STR73xFxx ARM7TDMI™ 32-bit MCU with Flash, 3x CAN, 4 UARTs, 20 timers, ADC, 12 comm. interfaces Features ■ ■ ■ ■ ■ Core – ARM7TDMI 32-bit RISC CPU – 32 MIPS @ 36 MHz Memories – Up to 256 Kbytes Flash program memory (10,000 cycles endurance, data retention 20 years @ 85° C) – 16 Kbytes RAM Clock, reset and supply management – 4.5 - 5.5 V application supply and I/Os – Embedded 1.8 V regulator for core supply – Embedded oscillator running from external 4-8 MHz crystal or ceramic resonator – Up to 36 MHz CPU frequency with internal PLL – 32 kHz or 2 MHz internal RC oscillator, software configurable for fast startup and backup clock – Real-time clock for clock-calendar function – Wake-up timer driven by internal RC for wake-up from STOP mode – 5 power saving modes: SLOW, WFI, LPWFI, STOP and HALT modes Nested interrupt controller – Fast interrupt handling with multiple vectors – 64 maskable IRQs with 64 vectors and 16 priority levels – 2 maskable FIQ sources – 16 external interrupts, up to 32 wake-up lines TQFP100 14 x 14 TQFP144 20 x 20 LFBGA144 10 x 10 x 1.7 ■ DMA – 4 DMA controllers with 4 channels each ■ Timers – 16-bit watchdog timer (WDG) – 6/10 16-bit timers (TIM) each with: 2 input captures, 2 output compares, PWM and pulse counter modes – 6 16-bit PWM modules (PWM) – 3 16-bit timebase timers with 8-bit prescalers ■ 12 communications interfaces – 2 I2C interfaces – 4 UART asynchronous serial interfaces – 3 BSPI synchronous serial interfaces – Up to 3 CAN interfaces (2.0B Active) ■ 10-bit A/D converter – 12/16 channels – Conversion time: min. 3 µs, range: 0 to 5V ■ Development tools support – JTAG interface Table 1. Up to 112 I/O ports – 72/112 multifunctional bidirectional I/Os Reference STR73xFxx June 2008 Rev 7 Device summary Part number STR730FZ1, STR730FZ2, STR731FV0, STR731FV1, STR731FV2, STR735FZ1, STR735FZ2, STR736FV0, STR736FV1, STR736FV2 1/52 www.st.com 52 Contents STR73xFxx Contents 1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 3 3.1 Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2/52 3.2.1 STR730F/STR735F (TQFP144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.2 STR730F/STR735F (LFBGA144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.3 STR731F/STR736F (TQFP100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 5 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 4 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.1 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.2 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.3 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.4 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.5 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.6 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 STR73xFxx Contents 6 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8 7.1 Low power wait for interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.2 PLL free running mode at high temperature . . . . . . . . . . . . . . . . . . . . . . 50 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3/52 Scope 1 STR73xFxx Scope This datasheet provides the STR73x ordering information, mechanical and electrical device characteristics. For complete information on the STR73xF microcontroller memory, registers and peripherals. please refer to the STR73x reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash programming reference manual. For information on the ARM7TDMI core please refer to the ARM7TDMI technical reference manual. 