LRI2K 2048-bit EEPROM tag IC at 13.56 MHz, with 64-bit UID and kill code, ISO 15693 and ISO 18000-3 Mode 1 compliant Features ■ ISO 15693 standard fully compliant ■ ISO 18000-3 Mode 1 standard fully compliant ■ 13.56 MHz ±7 kHz carrier frequency ■ To tag: 10% or 100% ASK modulation using 1/4 (26 Kbit/s) or 1/256 (1.6 Kbit/s) pulse position coding ■ From tag: load modulation using Manchester coding with 423 kHz and 484 kHz subcarriers in low (6.6 Kbit/s) or high (26 Kbit/s) data rate mode. Supports the 53 Kbit/s data rate with Fast commands ■ Internal tuning capacitor (21 pF, 23.5 pF, 28.5 pF, 97 pF) ■ 1 000 000 Erase/Write cycles (minimum) ■ 40 year data retention (minimum) ■ 2048 bits EEPROM with Block Lock feature ■ 64-bit unique identifier (UID) ■ Electrical article surveillance capable (software controlled) ■ Kill function ■ Read & Write (Block of 32 bits) ■ 5 ms programming time ■ Packages – ECOPACK® (RoHS compliant) Inlay A1 Antenna (A6) Antenna (A7) UFDFPN8 (MB) 2 × 3 mm² (MLP) Wafer April 2008 Rev 7 1/89 www.st.com 1 Contents LRI2K Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Initial dialogue for vicinity cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Power transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.3 Operating field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Communication signal from VCD to LRI2K . . . . . . . . . . . . . . . . . . . . . 14 3 Data rate and data coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 5 3.1 Data coding mode: 1 out of 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Data coding mode: 1 out of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 VCD to LRI2K frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Start of frame (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Communications signal from LRI2K to VCD . . . . . . . . . . . . . . . . . . . . 19 4.1 Load modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Bit representation and coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 5.2 6 5.1.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Bit coding using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 LRI2K to VCD frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1 2/89 Bit coding using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LRI2K Contents 6.2 6.3 6.4 SOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 EOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 EOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.4.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.4.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7 Unique identifier (UID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8 Application family identifier (AFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9 Data storage format identifier (DSFID) . . . . . . . . . . . . . . . . . . . . . . . . . 29 9.1 CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10 LRI2K protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 11 LRI2K states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 12 13 11.1 Power-off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11.2 Ready state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11.3 Quiet state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11.4 Selected state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 12.1 Addressed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 12.2 Non-Addressed mode (general request) . . . . . . . . . . . . . . . . . . . . . . . . . 34 12.3 Select mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 13.1 14 Request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 14.1 Response flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 14.2 Response error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3/89 Contents 15 LRI2K Anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 15.1 Request parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 16 Request processing by the LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 17 Explanation of the possible cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 18 Inventory Initiated command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 19 Timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 20 19.1 t1: LRI2K response delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 19.2 t2: VCD new request delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 19.3 t3: VCD new request delay in the absence of a response from the LRI2K 45 Commands codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 20.1 Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 20.2 Stay Quiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 20.3 Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 20.4 Write Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 20.5 Lock Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 20.6 Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 20.7 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 20.8 Reset to Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 20.9 Write AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 20.10 Lock AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 20.11 Write DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 20.12 Lock DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 20.13 Get System Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 20.14 Get Multiple Block Security Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 20.15 Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 20.16 Write Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 20.17 Lock Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 20.18 Fast Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 20.19 Fast Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 20.20 Fast Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4/89 LRI2K Contents 20.21 Fast Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 20.22 Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 20.23 Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 21 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 22 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 23 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 24 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Appendix A Anticollision algorithm (Informative) . . . . . . . . . . . . . . . . . . . . . . . . 84 A.1 Algorithm for pulsed slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Appendix B CRC (Informative) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 B.1 CRC error detection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 B.2 CRC calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 B.3 Application family identifier (AFI) (informative) . . . . . . . . . . . . . . . . . . . . . 87 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5/89 List of tables LRI2K List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 6/89 Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 LRI2K memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 10% modulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Response data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 UID format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 CRC transmission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 VCD request frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 LRI2K response frame format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 LRI2K response depending on request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 General request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Definitions of request flags 1 to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Request flags 5 to 8 when bit 3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Request flags 5 to 8 when bit 3 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 General response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Definitions of response flags 1 to 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Response error code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Inventory request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Example of the addition of 0-bits to an 11-bit mask value . . . . . . . . . . . . . . . . . . . . . . . . . 39 Timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Inventory request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Inventory response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Stay Quiet request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 49 Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 49 Write Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Write Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 51 Write Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 51 Lock Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Lock Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Lock Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . 53 Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . 53 Select request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Select Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . . . . 55 Select response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Reset to Ready request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Reset to Ready response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . 56 Reset to ready response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Write AFI request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Write AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Write AFI response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Lock AFI request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Lock AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LRI2K Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. List of tables Lock AFI response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Write DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Write DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 59 Write DSFID response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Lock DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Lock DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . 60 Lock DSFID response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Get System Info request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Get System Info response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . 61 Get System Info response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Get Multiple Block Security Status request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Get Multiple Block Security Status response format when Error_flag is NOT set . . . . . . . 62 Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Get Multiple Block Security Status response format when Error_flag is set . . . . . . . . . . . . 62 Kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Kill response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Kill response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Write Kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Write Kill response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Write Kill response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Lock Kill request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Lock Kill response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Lock Kill response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Fast Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Fast Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . 68 Block Locking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Fast Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . 68 Fast Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Fast Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Fast Initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Fast Initiate response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Fast Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Fast Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . 72 Block Locking status if Option_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Fast Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . 