STMICROELECTRONICS STR710FZ2

STR71xF
ARM7TDMI™ 32-bit MCU with Flash, USB, CAN
5 timers, ADC, 10 communications interfaces
Features
■
■
■
■
■
Core
– ARM7TDMI 32-bit RISC CPU
– 59 MIPS @ 66 MHz from SRAM
– 45 MIPS @ 50 MHz from Flash
LQFP64
10 x 10
Memories
– Up to 256 Kbytes Flash program memory
(10 kcycles endurance, 20 years retention
@ 85° C)
– 16 Kbytes Flash data memory
(100 kcycles endurance, 20 years
retention@ 85° C)
– Up to 64 Kbytes RAM
– External Memory Interface (EMI) for up to 4
banks of SRAM, Flash, ROM
– Multi-boot capability
LFBGA64 8 8x x8 8x x1.7
LFBGA64
1.7
Clock, reset and supply management
– 3.0 to 3.6V application supply and I/Os
– Internal 1.8V regulator for core supply
– Clock input from 0 to 16.5 MHz
– Embedded RTC osc. running from external
32 kHz crystal
– Embedded PLL for CPU clock
– Realtime Clock for clock-calendar function
– 5 power saving modes: SLOW, WAIT,
LPWAIT, STOP and STANDBY modes
Nested interrupt controller
– Fast interrupt handling with multiple vectors
– 32 vectors with 16 IRQ priority levels
– 2 maskable FIQ sources
Up to 48 I/O ports
– 30/32/48 multifunctional bidirectional I/Os
Up to 14 ports with interrupt capability
February 2008
LQFP144
20 x 20
LFBGA144 10 x 10 x 1.7
■
5 Timers
– 16-bit watchdog timer
– 3 16-bit timers with 2 input captures, 2
output compares, PWM and pulse counter
– 16-bit timer for timebase functions
■
10 communications interfaces
– 2 I2C interfaces (1 multiplexed with SPI)
– 4 UART asynchronous serial interfaces
– Smartcard ISO7816-3 interface on UART1
– 2 BSPI synchronous serial interfaces
– CAN interface (2.0B Active)
– USB Full Speed (12 Mbit/s) Device
Function with Suspend and Resume
– HDLC synchronous communications
■
4-channel 12-bit A/D converter
– Sampling frequency up to 1 kHz
– Conversion range: 0 to 2.5 V
■
Development tools support
– Atomic bit SET and RES operations
Table 1.
Device summary
Reference
Root part number
STR71xF
STR710FZ1, STR710FZ2,
STR711FR0, STR711FR1, STR711FR2,
STR712FR0, STR712FR1, STR712FR2,
STR715FR0
Rev 12
1/78
www.st.com
78
Contents
STR71xF
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
3.1
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2
Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3
Pin description for 144-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4
Pin description for 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5
External connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6
I/O port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1
2/78
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.3
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.4
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.5
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.6
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.7
EMI - external memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.8
I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.9
BSPI - buffered serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.10
USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.11
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
STR71xF
5
Contents
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6
Product history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Note:
For detailed information on the STR71x Microcontroller memory, registers and peripherals,
please refer to the STR71x Reference Manual.
3/78
Introduction
1
STR71xF
Introduction
This datasheet provides the STR71x pinout, ordering information, mechanical and electrical
device characteristics.
For complete information on the STR71x microcontroller memory, registers and peripherals.
please refer to the STR71x reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STR7 Flash programming reference manual.
For information on the ARM7TDMI core please refer to the ARM7TDMI technical reference
manual.
Table 2.
Device overview
Features
STR710
FZ1
STR710
FZ2
STR710
RZ
STR711
FR0
STR711
FR1
STR711
FR2
STR712
FR0
STR712
FR1
STR712
FR2
STR715
FRx
Flash - Kbytes
128+16
256+16
0
64+16
128+16
256+16
64+16
128+16
256+16
64+16
RAM - Kbytes
32
64
64
16
32
64
16
32
64
16
Peripheral
Functions
CAN, EMI, USB, 48 I/Os
USB, 30 I/Os
Operating
Voltage
3.0 to 3.6 V
Operating
Temperature
-40 to +85°C or 0 to 70° C
T=LQFP144 20 x 20
H=LFBGA144 10 x10
Packages
.
4/78
CAN, 32 I/Os
T=LQFP64 10 x10 / H=LFBGA64 8 x 8 x 1.7
32 I/Os
STR71xF
2
Description
Description
ARM® core with embedded Flash and RAM
The STR71x series is a family of ARM-powered 32-bit microcontrollers with embedded
Flash and RAM. It combines the high performance ARM7TDMI CPU with an extensive
range of peripheral functions and enhanced I/O capabilities. STR71xF devices have on-chip
high-speed single voltage FLASH memory and high-speed RAM. STR710R devices have
high-speed RAM but no internal Flash. The STR71x family has an embedded ARM core and
is therefore compatible with all ARM tools and software.
Extensive tools support
STMicroelectronics’ 32-bit, ARM core-based microcontrollers are supported by a complete
range of high-end and low-cost development tools to meet the needs of application
developers. This extensive line of hardware/software tools includes starter kits and complete
development packages all tailored for ST’s ARM core-based MCUs. The range of
development packages includes third-party solutions that come complete with a graphical
development environment and an in-circuit emulator/programmer featuring a JTAG
application interface. These support a range of embedded operating systems (OS), while
several royalty-free OSs are also available.
For more information, please refer to ST MCU site http://www.st.com/mcu
5/78
System architecture
3
STR71xF
System architecture
Package choice: low pin-count 64-pin or feature-rich 144-pin LQFP or BGA
The STR71x family is available in 5 main versions.
The 144-pin versions have the full set of all features including CAN, USB and External
Memory Interface (EMI).
●
STR710F: 144-pin BGA or LQFP with CAN, USB and EMI
●
STR710R: Flashless 144-pin BGA or LQFP with CAN, USB and EMI (no internal Flash
memory)
The three 64-pin versions (BGA or LQFP) do not include External Memory Interface.
●
STR715F: 64-pin BGA or LQFP without CAN or USB
●
STR711F: 64-pin BGA or LQFP with USB
●
STR712F: 64-pin BGA or LQFP with CAN
High speed Flash memory (STR71xF)
The Flash program memory is organized in two banks of 32-bit wide Burst Flash memories
enabling true read-while-write (RWW) operation. Device Bank 0 is up to 256 Kbytes in size,
typically for the application program code. Bank 1 is 16 Kbytes, typically used for storing
data constants. Both banks are accessed by the CPU with zero wait states @ 33 MHz
Bank 0 memory endurance is 10K write/erase cycles and Bank 1 endurance is 100K
write/erase cycles. Data retention is 20 years at 85°C on both banks. The two banks can be
accessed independently in read or write. Flash memory can be accessed in two modes:
●
Burst mode: 64-bit wide memory access at up to 50 MHz.
●
Direct 32-bit wide memory access for deterministic operation at up to 33 MHz.
The STR7 embedded Flash memory can be programmed using In-Circuit Programming or
In-Application programming.
IAP (in-application programming): The IAP is the ability to re-program the Flash memory
of a microcontroller while the user program is running.
ICP (in-circuit programming): The ICP is the ability to program the Flash memory of a
microcontroller using JTAG protocol while the device is mounted on the user application
board.
The Flash memory can be protected against different types of unwanted access
(read/write/erase). There are two types of protection:
●
Sector Write Protection
●
Flash Debug Protection (locks JTAG access)
Refer to the STR7 Flash Programming Reference manual for details.
Optional external memory (STR710)
The non-multiplexed 16-bit data/24-bit address bus available on the STR710 (144-pin)
supports four 16-Mbyte banks of external memory. Wait states are programmable
individually for each bank allowing different memory types (Flash, EPROM, ROM, SRAM
etc.) to be used to store programs or data.
Figure 1 shows the general block diagram of the device family.
6/78
STR71xF
System architecture
Flexible power management
To minimize power consumption, you can program the STR71x to switch to SLOW, WAIT,
LPWAIT (low power wait), STOP or STANDBY mode depending on the current system
activity in the application.
Flexible clock control
Two external clock sources can be used, a main clock and a 32 kHz backup clock. The
embedded PLL allows the internal system clock (up to 66 MHz) to be generated from a main
clock frequency of 16 MHz or less. The PLL output frequency can be programmed using a
wide selection of multipliers and dividers. The microcontroller core, APB1 and APB2
peripherals are in separate clock domains and can be programmed to run at different
frequencies during application runtime. The clock to each peripheral is gated with an
individual control bit to optimize power usage by turning off peripherals any time they are not
required.
Voltage regulators
The STR71x requires an external 3.0-3.6V power supply. There are two internal Voltage
Regulators for generating the 1.8V power supply for the core and peripherals. The main VR
is switched off during low power operation.
Low voltage detectors
Both the Main Voltage Regulator and the Low Power Voltage Regulator contain each a low
voltage detection circuitry which keep the device under reset when the corresponding
controlled voltage value (V18 or V18BKP) falls below 1.35V (+/- 10%). This enhances the
security of the system by preventing the MCU from going into an unpredictable state.
An external reset circuit must be used to provide the RESET at V33 power-up. It is not
sufficient to rely on the RESET generated by the LVD in this case. This is because LVD
operation is guaranteed only when V33 is within the specification.
3.1
On-chip peripherals
CAN interface (STR710 and STR712)
The CAN module is compliant with the CAN specification V2.0 part B (active). The bit rate
can be programmed up to 1 MBaud.
USB interface (STR710 and STR711)
The full-speed USB interface is USB V2.0 compliant and provides up to 16 bidirectional/32
unidirectional endpoints, up to 12 Mb/s (full-speed), support for bulk transfer, isochronous
transfers and USB Suspend/Resume functions.
Standard timers
Each of the four timers have a 16-bit free-running counter with 7-bit prescaler
Three timers each provide up to two input capture/output compare functions, a pulse
counter function, and a PWM channel with selectable frequency.
The fourth timer is not connected to the I/O ports. It can be used by the application software
for general timing functions.
7/78
System architecture
STR71xF
Realtime clock (RTC)
The RTC provides a set of continuously running counters driven by the 32 kHz external
crystal. The RTC can be used as a general timebase or clock/calendar/alarm function.
When the STR71x is in Standby mode the RTC can be kept running, powered by the low
power voltage regulator and driven by the 32 kHz external crystal.
UARTs
The 4 UARTs allow full duplex, asynchronous, communications with external devices with
independently programmable TX and RX baud rates up to 1.25 Mb/s.
Smartcard interface
UART1 is configurable to function either as a general purpose UART or as an asynchronous
Smartcard interface as defined by ISO 7816-3. It includes Smartcard clock generation and
provides support features for synchronous cards.
Buffered serial peripheral interfaces (BSPI)
Each of the two SPIs allow full duplex, synchronous communications with external devices,
master or slave communication at up to 5.5 Mb/s in Master mode and 4 Mb/s in Slave mode.
I2C interfaces
The two I2C Interfaces provide multi-master and slave functions, support normal and fast
I2C mode (400 kHz) and 7 or 10-bit addressing modes.
One I2C Interface is multiplexed with one SPI, so either 2xSPI+1x I2C or 1xSPI+2x I2C may
be used at a time.
HDLC interface
The High Level Data Link Controller (HDLC) unit supports full duplex operation and NRZ,
NRZI, FM0 or MANCHESTER protocols. It has an internal 8-bit baud rate generator.
A/D converter
The Analog to Digital Converter, converts in single channel or up to 4 channels in singleshot or round robin mode. Resolution is 12-bit with a sampling frequency of up to 1 kHz. The
input voltage range is 0-2.5V.
Watchdog
The 16-bit Watchdog Timer protects the application against hardware or software failures
and ensures recovery by generating a reset.
I/O ports
The 48 I/O ports are programmable as Inputs or Outputs.
External interrupts
Up to 14 external interrupts are available for application use or to wake up the application
from STOP mode.
8/78
STR71xF
System architecture
Figure 1.
STR71x block diagram
A[19:0]
D[15:0]
RDN
WEN[1:0]
JTDI
JTCK
JTMS
JTRST
JTDO
DBGRQS
BOOTEN
PRCCU/PLL
EXT. MEM.
INTERFACE (EMI)
ARM7TDMI
CPU
FLASH*
Program Memory
64/128/256K
ARM7 NATIVE BUS
CK
CKOUT
RSTIN
A[23:20] (AF)
CS[3:0)
JTAG
16K Data FLASH*
RAM
16/32/64K
APB
BRIDGE 1
V18[1:0]
V33[6:0]
VSS[9:0]
V18BKP
AVDD
AVSS
POWER SUPPLY
VREG
INTERRUPT CTL(EIC)
I2C1
2 AF
A/D
BSPI0
4 AF
TIMER0
BSPI1
4 AF
4 AF
TIMER1
UART0
2 AF
2 AF
TIMER2
UART1 /
SMARTCARD
3 AF
4 AF
TIMER3
UART2
2 AF
RTC
UART3
2 AF
EXT INT (XTI)
HDLC
3 AF
OSC
14 AF
APB BUS
2 AF
APB BUS
I2C0
4 AF
STDBY
RTCXTO
RTCXTI
WAKEUP
APB
BRIDGE 2
WATCHDOG
USB
P0[15:0]
I/O PORT 0
P1[15:0]
I/O PORT 1
P2[15:0]
I/O PORT 2
1 AF
CAN
*Flash present in STR710F, not in STR710R
USBDP
USBDN
2 AF
AF: alternate function on I/O port pin
9/78
System architecture
3.2
STR71xF
Related documentation
Available from www.arm.com:
ARM7TDMI Technical reference manual
Available from http://www.st.com:
STR71x Reference manual
STR7 Flash programming manual
AN1774 - STR71x Software development getting started
AN1775 - STR71x Hardware development getting started
AN1776 - STR71x Enhanced interrupt controller
AN1777 - STR71x memory mapping
AN1780 - Real time clock with STR71x
AN1781 - Four 7 segment display drive using the STR71x
The above is a selected list only, a full list STR71x application notes can be viewed at
http://www.st.com.
10/78
STR71xF
Pin description for 144-pin packages
STR710 LQFP pinout
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
P0.9/U0.TX/BOOT.0
P0.8/U0.RX/U0.TX
P0.7/S1.SSN
P0.6/S1.SCLK
P0.5/S1.MOSI
VSS
V33
WEn.0
WEn.1
A.19
A.18
A.17
A.16
A.15
A.14
V18
VSS18
P0.4/S1.MISO
P0.3/S0.SSN/I1.SDA
P0.2/S0.SCLK/I1.SCL
P0.1/S0.MOSI/U3.RX
P0.0/S0.MISO/U3.TX
A.13
A.12
A.11
A.10
A.9
A.8
A.7
A.6
A.5
V33
VSS
P1.15/HTXD
N.C.
N.C.
Figure 2.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
P1.14/HRXD/I0.SDA
P1.13/HCLK/I0.SCL
P1.10/USBCLK
P1.9
V33
VSS
A.4
A.3
A.2
A.1
A.0
D.15
D.14
D.13
D.12
D.11
D.10
USBDN
USBDP
P1.12/CANTX
P1.11/CANRX
N.C.
