●
tNRT is the nominal response time of the LRI2K
tNRT and tSOF are dependent on the LRI2K-to-VCD data rate and subcarrier modulation
mode.
70/89
LRI2K
20.20
Commands codes
Fast Initiate
On receiving the Fast Initiate command, the LRI2K sets the internal Initiate_flag and sends
back a response. The command has to be issued in the Non Addressed mode only
(Select_flag is reset to 0 and Address_flag is reset to 0). If an error occurs, the LRI2K does
not generate any answer. The Initiate_flag is reset after a power off of the LRI2K. The data
rate of the response is multiplied by 2.
The request contains:
●
No data
Table 78.
Fast Initiate request format
Request SOF
Request Flags
Fast Initiate
IC Mfg code
CRC16
8 bits
C2h
02h
16 bits
Request EOF
The response contains:
●
the flags
●
the Unique ID
Table 79.
Fast Initiate response format
Response Response_
DSFID
SOF
flags
8 bits
00h
UID
CRC16
64 bits
16 bits
Response
EOF
Figure 58. Fast Initiate frame exchange between VCD and LRI2K
VCD
LRI2K
SOF
Fast Initiate
EOF
request
<-t1->
SOF
Fast Initiate
response
EOF
71/89
Commands codes
20.21
LRI2K
Fast Read Multiple Block
On receiving the Fast Read Multiple Block command, the LRI2K reads the requested blocks
and sends back their value in multiples of 32 bits in the response. The blocks are numbered
from '00’ to '3F' in the request and the value is minus one (–1) in the field. For example, a
value 06h in the “number of blocks” field causes the LRI2K to read 7 blocks. The maximum
number of blocks is fixed at 64. During Sequential Block Read, when the block address
reaches 64, it rolls over to 0. The Option_flag is supported. The data rate of the response is
multiplied by 2.
Table 80.
Fast Read Multiple Block request format
Request Request_
SOF
flags
Fast
Read
Multiple
Block
IC Mfg
code
UID
C3h
02h
64 bits
8 bits
First
Number
Request
block
of
CRC16
EOF
number blocks
8 bits
8 bits
16 bits
Request parameters:
●
Option_flag
●
UID (Optional)
●
First block number
●
Number of blocks
Table 81.
Fast Read Multiple Block response format when Error_flag is NOT set
Response Response_ Block Locking
SOF
flags
Status
8 bits(1)
8 bits
Data
CRC16
32 bits(1)
16 bits
Response
EOF
1. Repeated as needed.
Response parameters:
●
Block Locking Status if Option_flag is set
●
N block of data
Table 82.
b7
Block Locking status if Option_flag is set
b6
b5
b4
b3
b2
Fast Read Multiple Block response format when Error_flag is set
Response SOF
Response_flags
Error code
CRC16
8 bits
8 bits
16 bits
Response parameter:
●
72/89
b0
0: Current block not locked
1: Current block locked
All 0
Table 83.
b1
Error code as Error_flag is set:
–
0Fh: other error
–
10h: block address not available
Response EOF
LRI2K
Commands codes
Figure 59. Fast Read Multiple Block frame exchange between VCD and LRI2K
VCD
LRI2K
SOF
Fast Read
Multiple
Block
request
EOF
Fast Read
<-t1-> SOF Multiple Block EOF
response
73/89
Commands codes
20.22
LRI2K
Inventory Initiated
Before receiving the Inventory Initiated command, the LRI2K must have received an Initiate
or a Fast Initiate command in order to set the Initiate_ flag. If not, the LRI2K does not answer
to the Inventory Initiated command.
On receiving the Inventory Initiated request, the LRI2K runs the anticollision sequence. The
Inventory_flag must be set to 1. The Meaning of Flags 5 to 8 is given in Table 13: Request
flags 5 to 8 when bit 3 = 1.
The request contains:
●
the flags,
●
the Inventory command code
●
the AFI if the AFI flag is set
●
the mask length
●
the mask value
●
the CRC
The LRI2K does not generate any answer if an error occurs.
Table 84.
Inventory Initiated request format
Request Request Inventory IC Mfg Optiona
SOF
Flags
Initiated code
l AFI
8 bits
D1h
02h
8 bits
Mask
length
Mask value
CRC16
8 bits
0 - 64 bits
16 bits
Request
EOF
The response contains:
●
the flags
●
the Unique ID
Table 85.