1.1 Description ARM core with embedded Flash & RAM STR73xF family combines the high performance ARM7TDMI™ CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed single voltage Flash memory and high-speed RAM. The STR73xF family has an embedded ARM core and is therefore compatible with all ARM tools and software. Extensive tools support STMicroelectronics’ 32-bit, ARM core-based microcontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. This extensive line of hardware/software tools includes starter kits and complete development packages all tailored for ST’s ARM core-based MCUs. The range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a JTAG application interface. These support a range of embedded operating systems (OS), while several royalty-free OSs are also available. For more information, please refer to ST MCU site http://www.st.com/mcu Figure 1 shows the general block diagram of the device family. 4/52 STR73xFxx Overview 2 Overview Table 2. Product overview Features STR730FZx Flash memory - bytes 128K STR735FZx 256K 128K 256K STR731FVx 64K 128K STR736FVx 256K 64K 128K 256K RAM - bytes 16 K 16 K Peripheral functions 10 TIM timers, 112 I/Os, 32 wake-up lines, 16 ADC 6 TIM timers, 72 I/Os, 18 wake-up lines, 12 ADC channels CAN peripherals 3 0 Operating voltage Operating temperature Packages 3 0 4.5 to 5.5 V -40 to +85°C/-40 to +105° C T=TQFP144 20 x 20 H=LFBGA144 10 x10 T=TQFP100 14x14 Package choice: reduced pin-count TQFP100 or feature-rich 144-pin TQFP or LFBGA The STR73xF family is available in 3 packages. The TQFP144 and LFBGA144 versions have the full set of all features. The 100-pin version has fewer timers, I/Os and ADC channels. Refer to the Device Summary on Page 1 for a comparison of the I/Os available on each package. The family includes versions with and without CAN. High speed Flash memory The Flash program memory is organized in 32-bit wide memory cells which can be used for storing both code and data constants. It is accessed by CPU with zero wait states @ 36 MHz. The STR7 embedded Flash memory can be programmed using in-circuit programming or in-application programming. The Flash memory endurance is 10K write/erase cycles and the data retention is 20 years @ 85° C. IAP (in-application programming): IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. ICP (in-circuit programming): ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board. The Flash memory can be protected against different types of unwanted access (read/write/erase). There are two types of protection: ● Sector write protection ● Flash debug protection (locks JTAG access) Flexible power management To minimize power consumption, you can program the STR73xF to switch to SLOW, WFI LPWFI, STOP or HALT modes depending on the current system activity in the application. 5/52 Overview STR73xFxx Flexible clock control Two clock sources are used to drive the microcontroller, a main clock driven by an external crystal or ceramic resonator and an internal backup RC oscillator that operates at 2 MHz or 32 kHz. The embedded PLL can be configured to generate an internal system clock of up to 36 MHz. The PLL output frequency can be programmed using a wide selection of multipliers and dividers. Voltage regulators The STR73xF requires an external 4.5 to 5.5 V power supply. There are two internal Voltage Regulators for generating the 1.8 V power supply needed by the core and peripherals. The main VR is switched off and the Low Power VR switched on when the application puts the STR73xF in Low Power Wait for Interrupt (LPWFI) mode. Low voltage detectors The voltage regulator and Flash modules each have an embedded LVD that monitors the internal 1.8 V supply. If the voltage drops below a certain threshold, the LVD will reset the STR73xF. Note: An external power-on reset must be provided ensure the microcontroller starts-up correctly. 