72 Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Initiate Initiated response format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A1 antenna on tape mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A6 antenna on tape mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A7 antenna on tape mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 CRC definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 AFI coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7/89 List of figures LRI2K List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. 8/89 Pad connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 MLP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 100% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 10% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1 out of 256 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Detail of one time period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1 out of 4 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1 out of 4 coding example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SOF to select 1 out of 256 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SOF to select 1 out of 4 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 EOF for either data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Logic 0, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Logic 1, high data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Logic 0, low data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Logic 1, low data rate x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Start of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Start of frame, high data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Start of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Start of frame, low data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Start of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Start of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 End of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 End of frame, high data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 End of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 End of frame, low data rate, one subcarrier x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 End of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 End of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 LRI2K decision tree for AFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LRI2K protocol timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 LRI2K state transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Principle of comparison between the mask, the slot number and the UID . . . . . . . . . . . . . 40 Description of a possible anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Stay Quiet frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 READ Single Block frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . 50 Write Single Block frame exchange between VCD and LRI2K. . . . . . . . . . . . . . . . . . . . . . 51 Lock Block frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Read Multiple Block frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . 54 Select frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Reset to Ready frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . 56 Write AFI frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 LRI2K Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. List of figures Lock AFI frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Write DSFID frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Lock DSFID frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Get System Info frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . 61 Get Multiple Block Security Status frame exchange between VCD and LRI2K . . . . . . . . . 63 Kill frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Write Kill frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Lock Kill frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Fast Read Single Block frame exchange between VCD and LRI2K. . . . . . . . . . . . . . . . . . 69 Fast Initiate frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Fast Read Multiple Block frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . 73 Initiate frame exchange between VCD and LRI2K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LRI2K synchronous timing, transmit and receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A1 antenna on tape outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A6 antenna on tape outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 A7 antenna on tape outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP) outline . . . . . . . . 82 9/89 Description 1 LRI2K Description The LRI2K is a contactless memory powered by the received carrier electromagnetic wave. It is a 2048-bit electrically erasable programmable memory (EEPROM). The memory is organized as 64 blocks of 32 bits. The LRI2K is accessed via the 13.56 MHz carrier electromagnetic wave on which incoming data are demodulated from the received signal amplitude modulation (ASK: amplitude shift keying). The received ASK wave is 10% or 100% modulated with a data rate of 1.6 Kbit/s using the 1/256 pulse coding mode or a data rate of 26 Kbit/s using the 1/4 pulse coding mode. Outgoing data are generated by the LRI2K load variation using Manchester coding with one or two subcarrier frequencies at 423 kHz and 484 kHz. Data are transferred from the LRI2K at 6.6 Kbit/s in low data rate mode and 26 Kbit/s fast data rate mode. The LRI2K supports 53 Kbit/s in high data rate mode with one subcarrier frequency at 423 kHz. The LRI2K follows the ISO 15693 recommendation for radio-frequency power and signal interface. Figure 1. Pad connections LRI2K Power Supply Regulator AC1 ASK Demodulator 2048 bit EEPROM memory Manchester Load Modulator AC0 AI12065 Table 1. Signal names Signal name Function AC1 Antenna coil AC0 Antenna coil Figure 2. MLP connections AC0 n/c n/c n/c 1 2 3 4 8 7 6 5 AC1 n/c n/c n/c AI11612 1. n/c means not connected internally. 10/89 LRI2K 1.1 Description Memory mapping The LRI2K is divided into 64 blocks of 32 bits. Each block can be individually write-protected using the Lock command. Table 2. Add LRI2K memory map 0 7 8 15 16 0 User area 1 User area 2 User area 3 User area 4 User area 5 User area 6 User area 7 User area 8 User area 23 24 31 User area User area User area 60 User area 61 User area 62 User area 63 User area UID 0 UID 1 UID 2 UID 3 UID 4 UID 5 UID 6 UID 7 AFI DSFID Kill code The User area consists of blocks that are always accessible in read mode. Write operations are possible if the addressed block is not protected. During a write operation, the 32 bits of the block are replaced by the new 32-bit value. The LRI2K also has a 64-bit block that is used to store the 64-bit unique identifier (UID). The UID is compliant to the ISO 15963 description, and its value is used during the anticollision sequence (Inventory). This block is not accessible by the user and its value is written by ST on the production line. The LRI2K also includes an AFI register in which the application family identifier is stored, and a DSFID register in which the data storage family identifier used in the anticollision algorithm is stored. The LRI2K has an additional 32-bit block in which the kill code is stored. 11/89 Description 1.2 LRI2K Commands The LRI2K supports the following commands: 12/89 ● Inventory, used to perform the anticollision sequence. ● Stay Quiet, used to put the LRI2K in quiet mode, where it does not respond to any inventory command. ● Select, used to select the LRI2K. After this command, the LRI2K processes all Read/Write commands with Select_flag set. ● Reset To Ready, used to put the LRI2K in the ready state. ● Read Block, used to output the 32 bits of the selected block and its locking status. ● Write Block, used to write the 32-bit value in the selected block, provided that it is not locked. ● Lock Block, used to lock the selected block. After this command, the block cannot be modified. ● Read Multiple Blocks, used to read the selected blocks and send back their value. ● Write AFI, used to write the 8-bit value in the AFI register. ● Lock AFI, used to lock the AFI register. ● Write DSFID, used to write the 8-bit value in the DSFID register. ● Lock DSFID, used to lock the DSFID register. ● Get System Info, used to provide the system information value ● Get Multiple Block Security Status, used to send the security status of the selected block. ● Initiate, used to trigger the tag response to the Inventory Initiated sequence. ● Inventory Initiated, used to perform the anticollision sequence triggered by the Initiate command. ● Kill, used to definitively deactivate the tag. ● Write Kill, used to write the 32-bit Kill code value ● Lock Kill, used to lock the Kill Code register. ● Fast Initiate, used to trigger the tag response to the Inventory Initiated sequence. ● Fast Inventory Initiated, used to perform the anticollision sequence triggered by the Initiate command. ● Fast Read Block, used to output the 32 bits of the selected block and its locking status. ● Fast Read Multiple Blocks, used to read the selected blocks and send back their value. LRI2K 1.3 Description Initial dialogue for vicinity cards The dialog between the vicinity coupling device (VCD) and the vicinity integrated circuit card or VICC (LRI2K) takes place as follows: ● activation of the LRI2K by the RF operating field of the VCD ● transmission of a command by the VCD ● transmission of a response by the LRI2K These operations use the RF power transfer and communication signal interface described below (see Power transfer, Frequency and Operating field). This technique is called RTF (reader talk first). 1.3.1 Power transfer Power is transferred to the LRI2K by radio frequency at 13.56 MHz via coupling antennas in the LRI2K and the VCD. The RF operating field of the VCD is transformed on the LRI2K antenna as an AC voltage which is rectified, filtered and internally regulated. The amplitude modulation (ASK) on this received signal is demodulated by the ASK demodulator. 1.3.2 Frequency The ISO 15693 standard defines the carrier frequency (fc) of the operating field as 13.56 MHz ±7 kHz. 1.3.3 Operating field The LRI2K operates continuously between Hmin and Hmax. ● The minimum operating field is Hmin and has a value of 150 mA/m rms. ● The maximum operating field is Hmax and has a value of 5 A/m rms. A VCD must generate a field of at least Hmin and not exceeding Hmax in the operating volume. 13/89 Communication signal from VCD to LRI2K 2 LRI2K Communication signal from VCD to LRI2K Communications between the VCD and the LRI2K take place using the modulation principle of ASK (amplitude shift keying). Two modulation indexes are used, 10% and 100%. The LRI2K decodes both. The VCD determines which index is used. The modulation index is defined as [a – b]/[a + b] where a is the peak signal amplitude and b the minimum signal amplitude of the carrier frequency. Depending on the choice made by the VCD, a "pause" will be created as described in Figure 3 and Figure 4. The LRI2K is operational for any degree of modulation index between 10% and 30%. Figure 3. 100% modulation waveform a 105% 100% 95% 60% 5% tRFF t tRFR tRFSBL AI06683 Table 3. 10% modulation parameters Symbol Parameter definition Value hr 0.1 x (a – b) max hf 0.1 x (a – b) max Figure 4. 10% modulation waveform hf hr tRFF a tRFSFL b tRFR t AI06655 14/89 LRI2K Data rate and data coding 3 Data rate and data coding The data coding implemented in the LRI2K uses pulse position modulation. Both data coding modes that are described in the ISO 15693 are supported by the LRI2K. The selection is made by the VCD and indicated to the LRI2K within the start of frame (SOF). 3.1 Data coding mode: 1 out of 256 The value of one single byte is represented by the position of one pause. The position of the pause on 1 of 256 successive time periods of 18.88 µs (256/fC), determines the value of the byte. In this case the transmission of one byte takes 4.833 ms and the resulting data rate is 1.65 Kbits/s (fC/8192). Figure 5 illustrates this pulse position modulation technique. In this Figure, data E1h (225 decimal) is sent by the VCD to the LRI2K. The pause occurs during the second half of the position of the time period that determines the value, as shown in Figure 6. A pause during the first period transmits the data value 00h. A pause during the last period transmits the data value FFh (255 decimal). Figure 5. 