Inventory Initiated response format
Response Response
SOF
Flags
8 bits
DSFID
UID
CRC16
00h
64 bits
16 bits
Response
EOF
During an Inventory process, if the VCD does not receive an RF LRI2K response, it waits a
time t3 before sending an EOF to switch to the next slot. t3 starts from the rising edge of the
request EOF sent by the VCD.
●
If the VCD sends a 100% modulated EOF, the minimum value of t3 is:
t3min = 4384/fC (323.3 µs) + tSOF
●
If the VCD sends a 10% modulated EOF, the minimum value of t3 is:
t3min = 4384/fC (323.3 µs) + tNRT
where:
●
tSOF is the time required by the LRI2K to transmit an SOF to the VCD
●
tNRT is the nominal response time of the LRI2K
tNRT and tSOF are dependent on the LRI2K-to-VCD data rate and subcarrier modulation
mode.
74/89
LRI2K
20.23
Commands codes
Initiate
On receiving the Initiate command, the LRI2K sets the internal Initiate_flag and sends back
a response. The command has to be issued in the Non Addressed mode only (Select_flag is
reset to 0 and Address_flag is reset to 0). If an error occurs, the LRI2K does not generate
any answer. The Initiate_flag is reset after a power off of the LRI2K.
The request contains:
●
No data
Table 86.
Initiate request format
Request SOF Request Flags
8 bits
Initiate
IC Mfg code
CRC16
D2h
02h
16 bits
Request EOF
The response contain:
●
the flags
●
the Unique ID
Table 87.
Initiate Initiated response format
Response Response
SOF
Flags
8 bits
DSFID
UID
CRC16
00h
64 bits
16 bits
Response
EOF
Figure 60. Initiate frame exchange between VCD and LRI2K
VCD
LRI2K
SOF
Initiate
request
EOF
<-t1-> SOF
Initiate
response
EOF
75/89
Maximum rating
21
LRI2K
Maximum rating
Stressing the device above the rating listed in the absolute maximum ratings table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality documents.
Table 88.
Absolute maximum ratings
Symbol
Parameter
Min.
Max.
Unit
15
25
°C
23
months
Wafer
kept in its antistatic bag
TSTG, hSTG,
Storage conditions
tSTG
A1, A6, A7
ICC
VMAX
VESD
25
°C
40%
60%
RH
2
years
Supply current on AC0 / AC1
–20
20
mA
Input voltage on AC0 / AC1
–7
7
V
A1, A6, A7
–7000
7000
V
MLP (HBM(3))
–1000
1000
V
(MM(4))
–100
100
V
Electrostatic discharge voltage(1) (2)
MLP
1. Mil. Std. 883 - Method 3015.
2. ESD test: ISO10373-7 specification.
3. Human body model.
4. Machine model.
76/89
15
LRI2K
22
DC and AC parameters
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC Characteristic tables that
follow are derived from tests performed under the Measurement Conditions summarized in
the relevant tables. Designers should check that the operating conditions in their circuit
match the measurement conditions when relying on the quoted parameters.
Table 89.
AC characteristics(1) (2)
Symbol
fCC
Parameter
External RF signal frequency
MICARRIER 10% carrier modulation index
tRFR, tRFF
tRFSBL
tRFSBL
tJIT
Min
Typ
Max
Unit
13.553 13.56 13.567 MHz
10
30
%
10% rise and fall time
0.5
3.0
µs
10% minimum pulse width for bit
7.1
9.44
µs
95
100
%
100% rise and fall time
0.5
3.5
µs
100% minimum pulse width for bit
7.1
9.44
µs
Bit pulse jitter
–2
+2
µs
1
ms
MICARRIER 100% carrier modulation index
tRFR, tRFF
Condition
MI=(A-B)/(A+B)
MI=(A-B)/(A+B)
tMIN CD
Minimum time from carrier
generation to first data
From H-field min
0.1
fSH
Subcarrier frequency high
FCC/32
423.75
kHz
fSL
Subcarrier frequency low
FCC/28
484.28
kHz
t1
Time for LRI2K response
4224/FS
318.6
320.9
323.3
µs
t2
Time between command
4224/FS
309
311.5
314
µs
tW
Programming time
5.8
ms
1. TA = –20 to 85°C.
2. All timing measurements were performed on a reference antenna with the following characteristics:
External size: 75 mm x 48 mm
Number of turns: 6
Width of conductor: 1 mm
Space between 2 conductors: 0.4 mm
Value of the tuning capacitor: 28.5 pF (LRI2K-W4)
Value of the coil: 4.3 µH
Tuning frequency: 13.8 MHz.