2.1 On-chip peripherals CAN interfaces The three CAN modules are compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and STR736. DMA 4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to peripheral, peripheral to memory and memory to peripheral transfers. The DMA requests are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be configured to be triggered by a software request, independently from any peripheral activity. 16-bit timers (TIM) Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit prescaler, up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12 in 100-pin devices) when added with the PWM modules (see next paragraph). PWM modules (PWM) The six 16-bit PWM modules have independently programmable periods and duty-cycles, with 5+3 bit prescaler factor. Timebase timers (TB) The three 16-bit timebase timers with 8-bit prescaler for general purpose time triggering operations. Real-time clock (RTC) The RTC provides a set of continuously running counters driven by separate clock signal derived from the main oscillator. The RTC can be used as a general timebase or 6/52 STR73xFxx Overview clock/calendar/alarm function. When the STR73xF is in LPWFI mode the RTC keeps running, powered by the low power voltage regulator. UARTs The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 625 Kbaud. Buffered serial peripheral interfaces (BSPI) Each of the three BSPIs allow full duplex, synchronous communications with external devices, master or slave communication at up to 6 Mb/s in master mode and up to 4.5 Mb/s in slave mode (@36 MHz system clock). I2C interfaces The two I2C Interfaces provide multi-master and slave functions, support normal and fast I2C mode (400 kHz) and 7 or 10-bit addressing modes. A/D converter The 10-bit analog to digital converter, converts up to 16 channels in single-shot or continuous conversion modes (12 channels in 100-pin devices). The minimum conversion time is 3 µs. Watchdog The 16-bit watchdog timer protects the application against hardware or software failures and ensures recovery by generating a reset. I/O ports Up to 112 I/O ports (72 in 100-pin devices) are programmable as general purpose input/output or alternate function. External interrupts and wake-up lines 16 external interrupts lines are available for application use. In addition, up to 32 external Wake-up lines (18 in 100-pin devices) can be used as general purpose interrupts or to wake-up the application from STOP mode. 7/52 Block diagram 3 STR73xFxx Block diagram Figure 1. RSTIN STR730F/STR735F block diagram PRCCU/PLL FLASH PROGRAM MEMORY 64/128/256K ARM7TDMI CPU JTAG V18 VDD VSS VDDA VSSA RAM 16K ARM7 NATIVE BUS JTDI JTCK JTMS JTRST JTDO M0 M1 TEST APB BRIDGE 0 POWER SUPPLY VREG APB BRIDGE 1 AHB BRIDGE AHB BUS DMA0-3 WATCHDOG CLOCK MGT (CMU) XTAL1 XTAL2 I2C0-1 4 AF INTERRUPT CTL (EIC) WAKE-UP/INT (WIU) 32 AF 16 AF A/D CONVERTER (ADC) UART0, 1, 2, 3 8 AF 12 AF TIMER (TIM) 2-4 12 AF BSPI 0-2 WAKE-UP TIMER (WUT) 6 AF CAN 0-2* TIMER (TIM) 0-1 8 AF 6 AF PWM 0-5 TIMER (TIM) 5-9 20 AF 122 ports TIMEBASE TIMER (TB) 0-2 GPIO PORTS 0-6 *CAN peripherals not available on STR735F. 8/52 APB BUS RTC APB BUS OSC AF: alternate function on I/O port pin STR73xFxx Block diagram Figure 2. RSTIN STR731F/STR736 block diagram PRCCU/PLL FLASH PROGRAM MEMORY 64/128/256K ARM7TDMI CPU JTAG V18 VDD VSS VDDA VSSA RAM 16K ARM7 NATIVE BUS JTDI JTCK JTMS JTRST JTDO M0 M1 TEST APB BRIDGE 0 POWER SUPPLY VREG APB BRIDGE 1 AHB BRIDGE AHB BUS DMA0-3 WATCHDOG CLOCK MGT (CMU) XTAL1 XTAL2 I2C0-1 4 AF INTERRUPT CTL (EIC) WAKE-UP/INT (WIU) 18 AF 12 AF A/D CONVERTER (ADC) UART0, 1, 2, 3 8 AF 12 AF TIMER (TIM) 2-4 12 AF BSPI 0-2 WAKE-UP TIMER (WUT) 6 AF CAN 0-2* TIMER (TIM) 0-1 8 AF 6 AF PWM 0-5 TIMER (TIM) 5 4 AF 72 ports APB BUS RTC APB BUS OSC TIMEBASE TIMER (TB) 0-2 GPIO PORTS 0-6 *CAN peripherals not available on STR736F. AF: alternate