1 out of 256 coding mode 9.44 µs Pulse Modulated Carrier 18.88 µs 0 1 2 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 2 2 5 3 2 5 4 2 5 5 4.833 ms AI06656 15/89 Data rate and data coding Figure 6. LRI2K Detail of one time period 9.44 µs 18.88 µs Pulse Modulated Carrier . . . . . . . . 2 2 4 2 2 5 . . . . . 2 2 6 Time Period one of 256 16/89 . AI06657 LRI2K 3.2 Data rate and data coding Data coding mode: 1 out of 4 The value of 2 bits is represented by the position of one pause. The position of the pause on 1 of 4 successive time periods of 18.88 µs (256/fC) determines the value of the 2 bits. Four successive pairs of bits form a byte, where the least significant pair of bits is transmitted first. In this case the transmission of one byte takes 302.08 µs and the resulting data rate is 26.48 Kbit/s (fC/512). Figure 7 illustrates the 1 out of 4 pulse position technique and coding. Figure 8 shows the transmission of E1h (225d - 1110 0001b) by the VCD. Figure 7. 1 out of 4 coding mode Pulse position for "00" 9.44 µs 9.44 µs 75.52 µs Pulse position for "01" (1=LSB) 28.32 µs 9.44 µs 75.52 µs Pulse position for "10" (0=LSB) 47.20 µs Pulse position for "11" 9.44 µs 75.52 µs 66.08 µs 9.44 µs 75.52 µs AI06658 Figure 8. 1 out of 4 coding example 10 00 01 11 75.52 µs 75.52 µs 75.52 µs 75.52 µs AI06659 17/89 Data rate and data coding 3.3 LRI2K VCD to LRI2K frames Frames are delimited by a start of frame (SOF) and an end of frame (EOF). They are implemented using code violation. Unused options are reserved for future use. The LRI2K is ready to receive a new command frame from the VCD 311.5 µs (t2) after sending a response frame to the VCD. The LRI2K takes a Power-On time of 0.1 ms after being activated by the powering field. After this delay, the LRI2K is ready to receive a command frame from the VCD. 3.4 Start of frame (SOF) The SOF defines the data coding mode the VCD is to use for the following command frame. The SOF sequence described in Figure 9 selects the 1 out of 256 data coding mode. The SOF sequence described in Figure 10 selects the 1 out of 4 data coding mode. The EOF sequence for either coding mode is described in Figure 11. Figure 9. SOF to select 1 out of 256 data coding mode 9.44 µs 9.44 µs 37.76 µs 37.76 µs AI06661 Figure 10. SOF to select 1 out of 4 data coding mode 9.44 µs 9.44 µs 9.44 µs 37.76 µs 37.76 µs AI06660 Figure 11. EOF for either data coding mode 9.44 µs 9.44 µs 37.76 µs AI06662 18/89 LRI2K 4 Communications signal from LRI2K to VCD Communications signal from LRI2K to VCD The LRI2K has several modes defined for some parameters, owing to which it can operate in different noise environments and meet different application requirements. 4.1 Load modulation The LRI2K is capable of communication with the VCD via an inductive coupling area whereby the carrier is loaded to generate a subcarrier with frequency fS. The subcarrier is generated by switching a load in the LRI2K. The load-modulated amplitude received on the VCD antenna shall be at least 10 mV when measured as described in the test methods defined in International Standard ISO 10373-7. 4.2 Subcarrier The LRI2K supports the one-subcarrier and two-subcarrier response formats. These formats are selected by the VCD using the first bit in the protocol header. When one subcarrier is used, the frequency fS1 of the subcarrier load modulation is 423.75 kHz (fC/32). When two subcarriers are used, frequency fS1 is 423.75 kHz (fC/32), and frequency fS2 is 484.28 kHz (fC/28). When using the two-subcarrier mode, the LRI2K generates a continuous phase relationship between fS1 and fS2. 4.3 Data rates The LRI2K can respond using the low or the high data rate format. The selection of the data rate is made by the VCD using the second bit in the protocol header. It also supports the x2 mode available on all the Fast commands. Table 4 shows the different data rates produced by the LRI2K using the different response format combinations. Table 4. Response data rate Data rate One subcarrier Two subcarriers Standard commands 6.62 kbits/s (fc/2048) 6.67 kbits/s (fc/2032) Fast commands 13.24 kbits/s (fc/1024) not applicable Standard commands 26.48 kbits/s (fc/512) 26.69 kbits/s (fc/508) Fast commands 52.97 kbits/s (fc/256) not applicable Low High 19/89 Bit representation and coding 5 LRI2K Bit representation and coding Data bits are encoded using Manchester coding, according to the following schemes. For the low data rate, the same subcarrier frequency or frequencies is/are used, in this case the number of pulses is multiplied by 4 and all times are increased by this factor. For the Fast commands using one subcarrier, all pulse numbers and times are divided by 2. 5.1 Bit coding using one subcarrier 5.1.1 High data rate A logic 0 starts with 8 pulses at 423.75 kHz (fC/32) followed by an unmodulated time of 18.88 µs as shown in Figure 12. Figure 12. Logic 0, high data rate 37.76µs ai12076 For the Fast commands, a logic 0 starts with 4 pulses at 423.75 kHz (fC/32) followed by an unmodulated time of 9.44 µs as shown in Figure 13. Figure 13. Logic 0, high data rate x2 18.88µs ai12066 A logic 1 starts with an unmodulated time of 18.88 µs followed by 8 pulses at 423.75 kHz (fC/32) as shown in Figure 14. Figure 14. Logic 1, high data rate 37.76µs ai12077 For the Fast commands, a logic 1 starts with an unmodulated time of 9.44 µs followed by 4 pulses at 423.75 kHz (fC/32) as shown in Figure 15. Figure 15. Logic 1, high data rate x2 18.88µs ai12067 20/89 LRI2K 5.1.2 Bit representation and coding Low data rate A logic 0 starts with 32 pulses at 423.75 kHz (fC/32) followed by an unmodulated time of 75.52 µs as shown in Figure 16. Figure 16. Logic 0, low data rate 151.04µs ai12068 For the fast commands, a logic 0 starts with 16 pulses of 423,75 kHz (fC/32) followed by an unmodulated time of 37,76 µs as shown in Figure 17. Figure 17. Logic 0, low data rate x2 75.52µs ai12069 A logic 1 starts with an unmodulated time of 75,52 µs followed by 32 pulses of 423,75 kHz (fC/32) as shown in Figure 18. Figure 18. Logic 1, low data rate 151.04µs ai12070 For the Fast commands, a logic 1 starts with an unmodulated time of 37.76 µs followed by 16 pulses at 423.75 kHz (fC/32) as shown in Figure 19. Figure 19. Logic 1, low data rate x2 75.52µs ai12071 21/89 Bit representation and coding LRI2K 5.2 Bit coding using two subcarriers 5.2.1 High data rate A logic 0 starts with 8 pulses at 423.75 kHz (fC/32) followed by 9 pulses at 484.28 kHz (fC/28) as shown in Figure 20. For the Fast commands, the x2 mode is not available. Figure 20. Logic 0, high data rate 37.46µs ai12074 A logic 1 starts with 9 pulses at 484.28 kHz (fC/28) followed by 8 pulses at 423.75 kHz (fC/32) as shown in Figure 21. For the Fast commands, the x2 mode is not available. Figure 21. Logic 1, high data rate 37.46µs 5.2.2 ai12073 Low data rate A logic 0 starts with 32 pulses at 423.75 kHz (fC/32) followed by 36 pulses at 484.28 kHz (fC/28) as shown in Figure 22. For the Fast commands, the x2 mode is not available. Figure 22. Logic 0, low data rate 149.84µs ai12072 A logic 1 starts with 36 pulses at 484.28kHz (fC/28) followed by 32 pulses at 423.75kHz (fC/32) as shown in Figure 23. For the fast commands, the x2 mode is not available. Figure 23. Logic 1, low data rate 149.84µs 22/89 ai12075 LRI2K 6 LRI2K to VCD frames LRI2K to VCD frames Frames are delimited by an SOF and an EOF. They are implemented using code violation. Unused options are reserved for future use. For the low data rate, the same subcarrier frequency or frequencies is/are used. In this case the number of pulses is multiplied by 4. For the Fast commands using one subcarrier, all pulse numbers and times are divided by 2. 6.1 SOF when using one subcarrier 6.1.1 High data rate The SOF includes an unmodulated time of 56.64 µs followed by 24 pulses at 423.75 kHz (fC/32), and a logic 1 that consists of an unmodulated time of 18.88 µs followed by 8 pulses at 423.75 kHz. The SOF is shown in Figure 24. Figure 24. Start of frame, high data rate, one subcarrier 37.76µs 113.28µs ai12078 For the Fast commands, the SOF comprises an unmodulated time of 28.32 µs, followed by 12 pulses at 423.75 kHz (fC/32), and a logic 1 that consists of an unmodulated time of 9.44 µs followed by 4 pulses at 423.75 kHz as shown in Figure 25. Figure 25. Start of frame, high data rate, one subcarrier x2 56.64µs 18.88µs ai12079 23/89 LRI2K to VCD frames 6.1.2 LRI2K Low data rate SOF comprises an unmodulated time of 226.56 µs, followed by 96 pulses at 423.75 kHz (fC/32), and a logic 1 that consists of an unmodulated time of 75.52 µs followed by 32 pulses at 423.75 kHz as shown in Figure 26. Figure 26. Start of frame, low data rate, one subcarrier 453.12µs 151.04µs ai12080 For the Fast commands, the SOF comprises an unmodulated time of 113.28 µs followed by 48 pulses at 423.75 kHz (fC/32), and a logic 1 that includes an unmodulated time of 37.76 µs followed by 16 pulses at 423.75 kHz as shown in Figure 27. Figure 27. Start of frame, low data rate, one subcarrier x2 226.56µs 75.52µs ai12081 6.2 SOF when using two subcarriers 6.2.1 High data rate The SOF comprises 27 pulses at 484.28 kHz (fC/28), followed by 24 pulses at 423.75 kHz (fC/32), and a logic 1 that includes 9 pulses at 484.28 kHz followed by 8 pulses at 423.75 kHz as shown in Figure 28. For the Fast commands, the x2 mode is not available. Figure 28. Start of frame, high data rate, two subcarriers 112.39µs 6.2.2 37.46µs ai12082 Low data rate The SOF comprises 108 pulses at 484.28 kHz (fC/28) followed by 96 pulses at 423.75 kHz (fC/32), and a logic 1 that includes 36 pulses at 484.28 kHz followed by 32 pulses at 423.75 kHz as shown in Figure 29. For the Fast commands, the x2 mode is not available. Figure 29. Start of frame, low data rate, two subcarriers 449.56µs 149.84µs ai12083 24/89 LRI2K LRI2K to VCD frames 6.3 EOF when using one subcarrier 6.3.1 High data rate The EOF comprises a logic 0 that includes 8 pulses at 423.75 kHz and an unmodulated time of 18.88 µs, followed by 24 pulses at 423.75 kHz (fC/32) and by an unmodulated time of 56.64 µs as shown in Figure 30. Figure 30. End of frame, high data rate, one subcarrier 37.76µs 113.28µs ai12084 For the Fast commands, the EOF comprises a logic 0 that includes 4 pulses at 423.75 kHz and an unmodulated time of 9.44 µs, followed by 12 pulses at 423.75 kHz (fC/32) and an unmodulated time of 28.32 µs as shown in Figure 31. Figure 31. End of frame, high data rate, one subcarrier x2 18.88µs 56.64µs ai12085 6.3.2 Low data rate The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and an unmodulated time of 75.52 µs, followed by 96 pulses at 423.75 kHz (fC/32) and an unmodulated time of 226.56 µs as shown in Figure 32. Figure 32. End of frame, low data rate, one subcarrier 453.12µs 151.04µs ai12086 For the Fast commands, the EOF comprises a logic 0 that includes 16 pulses at 423.75 kHz and an unmodulated time of 37.76 µs, followed by 48 pulses at 423.75 kHz (fC/32) and an unmodulated time of 113.28 µs as shown in Figure 33. Figure 33. End of frame, low data rate, one subcarrier x2 75.52µs 226.56µs ai12087 25/89 LRI2K to VCD frames LRI2K 6.4 EOF when using two subcarriers 6.4.1 High data rate The EOF comprises a logic 0 that includes 8 pulses at 423.75 kHz and 9 pulses at 484.28 kHz, followed by 24 pulses at 423.75 kHz (fC/32) and 27 pulses at 484.28 kHz (fC/28) as shown in Figure 34. For the Fast commands, the x2 mode is not available. Figure 34. End of frame, high data rate, two subcarriers 37.46µs 6.4.2 112.39µs ai12088 Low data rate The EOF comprises a logic 0 that includes 32 pulses at 423.75 kHz and 36 pulses at 484.28 kHz, followed by 96 pulses at 423.75 kHz (fC/32) and 108 pulses at 484.28 kHz (fC/28) as shown in Figure 35 For the fast commands, the x2 mode is not available. Figure 35. End of frame, low data rate, two subcarriers 149.84µs 449.56µs ai12089 26/89 LRI2K 7 Unique identifier (UID) Unique identifier (UID) The LRI2Ks are uniquely identified by a 64-bit Unique Identifier (UID). This UID complies with ISO/IEC 15963 and ISO/IEC 7816-6. The UID is a read-only code, and comprises: ● the 8 MSBs are E0h ● the IC manufacturer code of ST 02h, on 8 bits (ISO/IEC 7816-6/AM1) ● a unique serial number on 48 bits. Table 5. UID format MSB LSB 63 56 E0h 55 48 02h 47 0 Unique serial number With the UID each LRI2K can be addressed uniquely and