P1.8
P1.7/T1.OCMPA
VSSIO-PLL
V33IO-PLL
D.9
D.8
D.7
D.6
D.5
P1.6/T1.OCMPB
P1.5/T1.ICAPB
P1.4/T1.ICAPA
P1.3/T3.ICAPB/AIN.3
P1.2/T3.OCMPA/AIN.2
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
P0.10/U1.RX/U1.TX/SCDATA
RDn
P0.11/U1.TX/BOOT.1
P0.12/SCCLK
VSS
V33
P2.0/CSn.0
P2.1/CSn.1
P0.13/U2.RX/T2.OCMPA
P0.14/U2.TX/T2.ICAPA
P2.2/CSn.2
P2.3/CSn.3
P2.4/A.20
P2.5/A.21
P2.6/A.22
BOOTEN
P2.7/A.23
P2.8
N.C.
N.C.
VSS
V33
P2.9
P2.10
P2.11
P2.12
P2.13
P2.14
P2.15
JTDI
JTMS
JTCK
JTDO
JTRSTn
NU
TEST
N.C.
TEST
N.C.
V33IO-PLL
N.C.
VSSIO-PLL
N.C.
DBGRQS
CKOUT
CK
P0.15/WAKEUP
N.C.
RTCXTI
RTCXTO
STDBY
RSTIN
N.C.
VSSBKP
V18BKP
N.C.
N.C.
V18
VSS18
N.C.
D.0
D.1
D.2
D.3
D.4
AVDD
AVSS
N.C.
N.C.
N.C.
P1.0/T3.OCMPB/AIN.0
P1.1/T3.ICAPA/AIN.1
3.3
System architecture
11/78
System architecture
Table 3.
STR71xF
STR710 BGA ball connections
A
B
C
D
E
F
G
H
J
K
L
M
1
P0.10
P2.0
P2.1
VSS
P2.2
P2.6
BOOT
EN
P2.12
P2.13
P2.15
JTDI
N.C.
2
VSS
RDn
P0.11
V33
P2.3
P2.8
P2.9
JTMS
JTRST
n
TEST
TEST
N.C.
3
V33
P0.9
P0.12
P0.13
P2.4
N.C.
P2.10
JTCK
NU
V33
N.C.
DBG
RQS
4
P0.6
P0.7
P0.8
P0.14
P2.5
N.C.
P2.11
JTDO
CK
CKOUT
VSSIOPLL
N.C.
5
A.19
WEn.1
WEn.0
P0.5
P2.7
VSS
P2.14
N.C.
RTCXTO
RTCXTI
N.C.
P0.15
6
P0.3
A.15
A.16
A.17
A.18
V33
V18
N.C.
N.C.
V18BK
P
VSS
BKP
STDBY
7
P0.2
P0.1
P0.4
VSS18
V18
A.14
D.12
D.1
D.0
nc
VSS18
RSTIN
8
A.9
A.10
A.11
A.13
P0.0
A.0
D.11
P1.12/
CANTX
N.C.
AVSS
D.3
D.2
9
VSS
V33
A.5
A.6
V33
D.15
D.10
P1.8
D.9
P1.0
N.C.
N.C.
10
A.8
N.C.
P1.15
P1.13
VSS
D.14
USBDN
P1.7
D.8
P1.5
P1.1
D.4
11
A.7
N.C.
P1.14
P1.10
A.2
D.13
USBDP
VSS
D.5
P1.4
P1.3
AVDD
12
A.12
A.4
A.3
P1.9
A.1
P1.11/
CANRX
N.C.
V33IOPLL
P1.6
D.7
D.6
P1.2
Legend / abbreviations for Table 4:
Type:
I = input, O = output, S = supply, HiZ= high impedance,
In/Output level: C = CMOS 0.3VDD/0.7VDD
CT= CMOS 0.3VDD/0.7VDD with input trigger
TT= TTL 0.8 V/2 V with input trigger
C/T = Programmable levels: CMOS 0.3VDD/0.7VDD or TTL 0.8 V / 2 V
Port and control configuration:
12/78
Input:
pu/pd= software enabled internal pull-up or pull down
pu= in reset state, the internal 100kΩ weak pull-up is enabled.
pd = in reset state, the internal 100kΩ weak pull-down is enabled.
Output:
OD = open drain (logic level)
PP = push-pull
T = true OD, (P-Buffer and protection diode to VDD not implemented),
5 V tolerant.
STR71xF
PP
OD
Output
Capability
interrupt
Input
Input level
Pin name
Type
BGA144
LQFP144
Pin n°
Active in Stdby
STR710 pin description
Reset state1)
Table 4.
System architecture
Main
function
(after
reset)
Alternate function
UART1:
Receive Data
input
UART1: Transmit
data output.
Note: This pin may be used for
Port 0.10 Smartcard DataIn/DataOut or single
wire UART (half duplex) if
programmed as Alternate Function
Output. The pin will be tri-stated
except when UART transmission is in
progress
1
A1
P0.10/U1.RX/
U1.TX/
SC.DATA
I/O pd
2
B2
RD
O
3
C2
P0.11/BOOT.1
I/O pd
/U1.TX
CT
4
C3
P0.12/SC.CLK I/O pd
CT
5
D1
VSS
S
Ground voltage for digital I/Os4)
6
D2
V33
S
Supply voltage for digital I/Os4)
CT
X 4mA
T
X
External Memory Interface: Active low read signal
for external memory. It maps to the OE_N input of
the external components.
4mA X
X
Select Boot
Port 0.11 Configuration
input
4mA X
X
Port 0.12 Smartcard reference clock output
5)
UART1: Transmit
data output.
CT
8mA X
X
Port 2.0
External Memory Interface: Select
Memory Bank 0 output
Note: This pin is forced to output
push-pull 1 mode at reset to allow
boot from external memory
2)
CT
8mA X
X
Port 2.1
External Memory Interface: Select
Memory Bank 1 output
P0.13/U2.RX/
T2.OCMPA
I/O pu
CT
X 4mA X
X
UART2:
Port 0.13 Receive Data
input
Timer2: Output
Compare A output
D4
P0.14/U2.TX/
T2.ICAPA
I/O pu
CT
4mA X
X
UART2:
Port 0.14 Transmit data
output
Timer2: Input
Capture A input
11
E1
P2.2/CS.2
I/O
CT
8mA X
X
Port 2.2
External Memory Interface: Select
Memory Bank 2 output
12
E2
P2.3/CS.3
I/O
CT
8mA X
X
Port 2.3
External Memory Interface: Select
Memory Bank 3 output
7
B1
P2.0/CS.0
I/O
8
C1
P2.1/CS.1
I/O
9
D3
10
8)
pu
pu
2)
pu
2)
13/78
System architecture
Capability
Output
Main
function
(after
reset)
P2.4/A.20
I/O
14
E4
P2.5/A.21
I/O
15
F1
P2.6/A.22
I/O
16
G1 BOOTEN
17
E5
P2.7/A.23
I/O
3)
CT
8mA X
X
Port 2.7
External Memory Interface: address
bus
18
F2
P2.8
I/O pu
CT
X 4mA X
X
Port 2.8
External interrupt INT2
19
F3
N.C.
Not connected (not bonded)
20
F4
N.C.
Not connected (not bonded)
21
F5
VSS
S
Ground voltage for digital I/Os4)
22
F6
V33
S
Supply voltage for digital I/Os4)
23
G2 P2.9
I/O pu
CT
X 4mA X
X
Port 2.9
External interrupt INT3
24
G3 P2.10
I/O pu
CT
X 4mA X
X
Port 2.10
External interrupt INT4
25
G4 P2.11
I/O pu
CT
X 4mA X
X
Port 2.11
External interrupt INT5
26
H1
P2.12
I/O pu
CT
4mA X
X
Port 2.12
27
J1
P2.13
I/O pu
CT
4mA X
X
Port 2.13
28
G5 P2.14
I/O pu
CT
4mA X
X
Port 2.14
29
K1
P2.15
I/O pu
CT
4mA X
X
Port 2.15
30
L1
JTDI
I
TT
JTAG Data input. External pull-up required.
31
H2
JTMS
I
TT
JTAG Mode Selection Input. External pull-up
required.
32
H3
JTCK
I
C
JTAG Clock Input. External pull-up or pull-down
required.
33
H4
JTDO
O
34
J2
JTRST
I
35
J3
NU
Reserved, must be forced to ground.
36
K2
TEST
Reserved, must be forced to ground.
37
M1 N.C.
Not connected (not bonded)
38
L2
TEST
Reserved, must be forced to ground.
39
L3
N.C.
Not connected (not bonded)
14/78
pd
3)
pd
3)
pd
3)
I
PP
E3
OD
13
Pin name
interrupt
BGA144
Input level
Input
LQFP144
Type
Pin n°
Active in Stdby
STR710 pin description
Reset state1)
Table 4.
STR71xF
CT
8mA X
X
Port 2.4
CT
8mA X
X
Port 2.5
CT
8mA X
X
Port 2.6
8mA
TT
External Memory Interface: address
bus
Boot control input. Enables sampling of
BOOT[1:0] pins
CT
pd
Alternate function
X
JTAG Data output. Note: Reset state = HiZ.
JTAG Reset Input. External pull-up required.
STR71xF
M4 N.C.
42
L4
43
M2 N.C.
44
M3 DBGRQS
I
45
K4
CKOUT
O
46
J4
CK
I
C
47
M5
P0.15/
WAKEUP
I
TT
VSSIO-PLL
PP
41
V33IO-PLL
OD
K3
Output
Capability
40
Pin name
interrupt
BGA144
Input level
Input
LQFP144
Type
Pin n°
Active in Stdby
STR710 pin description
Reset state1)
Table 4.
System architecture
Main
function
(after
reset)
Alternate function
Supply voltage for digital I/O circuitry and for PLL
reference
S
Not connected (not bonded)
Ground voltage for digital I/O circuitry and for PLL
reference4)
S
Not connected (not bonded)
CT
Debug Mode request input (active high)
8mA
Clock output (fPCLK2) Note: Enabled by CKDIS
register in APB Bridge 2
X
Reference clock input
Port 0.15
X
Wakeup from Standby mode input.
X
Note: This port is input only.
48
L5
N.C.
Not connected (not bonded)
49
K5
RTCXTI
Realtime Clock input and input of 32 kHz
oscillator amplifier circuit
50
J5
RTCXTO
Output of 32 kHz oscillator amplifier circuit
51
M6 STDBY
I/O
CT
52
M7 RSTIN
I
CT
53
H5
N.C.
54
L6
VSSBKP
4mA X
Input: Hardware Standby mode entry input active
low. Caution: External pull-up to V33 required to
select normal mode.
X Output: Standby mode active low output following
Software Standby mode entry.
Note: In Standby mode all pins are in high
impedance except those marked Active in Stdby
X Reset input
Not connected (not bonded)
S
X Stabilization for low power voltage regulator.
S
Stabilization for low power voltage regulator.
Requires external capacitors of at least 1µF
between V18BKP and VSS18BKP. See Figure 5.
X
Note: If the low power voltage regulator is
bypassed, this pin can be connected to an
external 1.8V supply.
55
K6
V18BKP
56
J6
N.C.
Not connected (not bonded)
57
H6
N.C.
Not connected (not bonded)
58
G6 V18
S
Stabilization for main voltage regulator. Requires
external capacitors of at least 10µF + 33nF
between V18 and VSS18. See Figure 5.
15/78
System architecture
N.C.
61
J7
D.0
S
I/O
8mA
8mA
H7
D.1
I/O
63
M8 D.2
I/O
6)
8mA
I/O
6)
8mA
I/O
6)
8mA
D.3
65
M10 D.4
66
M11 VDDA
Alternate function
Not connected (not bonded)
6)
62
L8
Main
function
(after
reset)
Stabilization for main voltage regulator.
6)
64
PP
K7
OD
60
Output
Capability
VSS18
interrupt
L7
Input
Input level
BGA144
59
Pin name
Type
LQFP144
Pin n°
Active in Stdby
STR710 pin description
Reset state1)
Table 4.
STR71xF
External Memory Interface: data bus
S
Supply voltage for A/D Converter
S
Ground voltage for A/D Converter
67
K8
VSSA
68
J8
N.C.
Not connected (not bonded)
69
M9 N.C.
Not connected (not bonded)
70
L9
N.C.
Not connected (not bonded)
71
K9
P1.0/T3.OCM
PB/AIN.0
72
P1.1/T3.ICAP
L10 A/T3.EXTCLK/ I/O pu
AIN.1
73
M12
P1.2/T3.OCM
PA/AIN.2
74
L11
75
I/O pu
CT
4mA X
X
Port 1.0
Timer 3:
Output
Compare B
ADC: Analog input 0
CT
4mA X
X
Port 1.1
Timer 3: Input
Capture A or
ADC: Analog input 1
External Clock
input
I/O pu
CT
4mA X
X
Port 1.2
Timer 3:
Output
Compare A
ADC: Analog input 2
P1.3/T3.ICAP
B/AIN.3
I/O pu
CT
4mA X
X
Port 1.3
Timer 3: Input
Capture B
ADC: Analog input 3
K11
P1.4/T1.ICAP
A/T1.EXTCLK
I/O pu
CT
4mA X
X
Port 1.4
Timer 1: Input
Capture A
Timer 1: External
Clock input
76
K10
P1.5/T1.ICAP
B
I/O pu
CT
4mA X
X
Port 1.5
Timer 1: Input
Capture B
77
J12
P1.6/T1.OCM
PB
I/O pu
CT
4mA X
X
Port 1.6
Timer 1:
Output
Compare B
78
J11 D.5
I/O
6)
8mA
79
L12 D.6
I/O
6)
8mA
I/O
6)
8mA
I/O
6)
8mA
I/O
6)
8mA
80
81
82
16/78
K12 D.7
J10 D.8
J9
D.9
External Memory Interface: data bus
STR71xF
PP
OD
Output
Capability
interrupt
Input
Input level
Pin name
Type
BGA144
LQFP144
Pin n°
Active in Stdby
STR710 pin description
Reset state1)
Table 4.
System architecture
Main
function
(after
reset)
Alternate function
83
H12 V33IO-PLL
S
Supply voltage for digital I/O circuitry and for PLL
reference4)
84
H11 VSSIO-PLL
S
Ground voltage for digital I/O circuitry and for PLL
reference4)
85
H10
P1.7/T1.OCM
PA
I/O pu
CT
4mA X
X
86
H9
P1.8
I/O pd
CT
4mA X
X
Port 1.7
Timer 1:
Output
Compare A
Port 1.8
87
G12 N.C.
88
F12 P1.11/CANRX I/O pu
CT
X 4mA X
X
Port 1.11
CAN: receive data input
Note: On STR710 and STR712 only
89
H8
CT
4mA X
X
Port 1.12
CAN: Transmit data output
Note: On STR710 and STR712 only
P1.12/CANTX
Not connected (not bonded)
I/O pu
90
G11 USBDP
I/O
CT
USB bidirectional data (data +). Reset state = HiZ
Note: On STR710 and STR711 only
This pin requires an external pull-up to V33 to
maintain a high level.