77/89
DC and AC parameters
LRI2K
Table 90.
DC characteristics(1)
Symbol
Parameter
Test conditions
VCC
Regulated voltage
VRET
Retromodulated induced
voltage
ICC
Min.
Typ.
1.5
ISO10373-7
Max.
Unit
3.0
V
10
mV
Read
VCC = 3.0 V
50
µA
Write
VCC = 3.0 V
150
µA
Supply current
f = 13.56 MHz for W4/1
21
pF
f = 13.56 MHz for W4/2
28.5
pF
f = 13.56 MHz for W4/3
97
pF
f = 13.56 MHz for W4/4
23.5
pF
Internal tuning capacitor
CTUN
1. TA = –20 to 85°C.
Table 91.
Operating conditions
Symbol
TA
Parameter
Ambient operating temperature
Min.
Max.
Unit
–20
85
°C
Figure 61. LRI2K synchronous timing, transmit and receive
A
B
tRFF
tRFR
fCC
tRFSBL
tMAX
tMIN CD
AI06680
Figure 61 shows an ASK modulated signal, from the VCD to the LRI2K. The test condition
for the AC/DC parameters are:
78/89
●
Close coupling condition with tester antenna (1mm)
●
LRI2K performance measured at the tag antenna
LRI2K
23
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second-level interconnect. The category of
second-level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97.
The maximum ratings related to soldering conditions are also marked on the inner box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 62. A1 antenna on tape outline
C1
A1
B1
C2
A2
B2
ai10119
1. Drawing is not to scale.
Table 92.
A1 antenna on tape mechanical data
Symbol
Parameter
Typ
Min
Max
Unit
A1
Coil width
45
44.5
45.5
mm
A2
Coil length
76
75.5
76.5
mm
B1
Antenna cut width
49
48.8
49.2
mm
B2
Antenna cut length
82
81.8
82.2
mm
C1
Die position from antenna
23
22.8
23.2
mm
C2
Die position from antenna
56
55.8
56.2
mm
Silicon thickness
180
165
195
µm
Unloaded Q value
35
Q
FNOM
PA
Unloaded free-air resonance
H-field energy for device operation
15.1
MHz
0.03
90
A/m
dbµA/m
79/89
Package mechanical data
LRI2K
Figure 63. A6 antenna on tape outline
I
A
B
1. Drawing is not to scale.
Table 93.
A6 antenna on tape mechanical data
Symbol
Typ
Min
Max
Unit
A
Coil diameter
35
34.5
35.5
mm
B
Antenna cut diameter
40
38.8
40.2
mm
I
Hole diameter
16
15.8
16.2
mm
Overall thickness of copper antenna coil
80
70
90
µm
Silicon thickness
180
165
195
µm
Unloaded Q value
35
Q
FNOM
PA
80/89
Parameter
Unloaded free-air resonance
H-field energy for device operation
15.1
MHz
0.5
114
A/m
dbµA/m
LRI2K
Package mechanical data
Figure 64. A7 antenna on tape outline
A1
B1
C1
C2
A2
B2
ai10121
1. Drawing is not to scale.
Table 94.
A7 antenna on tape mechanical data
Symbol
Parameter
Typ
Min
Max
Unit
A1
Coil width
40
39.5
40.5
mm
A2
Coil length
20
19.5
20.5
mm
B1
Antenna cut width
44
43.8
44.2
mm
B2
Antenna cut length
24
23.8
24.2
mm
C1
Die position from antenna
10
9.8
10.2
mm
C2
Die position from antenna
20
19.8
20.2
mm
Overall thickness of copper antenna coil
160
145
175
µm
Silicon thickness
180
165
195
µm
Unloaded Q value
35
Q
FNOM
PA
Unloaded free-air resonance
H-field energy for device operation
15.1
MHz
1
120
A/m
dbµA/m
81/89
Package mechanical data
LRI2K
Figure 65. UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP)
outline
e
D
b
L1
L3
E
E2
L
A
D2
ddd
A1
UFDFPN-01
1. Drawing is not to scale.
Table 95.
UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP)
mechanical data
Inches(1)
Millimeters
Symbol
Typ.
Min.
Max.
Typ.
Min.
Max.