individually during the anticollision loop and for one-to-one exchanges between a VCD and an LRI2K. 27/89 Application family identifier (AFI) 8 LRI2K Application family identifier (AFI) The AFI (application family identifier) represents the type of application targeted by the VCD and is used to identify, among all the LRI2Ks present, only the LRI2Ks that meet the required application criteria. Figure 36. LRI2K decision tree for AFI Inventory Request Received No AFI Flag Set ? Yes AFI value =0? No Yes AFI value = Internal value ? No Yes Answer given by the LRI2K to the Inventory Request No Answer AI12091 The AFI is programmed by the LRI2K issuer (or purchaser) in the AFI register. Once programmed and Locked, it can no longer be modified. The most significant nibble of the AFI is used to code one specific or all application families. The least significant nibble of the AFI is used to code one specific or all application subfamilies. subfamily codes different from 0 are proprietary. (See ISO 15693-3 documentation) 28/89 LRI2K 9 Data storage format identifier (DSFID) Data storage format identifier (DSFID) The data storage format identifier indicates how the data is structured in the LRI2K memory. The logical organization of data can be known instantly using the DSFID. It can be programmed and locked using the Write DSFID and Lock DSFID commands, respectively. It is coded on one byte. 9.1 CRC The CRC used in the LRI2K is calculated as per the definition in ISO/IEC 13239. The initial register contents are all ones: "FFFF". The two-byte CRC is appended to each request and response, within each frame, before the EOF. The CRC is calculated on all the bytes between the SOF and the CRC field. Upon reception of a request from the VCD, the LRI2K verifies that the CRC value is valid. If it is invalid, the LRI2K discards the frame and does not answer to the VCD. Upon reception of a response from the LRI2K, it is recommended that the VCD verifies whether the CRC value is valid. If it is invalid, actions to be performed are left to the discretion of the VCD designers. The CRC is transmitted least significant byte first. Each byte is transmitted least significant bit first. Table 6. CRC transmission rules LSByte LSBit MSByte MSBit LSBit CRC 16 (8bits) MSBit CRC 16 (8 bits) 29/89 LRI2K protocol description 10 LRI2K LRI2K protocol description The transmission protocol (or simply protocol) defines the mechanism used to exchange instructions and data between the VCD and the LRI2K, in both directions. It is based on the concept of "VCD talks first". This means that an LRI2K will not start transmitting unless it has received and properly decoded an instruction sent by the VCD. The protocol is based on an exchange of: ● a request from the VCD to the LRI2K ● a response from the LRI2K to the VCD Each request and each response are contained in a frame. The frame delimiters (SOF, EOF) are described in Section 6: LRI2K to VCD frames. Each request consists of: ● a request SOF (see Figure 9 and Figure 10) ● flags ● a command code ● parameters, depending on the command ● application data ● a 2-byte CRC ● a request EOF (see Figure 11) Each response consists of: ● an answer SOF (see Figure 24 to Figure 29) ● flags ● parameters, depending on the command ● application data ● a 2-byte CRC ● an Answer EOF (see Figure 30 to Figure 35) The protocol is bit-oriented. The number of bits transmitted in a frame is a multiple of eight (8), i.e. an integer number of bytes. A single-byte field is transmitted least significant bit (LSBit) first. A multiple-byte field is transmitted least significant byte (LSByte) first, with each byte transmitted least significant bit (LSBit) first. The setting of the flags indicates the presence of the optional fields. When the flag is set (to one), the field is present. When the flag is reset (to zero), the field is absent. Table 7. VCD request frame format Request SOF Request Flags Table 8. Response SOF 30/89 Command code Parameters Data 2 byte CRC Request EOF 2 byte CRC Response EOF LRI2K response frame format Response Flags Parameters Data LRI2K LRI2K protocol description Figure 37. LRI2K protocol timing VCD Request frame (Table 7) Request frame (Table 7) Response frame (Table 8) LRI2K Timing t1 Response frame (Table 8) t2 t1 t2 31/89 LRI2K states 11 LRI2K LRI2K states An LRI2K can be in one of 4 states: ● Power-off ● Ready ● Quiet ● Selected Transitions between these states are specified in Figure 38: LRI2K state transition diagram and Table 9: LRI2K response depending on request flags. 11.1 Power-off state The LRI2K is in the Power-off state when it does not receive enough energy from the VCD. 11.2 Ready state The LRI2K is in the Ready state when it receives enough energy from the VCD. When in the Ready state, the LRI2K answers any request where the Select_flag is not set. 11.3 Quiet state When in the Quiet state, the LRI2K answers any request except for Inventory requests with the Address_flag set. 11.4 Selected state In the Selected state, the LRI2K answers any request in all modes (see Section 12: Modes): 32/89 ● request in Select mode with the Select flag set ● request in Addressed mode if the UID matches ● request in Non-Addressed mode as it is the mode for general requests LRI2K LRI2K states Table 9. LRI2K response depending on request flags Address_flag Flags Select_flag 1 0 1 0 Addressed Non addressed Selected Non selected LRI2K in Ready or Selected state (Devices in Quiet state don’t answer) X LRI2K in Selected state X LRI2K in Ready, Quiet or Selected state (the device which match the UID) X Error (03h) X X X X X Figure 38. LRI2K state transition diagram Power Off In field Out of field Out of field Any other Command where Select_Flag is not set (U iet qu ay St y ad re o tt se Re e er r ) ID wh o y et D) (U ad s UI ct le re is t o ag en Se t t Fl er se ct_ diff Re ele ect( S el S ID ) Out of field Ready Select (UID) Quiet Stay quiet(UID) Any other command where the Address_Flag is set AND where Inventory_Flag is not set Selected Any other command AI06681 1. The intention of the state transition method is that only one LRI2K should be in the selected state at a time. 33/89 Modes 12 LRI2K Modes The term “mode” refers to the mechanism used in a request to specify the set of LRI2Ks that will answer the request. 12.1 Addressed mode When the Address_flag is set to 1 (Addressed mode), the request contains the Unique ID (UID) of the addressed LRI2K. Any LRI2K that receives a request with the Address_flag set to 1 compares the received Unique ID to its own. If it matches, then the LRI2K executes the request (if possible) and returns a response to the VCD as specified in the command description. If its UID does not match, then it remains silent. 12.2 Non-Addressed mode (general request) When the Address_flag is set to 0 (Non-Addressed mode), the request does not contain a Unique ID. Any LRI2K receiving a request with the Address_flag set to 0 executes it and returns a response to the VCD as specified in the command description. 12.3 Select mode When the Select_flag is set to 1 (Select mode), the request does not contain an LRI2K Unique ID. The LRI2K in the Selected state that receives a request with the Select_flag set to 1 executes it and returns a response to the VCD as specified in the command description. Only LRI2Ks in the Selected state answer to a request where the Select Flag is set to 1. The system design ensures in theory that only one LRI2K can be in the Select state at a time. 34/89 LRI2K 13 Request format Request format The request consists of: ● an SOF ● flags ● a command code ● parameters and data ● a CRC ● an EOF Table 10. S O F 13.1 General request format Request flags Command code Parameters Data E O F CRC Request flags In a request, the "flags" field specifies the actions to be performed by the LRI2K and whether corresponding fields are present or not. The flags field consists of eight bits. The bit 3 (Inventory_flag) of the request flag defines the contents of the 4 MSBs (bits 5 to 8). When bit 3 is reset (0), bits 5 to 8 define the LRI2K selection criteria. When bit 3 is set (1), bits 5 to 8 define the LRI2K Inventory parameters. Table 11. Bit No Bit 1 Bit 2 Bit 3 Bit 4 Definitions of request flags 1 to 4 Flag Subcarrier_flag(1) Data_rate_flag(2) Level Description 0 A single subcarrier frequency is used by the LRI2K 1 Two subcarriers are used by the LRI2K 0 Low data rate is used 1 High data rate is used 0 The meaning of Flags 5 to 8 is described in Table 12 1 The meaning of Flags 5 to 8 is described in Table 13 0 No Protocol format extension Inventory flag Protocol Extension flag 1. Subcarrier_flag refers to the LRI2K-to-VCD communication. 2. Data_rate_flag refers to the LRI2K-to-VCD communication 35/89 Request format LRI2K Table 12. Request flags 5 to 8 when bit 3 = 0 Bit No Bit 5 Bit 6 Flag Select_flag(1) Level Description 0 Request is executed by any LRI2K according to the setting of Address_flag 1 Request is executed only by the LRI2K in Selected state 0 Request is not addressed. UID field is not present. The request is executed by all LRI2Ks. 1 Request is addressed. UID field is present. The request is executed only by the LRI2K whose UID matches the UID specified in the request. Address_flag(1) Bit 7 Option flag 0 Bit 8 RFU 0 1. If the Select_flag is set to 1, the Address_flag is set to 0 and the UID field is not present in the request. Table 13. Request flags 5 to 8 when bit 3 = 1 Bit No Bit 5 Bit 6 36/89 Flag Level Description 0 AFI field is not present 1 AFI field is present 0 16 slots 1 1 slot AFI flag Nb_slots flag Bit 7 Option flag 0 Bit 8 RFU 0 LRI2K 14 Response format Response format The response consists of: ● an SOF ● flags ● parameters and data ● a CRC ● an EOF Table 14. S O F 14.1 General response format Response flags Parameters Data E O F CRC Response flags In a response, the flags indicate how actions have been performed by the LRI2K and whether corresponding fields are present or not. The response flags consist of eight bits. Table 15. Definitions of response flags 1 to 8 Bit No. Flag Level Description 0 No error 1 Error detected. Error code is in the "Error" field. Bit 1 Error_flag Bit 2 RFU 0 Bit 3 RFU 0 Bit 4 Extension flag 0 Bit 5 RFU 0 Bit 6 RFU 0 Bit 7 RFU 0 Bit 8 RFU 0 No extension 37/89 Response format 14.2 LRI2K Response error code If the Error_flag is set by the LRI2K in the response, the Error code field is present and provides information about the error that occurred. Error codes not specified in Table 16 are reserved for future use. Table 16. Response error code definition Error code 38/89 Meaning 03h The command option is not supported 0F Error with no information given or a specific error code is not supported. 10h The specified block is not available (does not exist). 11h The specified block is already locked and thus cannot be locked again 12h The specified block is locked and its contents cannot be changed. 13h The specified block was not successfully programmed. 14h The specified block was not successfully locked. LRI2K 15 Anticollision Anticollision The purpose of the anticollision sequence is to inventory the LRI2Ks present in the VCD field using their unique ID (UID). The VCD is the master of communications with one or several LRI2Ks. It initiates LRI2K communication by issuing the Inventory request. The LRI2K sends its response in the determined slot or does not respond. 