91
G10 USBDN
I/O
CT
USB bidirectional data (data -). Reset state = HiZ
Note: On STR710 and STR711 only.
92
G9 D.10
I/O
6)
8mA
93
G8 D.11
I/O
6)
8mA
I/O
6)
8mA
8mA
94
G7 D.12
External Memory Interface: data bus
95
F11 D.13
I/O
6)
96
F10 D.14
I/O
6)
8mA
97
F9
I/O
6)
8mA
O
7)
8mA
X
O
7)
8mA
X
100 E11 A.2
O
7)
8mA
X
101 C12 A.3
O
7)
8mA
X
102 B12 A.4
O
7)
8mA
X
103 E10 VSS
S
Ground voltage for digital I/O circuitry4)
104
S
Supply voltage for digital I/O circuitry4)
98
99
F8
D.15
A.0
E12 A.1
E9
V33
105 D12 P1.9
106 D11
P1.10/
USBCLK
External Memory Interface: address bus
I/O pd
CT
4mA X
X
Port 1.9
I/O pd
C/
T
4mA X
X
Port 1.10
USB: 48 MHZ
clock input
17/78
System architecture
STR710 pin description
X
Port 1.13
HDLC:
reference
clock input
I2C clock
108 C11
P1.14/HRXD/
I0.SDA
I/O pu
CT
X 4mA X
X
Port 1.14
HDLC:
Receive data
input
I2C serial data
PP
X 4mA X
OD
CT
Capability
I/O pd
Pin name
Type
P1.13/HCLK/
I0.SCL
BGA144
107 D10
LQFP144
interrupt
Output
Input level
Input
Reset state1)
Pin n°
Active in Stdby
Table 4.
STR71xF
Main
function
(after
reset)
Alternate function
109 B11 N.C.
Not connected (not bonded)
110 B10 N.C.
Not connected (not bonded)
111 C10 P1.15/HTXD
I/O pu
CT
4mA X
X
Port 1.15
HDLC: Transmit data output
112
A9
VSS
S
Ground voltage for digital I/O circuitry4)
113
B9
V33
S
Supply voltage for digital I/O circuitry4)
114
C9
A.5
O
7)
8mA
X
115
D9
A.6
O
7)
8mA
X
O
7)
8mA
X
O
7)
8mA
X
8mA
X
116 A11 A.7
117 A10 A.8
118
A8
A.9
O
7)
119
B8
A.10
O
7)
8mA
X
O
7)
8mA
X
O
7)
8mA
X
O
7)
8mA
X
120
C8
A.11
121 A12 A.12
122
D8
A.13
External Memory Interface: address bus
SPI0 Master
in/Slave out
data
123
E8
P0.0/S0.MISO
I/O pu
/U3.TX
CT
4mA X
X
Port 0.0
UART3 Transmit data
output
Note: Programming AF function
selects UART by default. BSPI must
be enabled by SPI_EN bit in the
BOOTCR register.
BSPI0: Master
UART3: Receive
out/Slave in
Data input
data
124
18/78
B7
P0.1/S0.MOSI
I/O pu
/U3.RX
CT
X 4mA X
X
Port 0.1
Note: Programming AF function
selects UART by default. BSPI must
be enabled by SPI_EN bit in the
BOOTCR register.
STR71xF
PP
OD
Output
Capability
interrupt
Input
Input level
Pin name
Type
BGA144
LQFP144
Pin n°
Active in Stdby
STR710 pin description
Reset state1)
Table 4.
System architecture
Main
function
(after
reset)
Alternate function
BSPI0: Serial
Clock
125
A7
P0.2/S0.SCLK
I/O pu
/I1.SCL
CT
X 4mA X
X
Port 0.2
I2C1: Serial clock
Note: Programming AF function
selects I2C by default. BSPI must be
enabled by SPI_EN bit in the
BOOTCR register.
SPI0: Slave
Select input
active low.
I2C1: Serial Data
126
A6
P0.3/S0.SS/
I1.SDA
I/O pu
CT
4mA X
X
Port 0.3
Note: Programming AF function
selects I2C by default. BSPI must be
enabled by SPI_EN bit in the
BOOTCR register.
127
C7
P0.4/S1.MISO I/O pu
CT
4mA X
X
Port 0.4
SPI1: Master in/Slave out data
128
D7
VSS18
S
Stabilization for main voltage regulator.
129
E7
V18
S
Stabilization for main voltage regulator. Requires
external capacitors of at least 10µF + 33nF
between V18 and VSS18. See Figure 5.
130
F7
A.14
O
7)
8mA
X
O
7)
8mA
X
O
7)
8mA
X
8mA
X
131
132
B6
C6
A.15
A.16
External Memory Interface: address bus
133
D6
A.17
O
7)
134
E6
A.18
O
7)
8mA
X
8mA
X
135
A5
A.19
O
7)
136
B5
WE.1
O
5)
8mA
X
External Memory Interface: active low MSB write
enable output
137
C5
WE.0
O
5)
8mA
X
External Memory Interface: active low LSB write
enable output
138
A3
V33
S
Supply voltage for digital I/Os4)
139
A2
VSS
S
Ground voltage for digital I/Os4)
140
D5
P0.5/S1.MOSI I/O pu
CT
4mA X
X
Port 0.5
SPI1: Master out/Slave In data
141
A4
P0.6/S1.SCLK I/O pu
CT
X 4mA X
X
Port 0.6
SPI1: Serial Clock
142
B4
P0.7/S1.SS
CT
4mA X
X
Port 0.7
SPI1: Slave Select input active low
I/O pu
19/78
System architecture
PP
OD
Output
Capability
interrupt
Input
Input level
Pin name
Type
BGA144
LQFP144
Pin n°
Active in Stdby
STR710 pin description
Reset state1)
Table 4.
STR71xF
Main
function
(after
reset)
Port 0.8
143
C4
P0.8/U0.RX/
U0.TX
I/O pd
CT
144
B3
P0.9/U0.TX/
BOOT.0
I/O pd
CT
X 4mA
T
4mA X
Alternate function
UART0:
Receive Data
input
UART0: Transmit
data output.
Note: This pin may be used for single wire UART
(half duplex) if programmed as Alternate Function
Output. The pin will be tri-stated except when
UART transmission is in progress
X
Port 0.9
Select Boot
Configuration
input
UART0: Transmit
data output
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 8 on page 29.
The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends
on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset
2. In reset state, these pins configured as Input PU/PD with weak pull-up enabled. They must be configured
by software as Alternate Function (see Table 8: Port bit configuration table on page 29) to be used by the
External Memory Interface.
3. In reset state, these pins configured as Input PU/PD with weak pull-down enabled to output Address
0x0000 0000 using the External Memory Interface. To access memory banks greater than 1Mbyte, they
need to be configured by software as Alternate Function (see Table 8: Port bit configuration table on
page 29).
4. V33IO-PLL and V33 are internally connected. VSSIO-PLL and VSS are internally connected.
5. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as
Output Push-Pull.
6. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as
Hi-Z.
7. During the reset phase, these pins are in input pull-down state. When reset is released, they are configured
as Output Push-Pull.
8. During the reset phase, this pin is in input floating state. When reset is released, it is configured as Output
Push-Pull.
20/78
STR71xF
Pin description for 64-pin packages
STR712/STR715 LQFP64 pinout
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
P0.9/U0.TX/BOOT.0
P0.8/U0.RX/U0.TX
P0.7/S1.SSN
P0.6/S1.SCLK
P0.5/S1.MOSI
VSS
V18
VSS18
P0.4/S1.MISO
P0.3/S0.SSN/I1.SDA
P0.2/S0.SCLK/I1.SCL
P0.1/S0.MOSI/U3.RX
P0.0/S0.MISO/U3.TX
V33
VSS
P1.15/HTXD
Figure 3.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
LQFP64
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P1.14/HRXD/I0.SDA
P1.13/HCLK/I0.SCL
P1.10
P1.9
VSS
P1.12/CANTX1)
P1.11/CANRX1)
P1.8
P1.7/T1.OCMPA
VSSIO-PLL
V33IO-PLL
P1.6/T1.OCMPB
P1.5/T1.ICAPB
P1.4/T1.ICAPA
P1.3/T3.ICAPB/AIN.3
P1.2/T3.OCMPA/AIN.2
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
P0.10/U1.RX/U1.TX/SCDATA
P0.11/U1.TX/BOOT.1
P0.12/SCCLK
VSS
P0.13/U2.RX/T2.OCMPA
P0.14/U2.TX/T2.ICAPA
BOOTEN
VSS
V33
JTDI
JTMS
JTCK
JTDO
nJTRST
NU
TEST
V33IO-PLL
VSSIO-PLL
CK
P0.15/WAKEUP
RTCXTI
RTCXTO
STDBY
RSTIN
VSSBKP
V18BKP
V18
VSS18
AVDD
AVSS
P1.0/T3.OCMPB/AIN.0
P1.1/T3.ICAPA/AIN.1
3.4
System architecture
1)
CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.
21/78
System architecture
STR71xF
STR711 LQFP64 pinout
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
P0.9/U0.TX/BOOT.0
P0.8/U0.RX/U0.TX
P0.7/S1.SSN
P0.6/S1.SCLK
P0.5/S1.MOSI
VSS
V18
VSS18
P0.4/S1.MISO
P0.3/S0.SSN/I1.SDA
P0.2/S0.SCLK/I1.SCL
P0.1/S0.MOSI/U3.RX
P0.0/S0.MISO/U3.TX
V33
VSS
P1.15/HTXD
Figure 4.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
LQFP64
P1.14/HRXD/I0.SDA
P1.13/HCLK/I0.SCL
P1.10/USBCLK
P1.9
VSS
USBDN
USBDP
P1.8
P1.7/T1.OCMPA
VSSIO-PLL
V33IO-PLL
P1.6/T1.OCMPB
P1.5/T1.ICAPB
P1.4/T1.ICAPA
P1.3/T3.ICAPB/AIN.3
P1.2/T3.OCMPA/AIN.2
V33IO-PLL
VSSIO-PLL
CK
P0.15/WAKEUP
RTCXTI
RTCXTO
STDBY
RSTIN
VSSBKP
V18BKP
V18
VSS18
AVDD
AVSS
P1.0/T3.OCMPB/AIN.0
P1.1/T3.ICAPA/AIN.1
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
P0.10/U1.RX/U1.TX/SCDATA
P0.11/U1.TX/BOOT.1
P0.12/SCCLK
VSS
P0.13/U2.RX/T2.OCMPA
P0.14/U2.TX/T2.ICAPA
BOOTEN
VSS
V33
JTDI
JTMS
JTCK
JTDO
nJTRST
NU
TEST
Table 5.
22/78
STR711 BGA ball connections
A
B
C
D
E
F
G
H
1
P0.10
P0.11
P0.12
P0.14
V33
JTCK
TEST
V33IOPLL
2
P0.9
VSS
P0.13
VSS
JTMS
JTRSTn
P0.15
VSSIOPLL
3
P0.5
P0.7
BOOTEN
JTDI
NU
STDBY
RTCXTI
CK
4
VSS18
VSS
P0.8
JTDO
AVDD
V18BKP
RSTIN
RTCXTO
5
P0.2
P0.4
V18
P0.6
P1.9
P1.0
V18
VSSBKP
6
V33
P0.1
P0.3
P1.13
USBDP
VSSIOPLL
AVSS
VSS18
7
VSS
P0.0
P1.10
USBDN
P1.7
P1.6
P1.5
P1.1
8
P1.15
P1.14
VSS
P1.8
V33IOPLL
P1.4
P1.3
P1.2
STR71xF
System architecture
Table 6.
STR712/715 BGA Ball Connections
A
B
C
D
E
F
G
H
1
P0.10
P0.11
P0.12
P0.14
V33
JTCK
TEST
V33IOPLL
2
P0.9
VSS
P0.13
VSS
JTMS
JTRSTn
P0.15
VSSIOPLL
3
P0.5
P0.7
BOOTEN
JTDI
NU
STDBY
RTCXTI
CK
4
VSS18
VSS
P0.8
JTDO
AVDD
V18BKP
RSTIN
RTCXTO
5
P0.2
P0.4
V18
P0.6
P1.9
P1.0
V18
VSSBKP
6
V33
P0.1
P0.3
P1.13
P1.11/
CANRX1)
VSSIOPLL
AVSS
VSS18
7
VSS
P0.0
P1.10
P1.12/
CANTX1)
P1.7
P1.6
P1.5
P1.1
8
P1.15
P1.14
VSS
P1.8
V33IOPLL
P1.4
P1.3
P1.2
1)
CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.
Legend / abbreviations for Table 7:
Type:
I = input, O = output, S = supply, HiZ= high impedance,
In/Output level: C = CMOS 0.3VDD/0.7VDD
CT= CMOS 0.3VDD/0.7VDD with input trigger
TT= TTL 0.8V / 2V with input trigger
C/T = Programmable levels: CMOS 0.3VDD/0.7VDD or TTL 0.8V / 2V
Port and control configuration:
Input:
pu/pd= software enabled internal pull-up or pull down
pu= in reset state, the internal 100kΩ weak pull-up is enabled.
pd = in reset state, the internal 100kΩ weak pull-down is enabled.
Output:
OD = open drain (logic level)
PP = push-pull
T = true OD, (P-Buffer and protection diode to VDD not implemented),
5V tolerant.
23/78
System architecture
PP
OD
Output
Capability
interrupt
Input
Input level
Pin name
Type
BGA64
LQFP64
Pin n°
Active in Stdby
STR711/STR712/STR715 pin description
Reset state1)
Table 7.
STR71xF
Main
function
(after
reset)
Alternate function
UART1:
Receive Data
input
1
P0.10/U1.RX/
A1 U1.TX/
SC.DATA
2
B1
UART1: Transmit data
output.
Note: This pin may be used for
Port 0.10 Smartcard DataIn/DataOut or single
wire UART (half duplex) if programmed
as Alternate Function Output. The pin
will be tri-stated except when UART
transmission is in progress
I/O pd
CT
X 4mA
T
P0.11/BOOT.1
I/O pd
/U1.TX
CT
4mA
X
X
Select Boot
Port 0.11 Configuration
input
3
C1 P0.12/SC.CLK I/O pd
CT
4mA
X
X
Port 0.12 Smartcard reference clock output
4
B2 VSS
5
C2
P0.13/U2.RX/
T2.OCMPA
I/O pu
CT
X 4mA
X
X
UART2:
Port 0.13 Receive Data
input
Timer2: Output
Compare A output
6
D1
P0.14/U2.TX/
T2.ICAPA
I/O pu
CT
4mA
X
X
UART2:
Port 0.14 Transmit data
output
Timer2: Input Capture
A input
7
C3 BOOTEN
I
8
D2 VSS
S
Ground voltage for digital I/Os2)
9
E1 V33
S
Supply voltage for digital I/Os2)
UART1: Transmit data
output.