A
0.55
0.45
0.6
0.0217
0.0177
0.0236
A1
0.02
0
0.05
0.0008
0
0.002
b
0.25
0.2
0.3
0.0098
0.0079
0.0118
D
2
1.9
2.1
0.0787
0.0748
0.0827
D2
1.6
1.5
1.7
0.063
0.0591
0.0669
E
3
2.9
3.1
0.1181
0.1142
0.122
E2
0.2
0.1
0.3
0.0079
0.0039
0.0118
e
0.5
-
-
0.0197
-
-
L
0.45
0.4
0.5
0.0177
0.0157
0.0197
L1
L3
(2)
ddd
0.15
0.0059
0.3
0.0118
0.08
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from
measuring.
82/89
LRI2K
24
Part numbering
Part numbering
Table 96.
Ordering information scheme
Example:
LRI2K
-
W4/2
Device type
LRI2K
Package
W4 =180 µm ± 15 µm unsawn wafer
SBN18 = 180 µm ± 15 µm bumped and sawn wafer on 8-inch frame
A1T = 45 mm x 76 mm copper antenna on continuous tape
A1S = 45 mm x 76 mm copper singulated adhesive antenna on tape
A6S2U = 35 mm copper singulated adhesive CD antenna on white PET tape and no marking
A7T = 20 mm x 40 mm copper antenna on continuous tape
MBTG = UFDFPN8 (MLP8), tape & reel packing, lead-free, RoHS compliant, Sb2O3-free and TBBAfree
For further information on any aspect of this device, please contact your nearest ST sales
office.
83/89
Anticollision algorithm (Informative)
Appendix A
LRI2K
Anticollision algorithm (Informative)
The following pseudocode describes how anticollision could be implemented on the VCD,
using recursivity.
A.1
Algorithm for pulsed slots
function push (mask, address); pushes on private stack
function pop (mask, address); pops from private stack
function pulse_next_pause; generates a power pulse
function store(LRI2K_UID); stores LRI2K_UID
function poll_loop (sub_address_size as integer)
pop (mask, address)
mask = address & mask; generates new mask
; send the request
mode = anticollision
send_request (Request_cmd, mode, mask length, mask value)
for sub_address = 0 to (2^sub_address_size - 1)
pulse_next_pause
if no_collision_is_detected ; LRI2K is inventoried
then
store (LRI2K_UID)
else ; remember a collision was detected
push(mask,address)
endif
next sub_address
if stack_not_empty ; if some collisions have been detected and
then
; not yet processed, the function calls itself
poll_loop (sub_address_size); recursively to process the
last stored collision
endif
end poll_loop
main_cycle:
mask = null
address = null
push (mask, address)
poll_loop(sub_address_size)
end_main_cycle
84/89
LRI2K
CRC (Informative)
Appendix B
B.1
CRC (Informative)
CRC error detection method
The cyclic redundancy check (CRC) is calculated on all data contained in a message, from
the start of the Flags through to the end of Data. The CRC is used from VCD to LRI2K and
from LRI2K to VCD.
Table 97.
CRC definition
CRC definition
CRC type
ISO/IEC 13239
Length
16 bits
Polynomial
16
X
+
X12
+
X5
+ 1 = 8408h
Direction
Preset
Residue
Backward
FFFFh
F0B8h
To add extra protection against shifting errors, a further transformation on the calculated
CRC is made. The one’s complement of the calculated CRC is the value attached to the
message for transmission.
To check received messages the 2 CRC bytes are often also included in the re-calculation,
for ease of use. In this case, the expected value for the generated CRC is the residue
F0B8h.
B.2
CRC calculation example
This example in C language illustrates one method of calculating the CRC on a given set of
bytes comprising a message.