15.1 Request parameters When issuing the Inventory command, the VCD: ● sets the Nb_slots_flag as desired, ● adds the mask length and the mask value after the command field, The mask length is the number of significant bits of the mask value. The mask value is contained in an integer number of bytes. The mask length indicates the number of significant bits. The LSB is transmitted first. If the mask length is not a multiple of 8 (bits), as many 0-bits as required will be added to the mask value MSB so that the mask value is contained in an integer number of bytes. The next field starts on the next byte boundary. Table 17. Inventory request format MSB SOF LSB Request_ flags Command Optional AFI Mask length Mask value CRC 8 bits 8 bits 8 bits 8 bits 0 to 8 bytes 16 bits EOF In the example of Table 18 and Figure 39, the mask length is 11 bits. Five 0-bits are added to the mask value MSB. The 11-bit Mask and the current slot number are compared to the UID. Table 18. Example of the addition of 0-bits to an 11-bit mask value (b15) MSB LSB (b0) 0000 0 100 1100 1111 0-bits added 11-bit mask value 39/89 Anticollision LRI2K Figure 39. Principle of comparison between the mask, the slot number and the UID MSB LSB 0000 0100 1100 1111 b 16 bits Mask value received in the Inventory command MSB LSB 100 1100 1111 b 11 bits The Mask value less the padding 0s is loaded into the Tag comparator MSB LSB xxxx The Slot counter is calculated Nb_slots_flags = 0 (16 slots), Slot Counter is 4 bits The Slot counter is concatened to the Mask value Nb_slots_flags = 0 The concatenated result is compared with the least significant bits of the Tag UID. 4 bits MSB LSB xxxx 100 1100 1111 b 15 bits UID b63 b0 xxxx xxxx ..... xxxx xxxx x xxx xxxx xxxx xxxx b Bits ignored 64 bits Compare AI06682 The AFI field is present if the AFI_flag is set. The pulse is generated according to the definition of the EOF in ISO/IEC 15693-2. The first slot starts immediately after the reception of the request EOF. To switch to the next slot, the VCD sends an EOF. The following rules and restrictions apply: 40/89 ● if no LRI2K answer is detected, the VCD may switch to the next slot by sending an EOF, ● if one or more LRI2K answers are detected, the VCD waits until the complete frame has been received before sending an EOF for switching to the next slot. LRI2K 16 Request processing by the LRI2K Request processing by the LRI2K Upon reception of a valid request, the LRI2K performs the following algorithm: ● NbS is the total number of slots (1 or 16) ● SN is the current slot number (0 to 15) ● LSB (value, n) function returns the n Less Significant Bits of value ● MSB (value, n) function returns the n Most Significant Bits of value ● "&" is the concatenation operator ● Slot_Frame is either an SOF or an EOF SN = 0 if (Nb_slots_flag) then NbS = 1 SN_length = 0 endif else NbS = 16 SN_length = 4 endif label1: if LSB(UID, SN_length + Mask_length) = LSB(SN,SN_length)&LSB(Mask,Mask_length) then answer to inventory request endif wait (Slot_Frame) if Slot_Frame = SOF then Stop Anticollision decode/process request exit endif if Slot_Frame = EOF if SN < NbS-1 then SN = SN + 1 goto label1 exit endif endif 41/89 Explanation of the possible cases 17 LRI2K Explanation of the possible cases Figure 40 summarizes the main possible cases that can occur during an anticollision sequence when the slot number is 16. The different steps are: Note: 42/89 ● The VCD sends an Inventory request, in a frame terminated by an EOF. The number of slots is 16. ● LRI2K 1 transmits its response in Slot 0. It is the only one to do so, therefore no collision occurs and its UID is received and registered by the VCD; ● The VCD sends an EOF in order to switch to the next slot. ● In slot 1, two LRI2Ks, LRI2K 2 and LRI2K 3 transmit a response, thus generating a collision. The VCD records the event and remembers that a collision was detected in Slot 1. ● The VCD sends an EOF in order to switch to the next slot. ● In Slot 2, no LRI2K transmits a response. Therefore the VCD does not detect any LRI2K SOF and decides to switch to the next slot by sending an EOF. ● In slot 3, there is another collision caused by responses from LRI2K 4 and LRI2K 5 ● The VCD then decides to send a request (for instance a Read Block) to LRI2K 1 whose UID has already been correctly received. ● All LRI2Ks detect an SOF and exit the anticollision sequence. They process this request and since the request is addressed to LRI2K 1, only LRI2K 1 transmits a response. ● All LRI2Ks are ready to receive another request. If it is an Inventory command, the slot numbering sequence restarts from 0. The decision to interrupt the anticollision sequence is made by the VCD. It could have continued to send EOFs until Slot 16 and only then sent the request to LRI2K 1. Time Comment Timing LRI2Ks VCD SOF Inventory EOF Request t1 No collision Response 1 Slot 0 t2 EOF t1 Collision Response 3 Response 2 Slot 1 t2 EOF No Response t3 Slot 2 EOF t1 Collision Response 5 Response 4 Slot 3 t2 SOF Request to EOF LRI2K 1 t1 AI12090 Response from LRI2K 1 LRI2K Explanation of the possible cases Figure 40. Description of a possible anticollision sequence 43/89 Inventory Initiated command 18 LRI2K Inventory Initiated command The LRI2K provides a special feature to improve the inventory time response of moving tags using the Initiate_flag value. This flag, controlled by the Initiate command, allows tags to answer to Inventory Initiated commands. For applications in which multiple tags are moving in front of a reader, it is possible to miss tags using the standard inventory command. The reason is that the inventory sequence has to be performed on a global tree search. For example, a tag with a particular UID value may have to wait the run of a long tree search before being inventoried. If the delay is too long, the tag may be out of the field before it has been detected. Using the Initiate command, the inventory sequence is optimized. When multiple tags are moving in front of a reader, the ones which are within the reader field will be initiated by the Initiate command. In this case, a small batch of tags will answer to the Inventory Initiated command which will optimize the time necessary to identify all the tags. When finished, the reader has to issue a new Initiate command in order to initiate a new small batch of tags which are new inside the reader field. It is also possible to reduce the inventory sequence time using the Fast Initiate and Fast Inventory Initiated commands. These commands allow the LRI2Ks to increase their response data rate by a factor of 2, up to 53kbit/s. 44/89 LRI2K Timing definition 19 Timing definition 19.1 t1: LRI2K response delay Upon detection of the rising edge of the EOF received from the VCD, the LRI2K waits for a time t1nom before transmitting its response to a VCD request or before switching to the next slot during an inventory process. Values of t1 are given in Table 19. The EOF is defined in Figure 11 on page 18. 19.2 t2: VCD new request delay t2 is the time after which the VCD may send an EOF to switch to the next slot when one or more LRI2K responses have been received during an Inventory command. It starts from the reception of the EOF from the LRI2Ks. The EOF sent by the VCD may be either 10% or 100% modulated regardless of the modulation index used for transmitting the VCD request to the LRI2K. t2 is also the time after which the VCD may send a new request to the LRI2K as described in Table 37: LRI2K protocol timing. Values of t2 are given in Table 19. 19.3 t3: VCD new request delay in the absence of a response from the LRI2K t3 is the time after which the VCD may send an EOF to switch to the next slot when no LRI2K response has been received. The EOF sent by the VCD may be either 10% or 100% modulated regardless of the modulation index used for transmitting the VCD request to the LRI2K. From the time the VCD has generated the rising edge of an EOF: ● If this EOF is 100% modulated, the VCD waits a time at least equal to t3min before sending a new EOF. ● If this EOF is 10% modulated, the VCD waits a time at least equal to the sum of t3min + the LRI2K nominal response time (which depends on the LRI2K data rate and subcarrier modulation mode) before sending a new EOF. Table 19. Timing values(1) Minimum (min) values Nominal (nom) values Maximum (max) values t1 318.6 µs 320.9 µs 323.3 µs t2 309.2 µs No tnom No tmax No tnom No tmax t3 t1max (2) + tSOF(3) 1. The tolerance of specific timings is ± 32/fC. 2. t1max does not apply for write alike requests. Timing conditions for write alike requests are defined in the command description. 3. tSOF is the time taken by the LRI2K to transmit an SOF to the VCD. tSOF depends on the current data rate: High data rate or Low data rate. 45/89 Commands codes 20 LRI2K Commands codes The LRI2K supports the commands described in this section. Their codes are given in Table 20. Table 20. Command codes Command code Function standard 46/89 Command code Function custom 01h Inventory A6h Kill 02h Stay Quiet B1h Write Kill 20h Read Single Block B2h Lock Kill 21h Write Single Block C0h Fast Read Single Block 22h Lock Block C1h Fast Inventory Initiated 23h Read Multiple Block C2h Fast Initiate 25h Select C3h Fast Read Multiple Block 26h Reset to Ready D1h Inventory Initiated 27h Write AFI D2h Initiate 28h Lock AFI 29h Write DSFID 2Ah Lock DSFID 2Bh Get System Info 2Ch Get Multiple Block Security Status LRI2K 20.1 Commands codes Inventory When receiving the Inventory request, the LRI2K runs the anticollision sequence. The Inventory_flag is set to 1. The meaning of flags 5 to 8 is shown in Table 13: Request flags 5 to 8 when bit 3 = 1. The request contains: ● the flags, ● the Inventory command code (see Table 20: Command codes) ● the AFI if the AFI flag is set ● the mask length ● the mask value ● the CRC The LRI2K does not generate any answer in case of error. Table 21. Inventory request format Request Request SOF flags Inventory Optional AFI Mask length Mask value CRC16 01h 8 bits 8 bits 0 - 64 bits 16 bits 8 bits Request EOF The response contains: ● the flags ● the Unique ID Table 22. Inventory response format Response Response SOF flags 8 bits DSFID UID CRC16 8 bits 64 bits 16 bits Response EOF During an Inventory process, if the VCD does not receive an RF LRI2K response, it waits a time t3 before sending an EOF to switch to the next slot. t3 starts from the rising edge of the request EOF sent by the VCD. ● If the VCD sends a 100% modulated EOF, the minimum value of t3 is: t3min = 4384/fC (323.3µs) + tSOF ● If the VCD sends a 10% modulated EOF, the minimum value of t3 is: t3min = 4384/fC (323.3µs) + tNRT where: ● tSOF is the time required by the LRI2K to transmit an SOF to the VCD ● tNRT is the nominal response time of the LRI2K tNRT and tSOF are dependent on the LRI2K-to-VCD data rate and subcarrier modulation mode. 47/89 Commands codes 20.2 LRI2K Stay Quiet On receiving the Stay Quiet command, the LRI2K enters the Quiet state and does NOT send back a response. There is NO response to the Stay Quiet command even if an error occurs. When in the Quiet state: ● the LRI2K does not process any request if the Inventory_flag is set, ● the LRI2K processes any Addressed request The LRI2K exits the Quiet state when: ● it is reset (power off), ● receiving a Select request. It then goes to the Selected state, ● receiving a Reset to Ready request. It then goes to the Ready state. Table 23. Request SOF Stay Quiet request format Request flags Stay Quiet UID CRC16 8 bits 02h 64 bits 16 bits Request EOF The Stay Quiet command must always be executed in the Addressed mode (Select_flag is reset to 0 and Address_flag is set to 1). Figure 41. Stay Quiet frame exchange between VCD and LRI2K VCD LRI2K Timing 48/89 SOF Stay Quiet request EOF LRI2K 20.3 Commands codes Read Single Block On receiving the Read Single Block command, the LRI2K reads the requested block and sends back its 32 bits value in the response. The Option_flag is supported. Table 24. Request SOF Read Single Block request format Request_flags Read Single Block UID Block number CRC16 8 bits 20h 64 bits 8 bits 16 bits Request EOF Request parameters: ● Option_flag ● UID (Optional) ● Block number Table 25. Read Single Block response format when Error_flag is NOT set Response Response_ SOF flags Block locking status Data CRC16 8 bits 32 bits 16 bits 8 bits Response EOF Response parameter: ● Block Locking Status if Option_flag is set (see Table 26: Block Locking status) ● 4 bytes of block data Table 26. b7 Block Locking status b6 b5 b4 b3 b2 b0 0: Current Block not locked 1: Current Block locked all 0 Table 27. b1 Read Single Block response format when Error_flag is set Response SOF Response_ Flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 0Fh: other error – 10h: block address not available 49/89 Commands codes LRI2K Figure 42. READ Single Block frame exchange between VCD and LRI2K VCD LRI2K 50/89 SOF Read Single Block request EOF <-t1-> SOF Read Single Block response EOF LRI2K 20.4 Commands codes Write Single Block On receiving the Write Single Block Command, the LRI2K writes the data contained in the request to the requested block and reports whether the write operation was successful in the response. The Option_flag is supported. During the write cycle tW, there should be no modulation (neither 100% nor 10%). Otherwise, the