Ground voltage for digital I/Os2)
S
Boot control input. Enables sampling of BOOT[1:0]
pins
CT
10 D3 JTDI
I
TT
JTAG Data input. External pull-up required.
11 E2 JTMS
I
TT
JTAG Mode Selection Input. External pull-up
required.
12 F1 JTCK
I
C
JTAG Clock Input. External pull-up or pull-down
required.
13 D4 JTDO
O
14 F2 JTRST
I
8mA
TT
X
JTAG Data output. Note: Reset state = HiZ.
JTAG Reset Input. External pull-up required.
15 E3 NU
Reserved, must be forced to ground.
16 G1 TEST
Reserved, must be forced to ground.
17 H1 V33IO-PLL
S
Supply voltage for digital I/O circuitry and for PLL
reference2)
18 H2 VSSIO-PLL
S
Ground voltage for digital I/O circuitry and for PLL
reference2)
19 H3 CK
I
24/78
C
Reference clock input
STR71xF
System architecture
PP
X
OD
TT
Output
Capability
interrupt
P0.15/
WAKEUP
Input
Input level
20 G2
Pin name
Type
BGA64
LQFP64
Pin n°
Active in Stdby
STR711/STR712/STR715 pin description
Reset state1)
Table 7.
Main
function
(after
reset)
Alternate function
Port 0.15 Wakeup from Standby mode input.
I
X
Note: This port is input only.
21 G3 RTCXTI
Realtime Clock input and input of 32 kHz oscillator
amplifier circuit
22 H4 RTCXTO
Output of 32 kHz oscillator amplifier circuit
23 F3 STDBY
I/O
CT
24 G4 RSTIN
I
CT
X Reset input
S
X Stabilization for low power voltage regulator.
S
Stabilization for low power voltage regulator.
Requires external capacitors of at least 1µF
between V18BKP and VSS18BKP. See Figure 5.
X
Note: If the low power voltage regulator is
bypassed, this pin can be connected to an external
1.8V supply.
25 H5 VSSBKP
26 F4 V18BKP
4mA
Input: Hardware Standby mode entry input active
low.
Caution: External pull-up to V33 required to select
normal mode.
X
Output: Standby mode active low output following
Software Standby mode entry.
Note: In Standby mode all pins are in high
impedance except those marked Active in Stdby.
X
27 G5 V18
S
Stabilization for main voltage regulator. Requires
external capacitors of at least 10µF + 33nF
between V18 and VSS18. See Figure 5.
28 H6 VSS18
S
Stabilization for main voltage regulator.
29 E4 VDDA
S
Supply voltage for A/D Converter
30 G6 VSSA
S
Ground voltage for A/D Converter
31 F5
P1.0/T3.OCM
PB/AIN.0
I/O pu
CT
4mA
X
X
Port 1.0
Timer 3: Output
ADC: Analog input 0
Compare B
P1.1/T3.ICAP
32 H7 A/T3.EXTCLK I/O pu
/AIN.1
CT
4mA
X
X
Port 1.1
Timer 3: Input
Capture A or
External Clock
input
33 H8
P1.2/T3.OCM
PA/AIN.2
I/O pu
CT
4mA
X
X
Port 1.2
Timer 3: Output
ADC: Analog input 2
Compare A
34 G8
P1.3/T3.ICAP
B/AIN.3
I/O pu
CT
4mA
X
X
Port 1.3
Timer 3: Input
Capture B
ADC: Analog input 3
35 F8
P1.4/T1.ICAP
I/O pu
A/T1.EXTCLK
CT
4mA
X
X
Port 1.4
Timer 1: Input
Capture A
Timer 1: External
Clock input
ADC: Analog input 1
25/78
System architecture
Input
CT
4mA
X
X
Port 1.5
Timer 1: Input
Capture B
37 F7
P1.6/T1.OCM
PB
I/O pu
CT
4mA
X
X
Port 1.6
Timer 1: Output
Compare B
interrupt
I/O pu
Pin name
Type
P1.5/T1.ICAP
B
BGA64
36 G7
LQFP64
PP
Main
function
(after
reset)
OD
Output
Capability
Input level
Pin n°
Active in Stdby
STR711/STR712/STR715 pin description
Reset state1)
Table 7.
STR71xF
Alternate function
38 E8 V33IO-PLL
S
Supply voltage for digital I/O circuitry and for PLL
reference2)
39 F6 VSSIO-PLL
S
Ground voltage for digital I/O circuitry and for PLL
reference2)
40 E7
P1.7/T1.OCM
PA
Timer 1: Output
Compare A
I/O pu
CT
4mA
X
X
Port 1.7
I/O pd
CT
4mA
X
X
Port 1.8
42 E6 P1.11/CANRX I/O pu
CT
X 4mA
X
X
Port 1.11
CAN: receive data input
Note: On STR710 and STR712 only
43 D7 P1.12/CANTX I/O pu
CT
4mA
X
X
Port 1.12
CAN: Transmit data output
Note: On STR710 and STR712 only
41 D8 P1.8
42 E6 USBDP
I/O
CT
USB bidirectional data (data +). Reset state = HiZ
Note: On STR710 and STR711 only
This pin requires an external pull-up to V33 to
maintain a high level.
43 D7 USBDN
I/O
CT
USB bidirectional data (data -). Reset state = HiZ
Note: On STR710 and STR711 only.
44 C8 VSS
45 E5 P1.9
Ground voltage for digital I/O circuitry2)
S
I/O pd
CT
4mA
X
X
Port 1.9
46 C7
P1.10/USBCL
K
I/O pd
C/
T
4mA
X
X
Port 1.10
47 D6
P1.13/HCLK/I
0.SCL
I/O pd
CT
X 4mA
X
X
HDLC:
Port 1.13 reference clock I2C clock
input
48 B8
P1.14/HRXD/I
I/O pu
0.SDA
CT
X 4mA
X
X
Port 1.14
CT
4mA
X
X
Port 1.15 HDLC: Transmit data output
49 A8 P1.15/HTXD
I/O pu
USB: 48 MHZ
clock input
HDLC: Receive
I2C serial data
data input
50 A7 VSS
S
Ground voltage for digital I/O circuitry2)
51 A6 V33
S
Supply voltage for digital I/O circuitry2)
26/78
STR71xF
System architecture
PP
OD
Output
Capability
interrupt
Input
Input level
Pin name
Type
BGA64
LQFP64
Pin n°
Active in Stdby
STR711/STR712/STR715 pin description
Reset state1)
Table 7.
Main
function
(after
reset)
Alternate function
SPI0 Master
in/Slave out
data
52 B7
P0.0/S0.MISO
I/O pu
/U3.TX
CT
4mA
X
X
Port 0.0
Note: Programming AF function selects
UART by default. BSPI must be
enabled by SPI_EN bit in the BOOTCR
register.
BSPI0: Master
out/Slave in
data
53 B6
P0.1/S0.MOSI
I/O pu
/U3.RX
CT
X 4mA
X
X
Port 0.1
P0.2/S0.SCLK
I/O pu
/I1.SCL
CT
X 4mA
X
X
Port 0.2
CT
4mA
56 B5 P0.4/S1.MISO I/O pu
CT
4mA
X
X
I2C1: Serial clock
Note: Programming AF function selects
I2C by default. BSPI must be enabled
by SPI_EN bit in the BOOTCR register.
SPI0: Slave
Select input
active low.
P0.3/S0.SS/I1
I/O pu
55 C6
.SDA
UART3: Receive Data
input
Note: Programming AF function selects
UART by default. BSPI must be
enabled by SPI_EN bit in the BOOTCR
register.
BSPI0: Serial
Clock
54 A5
UART3 Transmit data
output
I2C1: Serial Data
Port 0.3
Note: Programming AF function selects
I2C by default. BSPI must be enabled
by SPI_EN bit in the BOOTCR register.
X
X
Port 0.4
SPI1: Master in/Slave out data
57 A4 VSS18
S
Stabilization for main voltage regulator.
58 C5 V18
S
Stabilization for main voltage regulator. Requires
external capacitors of at least 10µF + 33nF
between V18 and VSS18. See Figure 5.
59 B4 VSS
S
Ground voltage for digital I/Os
60 A3 P0.5/S1.MOSI I/O pu
CT
4mA
X
X
Port 0.5
SPI1: Master out/Slave In data
61 D5 P0.6/S1.SCLK I/O pu
CT
X 4mA
X
X
Port 0.6
SPI1: Serial Clock
I/O pu
CT
4mA
X
X
Port 0.7
SPI1: Slave Select input active low
62 B3 P0.7/S1.SS
27/78
System architecture
PP
OD
interrupt
Output
Capability
Input
Input level
Pin name
Type
BGA64
LQFP64
Pin n°
Active in Stdby
STR711/STR712/STR715 pin description
Reset state1)
Table 7.
STR71xF
Main
function
(after
reset)
Port 0.8
63 C4
P0.8/U0.RX/U
I/O pd
0.TX
CT
X 4mA
T
64 A2
P0.9/U0.TX/B
OOT.0
CT
4mA
X
I/O pd
Alternate function
UART0:
Receive Data
input
UART0: Transmit data
output.
Note: This pin may be used for single wire UART
(half duplex) if programmed as Alternate Function
Output. The pin will be tri-stated except when
UART transmission is in progress
X
Port 0.9
Select Boot
Configuration
input
UART0: Transmit data
output
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 8 on page 29.
The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends
on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset
2. V33IO-PLL and V33 are internally connected. VSSIO-PLL and VSS are internally connected.
3.5
External connections
Figure 5.
Recommended external connection of V18 and V18BKP pins
33 nF
33 nF
129 128
58 57
V18
LQFP144
V18BKP V18
28/78
V18
LQFP64
V18BKP
V18
54 55 58 59
25 26 27 28
1µF 10 µF
1µF 10 µF
STR71xF
System architecture
3.6
I/O port configuration
Table 8.
Port bit configuration table
PxD
Configuration Mode
Input
buffer
PxC2
PxC1
PxC0
register
register
register
Read
access
Write
access
TTL floating
I/O pin
don’t care
0
0
1
CMOS floating
I/O pin
don’t care
0
1
0
CMOS PullDown
I/O pin
0
0
1
1
CMOS
Pull-Up
I/O pin
1
0
1
1
Analog input
AIN
0
don’t care
0
0
0
Output Open-Drain
N.A.
I/O pin
0 or 1
1
0
0
Output Push-Pull
N.A.
last value
written
0 or 1
1
0
1
Alternate Function Open-Drain CMOS floating
I/O pin
don’t care
1
1
0
Alternate Function Push-Pull
I/O pin
don’t care
1
1
1
TTL Input Floating
CMOS Input Floating
INPUT
register
CMOS Input Pull-Down
(IPUPD)
CMOS Input Pull-Up (IPUPD)
OUTPUT
CMOS floating
Legend:
AIN: Analog Input
CMOS: CMOS Input levels
IPUPD: Input Pull Up /Pull Down
TTL: TTL Input levels
N.A.: not applicable. In Output mode, a read access to the port gets the output latch value.
29/78
System architecture
3.7
STR71xF
Memory mapping
Figure 6.
Memory map
APB Memory Space
0xFFFF FFFF
Addressable Memory Space
4 Gbytes
0xFFFF FFFF
EIC
0xFFFF F800
0xE000 E000
4K
0xFFFF F800
EIC
4K
WDG
4K
RTC
4K
TIMER 3
4K
TIMER 2
4K
TIMER 1
4K
TIMER 0
4K
CLKOUT
4K
ADC
4K
reserved
4K
IOPORT 2
4K
IOPORT 1
4K
IOPORT 0
4K
reserved
4K
XTI
4K
APB BRIDGE 2 REGS
4K
0xE000 D000
0xE000 C000
7
0xE000 B000
0xE000 0000
64K
APB2
0xE000 A000
0xE000 9000
0xE000 8000
6
0xE000 7000
0xC000 0000
64K
APB1
0xE000 6000
FLASH Memory Space
272 Kbytes + regs
0xE000 5000
0x4010 DFBF
FLASH Registers
5
36b
0xE000 4000
0x4010 0000
0xE000 3000
0xA000 0000
reserved
1K
PRCCU
0xE000 2000
0x400C 4000
0xE000 1000
B1F1
8K
0xE000 0000
4
0x400C 2000
B1F0
0x8000 0000
Reserved
4K
0xC001 0000
reserved
0xC000 F000
0x4004 0000
3
0xC000 E000
EXTMEM
See Figure 8
reserved
8K
0x400C 0000
0xC000 D000
64MB
B0F7
0x6000 0000
64K
0xC000 C000
0xC000 B000
reserved
4K
HDLC + RAM
4K
reserved
4K
reserved
4K
BSPI 1
4K
BSPI 0
4K
CAN
4K
USB + RAM
4K
UART 3
4K
UART 2
4K
UART 1
4K
UART 0
4K
reserved
4K
I2C 1
4K
0x4003 0000
0xC000 A000
2
B0F6
0x4000 0000
64K
256K+16K+36b
FLASH
0xC000 8000
0x4002 0000
0xC000 7000
0xC000 6000
1
B0F5
0x2000 0000
0xC000 9000
64K
64K
RAM
0xC000 5000
0xC000 4000
0x4001 0000
0xC000 3000
0
0x0000 0000
FLASH/RAM/EMI
(*) FLASH aliased at 0x0000 0000h
by system decoder for booting with
valid instruction upon RESET
from Block B0 (8 Kbytes)
Reserved
30/78
0x4000
0x4000
0x4000
0x4000
0x4000
8000
6000
4000
2000
0000
B0F4
32K
B0F3
B0F2
B0F1
B0F0
8K
8K
8K
8K
0xC000 2000
2
0xC000 1000
0xC000 0000
I C0
4K
APB BRIDGE 1 REGS
4K
STR71xF
System architecture
Figure 7.
Mapping of Flash memory versions
FLASH Memory Space
64 Kbytes + 16K RWW + regs
0x4010 DFBF
FLASH Memory Space
128 Kbytes + 16K RWW + regs
0x4010 DFBF
FLASH Registers
36b
0x4010 0000
B1F1
8K
B1F1
8K
0x400C 0000
8K
8K
0x4003 0000
reserved
64K
0x4002 0000
reserved
64K
reserved
64K
0x4001 0000
64K
32K
B0F3
B0F2
B0F1
B0F0
8K
8K
8K
8K
B0F5
0x4000
0x4000
0x4000
0x4000
0x4000
STR715FR0xx
STR711FR0xx
STR712FR0xx
8000
6000
4000
2000
0000
64K
B0F6
64K
B0F5
64K
0x4002 0000
64K
0x4001 0000
B0F4
B0F7
0x4003 0000
0x4002 0000
reserved
8K
0x4004 0000
0x4003 0000
reserved
B1F0
reserved
64K
8K
0x400C 0000
0x4004 0000
reserved
B1F1
0x400C 2000
B1F0
reserved
Table 9.
reserved
0x400C 0000
0x4004 0000
36b
0x400C 4000
0x400C 2000
B1F0
FLASH Registers
0x4010 0000
0x400C 4000
0x400C 2000
8000
6000
4000
2000
0000
36b
reserved
0x400C 4000
0x4000
0x4000
0x4000
0x4000
0x4000
0x4010 DFBF
FLASH Registers
0x4010 0000
reserved
FLASH Memory Space
256 Kbytes + 16K RWW + regs
0x4001 0000
B0F4
32K
B0F3
B0F2
B0F1
B0F0
8K
8K
8K
8K
STR710FZ1xx
STR711FR1xx
STR712FR1xx
0x4000
0x4000
0x4000
0x4000
0x4000
8000
6000
4000
2000
0000
B0F4
32K
B0F3
B0F2
B0F1
B0F0
8K
8K
8K
8K
STR710F72xx
STR711FR2xx
STR712FR2xx
RAM memory mapping
Part number
RAM size
Start address
End address
STR715FR0xx
STR711FR0xx
STR712FR0xx
16 Kbytes
0x2000 0000
0x2000 3FFF
STR710FZ1xx
STR711FR1xx
STR712FR1xx
32 Kbytes
0x2000 0000
0x2000 7FFF
STR710FR2xx
STR710Rxx
STR711FR2xx
STR712FR2xx
64 Kbytes
0x2000 0000
0x2000 FFFF
31/78
System architecture
Figure 8.