C-Example to calculate or check the CRC16 according to ISO/IEC 13239
#define
#define
#define
POLYNOMIAL8408h//
PRESET_VALUEFFFFh
CHECK_VALUEF0B8h
x^16 + x^12 + x^5 + 1
#define
#define
#define
NUMBER_OF_BYTES4// Example: 4 data bytes
CALC_CRC1
CHECK_CRC0
void main()
{
unsigned int current_crc_value;
unsigned char array_of_databytes[NUMBER_OF_BYTES + 2] = {1, 2, 3,
4, 91h, 39h};
int
number_of_databytes = NUMBER_OF_BYTES;
int
calculate_or_check_crc;
int
i, j;
calculate_or_check_crc = CALC_CRC;
// calculate_or_check_crc = CHECK_CRC;// This could be an other
example
if (calculate_or_check_crc == CALC_CRC)
{
number_of_databytes = NUMBER_OF_BYTES;
85/89
CRC (Informative)
LRI2K
}
else
// check CRC
{
number_of_databytes = NUMBER_OF_BYTES + 2;
}
current_crc_value = PRESET_VALUE;
for (i = 0; i < number_of_databytes; i++)
{
current_crc_value = current_crc_value ^ ((unsigned
int)array_of_databytes[i]);
for (j = 0; j < 8; j++)
{
if (current_crc_value & 0001h)
{
current_crc_value = (current_crc_value >> 1) ^
POLYNOMIAL;
}
else
{
current_crc_value = (current_crc_value >> 1);
}
}
}
if (calculate_or_check_crc == CALC_CRC)
{
current_crc_value = ~current_crc_value;
printf ("Generated CRC is 0x%04X\n", current_crc_value);
//
stream
//
}
else
{
if
{
current_crc_value is now ready to be appended to the data
(first LSByte, then MSByte)
// check CRC
(current_crc_value == CHECK_VALUE)
printf ("Checked CRC is ok (0x%04X)\n",
current_crc_value);
}
else
{
printf ("Checked CRC is NOT ok (0x%04X)\n",
current_crc_value);
}
}
}
86/89
LRI2K
B.3
CRC (Informative)
Application family identifier (AFI) (informative)
The AFI (application family identifier) represents the type of application targeted by the VCD
and is used to extract from all the LRI2K present only the LRI2K meeting the required
application criteria.
It is programmed by the LRI2K issuer (the purchaser of the LRI2K). Once locked, it cannot
be modified.
The most significant nibble of the AFI is used to code one specific or all application families,
as defined in Table 98.
The least significant nibble of the AFI is used to code one specific or all application
subfamilies. Subfamily codes different from 0 are proprietary.
Table 98.
AFI coding(1)
AFI
most
significant
nibble
AFI
least
significant
nibble
‘0’
‘0’
All families and subfamilies
No applicative preselection
‘X’
'0
'All subfamilies of family X
Wide applicative preselection
Meaning
VICCs respond from
Examples / Note
th
'X
'‘Y’
Only the Y subfamily of family X
‘0’
‘Y’
Proprietary subfamily Y only
‘1
'‘0’, ‘Y’
Transport
Mass transit, Bus, Airline etc.
'2
'‘0’, ‘Y’
Financial
IEP, Banking, Retail etc.
'3
'‘0’, ‘Y’
Identification
Access Control etc.
'4
'‘0’, ‘Y’
Telecommunication
Public Telephony, GSM etc.
‘5’
‘0’, ‘Y’
Medical
'6
'‘0’, ‘Y’
Multimedia
'7
'‘0’, ‘Y’
Gaming
8
'‘0’, ‘Y’
Data storage
'9
'‘0’, ‘Y’
Item management
'A
'‘0’, ‘Y’
Express parcels
'B
'‘0’, ‘Y’
Postal services
'C
'‘0’, ‘Y’
Airline bags
'D
'‘0’, ‘Y’
RFU
'E
'‘0’, ‘Y’
RFU
‘F’
‘0’, ‘Y’
RFU
Internet services etc.
Portable Files etc.
1. X = '1' to 'F', Y = '1' to 'F.
87/89
Revision history
LRI2K
Revision history
Table 99.
Date
Revision
17-Feb-2006
1
Initial release.
08-Feb-2007
2
Figure 2: MLP connections added.
Only bits set to ‘1’ are programmed to the AFI and DSFID Registers
(see Section 20.9: Write AFI and Section 20.11: Write DSFID.
CTUN typical value for W4/3 modified in Table 90: DC characteristics.
Small text changes.
15-Jun-2007
3
Section 20.9: Write AFI and Section 20.11: Write DSFID modified.
20-Jul-2007
4
Document status promoted from Preliminary Data to full Datasheet.
Small text changes.
31-Aug-2007
5
23.5 pF internal tuning capacitor (CTUN) value added (see Features on
page 1 and Table 90: DC characteristics.
VESD max modified for MLP in Table 88: Absolute maximum ratings.
07-Sep-2007
6
VESD min modified for MLP in Table 88: Absolute maximum ratings.
7
Response parameters modified in Section 20.14: Get Multiple Block
Security Status on page 62.
UFDFPN8 package mechanical data updated and dimensions in
inches rounded to four decimal digits instead of three in Table 95:
UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP)
mechanical data.
08-Apr-2008
88/89
Document revision history
Changes
LRI2K
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
89/89