LRI2K may not program correctly the data into the memory. The tW time is equal to t1nom + 18 × 302µs. Table 28. Write Single Block request format Request Request_ SOF flags Write Single Block UID Block number Data CRC16 21h 64 bits 8 bits 32 bits 16 bits 8 bits Request EOF Request parameters: ● UID (Optional) ● Block number ● Data Table 29. Write Single Block response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. The response is sent back after the write cycle. Table 30. Write Single Block response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 10h: block address not available – 12h: block is locked – 13h: block not programmed Figure 43. Write Single Block frame exchange between VCD and LRI2K VCD SOF Write Single Block request EOF LRI2K <-t1-> Write Single Block response EOF Write sequence when error LRI2K <------------ tW ------------><- t1 -> SOF Write Single Block response SOF EOF 51/89 Commands codes 20.5 LRI2K Lock Block On receiving the Lock Block command, the LRI2K permanently locks the selected block. The Option_flag is supported. During the write cycle tW, there should be no modulation (neither 100% nor 10%). Otherwise, the LRI2K may not lock correctly the memory block. The tW time is equal to t1nom + 18 × 302µs. Table 31. Lock Single Block request format Request Request_ Lock Block SOF flags 8 bits 22h UID Block number CRC16 64 bits 8 bits 16 bits Request EOF Request parameters: ● (Optional) UID ● Block number Table 32. Lock Block response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. Table 33. Lock Block response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 10h: block address not available – 11h: block is locked – 14h: block not locked Figure 44. Lock Block frame exchange between VCD and LRI2K VCD LRI2K LRI2K 52/89 SOF Lock Block EOF request <-t1-> SOF Lock Block response EOF <------------ tW ------------><- t1 -> SOF Lock sequence when error Lock Block response EOF LRI2K 20.6 Commands codes Read Multiple Block When receiving the Read Multiple Block command, the LRI2K reads the selected blocks and sends back their value in multiples of 32 bits in the response. The blocks are numbered from '00 to '3F' in the request and the value is minus one (–1) in the field. For example, if the “number of blocks” field contains the value 06h, 7 blocks will be read. The maximum number of blocks is fixed at 64. During Sequential Block Read, when the block address reaches 64, it rolls over to 0. The Option_flag is supported. Table 34. Read Multiple Block request format Read Request Request_ Multiple SOF flags Block UID 8 bits 64 bits 23h First Number block of number blocks 8 bits 8 bits Request EOF CRC16 16 bits Request parameters: ● Option_flag ● UID (Optional) ● First block number ● Number of blocks Table 35. Read Multiple Block response format when Error_flag is NOT set Response Response_ SOF flags Block Locking Status Data CRC16 8 bits(1) 32 bits(1) 16 bits 8 bits Response EOF 1. Repeated as needed. Response parameter: ● Block Locking Status if Option_flag is set (see Table 36: Block Locking status) ● N blocks of data Table 36. b7 Block Locking status b6 b5 b4 b3 b2 b1 0: Current Block not locked 1: Current Block locked All 0 Table 37. b0 Read Multiple Block response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 0Fh: other error – 10h: block address not available 53/89 Commands codes LRI2K Figure 45. Read Multiple Block frame exchange between VCD and LRI2K VCD LRI2K 54/89 SOF Read Multiple EOF Block request <-t1-> SOF Read Multiple Block EOF response LRI2K 20.7 Commands codes Select When receiving the Select command: ● if the UID is equal to its own UID, the LRI2K enters or stays in the Selected state and sends a response. ● if the UID does not match its own, the selected LRI2K returns to the Ready state and does not send a response. The LRI2K answers an error code only if the UID is equal to its own UID. If not, no response is generated. Table 38. Select request format Request Request_ SOF flags 8 bits Select UID CRC16 25h 64 bits 16 bits Request EOF Request parameter: ● UID Table 39. Select Block response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. Table 40. Select response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 0Fh: other error Figure 46. Select frame exchange between VCD and LRI2K VCD LRI2K SOF Select request EOF <-t1-> SOF Select response EOF 55/89 Commands codes 20.8 LRI2K Reset to Ready On receiving a Reset to Ready command, the LRI2K returns to the Ready state. In the Addressed mode, the LRI2K answers an error code only if the UID is equal to its own UID. If not, no response is generated. Table 41. Reset to Ready request format Request Request_ SOF flags Reset to Ready UID CRC16 26h 64 bits 16 bits 8 bits Request EOF Request parameter: ● UID (Optional) Table 42. Reset to Ready response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. Table 43. Reset to ready response format when Error_flag is set Response SOF Response_ flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 0Fh: other error Figure 47. Reset to Ready frame exchange between VCD and LRI2K VCD LRI2K 56/89 SOF Reset to Ready request EOF <-t1-> SOF Reset to Ready response EOF LRI2K 20.9 Commands codes Write AFI On receiving the Write AFI request, the LRI2K writes the AFI byte value into its memory. The Option_flag is supported. During the write cycle tW, there should be no modulation (neither 100% nor 10%). Otherwise, the LRI2K may not write correctly the AFI value into the memory. The tW time is equal to t1nom + 18 × 302µs. Table 44. Write AFI request format Request Request SOF _flags Write AFI UID AFI CRC16 27h 64 bits 8 bits 16 bits 8 bits Request EOF Request parameters: ● UID (Optional) ● AFI Table 45. Write AFI response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. Table 46. Write AFI response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 12h: block is locked – 13h: block not programmed Figure 48. Write AFI frame exchange between VCD and LRI2K VCD LRI2 K LRI2 K SOF Write AFI request EOF <-t1-> SOF Write AFI response EOF <------------ tW ------------><- t1 -> SOF Write sequence when error Write AFI response EOF 57/89 Commands codes 20.10 LRI2K Lock AFI On receiving the Lock AFI request, the LRI2K locks the AFI value permanently. The Option_flag is supported. During the write cycle tW, there should be no modulation (neither 100% nor 10%). Otherwise, the LRI2K may not Lock correctly the AFI value in memory. The tW time is equal to t1nom + 18 × 302 µs. Table 47. Lock AFI request format Request SOF Request_ flags Lock AFI UID CRC16 8 bits 28h 64 bits 16 bits Request EOF Request parameter: ● UID (Optional) Table 48. Lock AFI response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. Table 49. Lock AFI response format when Error_flag is set Response SOF Response_flags 8 bits Error code CRC16 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 11h: block is locked – 14h: block not locked Figure 49. Lock AFI frame exchange between VCD and LRI2K VCD 58/89 SOF Lock AFI request EOF Lock AFI response LRI2K <-t1-> LRI2K <------------ tW ------------><- t1 -> SOF SOF EOF Lock sequence when error Lock AFI response EOF LRI2K 20.11 Commands codes Write DSFID On receiving the Write DSFID request, the LRI2K writes the DSFID byte value into its memory. The Option_flag is supported. During the write cycle tW, there should be no modulation (neither 100% nor 10%). Otherwise, the LRI2K may not write correctly the DSFID value in memory. The tW time is equal to t1nom + 18 × 302µs. Table 50. Write DSFID request format Request Request_ SOF flags 8 bits Write DSFID UID DSFID CRC16 29h 64 bits 8 bits 16 bits Request EOF Request parameters: ● UID (Optional) ● DSFID Table 51. Write DSFID response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. Table 52. Write DSFID response format when Error_flag is set Response SOF Response_ flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 12h: block is locked – 13h: block not programmed Figure 50. Write DSFID frame exchange between VCD and LRI2K VCD SOF Write DSFID request EOF Write DSFID response LRI2K <-t1-> LRI2K <------------ tW ------------><- t1 -> SOF SOF EOF Write sequence when error Write DSFID EOF response 59/89 Commands codes 20.12 LRI2K Lock DSFID On receiving the Lock DSFID request, the LRI2K locks the DSFID value permanently. The Option_flag is supported. During the write cycle tW, there should be no modulation (neither 100% nor 10%). Otherwise, the LRI2K may not lock correctly the DSFID value in memory. The tW time is equal to t1nom + 18 × 302µs. Table 53. Lock DSFID request format Request SOF Request_ flags Lock DSFID UID CRC16 8 bits 2Ah 64 bits 16 bits Request EOF Request parameter: ● UID (Optional) Table 54. Lock DSFID response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. Table 55. Lock DSFID response format when Error_flag is set Response SOF Response_ flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 11h: block is locked – 14h: block not locked Figure 51. Lock DSFID frame exchange between VCD and LRI2K VCD 60/89 SOF Lock DSFID request EOF Lock DSFID response LRI2K <-t1-> LRI2K <------------ tW ------------><- t1 -> SOF SOF EOF Lock sequence when error Lock DSFID EOF response LRI2K 20.13 Commands codes Get System Info When receiving the Get System Info command, the LRI2K sends back its information data in the response.The Option_flag is supported and must be reset to 0. The Get System Info can be issued in both Addressed and Non Addressed modes. Table 56. Get System Info request format Request_ Get System flags Info Request SOF 8 bits 2Bh UID CRC16 64 bits 16 bits Request EOF Request parameter: ● UID (Optional) Table 57. Get System Info response format when Error_flag is NOT set Response Response_ Information SOF flags flags 00h 0Fh UID DSFID AFI Memory IC Response CRC16 size reference EOF 64 bits 8 bits 8 bits 033Fh 001000xxb 16 bits Response parameters: ● Information Flags set to 0Fh. DSFID, AFI, Memory Size and IC reference fields are present. ● UID code on 64 bits ● DSFID value ● AFI value ● memory size. The LRI2K provides 64 blocks (3Fh) of 4 bytes (03h). ● IC Reference. Only the 6 MSBs are significant. The product code of the LRI2K is 00 1000b=8d Table 58. Get System Info response format when Error_flag is set Response SOF Response_flags Error code CRC16 01h 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 03h: Option not supported – 0Fh: other error Figure 52. Get System Info frame exchange between VCD and LRI2K VCD LRI2K SOF Get System Info request EOF <-t1-> SOF Get System Info EOF response 61/89 Commands codes 20.14 LRI2K Get Multiple Block Security Status When receiving the Get Multiple Block Security Status command, the LRI2K sends back the block security status. The blocks are numbered from '00 to '3F' in the request and the value is minus one (–1) in the field. For example, a value of '06' in the "Number of blocks" field requests to return the security status of 7 Blocks. Table 59. Get Multiple Block Security Status request format Request Request_ SOF flags Get Multiple Block Security Status UID 2Ch 64 bits 8 bits First Number block of number blocks 8 bits CRC16 8 bits Request EOF 16 bits Request parameters: ● UID (Optional) ● First block number ● Number of blocks Table 60. Get Multiple Block Security Status response format when Error_flag is NOT set Response SOF Response_flags Block Locking Status CRC16 8 bits 8 bits(1) 16 bits Response EOF 1. Repeated as needed. Response parameters: ● Block Locking Status (see Table 61: Block Locking status) ● N block of data Table 61. b7 Block Locking status b6 b5 b4 b3 b2 b1 0: Current block not locked 1: Current block locked All 0 Table 62. Get Multiple Block Security Status response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response parameter: ● 62/89 b0 Error code as Error_flag is set: – 03h: Option not supported – 0Fh: other error Response EOF LRI2K Commands codes Figure 53. Get Multiple Block Security Status frame exchange between VCD and LRI2K VCD LRI2K Get Multiple Block SOF EOF Security Status <-t1-> SOF Get Multiple Block Security Status EOF 63/89 Commands codes 20.15 LRI2K Kill On receiving the Kill command, in the Addressed mode only, the LRI2K compares the kill code with the data contained in the request and reports whether the operation was successful in the response. The Option_flag is supported. If the