STR71xF
External memory map
Addressable Memory Space
4 Gbytes
0xFFFF FFFF
EIC
0xFFFF F800
7
0xE000 0000
APB2
6
0xC000 0000
APB1
External Memory Space
64 MBytes
5
0xA000 0000
0x6C00
0x6C00
0x6C00
0x6C00
PRCCU
000C
0008
0004
0000
BCON3
BCON2
BCON1
BCON0
register
register
register
register
4
0x66FF FFFF
0x8000 0000
Reserved
Bank3
16M
Bank2
16M
Bank1
16M
Bank0
16M
CSn.3
0x6600 0000
3
0x64FF FFFF
0x6000 0000
EXTMEM
CSn.2
0x6400 0000
2
0x4000 0000
0x62FF FFFF
CSn.1
FLASH
0x6200 0000
0x60FF FFFF
1
CSn.0
0x2000 0000
RAM
0x6000 0000
0
0x0000 0000
FLASH/RAM/EMI
Reserved
Drawing not in scale
32/78
STR71xF
Electrical parameters
4
Electrical parameters
4.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
4.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA=25°C and TA=TAmax (given by the
selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
4.1.2
Typical values
Unless otherwise specified, typical data are based on TA=25°C, V33=3.3V (for the
3.0V≤V33≤3.6V voltage range) and V18=1.8V. They are given only as design guidelines and
are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
4.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
4.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
4.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9.
Pin loading conditions
Figure 10. Pin input voltage
STR7 PIN
STR7 PIN
L=50pF
VIN
33/78
Electrical parameters
4.2
STR71xF
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 10.
Voltage characteristics
Symbol
Ratings
Min
Max
V33- VSS
External 3.3V Supply voltage
(including AVDD and V33IO-
-0.3
4.0
Digital 1.8V Supply voltage
on V18BKP backup supply 2)
-0.3
2.0
Input voltage on true open
drain pin (P0.10) 1)
VSS-0.3
+5.5
Input voltage on any other
pin 1)
VSS-0.3
V33+0.3
PLL)
V18BKP - VSSBKP
VIN
34/78
2)
|∆V33x|
Variations between different
3.3V power pins
50
50
|∆V18x|
Variations between different
1.8V power pins 5)
25
25
Variations between all the
different ground pins
50
50
|VSSX - VSS|
Unit
VESD(HBM)
Electro-static discharge
voltage (Human Body Model)
VESD(MM)
Electro-static discharge
voltage (Machine Model)
see : Absolute maximum ratings
(electrical sensitivity) on page 48
V
mV
STR71xF
Electrical parameters
Table 11.
Current characteristics
Symbol
Ratings
Max.
IV33
Total current into V33/V33IO-PLL power lines (source) 2)
150
IVSS
Total current out of VSS/VSSIO-PLL ground lines (sink) 2)
150
Output current sunk by any I/O and control pin
25
Output current source by any I/Os and control pin
- 25
Injected current on RSTIN pin
±5
Injected current on CK pin
±5
Injected current on any other pin 4)
±5
Total injected current (sum of all I/O and control pins) 4)
± 25
IIO
IINJ(PIN) 1) 3)
ΣIINJ(PIN) 1)
Unit
mA
Notes:
1. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>V33 while a negative injection is induced by VIN<VSS. For true open-drain pads,
there is no positive injection current, and the corresponding VIN maximum must always be respected. Data
based on TA = 25 °C.
2. All 3.3V power (V33, AVDD, V33IO-PLL) and ground (VSS, AVSS, VSSIO-PLL) pins must always be connected
to the external 3.3V supply.
3. Negative injection disturbs the analog performance of the device. See note in Section 4.3.11: ADC
characteristics on page 66.
4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.
5. Only when using external 1.8V power supply. All the power (V18, V18BKP) and ground (VSS18, VSSBKP) pins
must always be connected to the external 1.8V supply.
Table 12.
Thermal characteristics
Symbol
Ratings
Value
Unit
TSTG
Storage temperature range
-65 to +150
°C
TJ
Maximum junction temperature (see Section 5.2: Thermal characteristics on
page 72)
35/78
Electrical parameters
4.3
STR71xF
Operating conditions
Subject to general operating conditions for V33, and TA.
Table 13.
Symbol
fMCLK
fPCLK
V33
V18BKP
TA
General operating conditions
Parameter
Conditions
Min
Max
Accessing SRAM or external
memory with 0 wait states
0
66
Accessing FLASH in burst
mode
0
50
Executing from FLASH with
RWW
0
45 1)
Accessing FLASH with 0 wait
states
0
33
0
33
MHz
Standard Operating
Voltage (includes V33I0_PLL)
3.0
3.6
V
Backup Operating Voltage
1.4
1.8
V
Ambient temperature range 6 Partnumber Suffix
-40
85
°C
Typ
Max
Unit
Internal CPU Clock
frequency
Unit
MHz
Internal APB Clock
frequency
1. Data guaranteed by characterization, not tested in production
Table 14.
Symbol
tV33
36/78
Operating conditions at power-up / power-down
Parameter
V33 rise time rate
Conditions
Subject to general
operating conditions for
TA.
Min
µs/V
20
20
ms/V
STR71xF
4.3.1
Electrical parameters
Supply current characteristics
The current consumption is measured as described in Figure 9 on page 33 and Figure 10
on page 33.
Total current consumption
The MCU is placed under the following conditions:
●
All I/O pins in input mode with a static value at V33 or VSS (no load)
●
All peripherals are disabled except if explicitly mentioned.
●
Embedded Regulators are used to provide 1.8V (except if explicitly
mentioned)
Subject to general operating conditions for V33, and TA.
Table 15.
Symbol
Total current consumption
Parameter
Supply current in RUN
mode
IDD4)
Conditions
Typ 1) Max 2)
fMCLK=66 MHz, RAM execution
73.6
fMCLK=32 MHz, Flash non-burst
execution
49.3
Unit
100
mA
Supply current in STOP
mode
TA=25°C
10
503)
µA
Supply current in
STANDBY mode
OSC32K bypassed
12
30
µA
Notes:
1. Typical data are based on TA=25°C, V33=3.3V.
2. Data based on characterization results, tested in production at V33, fMCLK max. and TA max.
3. Based on device characterisation, device power consumption in STOP mode at TA 25°C is predicted to be
30µA or less in 99.730020% of parts.
4. The conditions for these consumption measurements are described in application note AN2100.
37/78
Electrical parameters
Table 16.
Symbol
STR71xF
Typical power consumption data
Parameter
Conditions
Typical
current
on V33
MCLK = 16 MHz, PCLK1 = PCLK2 = 16
MHz
23
MCLK = 32 MHz, PCLK1 = PCLK2 = 32
MHz
40
MCLK = 48 MHz, PCLK1 = PCLK2 = 24
MHz
50
MCLK = 64 MHz, PCLK1 = PCLK2 = 32
MHz
63
MCLK = 16 MHz
16
MCLK = 32 MHz
26
MCLK = 48 MHz
39
MCLK = 64 MHz
48
Unit
All periphs ON
RUN mode
current from
RAM
All periphs OFF
IDDRUN
mA
MCLK = 16 MHz, PCLK1 = PCLK2 = 16
MHz
27
MCLK = 32 MHz, PCLK1 = PCLK2 = 32
MHz
47
MCLK = 48 MHz, PCLK1 = PCLK2 = 24
MHz
62
MCLK = 16 MHz
21
All periphs OFF MCLK = 32 MHz
36
MCLK = 48 MHz
53
All periphs ON
RUN mode
current from
FLASH
IDDSLOW
SLOW mode current
MCLK = CK_AF (32 kHz), MVR off
1.7
IDDWAIT
WAIT mode current
(all periphs ON)
PCLK1 = PCLK2 = 1 MHz
13
IDDLPWAIT
LPWAIT mode current
CK_AF (32 kHz), Main VReg off, FLASH in
power-down
37
Main VReg off, FLASH in power down, RTC
on
18
Main VReg off, FLASH in power down, RTC
off
10
LP VReg on, LVD on, RTC on
10
LP VReg off (ext 1.8V on V18BKP), LVD on,
RTC on
9
LP VReg off (ext1.8V on V18BKP), LVD off,
RTC on
5
LP VReg off (ext 1.8V on V18BKP), LVD off,
RTC off
1
IDDSTOP
IDDSB
38/78
STOP mode current
STANDBY mode current
µA
STR71xF
Electrical parameters
Figure 11. STOP IDD vs. V33
Figure 12. STANDBY IDD vs. V33
25
100
90
TA=-45 to +25°C
80
20
IDDSTDBY (µA)
TA=+90°C
70
IDDSTOP (µA)
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
60
50
40
15
10
30
5
20
10
0
0
3
3.1
3.2
3.3
3.4
3.5
3.6
V33 (V)
3
3.1
3.2
3.3
3.4
3.5
3.6
V33 (V)
Figure 13. WFI IDD vs. V33
100
IDDWFI (µA)
90
80
70
TA=-40 to +90°C
60
50
3
3.1
3.2
3.3
3.4
3.5
3.6
V33 (V)
39/78
Electrical parameters
STR71xF
On-chip peripherals
Table 17.
Symbol
Peripheral current consumption
Parameter
IDD(PLL1) PLL1 supply current
IDD(PLL2) PLL2 supply current
IDD(TIM)
Conditions
TA= 25°C
TIM Timer supply current 1)
Typ
3.42
5.81
0.88
IDD(BSPI) BSPI supply current 2)
1.1
IDD(UART) UART supply current 2)
1.05
IDD(I2C)
I2C supply current 2)
IDD(ADC)
ADC supply current when converting 5)
IDD(HDLC) HDLC supply current 2)
Unit
mA
TA= 25°C,
fPCLK1= fPCLK2=33 MHz
0.45
1.89
1.82
IDD(USB)
USB supply current 2)
2.08
IDD(CAN)
CAN supply current 2)
1.11
Notes:
1. Data based on a differential IDD measurement between reset configuration and timer counter running at
16MHz. No IC/OC programmed (no I/O pads toggling).
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling.
3. Data based on a differential IDD measurement between reset configuration and continuous A/D
conversions.
40/78
STR71xF
4.3.2
Electrical parameters
Clock and timing characteristics
External clock sources
Subject to general operating conditions for V33, and TA.
Table 18.
CK external clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
MHz
fCK
External clock source
frequency
0
16.5
VCKH
CK input pin high level
voltage
0.7xV33
V33
VCKL
CK input pin low level
voltage
VSS
tw(CK)
tw(CK)
CK high or low time 1)
25
V
ns
tr(CK)
tf(CK)
CK rise or fall
time 1)
20
CK input capacitance1)
CIN(CK)
DuCy(XT1)
IL
0.3xV33
5
Duty cycle
40
VSS≤VIN≤V33
CK Input leakage current
pF
60
%
±1
µA
Notes:
1. Data based on design simulation and/or technology characteristics, not tested in production.
Figure 14. CK external clock source
90%
VCKH
10%
VCKL
tr(CK)
TCK
tf(CK)
tw(CKH)
tw(CKL)
fCLK
EXTERNAL
CLOCK SOURCE
CK
IL
STR710
41/78
Electrical parameters
Table 19.
Symbol
fRTCXT1
STR71xF
RTCXT1 external clock characteristics
Parameter
Conditions
External clock source
frequency
Min
Typ
Max
Unit
0
500
kHz
VRTCXT1H
RTCXT1 input pin high level
voltage
0.7xV33
V33
VRTCXT1L
RTCXT1 input pin low level
voltage
VSS
0.3xV33
tw(RTCXT1)
tw(RTCXT1)
RTCXT1 high or low time 1)
100
V
tr(RTCXT1)
tf(RTCXT1)
ns
RTCXT1 rise or fall
CIN(RTCXT1)
RTCXT1 input
capacitance1)
DuCy(RTCXT1)
Duty cycle
IL
time 1)
RTCXT1 Input leakage
current
5
5
30
VSS≤VIN≤V33
Notes:
1. Data based on design simulation and/or technology characteristics, not tested in production.
42/78
pF
70
%
±1
µA
STR71xF
Electrical parameters
OSC32K crystal / ceramic resonator oscillator
The STR7 RTC clock can be supplied with a 32 kHz Crystal/Ceramic resonator oscillators.
All the information given in this paragraph are based on characterization results with
specified typical external components. In the application, the resonator and the load
capacitors have to be placed as close as possible to the oscillator pins in order to minimize
output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer
for more details (frequency, package, accuracy...).
Table 20.
32K oscillator characteristics (fOSC32K= 32.768 kHz)
Symbol
Parameter
Conditions
Typ
Unit
2.7
MΩ
RF
Feedback resistor
CL1
CL2
Recommended load capacitance
versus equivalent serial resistance
of the crystal (RS)1)
RS=40K Ω
12.5
pF
i2
RTCXT2 driving current
V33=3.3 V
VIN=VSS
3.2
µA
gm
Oscillator Transconductance
8
µA/V
5
s
tSU(OSC32KHZ)2) startup time
V33 is stabilized
Notes:
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
2.
tSU(OSC32KHZ) is the start-up time measured from the moment it is enabled (by software) to a stabilized
32 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer
Figure 15. Typical application with a 32 kHz crystal
WHEN RESONATOR WITH
INTEGRATED CAPACITORS
i2
CL1
CL2
fOSC32K
RTCXT1
32 kHz
RESONATOR
FEEDBACK
LOOP
RF
RTCXT2
STR710
43/78
Electrical parameters
STR71xF
DEVICE
RTCXTO
RTCXTI
RTCXTI
DEVICE
RTCXTO
Figure 16. RTC crystal oscillator and resonator
RS
CL
CL
PLL electrical characteristics
V33 = 3.0 to 3.6V, V33IOPLL = 3.0 to 3.6V, TA = -40 / 85 °C unless otherwise specified.
Table 21.
PLL1 characteristics
Symbol
Parameter
Value
Test conditions
Unit
Min
Typ
fPLLCLK1 PLL multiplier output clock
FREF_RANGE = 0
FREF_RANGE = 1
PLL input clock
fPLL1
MX[1:0]=’00’ or ‘01’
FREF_RANGE = 1
MX[1:0]=’10’ or ‘11’
PLL input clock duty cycle
FREF_RANGE = 0
MX[1:0]=’01’ or ‘11’
FREF_RANGE = 0
MX[1:0]=’00’ or ‘10’
fFREE1
Max
165
MHz
1.5
3.0
MHz
3.0
8.25
MHz
3.0
6
MHz
25
75
%
125
kHz
250
kHz
250
kHz
500
kHz
PLL free running frequency
FREF_RANGE = 1
MX[1:0]=’01’ or ‘11’
FREF_RANGE = 1
MX[1:0]=’00’ or ‘10’
FREF_RANGE = 0
Stable Input Clock
tLOCK1
PLL lock time
300
µs
600
µs
2
ns
Stable V33IOPLL, V18
FREF_RANGE = 1
Stable Input Clock
Stable V33IOPLL, V18
∆tJITTER1 PLL jitter (peak to peak)
44/78
tPLL = 4 MHz, MX[1:0]=’11’
Global Output division = 32
(Output Clock = 2 MHz)
0.7
STR71xF
Electrical parameters
Table 22.
PLL2 characteristics
Value
Symbol
Parameter
Test conditions
Unit
Min
fPLLCLK2
fPLL2
tLOCK2
∆tJITTER2
Table 23.
Symbol
Typ
PLL multiplier output
clock
Max
140
MHz
FREF_RANGE = 0
1.5
3.0
MHz
FREF_RANGE = 1
3.0
5
MHz
FREF_RANGE = 0
Stable Input Clock
Stable V33IOPLL, V18
300
µs
FREF_RANGE = 1
Stable Input Clock
Stable V33IOPLL, V18
600
µs
2
ns
PLL input clock
PLL lock time
PLL jitter (peak to peak)
tPLL = 4 MHz, MX[1:0]=’11’
Global Output division = 32
(Output Clock = 2 MHz)
0.7
Low-power mode wakeup timing
Parameter
Typ
Unit
tWULPWFI
Wakeup from LPWFI mode
26(1)
µs
tWUSTOP
Wakeup from STOP mode
2048
CLK
Cycles
tWUSTBY
Wakeup from STANDBY mode
(2)
2048 CLK Cycles
+ 8 CLK2 Cycles(3)
Cycles
1. Clock selected is CK2_16, Main VReg OFF and Flash in power-down
2. The CLK clock is derived from the external oscillator.
3. Refer to Figure 7. Reset General Timing in the STR71xF Reference Manual (UM0084)
45/78
Electrical parameters
4.3.3
STR71xF
Memory characteristics
Flash memory
V33 = 3.0 to 3.6V, TA = -40 to 85 °C unless otherwise specified.
Table 24.
Flash memory characteristics
Value
Symbol
Parameter
Test conditions
Unit
Min.
Max1)
tPW
Word Program
40
µs
tPDW
Double Word Program
60
µs
tPB0
Bank 0 Program (256K)
Double Word Program
1.6
2.1
s
tPB1
Bank 1 Program (16K)
Double Word Program
130
170
ms
tES
Sector Erase (64K)
Not preprogrammed
Preprogrammed
2.3
1.9
4.0
3.3
s
tES
Sector Erase (8K)
Not preprogrammed
Preprogrammed
0.7
1.1
0.6
1.0
tES
Bank 0 Erase (256K)
Not preprogrammed
Preprogrammed
8.0
13.7
6.6
11.2
tES
Bank 1 Erase (16K)
Not preprogrammed
Preprogrammed
0.9
1.5
0.8
1.3
s
s
s
tRPD2)
Recovery when disabled
20
µs
tPSL2)
Program Suspend Latency
10
µs
tESL2)
Erase Suspend Latency
300
µs
NEND_B0
Endurance (Bank 0
sectors)
10
kcycles
NEND_B1
Endurance (Bank 1
sectors)
100
kcycles
tRET
Data Retention (Bank 0
and Bank 1)
TA=85°
20
Years
tESR
Erase Suspend Rate
Min time from Erase
Resume to next Erase
Suspend
20
ms
Notes:
1. TA=45°C after 0 cycles. Guaranteed by characterization, not tested in production.
2. Guaranteed by design, not tested in production
46/78
Typ
STR71xF
4.3.4
Electrical parameters
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electro magnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two electro magnetic events until a failure occurs (indicated by the
LEDs).
●
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the
device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2
standard.
●
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100pF capacitor, until a functional disturbance occurs. This test
conforms with the IEC 1000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations:
The software flowchart must include the management of runaway conditions such as:
●
Corrupted program counter
●
Unexpected reset
●
Critical Data corruption (control registers...)
Prequalification trials:
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
In the case of an ARM7 CPU, in order to write robust code that can withstand all kinds of
stress, such as very strong electromagnetic disturbance, it is mandatory that the Data Abort,
Prefetch Abort and Undefined Instruction exceptions are managed by the application
software. This will prevent the code going into an undefined state or performing any
unexpected operation.
47/78
Electrical parameters
Table 25.
STR71xF
EMS data
Symbol
Parameter
Level/
Class
Conditions
VFESD
Voltage limits to be applied on any I/O pin V33=3.3 V, TA=+25°C, fMCLK=32 MHz
to induce a functional disturbance
conforms to IEC 1000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100pF on VDD and VSS
pins to induce a functional disturbance
4A
V33=3.3 V, TA=+25°C, fMCLK=32 MHz
conforms to IEC 1000-4-4
Electro magnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm SAE J 1752/3 which specifies the board and the loading of each pin.
Table 26.
Symbol
SEMI
EMI data
Parameter
Peak level
Conditions
Monitored
frequency band
0.1 MHz to 30 MHz
V33=3.3 V, TA=+25°C,
30 MHz to 130 MHz
LQFP64 package
conforming to SAE J 130 MHz to 1 GHz
1752/3
SAE EMI Level
Max vs.
[fOSC4M/fHCLK]
Unit
16/ 48
MHz
16/8
MHz
17
19
17
16
11
11
4
3
dBµV
-
Notes:
1. Not tested in production.
2. BGA and LQFP devices have similar EMI characteristics.
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electro-static discharge (ESD)
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models
can be simulated: Human Body Model and Machine Model. This test conforms to the
JESD22-A114A/A115A standard.
48/78
STR71xF
Electrical parameters
Table 27.
Symbol
ESD absolute maximum ratings
Ratings
Conditions
VESD(HBM)
Electro-static discharge voltage
(Human Body Model)
VESD(MM)
Electro-static discharge voltage
(Machine Model)
VESD(CDM)
Electro-static discharge voltage
(Charge Device Model)
Maximum
value 1)
Unit
2000
200
TA=+25°C
V
750 on corner
pins, 500 on
others
Notes:
1. Data based on characterization results, not tested in production.
Static and dynamic latch-up
●
LU: 3 complementary static tests are required on 10 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output and configurable I/O pin) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,
refer to the application note AN1181.
●
DLU: Electro-Static Discharges (one positive then one negative test) are applied to
each pin of 3 samples when the micro is running to assess the latch-up performance in
dynamic mode. Power supplies are set to the typical values, the oscillator is connected
as near as possible to the pins of the micro and the component is put in reset mode.
This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details,
refer to the application note AN1181.
Electrical sensitivities
Table 28.
Symbol
LU
DLU
Static and dynamic latch-up
Parameter
Conditions
Class (1)
Static latch-up class
TA=+25°C
TA=+85°C
TA=+105°C
A
A
A
Dynamic latch-up class
VDD=3.3 V, fOSC4M=4 MHz, fMCLK=32 MHz,
TA=+25°C
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B
Class strictly covers all the JEDEC criteria (international standard).
49/78
Electrical parameters
4.3.5
STR71xF
I/O port pin characteristics
General characteristics
Subject to general operating conditions for V33 and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 29.
I/O static characteristics
Symbol
Parameter
VIL
Input low level voltage 1)
VIH
Input high level voltage 1)
Vhys
Schmitt trigger voltage hysteresis
VIL
Input low level voltage 1)
VIH
Input high level voltage 1)
Vhys
Schmitt trigger voltage hysteresis
VIL
Input low level voltage 1)
Conditions
Min
Typ
Max
Unit
0.3V33
V
CMOS ports
0.7V33
0.8
2)
0.9
V
0.8
V
P0.15 WAKEUP
2
1.35
0.4
2)
V
0.8
TTL ports
VIH
IINJ(PIN)
Input high level voltage 1)
V
2.0
Injected Current on any I/O pin
±4
mA
ΣIINJ(PIN) Total injected current (sum of all
I/O and control pins)
3)
± 25
Ilkg
Input leakage current 4)
VSS≤VIN≤V33
RPU
Weak pull-up equivalent
resistor5)
VIN=VSS
110
RPD
Weak pull-down equivalent
resistor5)
VIN=V33
110
CIO
I/O pin capacitance
±1
µA
150
700
kΩ
150
700
kΩ
5
pF
Notes:
1. Data based on characterization results, not tested in production.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
3. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise
refer to IINJ(PIN) specification. A positive injection is induced by VIN>V33 while a negative injection is
induced by VIN<VSS. Refer to Section 4.2 on page 34 for more details.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. The RPU pull-up and RPD pull-down equivalent resistor are based on a resistive transistor (corresponding
IPU and IPD current characteristics described in Figure 18 to Figure 19).
50/78
STR71xF
Electrical parameters
Figure 17. RPU vs. V33 with VIN=VSS
Figure 18. IPU vs. V33 with VIN=VSS
0
0.0
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
-50.0
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
-5
IPU (µA)
RPU (kohm)
-10
-100.0
-150.0
-15
-20
-200.0
-25
-250.0
-30
3
3.1
3.2
3.3
3.4
3.5
3
3.6
3.1
3.2
V33 (V)
Figure 19. RPD vs. V33 with VIN=V33
300.0
3.5
3.6
30
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
25
200.0
20
IPD (µA)
RPD (kohm)
3.4
Figure 20. IPD vs. V33 with VIN=V33
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
250.0
3.3
V33 (V)
150.0
100.0
15
10
50.0
5
0.0
3
3.1
3.2
3.3
V33 (V)
3.4
3.5
3.6
0
3
3.1
3.2
3.3
3.4
3.5
3.6
V33 (V)
51/78
Electrical parameters
STR71xF
Output driving current
Subject to general operating conditions for V33 and TA unless otherwise specified.
Table 30.
Output driving current
High Current
Standard
I/O
Symbol
Type
Parameter
Conditions
VOL 1)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
IIO=+4mA
VOH 2)
Output high level voltage for an I/O pin
when 4 pins are sourced at same time
IIO=-4mA
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
IIO=+8mA
Output high level voltage for an I/O pin
when 4 pins are sourced at same time
IIO=-8mA
VOL
1)
VOH 2)
Min
Max
Unit
0.4
V33-0.8
V
0.4
V33-0.8
Notes:
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 11 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 11 and the
sum of IIO (I/O ports and control pins) must not exceed IV33.
52/78
STR71xF
Electrical parameters
Figure 21. Typical VOL and VOH at V33=3.3V (high current ports)
3.09
0.16
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
3.08
3.07
0.14
0.12
0.10
VOL(V)
VOH(V)
3.06
3.05
0.08
3.04
0.06
3.03
0.04
3.02
0.02
3.01
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
0.00
-4
-8
Ioh (mA)
-4
-8
Iol (mA)
53/78
Electrical parameters
STR71xF
Figure 22. Typical VOL vs. V33
0.16
0.18
0.14
0.16
0.14
VOL(V) Iio=8mA
VOL (V) Iio=4mA
0.12
0.10
0.08
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
0.06
0.12
0.10
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
0.08
0.06
0.04
0.04
0.02
0.02
0.00
0.00
3
3.1
3.2
3.3
3.4
3.5
3
3.6
3.1
3.2
3.3
3.4
3.5
3.6
V33 (V)
V33 (V)
3.60
3.60
3.40
3.40
3.20
3.20
VOH(V) Iio=8mA
VOH (V) Iio=4mA
Figure 23. Typical VOH vs. V33
3.00
2.80
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
2.60
2.40
2.80
2.60
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
2.40
2.20
2.20
2.00
2.00
3
3.1
3.2
3.3
V33 (V)
54/78
3.00
3.4
3.5
3.6
3
3.1
3.2
3.3
V33 (V)
3.4
3.5
3.6
STR71xF
Electrical parameters
RSTIN pin
The RSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as
as RPU (seeTable 29 on page 50)
Subject to general operating conditions for V33 and TA unless otherwise specified.
Table 31.
RESET pin characteristics
Symbol
Parameter
Conditions
Min
Typ 1)
VIL(RSTINn) RSTIN Input low level voltage 1)
Max
Unit
0.8
V
VIH(RSTINn) RSTIN Input high level voltage 1)
2
RSTIN Input filtered pulse2)
VF(RSTINn)
500
VNF(RSTINn) RSTIN Input not filtered pulse2)
1.2
ns
µs
Notes:
1. Data based on characterization results, not tested in production.
2) Data guaranteed by design, not tested in production.
Figure 24. Recommended RSTIN pin protection.1)
Recommended
V33
V33
V33
0.01µF
EXTERNAL
RESET
CIRCUIT
4.7kΩ
RSTIN
RPU
Filter
0.01µF
INTERNAL RESET
STR7X
Required
Notes:
1. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current
characteristics described in Figure 18).
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the RSTIN pin can go below the VIL(RSTINn) max. level specified in
Table 31. Otherwise the reset will not be taken into account internally.
55/78
Electrical parameters
4.3.6
STR71xF
TIM timer characteristics
Subject to general operating conditions for V33, fMCLK, and TA unless otherwise
specified.
Refer to Section 4.3.5: I/O port pin characteristics on page 50 for more details on
the input/output alternate function characteristics (output compare, input capture,
external clock, PWM output...).
Table 32.
TIM characteristics
Symbol
Parameter
tw(ICAP)in
Input capture pulse time
tres(TIM)
Timer resolution time
fPCLK2 = 30 MHz
Timer external clock
frequency
fEXT
ResTIM
Conditions
Min
Typ
Unit
2
tCK_TIM
1
tPCLK2
33.3
ns
fCK_TIM(MAX) =
fMCLK
0
fCK_TIM/4
MHz
fCK_TIM = fMCLK =
60 MHz
0
15
MHz
16
bit
1
65536
tPCLK2
0.033
2184
µs
65536x
65536
tPCLK
143.1
s
Timer resolution
tCOUNTER
16-bit Counter clock period
when internal clock is
selected
fPCLK2 = 30 MHz
TMAX_COUNT Maximum Possible Count
fPCLK2 = 30 MHz
4.3.7
Max
EMI - external memory interface
Subject to general operating conditions for VDD, fHCLK, and TA unless otherwise specified.
The tables below use a variable which is derived from the EMI_BCONn registers (described
in the STR71x Reference Manual) and represents the special characteristics of the
programmed memory cycle.