command is received in the Non Addressed or the Selected mode, the LRI2K returns an error response. During the comparison cycle equal to tW, there should be no modulation (neither 100% nor 10%). Otherwise, the LRI2K may not match the kill code correctly. The tW time is equal to t1nom + 18 × 302µs. After a successful Kill command, the LRI2K is deactivated and does not interpret any other command. Table 63. Kill request format Request Request_ SOF flags 8 bits Kill IC Mfg code UID Kill access Kill code CRC16 A6h 02h 64 bits 00h 32 bits 16 bits Request EOF Request parameters: ● UID (Optional) ● Kill Code Table 64. Kill response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. The response is send back after the writing cycle Table 65. Kill response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 0Fh: other error – 14h: block not locked Figure 54. Kill frame exchange between VCD and LRI2K VCD LRI2K LRI2K 64/89 SOF Kill request EOF <-t1-> SOF Kill response EOF Kill sequence when error <------------ tW ------------><- t1 -> SOF Kill response EOF LRI2K 20.16 Commands codes Write Kill On receiving the Write Kill command, the LRI2K writes the kill code with the data contained in the request and reports whether the operation was successful in the response. The Option_flag is supported. After a successful write, the kill code must be locked by a Lock Kill command to activate the protection. During the write cycle tW, there should be no modulation (neither 100% nor 10%). Otherwise, the LRI2K may not correctly program the data to the memory. The tW time is equal to t1nom + 18 × 302 µs. Table 66. Write Kill request format Request Request_ SOF flags 8 bits Write Kill IC Mfg code UID Kill access B1h 02h 64 bits 00h Kill code CRC16 32 bits Request EOF 16 bits Request parameters: ● UID (Optional) ● Kill Address (00h = Kill, other = Error) ● Data Table 67. Write Kill response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF No parameter. The response is send back after the write cycle. Table 68. Write Kill response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response EOF Response parameter: ● Error code as Error_flag is set: – 10h: block address not available – 12h: block is locked – 13h: block not programmed Figure 55. Write Kill frame exchange between VCD and LRI2K VCD SOF Write Kill request EOF Write Kill response LRI2K <-t1-> SOF LRI2K <------------ tW ------------><- t1 -> SOF EOF Write sequence when error Write Kill response EOF 65/89 Commands codes 20.17 LRI2K Lock Kill On receiving the Lock Kill command, the LRI2K locks the Kill code permanently. The Option_flag is supported. RFU bit 8 of the request flag must be set to ‘1’. During the write cycle tW, there should be no modulation (neither 100% nor 10%). Otherwise, the LRI2K may not lock the memory block correctly. The tW time is equal to t1nom + 18 × 302 µs. Table 69. Lock Kill request format Request Request_ SOF flags Lock Kill IC Mfg code UID Kill access Protect Status CRC16 B2h 02h 64 bits 00f 8 bits 16 bits 8 bits Request EOF Request parameters: ● (Optional) UID ● Kill Address (bit 8 = ‘1’: 00h = KILL, other = Error) ● Protect status (see table below) b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0 1 Table 70. Lock Kill response format when Error_flag is NOT set Response SOF Response_flags CRC16 8 bits 16 bits Response EOF Response parameter: ● No parameter. Table 71. Lock Kill response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response parameter: ● 66/89 Error code as Error_flag is set: – 10h: block address not available – 11h: block is locked – 14h: block not locked Response EOF LRI2K Commands codes Figure 56. Lock Kill frame exchange between VCD and LRI2K VCD SOF Lock Kill request EOF Lock Kill response LRI2K <-t1-> LRI2K <------------ tW ------------><- t1 -> SOF SOF EOF Lock sequence when error Lock Kill response EOF 67/89 Commands codes 20.18 LRI2K Fast Read Single Block On receiving the Fast Read Single Block command, the LRI2K reads the requested block and sends back its 32-bit value in the response. The Option_flag is supported. The data rate of the response is multiplied by 2. Table 72. Request SOF Fast Read Single Block request format Fast Read IC Mfg Single code Block Request_ flags 8 bits C0h 02h UID Block number CRC16 64 bits 8 bits 16 bits Request EOF Request parameters: ● Option_flag ● UID (Optional) ● Block number Table 73. Fast Read Single Block response format when Error_flag is NOT set Response Response_ Block locking SOF flags status 8 bits 8 bits Data CRC16 32 bits 16 bits Response EOF Response parameter: ● Block Locking Status if Option_flag is set ● 4 bytes of Block Data Table 74. b7 Block Locking status b6 b5 b4 b3 Response_ flags Error code CRC16 8 bits 8 bits 16 bits Response parameter: 68/89 b0 Fast Read Single Block response format when Error_flag is set Response SOF ● b1 0: Current Block not locked 1: Current Block locked All 0 Table 75. b2 Error code as Error_flag is set: – 0Fh: other error – 10h: block address not available Response EOF LRI2K Commands codes Figure 57. Fast Read Single Block frame exchange between VCD and LRI2K VCD LRI2K SOF Fast Read Single EOF Block request <-t1-> SOF Fast Read Single EOF Block response 69/89 Commands codes 20.19 LRI2K Fast Inventory Initiated Before receiving the Fast Inventory Initiated command, the LRI2K must have received an Initiate or a Fast Initiate command in order to set the Initiate_ flag. If not, the LRI2K does not answer to the Fast Inventory Initiated command. On receiving the Fast Inventory Initiated request, the LRI2K runs the anticollision sequence. The Inventory_flag must be set to 1. The Meaning of Flags 5 to 8 is shown in Table 13: Request flags 5 to 8 when bit 3 = 1. The data rate of the response is multiplied by 2. The request contains: ● the flags, ● the Inventory command code ● the AFI if the AFI flag is set ● the mask length ● the mask value ● the CRC The LRI2K does not generate any answer if an error occurs. Table 76. Fast Inventory Initiated request format Fast Request Request IC Mfg Optiona Inventory SOF Flags Code l AFI Initiated 8 bits C1h 02h 8 bits Mask length Mask value CRC16 8 bits 0 - 64 bits 16 bits Request EOF The response contains: ● The flags ● the Unique ID Table 77. Fast Inventory Initiated response format Response SOF Response Flags DSFID 8 bits 00h UID CRC16 64 bits 16 bits Response EOF During an Inventory process, if the VCD does not receive an RF LRI2K response, it waits a time t3 before sending an EOF to switch to the next slot. t3 starts from the rising edge of the request EOF sent by the VCD. ● If the VCD sends a 100% modulated EOF, the minimum value of t3 is: t3min = 4384/fC (323.3 µs) + tSOF ● If the VCD sends a 10% modulated EOF, the minimum value of t3 is: t3min = 4384/fC (323.3 µs) + tNRT where: ● tSOF is the time required by the LRI2K to transmit an SOF to the VCD ● tNRT is the nominal response time of the LRI2K tNRT and tSOF are dependent on the LRI2K-to-VCD data rate and subcarrier modulation mode. 70/89 LRI2K 20.20 Commands codes Fast Initiate On receiving the Fast Initiate command, the LRI2K sets the internal Initiate_flag and sends back a response. The command has to be issued in the Non Addressed mode only (Select_flag is reset to 0 and Address_flag is reset to 0). If an error occurs, the LRI2K does not generate any answer. The Initiate_flag is reset after a power off of the LRI2K. The data rate of the response is multiplied by 2. The request contains: ● No data Table 78. Fast Initiate request format Request SOF Request Flags Fast Initiate IC Mfg code CRC16 8 bits C2h 02h 16 bits Request EOF The response contains: ● the flags ● the Unique ID Table 79. Fast Initiate response format Response Response_ DSFID SOF flags 8 bits 00h UID CRC16 64 bits 16 bits Response EOF Figure 58. Fast Initiate frame exchange between VCD and LRI2K VCD LRI2K SOF Fast Initiate EOF request <-t1-> SOF Fast Initiate response EOF 71/89 Commands codes 20.21 LRI2K Fast Read Multiple Block On receiving the Fast Read Multiple Block command, the LRI2K reads the requested blocks and sends back their value in multiples of 32 bits in the response. The blocks are numbered from '00’ to '3F' in the request and the value is minus one (–1) in the field. For example, a value 06h in the “number of blocks” field causes the LRI2K to read 7 blocks. The maximum number of blocks is fixed at 64. During Sequential Block Read, when the block address reaches 64, it rolls over to 0. The Option_flag is supported. The data rate of the response is multiplied by 2. Table 80. Fast Read Multiple Block request format Request Request_ SOF flags Fast Read Multiple Block IC Mfg code UID C3h 02h 64 bits 8 bits First Number Request block of CRC16 EOF number blocks 8 bits 8 bits 16 bits Request parameters: ● Option_flag ● UID (Optional) ● First block number ● Number of blocks Table 81. Fast Read Multiple Block response format when Error_flag is NOT set Response Response_ Block Locking SOF flags Status 8 bits(1) 8 bits Data CRC16 32 bits(1) 16 bits Response EOF 1. Repeated as needed. Response parameters: ● Block Locking Status if Option_flag is set ● N block of data Table 82. b7 Block Locking status if Option_flag is set b6 b5 b4 b3 b2 Fast Read Multiple Block response format when Error_flag is set Response SOF Response_flags Error code CRC16 8 bits 8 bits 16 bits Response parameter: ● 72/89 b0 0: Current block not locked 1: Current block locked All 0 Table 83. b1 Error code as Error_flag is set: – 0Fh: other error – 10h: block address not available Response EOF LRI2K Commands codes Figure 59. Fast Read Multiple Block frame exchange between VCD and LRI2K VCD LRI2K SOF Fast Read Multiple Block request EOF Fast Read <-t1-> SOF Multiple Block EOF response 73/89 Commands codes 20.22 LRI2K Inventory Initiated Before receiving the Inventory Initiated command, the LRI2K must have received an Initiate or a Fast Initiate command in order to set the Initiate_ flag. If not, the LRI2K does not answer to the Inventory Initiated command. On receiving the Inventory Initiated request, the LRI2K runs the anticollision sequence. The Inventory_flag must be set to 1. The Meaning of Flags 5 to 8 is given in Table 13: Request flags 5 to 8 when bit 3 = 1. The request contains: ● the flags, ● the Inventory command code ● the AFI if the AFI flag is set ● the mask length ● the mask value ● the CRC The LRI2K does not generate any answer if an error occurs. Table 84. Inventory Initiated request format Request Request Inventory IC Mfg Optiona SOF Flags Initiated code l AFI 8 bits D1h 02h 8 bits Mask length Mask value CRC16 8 bits 0 - 64 bits 16 bits Request EOF The response contains: ● the flags ● the Unique ID Table 85. Inventory Initiated response format Response Response SOF Flags 8 bits DSFID UID CRC16 00h 64 bits 16 bits Response EOF During an Inventory process, if the VCD does not receive an RF LRI2K response, it waits a time t3 before sending an EOF to switch to the next slot. t3 starts from the rising edge of the request EOF sent by the VCD. ● If the VCD sends a 100% modulated EOF, the minimum value of t3 is: t3min = 4384/fC (323.3 µs) + tSOF ● If the VCD sends a 10% modulated EOF, the minimum value of t3 is: t3min = 4384/fC (323.3 µs) + tNRT where: ● tSOF is the time required by the LRI2K to transmit an SOF to the VCD ● tNRT is the nominal response time of the LRI2K tNRT and tSOF are dependent on the LRI2K-to-VCD data rate and subcarrier modulation mode. 74/89 LRI2K 20.23 Commands codes Initiate On receiving the Initiate command, the LRI2K sets the internal Initiate_flag and sends back a response. The command has to be issued in the Non Addressed mode only (Select_flag is reset to 0 and Address_flag is reset to 0). If an error occurs, the LRI2K does not generate any answer. The Initiate_flag is reset after a power off of the LRI2K. The request contains: ● No data Table 86. Initiate request format Request SOF Request Flags 8 bits Initiate IC Mfg code CRC16 D2h 02h 16 bits Request EOF The response contain: ● the flags ● the Unique ID Table 87. Initiate Initiated response format Response Response SOF Flags 8 bits DSFID UID CRC16 00h 64 bits 16 bits Response EOF Figure 60. Initiate frame exchange between VCD and LRI2K VCD LRI2K SOF Initiate request EOF <-t1-> SOF Initiate response EOF 75/89 Maximum rating 21 LRI2K Maximum rating Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 88. Absolute maximum ratings Symbol Parameter Min. Max. Unit 15 25 °C 23 months Wafer kept in its antistatic bag TSTG, hSTG, Storage conditions tSTG A1, A6, A7 ICC VMAX VESD 25 °C 40% 60% RH 2 years Supply current on AC0 / AC1 –20 20 mA Input voltage on AC0 / AC1 –7 7 V A1, A6, A7 –7000 7000 V MLP (HBM(3)) –1000 1000 V (MM(4)) –100 100 V Electrostatic discharge voltage(1) (2) MLP 1. Mil. Std. 883 - Method 3015. 