Table 33.
Symbol
tMCLK
tC
56/78
EMI general characteristics
Parameter
CPU clock period
Memory cycle time wait states
Value
1 / fMCLK
tMCLK x (1 + [C_LENGTH])
STR71xF
Electrical parameters
Table 34.
EMI read operation
Symbol
Parameter
Value
Test Conditions
Unit
Min1)
Typ
Max1)
tRCR
Read to CSn Removal Time
19
tMCLK
21
ns
tRP
Read Pulse Time
98
tC
100
ns
tRDS
Read Data Setup Time
22
ns
tRDH
Read Data Hold Time
0
ns
tRAS
Read Address Setup Time
MCLK=50 MHz
4 wait states
27
50 pf load on all pins
1.5*tM
CLK
33
ns
tRAH
Read Address Hold Time
0.65
2
ns
tRAT
Read Address Turnaround
Time
1.9
3.25
ns
tRRT
RDn Turnaround Time
20
21
ns
tMCLK
See Figure 25, Figure 26, Figure 27 and Figure 28 for related timing diagrams.
1. Data based on characterisation results, not tested in production.
Table 35.
EMI write operation
Symbol
Parameter
Value
Test conditions
Unit
Min1)
Typ
Max1)
tWCR
WEn to CSn Removal Time
20
tMCLK
22.5
ns
tWP
Write Pulse Time
77.5
tC
80
ns
tWDS1
Write Data Setup Time 1
97
tC +
tMCLK
100
ns
tWDS2
Write Data Setup Time 2
MCLK=50 MHz
77
tC
80
ns
tWDH
Write Data Hold Time
3 wait states
20
tMCLK
23
ns
27
1.5*tMCLK
33
ns
50 pf load on all pins
tWAS
Write Address Setup Time
tWAH
Write Address Hold Time
0.6
3
ns
tWAT
Write Address Turnaround
Time
1.75
4.1
ns
tWWT
WEn Turnaround Time
20
23
ns
tMCLK
See Figure 29, Figure 30, Figure 31 and Figure 32 for related timing diagrams.
1. Data based on characterisation results, not tested in production.
57/78
Electrical parameters
STR71xF
Figure 25. Read cycle timing: 16-bit read on 16-bit memory
tRAH
A[23:0]
Address
tRP
RDn
tRCR
CSn.x
WEn.x
tRDS
tRDH
tRAS
Data Input
D[15:0]
(Input)
Figure 26. Read cycle timing: 32-bit read on 16-bit memory
tRAT
tRAH
A[23:0]
tRAH
Address
Address
tRP
tRRT
tRP
RDn
tRCR
CSn.x
WEn.x
tRAS
tRDS
tRDH
tRDS
Data Input
D[15:0]
tRDH
Data Input
(Input)
See Table 34 for read timing data.
Figure 27. Read cycle timing: 16-bit read on 8-bit memory
tRAT
tRAH
A[23:0]
tRAH
Address
Address
tRP
tRRT
tRP
RDn
tRCR
CSn.x
WEn.x
tRAS
D[7:0]
(Input)
58/78
tRDS
Data Input
tRDH
tRDS
Data Input
tRDH
STR71xF
Electrical parameters
Figure 28. Read cycle timing: 32-bit read on 8-bit memory
tRAT
A[23:0]
tRAH
tRAH
Address
Address
tRP
tRAT
tRAT
tRAH
tRRT
tRAH
Address
Address
tRP
tRRT
tRRT
tRP
tRP
RDn
tRCR
CSn.x
WEn.x
tRAS
tRDS
tRDH
tRDS
Data Input
D[7:0]
tRDH
tRDS
Data Input
tRDH
tRDS
Data Input
tRDH
Data Input
(Input)
See Table 34 for read timing data.
Figure 29. Write cycle timing: 16-bit write on 16-bit memory
tWAH
A[23:0]
Address
RDn
tWCR
CSn.x
tWAS
tWP
WEn.x
tWDH
tWDS1
Data Output
D[15:0]
(Output)
Figure 30. Write cycle timing: 32-bit write on 16-bit memory
tWAT
tWAH
A[23:0]
tWAH
address
address
RDn
tWCR
CSn.x
tWP
tWWT
tWP
WEn.x
tWAS
D[15:0]
tWDS1
Data Output
tWDH
tWDS2
tWDH
Data Output
(Output)
See Table 46 for write timing data.
59/78
Electrical parameters
STR71xF
Figure 31. Write cycle timing: 16-bit write on 8-bit memory
tWAT
tWAH
A[23:0]
tWAH
address
address
RDn
tWCR
CSn.x
tWP
tWWT
tWP
WEn.x
tWAS
tWDS1
tWDH
tWDS2
Data Output
D[7:0]
tWDH
Data Output
(Output)
Figure 32. Write cycle timing: 32-bit write on 8-bit memory
tWAT
tWAT
tWAH
A[23:0]
tWAT
tWAH
address
address
tWAH
tWAH
address
address
RDn
tWCR
CSn.x
tWP
tWWT
tWP
tWWT
tWP
tWWT
tWP
WEn.x
tWAS
D[7:0]
tWDS1
tWDH
Data Output
tWDS2
Data Output
tWDH
tWDS2
Data Output
tWDH
tWDS2
tWDH
Data Output
(Output)
See Table 35 for write timing data.
4.3.8
I2C - inter IC control interface
Subject to general operating conditions for V33, fPCLK1, and TA unless otherwise specified.
The STR7 I2C interface meets the requirements of the Standard I2C communications
protocol described in the following table with the restriction mentioned below:
Note:
Restriction: The I/O pins which SDA and SCL are mapped to are not “True” Open-Drain:
when configured as open-drain, the PMOS connected between the I/O pin and V33 is
disabled, but it is still present. Also, there is a protection diode between the I/O pin and V33.
Consequently, when using this I2C in a multi-master network, it is not possible to power off
the STR7X while some another I2C master node remains powered on: otherwise, the
STR7X will be powered by the protection diode.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
60/78
STR71xF
Electrical parameters
Table 36.
Symbol
I2C characteristics
Parameter
Standard mode
I2C
Min
1)
Max 1)
Fast mode I2C5)
Unit
Min 1)
Max 1)
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0 3)
0 2)
900 3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
1000
20+0.1Cb
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
300
20+0.1Cb
300
th(STA)
START condition hold time
4.0
0.6
tsu(STA)
Repeated START condition setup
time
4.7
0.6
tsu(STO)
STOP condition setup time
4.0
0.6
µs
STOP to START condition time (bus
free)
4.7
1.3
µs
tw(STO:STA)
Cb
Capacitive load for each bus line
400
µs
ns
µs
400
pF
Notes:
1. Data based on standard I2C protocol requirement, not tested in production.
2. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
3. The maximum hold time th(SDA) is not applicable.
4. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD.
5. fPCLK1, must be at least 8 MHz to achieve max fast I2C speed (400 kHz).
6. The following table gives the values to be written in the I2CCCR register to obtain the required I2C SCL line
frequency.
61/78
Electrical parameters
STR71xF
Figure 33. Typical application with I2C bus and timing diagram
VDD
4.7kΩ
I
2C
VDD
4.7kΩ
BUS
100Ω
SDA
100Ω
SCL
STR7
REPEATED START
START
tsu(STA)
tw(STO:STA)
START
SDA
tr(SDA)
tf(SDA)
tsu(SDA)
STOP
th(SDA)
SCL
th(STA)
Table 37.
tw(SCKH)
tw(SCKL)
tr(SCK)
tsu(STO)
tf(SCK)
SCL Frequency Table (fPCLK1=8 MHz.,V33 = 3.3 V)
fSCL
I2CCCR Value
(kHz)
RP=4.7kΩ
400
83
300
85h
200
8Ah
100
24h
50
4Ch
20
C4h
Legend:
RP = External pull-up resistance
fSCL = I2C speed
NA = Not achievable
Note:
For speeds around 200 kHz, achieved speed can have ± 5% tolerance
For other speed ranges, achieved speed can have ± 2% tolerance
The above variations depend on the accuracy of the external components used.
62/78
STR71xF
Electrical parameters
4.3.9
BSPI - buffered serial peripheral interface
Subject to general operating conditions for VDD, TA and fPCLK1 ,unless otherwise specified.
Refer to I/O port pin characteristics on page 50 for more details on the input/output alternate
function characteristics (SS, SCK, MOSI, MISO).
Table 38.
BSPI characteristics
Symbol
fSCK
1/tc(SCK)
tr(SCK)
tf(SCK)
(1)
Min
Max
Master
fPCLK1/254
fPCLK1/6
5.5
Slave
0
fPCLK1/8
3.3
capacitive charge
C=50 pF
14
Slave
0
SS hold time
Slave
0
Master fPCLK1=33 MHz,
presc = 6
73
SCK high and low time
tsu(MI) (1)
tsu(SI) (1)
Data input setup time
Master
Slave
7
0
th(MI) 1)(2)
th(SI) 1)(2)
Data input hold time
Master
Slave
1xtPCLK1
2xtPCLK1
th(MI) (1)
th(SI) (1)
Data input hold time
Master fPCLK1=33 MHz
Slave fPCLK1=33 MHz
30
60
Slave
0
1.5xtPCLK1+42
Slave fPCLK1=33 MHz
0
87
Slave
0
42
ta(SO) 1)(3)
Data output access time
tdis(SO) (1)(4)
Data output disable time
tv(SO) (1)(2)
th(SO)
(1)
tv(MO) (1)(2)
th(MO)
(1)
3xtPCLK1+45
fPCLK1=33 MHz
135
Slave (after enable edge)
0
Master (after enable edge)
2xtPCLK1+12
fPCLK1=33 MHz
72
Data output valid time
Data output hold time
ns
Slave (after enable edge)
Data output valid time
Data output hold time
Unit
MHz
SS setup time
(1)
tw(SCKH)
tw(SCKL) (1)
Conditions
SPI clock frequency
SPI clock rise and fall time
tsu(SS) (1)
th(SS)
Parameter
Master (after enable edge)
0
1. Data based on design simulation and/or characterisation results, not tested in production.
2. Depends on fPCLK1. For example, if fPCLK1=8 MHz, then tPCLK1 = 1/fPCLK1 =125 ns and tv(MO) = 255 ns.
3. Min. time is the minimum time to drive the output and the max. time is the maximum time to validate the data.
4. Min time is the minimun time to invalidate the output and the max time is the maximum time to put the data in Hi-Z.
63/78
Electrical parameters
STR71xF
Figure 34. SPI slave timing diagram with CPHA=01)
SS INPUT
SCK INPUT
tsu(SS)
tc(SCK)
th(SS)
CPHA=0
CPOL=0
CPHA=0
CPOL=1
tw(SCKH)
tw(SCKL)
ta(SO)
MISO OUTPUT
tv(SO)
MSB OUT
tsu(SI)
th(SO)
BIT6 OUT
LSB OUT
th(SI)
MSB IN
MOSI INPUT
tdis(SO)
tr(SCK)
tf(SCK)
LSB IN
BIT1 IN
Figure 35. SPI slave timing diagram with CPHA=11)
SS INPUT
SCK INPUT
tsu(SS)
tc(SCK)
th(SS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
ta(SO)
tw(SCKH)
tw(SCKL)
MISO OUTPUT
tv(SO)
th(SO)
MSB OUT
tsu(SI)
BIT6 OUT
LSB OUT
th(SI)
MSB IN
MOSI INPUT
tdis(SO)
tr(SCK)
tf(SCK)
BIT1 IN
LSB IN
Figure 36. SPI master timing diagram1)
SS INPUT
tc(SCK)
SCK OUTPUT
CPHA = 0
CPOL = 0
CPHA = 0
CPOL = 1
CPHA = 1
CPOL = 0
CPHA = 1
CPOL = 1
tw(SCKH)
tw(SCKL)
tsu(MI)
MISO INPUT
tr(SCK)
tf(SCK)
th(MI)
MSB IN
BIT6 IN
tv(MO)
MOSI OUTPUT
MSB OUT
BIT6 OUT
1. Measurement points are done at CMOS levels: 0.3xV33 and 0.7xV33
64/78
LSB IN
th(MO)
LSB OUT
STR71xF
4.3.10
Electrical parameters
USB characteristics
The USB interface is USB-IF certified (Full Speed).
Table 39.
USB startup time
Symbol
Parameter
tSTARTUP
USB transceiver startup time
Table 40.
Conditions
Max
Unit
1
µs
USB DC characteristics
Symbol
Parameter
Min.(1)(2) Max.(1)(2) Unit
Conditions
Input Levels
VDI
Differential Input Sensitivity
I(DP, DM)
0.2
VCM
Differential Common Mode
Range
Includes VDI range
0.8
2.5
VSE
Single Ended Receiver
Threshold
1.3
2.0
V
Output Levels
VOL
VOH
Static Output Level Low
RL of 1.5 kΩ to 3.6V(3)
Static Output Level High
RL of 15 kΩ to
0.3
V
VSS(3)
2.8
3.6
1. All the voltages are measured from the local ground potential.
2. It is important to be aware that the DP/DM pins are not 5 V tolerant. As a consequence, in case of a a
shortcut with Vbus (typ: 5.0V), the protection diodes of the DP/DM pins will be direct biased . This will not
damage the device if not more than 50 mA is sunk for longer than 24 hours but the reliability may be
affected.
3. RL is the load connected on the USB drivers
Figure 37. USB: data signal rise and fall time
Differential
Data Lines
Crossover
points
VCRS
VSS
tr
tf
Table 41.
USB: Full speed driver electrical characteristics
Symbol
Parameter
Conditions
Min
Max
Unit
tr
Rise time(1)
CL=50 pF
4
20
ns
tf
Time1)
CL=50 pF
4
20
ns
tr/tf
90
110
%
1.3
2.0
V
Fall
trfm
Rise/ Fall Time matching
VCRS
Output signal Crossover Voltage
1. Measured from 10% to 90% of the data signal. For more detailed information, please refer to USB
Specification - Chapter 7 (version 2.0).
65/78
Electrical parameters
4.3.11
STR71xF
ADC characteristics
Subject to general operating conditions for AVDD, fPCLK2, and TA unless otherwise specified.
Table 42.
Symbol
ADC characteristics
Parameter
fMOD
Modulator Oversampling
frequency
VAIN
Conversion voltage range 2)3)
Ilkg
PBR
SINAD
THD
ZIN
Conditions
Min
Typ 1)
0
VIN<VSS, | IIN |<
Negative input leakage current on
400µA on adjacent
analog pins
analog pin
5
Passband Ripple
Max
Unit
2.1
MHz
2.5
V
6
µA
0.1
dB
S/N and Distortion
56
63
dB
Total Harmonic Distortion
60
74
dB
Input Impedance
CADC
Internal sample and hold capacitor
tCONV
Total Conversion time (including
sampling time)
fMOD = 2 MHz
1
MΩ
3.2
pF
3.0
mA
1
µA
2048/
IADC
fMOD
(max)
Normal mode
TA = 27 °C
Standby mode
TA = 27 °C
2.5
Notes:
1. Unless otherwise specified, typical data are based on TA=25°C and AVDD-AVSS=3.3V. They are given only
as design guidelines and are not tested.
2. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than
10kΩ). Data based on characterization results, not tested in production.
3. Calibration is needed once after each power-up.
66/78
STR71xF
Table 43.
Electrical parameters
ADC accuracy with fPCLK2 = 20 MHz, fADC=10 MHz, AVDD=3.3 V
Symbol
Parameter
ADC_DATA(0V)
Conditions
Converted code when AIN=0V 1)
ADC_DATA(2.5V) Converted code when AIN=2.5V 1)
Min
Typ
Max
Unit
2370
2565
1480
1680
Decimal
code
1.30
V
VCM
Center voltage of Sigma-Delta
Modulator1)
TUE
Total unadjusted error
|ED|
Differential linearity error1)
1.96
2.19
|EL|
Integral linearity error 1)
2.36
3.95
1.23
1.25
In this type of ADC, calibration is necessary to correct
gain error and offset errors. Once calibrated, the TUE is
limited to the ILE.
LSB
1. Data based on characterisation, not tested in production.
ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to
standard analog pins which may potentially inject negative current. The effect of negative injection current
on robust pins is specified in Section 4.3.5.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 4.3.5 does not
affect the ADC accuracy.
Figure 38. ADC accuracy characteristics
4095
4094
(2)
4093
(3)
Digital Result ADC_DATA Register
(1)
ADC_DATA(0V)
ADC_DATA(2.5V)
5
EL
4
3
Out of range
ED
2
1 LSBIDEAL
1
0
1
AVSS
2
3
1633
VCM
3100 3101 3102 3103
4093 4094 4095
AVDD
VAIN (LSBIDEAL)
1LSB
IDEAL
AVDD – AVSS
4095
= ------------------------------------------------
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
ED=Differential Linearity Error: maximum deviation between actual steps and the
ideal one.
EL=Integral Linearity Error: maximum deviation between any actual transition and
the end point correlation line.
67/78
Electrical parameters
STR71xF
Analog power supply and reference pins
The AVDD and AVSS pins are the analog power supply of the A/D converter cell. They act as
the high and low reference voltages for the conversion.
Separation of the digital and analog power pins allow board designers to improve A/D
performance. Conversion accuracy can be impacted by voltage drops and noise in the event
of heavily loaded or badly decoupled power supply lines (see: General PCB design
guidelines).
General PCB design guidelines
To obtain best results, some general design and layout rules should be followed when
designing the application PCB to shield the noise-sensitive, analog physical interface from
noise-generating CMOS logic signals.
●
Use separate digital and analog planes. The analog ground plane should be connected
to the digital ground plane via a single point on the PCB.
●
Filter power to the analog power planes. It is recommended to connect capacitors, with
good high frequency characteristics, between the power and ground lines, placing
0.1 µF and optionally, if needed 10 pF capacitors as close as possible to the STR7
power supply pins and a 1 to 10 µF capacitor close to the power source (see
Figure 39).
●
The analog and digital power supplies should be connected in a star network. Do not
use a resistor, as AVDD is used as a reference voltage by the A/D converter and any
resistance would cause a voltage drop and a loss of accuracy.
●
Properly place components and route the signal traces on the PCB to shield the analog
inputs. Analog signals paths should run over the analog ground plane and be as short
as possible. Isolate analog signals from digital signals that may switch while the analog
inputs are being sampled by the A/D converter. Do not toggle digital outputs near the
A/D input being converted.
Software filtering of spurious conversion results
For EMC performance reasons, it is recommended to filter A/D conversion outliers using
software filtering techniques.
Figure 39. Power supply filtering
STR710
1 to 10µF
0.1µF
STR7
DIGITAL NOISE
FILTERING
VSS
V33
V33
POWER
SUPPLY
SOURCE
(3.3V)
0.1µF
EXTERNAL
NOISE
FILTERING
68/78
AVDD
AVSS
STR71xF
Package characteristics
5
Package characteristics
5.1
Package mechanical data
Figure 40. 64-Pin low profile quad flat package (10x10)
Dim.
D
A
D1
A2
Typ
A
A1
b
E1
mm
Min
E
e
c
L1
h
L
A1
0.05
A2
1.35
1.40
b
0.17
0.22
c
0.09
inches
Max
Min
Typ
0.063
0.15 0.002
0.006
1.45 0.053 0.055 0.057
0.27 0.007 0.009 0.011
0.20 0.004
0.008
D
12.00
0.472
D1
10.00
0.394
E
12.00
0.472
E1
10.00
0.394
e
0.50
0.020
θ
0°
3.5°
L
0.45
0.60
L1
Max
1.60
7°
0°
3.5°
7°
0.75 0.018 0.024 0.030
1.00
0.039
Number of Pins
N
64
Recommended footprint (dimensions in mm)
1
69/78
Package characteristics
STR71xF
Figure 41. 144-Pin low profile quad flat package
Dim.
D
A
A2
D3
A1
108
109
73
72
0.08 mm
.003 in. b
Seating Plane
b
E3
E1
E
36
c
e
L1
L
h
Max
Min
Typ
Max
1.60
0.063
A1
0.05
0.15 0.002
0.006
A2
1.35
1.40
1.45 0.053
0.057
b
0.17
0.22
0.27 0.007
0.011
c
0.09
0.20 0.004
0.008
D
21.80 22.00 22.20 0.858 0.867 0.874
D1
19.80 20.00 20.20 0.780 0.787 0.795
D3
37
144
1
Typ
A
D1
inches(1)
mm
Min
17.50
0.689
E
21.80 22.00 22.20 0.858 0.867 0.874
E1
19.80 20.00 20.20 0.780 0.787 0.795
E3
17.50
0.689
e
0.50
0.020
K
0°
3.5°
L
0.45
0.60
L1
1.00
7°
0°
3.5°
7°
0.75 0.018 0.024 0.030
0.039
Number of Pins
Jedec Ref. MS-026-BFB
N
144
1.Values in inches are converted from mm and
rounded to 3 decimal digits.
Recommended footprint (dimensions in mm)
70/78
STR71xF
Package characteristics
Figure 42. 64-Low profile fine pitch ball grid array package
Dim.
mm
Min
A
1.210
A1
0.270
A2
Typ
inches
Max
Min
Typ
1.700 0.048
Max
0.067
0.011
1.120
0.044
b
0.450 0.500 0.550 0.018 0.020 0.022
D
7.750 8.000 8.150 0.305 0.315 0.321
D1
5.600
E
0.220
7.750 8.000 8.150 0.305 0.315 0.321
E1
5.600
0.220
e
0.720 0.800 0.880 0.028 0.031 0.035
f
1.050 1.200 1.350 0.041 0.047 0.053
ddd
0.120
0.005
Number of Pins
N
64
Figure 43. 144-low profile fine pitch ball grid array package
Dim.
inches1)
mm
Min
A
1.21
A1
0.21
A2
Typ
Max
Min
Typ
1.70 0.0476
Ma
0.06
0.0083
1.085
0.35
D
9.85 10.00 10.15 0.3878 0.3937 0.39
D1
E
0.40
0.0427
b
0.45 0.0138 0.0157 0.01
8.80
0.3465
9.85 10.00 10.15 0.3878 0.3937 0.39
E1
8.80
0.3465
e
0.80
0.0315
F
0.60
0.0236
ddd
0.10
0.00
eee
0.15
0.00
fff
0.08
0.00
Number of Pins
N
1
144
Values in inches are converted from mm and
rounded to 4 decimal digits.
Figure 44. Recommended PCB design rules (0.80/0.75mm pitch BGA)
Dpad
0.37 mm
0.52 mm typ. (depends on solder
Dsm
mask registration tolerance
Solder paste 0.37 mm aperture diameter
– Non solder mask defined pads are recommended
– 4 to 6 mils screen print
Dpad
Dsm
71/78
Package characteristics
5.2
STR71xF
Thermal characteristics
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the
following equation:
TJ = TA + (PD x ΘJA)
(1)
Where:
●
TA is the Ambient Temperature in °C,
●
ΘJA is the Package Junction-to-Ambient Thermal Resistance, in °C/W,
●
PD is the sum of PINT and PI/O (PD = PINT + PI/O),
●
PINT is the product of IDD and VDD, expressed in Watts. This is the Chip Internal Power.
PI/O represents the Power Dissipation on Input and Output Pins;
Most of the time for the application PI/O < PINT and can be neglected. On the other hand, PI/O
may be significant if the device is configured to drive continuously external modules and/or
memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
PD = K / (TJ + 273°C)
(2)
Therefore (solving equations 1 and 2):
K = PD x (TA + 273°C) + ΘJA x PD2
(3)
where:
K is a constant for the particular part, which may be determined from equation (3) by
measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ
may be obtained by solving equations (1) and (2) iteratively for any value of TA.
Table 44.
Symbol
72/78
Thermal characteristics
Parameter
Value
Unit
ΘJA
Thermal Resistance Junction-Ambient
LQFP 144 - 20 x 20 mm / 0.5 mm pitch
42
°C/W
ΘJA
Thermal Resistance Junction-Ambient
LQFP 64 - 10 x 10 mm / 0.5 mm pitch
45
°C/W
ΘJA
Thermal Resistance Junction-Ambient
LFBGA 64 - 8 x 8 x 1.7mm
58
°C/W
ΘJA
Thermal Resistance Junction-Ambient
LFBGA 144 - 10 x 10 x 1.7mm
50
°C/W
STR71xF
6
Product history
Product history
There are three versions of the STR710F series products. All versions are functionally
identical and differ only with the points listed below.
Version "A" was the first version produced and delivered. Version "Z" was the second in
production replacing version "A". Version "Z" has lower power consumption in STOP mode.
Version "X" is the latest introduced.
Marking
The difference between versions is visible on the marking of the product as shown in the
four examples in Figure 45 through Figure 48.
Figure 45. LQFP144 STR710 version “A”
A
STR710FZ2T6
Figure 46. LQFP64 STR712 version “Z”
Z
STR712FR2
T6
2208JVG
MLT225571
2208JVG
MLT225571
73/78
Product history
STR71xF
Figure 47. BGA144 STR710 version “Z”
Figure 48. BGA64 STR711 version “X”
R711R1H6
2208JVG
R710Z2H6
MLT225571
2208JVG Z
MLT 22 551
Table 45.
X
A, Z and X version differences
Feature
A version
Z version
X version
ARM7TDMI core device
Identification (ID) code register
(see ARM7TDMI Technical
Reference Manual)
Version bits [31:28] =
0001
Version bits [31:28] = 0010
Version bits [31:28] =
0010
Low power mode consumption in
STOP mode at 25 °C
Not guaranteed
Typical 49 µA
50 µA maximum at 25°C.
Less than 30 µA at 25 °C
for 99.730020% of parts
Same as Z.
SC.DATA pin
74/78
Not TRUE open drain
When addressing 5V cards, the SCDATA
Line must be connected to an open drain buffer.
Pin
P0.10/U1.RX/U1.TX/SC.
DATA has been modified
to offer TRUE OPEN
DRAIN functionality
when in Smartcard
mode. When addressing
5V cards, the SCDATA
line can now be
connected directly to the
card I/O. This
modification is backward
compatible with previous
designs, and no board
modification is required.
STR71xF
7
Ordering information
Ordering information
Figure 49. STR71xF ordering information scheme
Example:
STR71
0
F
Z
1
T
6
Product class
STR71x microcontroller
Peripheral set
0 = full peripheral set
1 = No EMI, no CAN
2 = No EMI, no USB
5 = No EMI, no USB, no CAN
Program memory type
F = Flash
Pin count
R = 64 pins
Z = 144 pins
Program memory size
0 = 64+16K
1 = 128+16K
2 = 256+16K
no character = 0K
Package type
H = LFBGA
T = LQFP
Temperature range
1 = 0 °C to 70 °C
3 = -40 °C to 125 °C
6 = -40 °C to 85 °C
Packing
no character = tray or tube
TR = tape and reel
For a list of available options (e.g. memory size, package) and orderable part numbers or for
further information on any aspect of this device, please go to www.st.com or contact the ST Sales
Office nearest to you.
75/78
Revision history
8
STR71xF
Revision history
Table 46.
Document revision history
Date
Revision
17-Mar-2004
1
First Release
05-Apr-2004
2
Updated “Electrical parameters” on page 33
08-Apr-2004
2.1
Corrected STR712F Pinout. Pins 43/42 swapped.
15-Apr-2004
2.2
PDF hyperlinks corrected.
7-Jul-2004
29-Oct-2004
25-Jan-2005
19-Apr-2005
13-Oct-2005
76/78
Changes
3
Corrected description of STDBY, V18, VSS18 V18BKP
VSSBKP pins
Added IDDrun typical data
Updated BSPI max. baudrate.
Updated “EMI - external memory interface” on page 56
4
Corrected Flash sector B1F0/F1 address in Figure 6: Memory
map on page 30
Corrected Table 7 on page 24 LQFP64 TEST pin is 16 instead
of 17. Added to TQPFP64 column: pin 7 BOOTEN, pin 17
V33IO-PLL
Changed description of JTCK from ‘External pull-down
required’ to ‘External pull-up or pull down required’.
5
Changed “Product Preview” to “Preliminary Data” on page 1
and 3
Renamed ‘PU/PD’ column to ‘Reset state’ in Table 7 on
page 24
Added reference to STR7 Flash Programming Reference
Manual
6
Added STR715F devices and modified RAM size of STR71xF1
devices
Added BGA package in Section 5
Updated ordering information in Section 7.
Added PLL duty cycle min and max. in PLL electrical
characteristics on page 44
7
Updated feature description on page 1
Update overview Section 1.1
Added OD/PP to P0.12 in Table 7
Changed name of WFI mode to WAIT mode
Changed Memory Map Table 6: Ext. Memory changed to 64 MB
and flash register changed to 36 bytes.
Added Power Consumption Table 15
Modified BGA144 F3, F5, F12 and G12 in Table 3 and Table 4
Update EMI Timing Table 26 and Figure 29
STR71xF
Revision history
Table 46.
Document revision history (continued)
Date
Revision
Changes
8
Added Flashless device.
Changed reset state of pins P1.10 and P1.13 from pu to pd,
P0.15 from pu to floating and removed x in interrupt column for
P1.15 and P1.12 in Table 4 and Table 7
Added notes under Table 4 on EMI pin reset state.
Corrected inch value for d3 in Figure 40
Added footprint diagrams in Figure 40 and Figure 43
Updated Section 4: Electrical parameters
01-Aug-2006
9
Flash data retention changed to 20 years at 85° C.
Changed note 8 on page 19
Changed note 1 on page 45
06-Nov-2006
10
Added STR715FR0T1 in Table 42: Order codes
P0.12 corrected in Table 7 on page 24
20-Mar-2007
11
Added characteristics of BSPI - buffered serial peripheral
interface on page 63
Updated Table 23: Low-power mode wakeup timing on page 45
12
Updated ordering information
Updated USB characteristics
Updated external clock characteristics
22-May-2006
13-Feb-2008
77/78
STR71xF
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
78/78