2. ESD test: ISO10373-7 specification. 3. Human body model. 4. Machine model. 76/89 15 LRI2K 22 DC and AC parameters DC and AC parameters This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the Measurement Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 89. AC characteristics(1) (2) Symbol fCC Parameter External RF signal frequency MICARRIER 10% carrier modulation index tRFR, tRFF tRFSBL tRFSBL tJIT Min Typ Max Unit 13.553 13.56 13.567 MHz 10 30 % 10% rise and fall time 0.5 3.0 µs 10% minimum pulse width for bit 7.1 9.44 µs 95 100 % 100% rise and fall time 0.5 3.5 µs 100% minimum pulse width for bit 7.1 9.44 µs Bit pulse jitter –2 +2 µs 1 ms MICARRIER 100% carrier modulation index tRFR, tRFF Condition MI=(A-B)/(A+B) MI=(A-B)/(A+B) tMIN CD Minimum time from carrier generation to first data From H-field min 0.1 fSH Subcarrier frequency high FCC/32 423.75 kHz fSL Subcarrier frequency low FCC/28 484.28 kHz t1 Time for LRI2K response 4224/FS 318.6 320.9 323.3 µs t2 Time between command 4224/FS 309 311.5 314 µs tW Programming time 5.8 ms 1. TA = –20 to 85°C. 2. All timing measurements were performed on a reference antenna with the following characteristics: External size: 75 mm x 48 mm Number of turns: 6 Width of conductor: 1 mm Space between 2 conductors: 0.4 mm Value of the tuning capacitor: 28.5 pF (LRI2K-W4) Value of the coil: 4.3 µH Tuning frequency: 13.8 MHz. 77/89 DC and AC parameters LRI2K Table 90. DC characteristics(1) Symbol Parameter Test conditions VCC Regulated voltage VRET Retromodulated induced voltage ICC Min. Typ. 1.5 ISO10373-7 Max. Unit 3.0 V 10 mV Read VCC = 3.0 V 50 µA Write VCC = 3.0 V 150 µA Supply current f = 13.56 MHz for W4/1 21 pF f = 13.56 MHz for W4/2 28.5 pF f = 13.56 MHz for W4/3 97 pF f = 13.56 MHz for W4/4 23.5 pF Internal tuning capacitor CTUN 1. TA = –20 to 85°C. Table 91. Operating conditions Symbol TA Parameter Ambient operating temperature Min. Max. Unit –20 85 °C Figure 61. LRI2K synchronous timing, transmit and receive A B tRFF tRFR fCC tRFSBL tMAX tMIN CD AI06680 Figure 61 shows an ASK modulated signal, from the VCD to the LRI2K. The test condition for the AC/DC parameters are: 78/89 ● Close coupling condition with tester antenna (1mm) ● LRI2K performance measured at the tag antenna LRI2K 23 Package mechanical data Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second-level interconnect. The category of second-level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 62. A1 antenna on tape outline C1 A1 B1 C2 A2 B2 ai10119 1. Drawing is not to scale. Table 92. A1 antenna on tape mechanical data Symbol Parameter Typ Min Max Unit A1 Coil width 45 44.5 45.5 mm A2 Coil length 76 75.5 76.5 mm B1 Antenna cut width 49 48.8 49.2 mm B2 Antenna cut length 82 81.8 82.2 mm C1 Die position from antenna 23 22.8 23.2 mm C2 Die position from antenna 56 55.8 56.2 mm Silicon thickness 180 165 195 µm Unloaded Q value 35 Q FNOM PA Unloaded free-air resonance H-field energy for device operation 15.1 MHz 0.03 90 A/m dbµA/m 79/89 Package mechanical data LRI2K Figure 63. A6 antenna on tape outline I A B 1. Drawing is not to scale. Table 93. A6 antenna on tape mechanical data Symbol Typ Min Max Unit A Coil diameter 35 34.5 35.5 mm B Antenna cut diameter 40 38.8 40.2 mm I Hole diameter 16 15.8 16.2 mm Overall thickness of copper antenna coil 80 70 90 µm Silicon thickness 180 165 195 µm Unloaded Q value 35 Q FNOM PA 80/89 Parameter Unloaded free-air resonance H-field energy for device operation 15.1 MHz 0.5 114 A/m dbµA/m LRI2K Package mechanical data Figure 64. A7 antenna on tape outline A1 B1 C1 C2 A2 B2 ai10121 1. Drawing is not to scale. Table 94. A7 antenna on tape mechanical data Symbol Parameter Typ Min Max Unit A1 Coil width 40 39.5 40.5 mm A2 Coil length 20 19.5 20.5 mm B1 Antenna cut width 44 43.8 44.2 mm B2 Antenna cut length 24 23.8 24.2 mm C1 Die position from antenna 10 9.8 10.2 mm C2 Die position from antenna 20 19.8 20.2 mm Overall thickness of copper antenna coil 160 145 175 µm Silicon thickness 180 165 195 µm Unloaded Q value 35 Q FNOM PA Unloaded free-air resonance H-field energy for device operation 15.1 MHz 1 120 A/m dbµA/m 81/89 Package mechanical data LRI2K Figure 65. UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP) outline e D b L1 L3 E E2 L A D2 ddd A1 UFDFPN-01 1. Drawing is not to scale. Table 95. UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP) mechanical data Inches(1) Millimeters Symbol Typ. Min. Max. Typ. Min. Max. A 0.55 0.45 0.6 0.0217 0.0177 0.0236 A1 0.02 0 0.05 0.0008 0 0.002 b 0.25 0.2 0.3 0.0098 0.0079 0.0118 D 2 1.9 2.1 0.0787 0.0748 0.0827 D2 1.6 1.5 1.7 0.063 0.0591 0.0669 E 3 2.9 3.1 0.1181 0.1142 0.122 E2 0.2 0.1 0.3 0.0079 0.0039 0.0118 e 0.5 - - 0.0197 - - L 0.45 0.4 0.5 0.0177 0.0157 0.0197 L1 L3 (2) ddd 0.15 0.0059 0.3 0.0118 0.08 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring. 82/89 LRI2K 24 Part numbering Part numbering Table 96. Ordering information scheme Example: LRI2K - W4/2 Device type LRI2K Package W4 =180 µm ± 15 µm unsawn wafer SBN18 = 180 µm ± 15 µm bumped and sawn wafer on 8-inch frame A1T = 45 mm x 76 mm copper antenna on continuous tape A1S = 45 mm x 76 mm copper singulated adhesive antenna on tape A6S2U = 35 mm copper singulated adhesive CD antenna on white PET tape and no marking A7T = 20 mm x 40 mm copper antenna on continuous tape MBTG = UFDFPN8 (MLP8), tape & reel packing, lead-free, RoHS compliant, Sb2O3-free and TBBAfree For further information on any aspect of this device, please contact your nearest ST sales office. 83/89 Anticollision algorithm (Informative) Appendix A LRI2K Anticollision algorithm (Informative) The following pseudocode describes how anticollision could be implemented on the VCD, using recursivity. A.1 Algorithm for pulsed slots function push (mask, address); pushes on private stack function pop (mask, address); pops from private stack function pulse_next_pause; generates a power pulse function store(LRI2K_UID); stores LRI2K_UID function poll_loop (sub_address_size as integer) pop (mask, address) mask = address & mask; generates new mask ; send the request mode = anticollision send_request (Request_cmd, mode, mask length, mask value) for sub_address = 0 to (2^sub_address_size - 1) pulse_next_pause if no_collision_is_detected ; LRI2K is inventoried then store (LRI2K_UID) else ; remember a collision was detected push(mask,address) endif next sub_address if stack_not_empty ; if some collisions have been detected and then ; not yet processed, the function calls itself poll_loop (sub_address_size); recursively to process the last stored collision endif end poll_loop main_cycle: mask = null address = null push (mask, address) poll_loop(sub_address_size) end_main_cycle 84/89 LRI2K CRC (Informative) Appendix B B.1 CRC (Informative) CRC error detection method The cyclic redundancy check (CRC) is calculated on all data contained in a message, from the start of the Flags through to the end of Data. The CRC is used from VCD to LRI2K and from LRI2K to VCD. Table 97. CRC definition CRC definition CRC type ISO/IEC 13239 Length 16 bits Polynomial 16 X + X12 + X5 + 1 = 8408h Direction Preset Residue Backward FFFFh F0B8h To add extra protection against shifting errors, a further transformation on the calculated CRC is made. The one’s complement of the calculated CRC is the value attached to the message for transmission. To check received messages the 2 CRC bytes are often also included in the re-calculation, for ease of use. In this case, the expected value for the generated CRC is the residue F0B8h. B.2 CRC calculation example This example in C language illustrates one method of calculating the CRC on a given set of bytes comprising a message. C-Example to calculate or check the CRC16 according to ISO/IEC 13239 #define #define #define POLYNOMIAL8408h// PRESET_VALUEFFFFh CHECK_VALUEF0B8h x^16 + x^12 + x^5 + 1 #define #define #define NUMBER_OF_BYTES4// Example: 4 data bytes CALC_CRC1 CHECK_CRC0 void main() { unsigned int current_crc_value; unsigned char array_of_databytes[NUMBER_OF_BYTES + 2] = {1, 2, 3, 4, 91h, 39h}; int number_of_databytes = NUMBER_OF_BYTES; int calculate_or_check_crc; int i, j; calculate_or_check_crc = CALC_CRC; // calculate_or_check_crc = CHECK_CRC;// This could be an other example if (calculate_or_check_crc == CALC_CRC) { number_of_databytes = NUMBER_OF_BYTES; 85/89 CRC (Informative) LRI2K } else // check CRC { number_of_databytes = NUMBER_OF_BYTES + 2; } current_crc_value = PRESET_VALUE; for (i = 0; i < number_of_databytes; i++) { current_crc_value = current_crc_value ^ ((unsigned int)array_of_databytes[i]); for (j = 0; j < 8; j++) { if (current_crc_value & 0001h) { current_crc_value = (current_crc_value >> 1) ^ POLYNOMIAL; } else { current_crc_value = (current_crc_value >> 1); } } } if (calculate_or_check_crc == CALC_CRC) { current_crc_value = ~current_crc_value; printf ("Generated CRC is 0x%04X\n", current_crc_value); // stream // } else { if { current_crc_value is now ready to be appended to the data (first LSByte, then MSByte) // check CRC (current_crc_value == CHECK_VALUE) printf ("Checked CRC is ok (0x%04X)\n", current_crc_value); } else { printf ("Checked CRC is NOT ok (0x%04X)\n", current_crc_value); } } } 86/89 LRI2K B.3 CRC (Informative) Application family identifier (AFI) (informative) The AFI (application family identifier) represents the type of application targeted by the VCD and is used to extract from all the LRI2K present only the LRI2K meeting the required application criteria. It is programmed by the LRI2K issuer (the purchaser of the LRI2K). Once locked, it cannot be modified. The most significant nibble of the AFI is used to code one specific or all application families, as defined in Table 98. The least significant nibble of the AFI is used to code one specific or all application subfamilies. Subfamily codes different from 0 are proprietary. Table 98. AFI coding(1) AFI most significant nibble AFI least significant nibble ‘0’ ‘0’ All families and subfamilies No applicative preselection ‘X’ '0 'All subfamilies of family X Wide applicative preselection Meaning VICCs respond from Examples / Note th 'X '‘Y’ Only the Y subfamily of family X ‘0’ ‘Y’ Proprietary subfamily Y only ‘1 '‘0’, ‘Y’ Transport Mass transit, Bus, Airline etc. '2 '‘0’, ‘Y’ Financial IEP, Banking, Retail etc. '3 '‘0’, ‘Y’ Identification Access Control etc. '4 '‘0’, ‘Y’ Telecommunication Public Telephony, GSM etc. ‘5’ ‘0’, ‘Y’ Medical '6 '‘0’, ‘Y’ Multimedia '7 '‘0’, ‘Y’ Gaming 8 '‘0’, ‘Y’ Data storage '9 '‘0’, ‘Y’ Item management 'A '‘0’, ‘Y’ Express parcels 'B '‘0’, ‘Y’ Postal services 'C '‘0’, ‘Y’ Airline bags 'D '‘0’, ‘Y’ RFU 'E '‘0’, ‘Y’ RFU ‘F’ ‘0’, ‘Y’ RFU Internet services etc. Portable Files etc. 1. X = '1' to 'F', Y = '1' to 'F. 87/89 Revision history LRI2K Revision history Table 99. Date Revision 17-Feb-2006 1 Initial release. 08-Feb-2007 2 Figure 2: MLP connections added. Only bits set to ‘1’ are programmed to the AFI and DSFID Registers (see Section 20.9: Write AFI and Section 20.11: Write DSFID. CTUN typical value for W4/3 modified in Table 90: DC characteristics. Small text changes. 15-Jun-2007 3 Section 20.9: Write AFI and Section 20.11: Write DSFID modified. 20-Jul-2007 4 Document status promoted from Preliminary Data to full Datasheet. Small text changes. 31-Aug-2007 5 23.5 pF internal tuning capacitor (CTUN) value added (see Features on page 1 and Table 90: DC characteristics. VESD max modified for MLP in Table 88: Absolute maximum ratings. 07-Sep-2007 6 VESD min modified for MLP in Table 88: Absolute maximum ratings. 7 Response parameters modified in Section 20.14: Get Multiple Block Security Status on page 62. UFDFPN8 package mechanical data updated and dimensions in inches rounded to four decimal digits instead of three in Table 95: UFDFPN8 - 8-lead ultra thin fine pitch dual flat package no lead (MLP) mechanical data. 08-Apr-2008 88/89 Document revision history Changes LRI2K Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 89/89