function on I/O port pin 9/52 Block diagram 3.1 Related documentation Available from www.arm.com: ARM7TDMI technical reference manual Available from http://www.st.com: STR73x reference manual (RM0001) STR7 Flash programming reference manual STR73x software library user manual For a list of related application notes refer to http://www.st.com. 10/52 STR73xFxx STR73xFxx Block diagram 3.2 Pin description 3.2.1 STR730F/STR735F (TQFP144) STR730F/STR735F pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 STR730F/STR735F 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 P4.14 / SS1 P4.13 / ICAPB9 P4.12 / ICAPA9 / WUP21 P4.11 / OCMPB8 P4.10 / ICAPA6 / WUP20 P4.9 / ICAPB6 P4.8 / OCMPA8 P4.7 / SDA1 P4.6 / SCL1 / WUP19 P4.5 / CAN2RX / WUP18 P4.4 / CAN2TX P4.3 / ICAPB8 / WUP27 P4.2 / ICAPA8 / WUP26 P4.1 / ICAPB7 / WUP25 P4.0 / ICAPA7 / WUP24 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN15 / INT5 P3.14 / AIN14 / INT4 P3.13 / AIN13 / INT3 P3.12 / AIN12 / INT2 P3.11 / AIN11 P3.10 / AIN10 P3.9 / AIN9 P3.8 / AIN8 VDDA VSSA P3.7 / AIN7 P3.6 / AIN6 WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 PWM3 / P2.5 PWM4 / P2.6 PWM5 / P2.7 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS TDO1 / P2.8 WUP14 / RDI1 / P2.9 WUP16 / P2.10 WUP17 / P2.11 INT14 / P2.12 INT15 / P2.13 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.0 AIN1 / P3.1 AIN2 / P3.2 AIN3 / P3.3 AIN4 / P3.4 AIN5 / P3.5 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 VSS VDD OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 ICAPB5 / P0.7 OCMPA6 / P0.8 OCMPB6 / P0.9 OCMPA7 / P0.10 OCMPB7 / P0.11 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 VSS VDD P1.4 P1.5 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 P6.15 / WUP9 P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.10 / WUP8 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.7 / WUP7 P6.6 / WUP6 P6.5 / WUP5 P6.4 / TDO3 / WUP4 P6.3 / WUP3 P6.2 / RDI3 / WUP2 P6.1 / WUP1 P6.0 / WUP0 VDD VSS V18 P5.15 / INT13 P5.14 / INT12 P5.13 / INT11 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / INT7 P5.8 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 P5.3 / OCMPB9 P5.2 / OCMPA9 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 Figure 3. Note: CAN alternate functions not available on STR735F. 11/52 Block diagram STR73xFxx 3.2.2 STR730F/STR735F (LFBGA144) Table 3. STR730F/STR735F LFBGA ball connections Ball Name Ball Name Ball Name Ball Name A1 P0.0 / OCMPB2 B1 P0.4 / OCMPA5 C1 P0.5 / OCMPB5 D1 VSS A2 P6.10 / WUP8 B2 P0.1 / OCMPA2 C2 P0.2 / ICAPA2 D2 VDD A3 P6.9 / TDO0 B3 P6.15 / WUP9 C3 P0.3 / ICAPB2 D3 P0.6 / ICAPA5 A4 P6.12 / MOSI0 B4 P6.13 / SCKO / WUP11 C4 P6.14 / SSO D4 P0.7 /ICAPB5 A5 P6.6 / WUP6 B5 P6.7 / WUP7 C5 P6.8 / RDI0 / WUP10 D5 P6.11 / MISO0 A6 V18 B6 P6.2 / WUP2 / RDI3 C6 P6.3 / WUP3 D6 P6.4 / WUP4 /TDO3 A7 P5.15 / INT13 B7 P5.14 / INT12 C7 VSS D7 VDD A8 P5.8 / INT6 B8 P5.9 / INT7 C8 P5.10 / INT8 / RDI2 D8 P5.12 / INT10 P5.5 / SCK2 / WUP23 A9 P5.2 / OCMPA9 B9 P5.3 / OCMPB9 C9 P5.4 / SS2 D9 A10 P5.7 / MISO2 B10 P5.0 / MOSI1 C10 P5.1 / MISO1 D10 P4.13 / ICAPB9 A11 P5.6 / MOSI2 B11 P4.15 / SCK1 / WUP22 C11 P4.14 / SS1 D11 P4.12 / ICAPA9 / WUP21 A12 P5.11 / TDO2 / INT9 B12 P4.7 / SDA1 D12 P4.11 / OCMPB8 P4.8 / OCMPA8 C12 E1 P0.8 / OCMPA6 F1 VDD G1 VSS H1 VDD E2 P0.9 / OCMPB6 F2 P0.13 / ICAPB3 G2 P1.2 / ICAPB4 H2 P1.8 / OCMPA0 / INT0 E3 P0.10 / OCMPA7 F3 P0.14 / OCMPB3 G3 P1.3 / ICAPA4 H3 P1.9 / OCMPB0 / INT1 E4 P0.11 / OCMPB7 F4 P0.15 / OCMPA3 G4 VSS H4 P1.10 / ICAPB0 / WUP28 E5 P0.12 / ICAPA3 F5 P1.0 / OCMPA4 G5 P1.5 H5 XTAL2 E6 P6.5 / WUP5 F6 P1.1 / OCMPB4 G6 P2.11 / WUP17 H6 P2.10 / WUP16 E7 P6.0 / WUP0 F7 P6.1 / WUP1 G7 P4.0 / ICAPA7 / WUP24 H7 P2.15 / SDA 0 E8 P5.13 / INT11 F8 P4.4 / CAN2TX1) G8 VDD H8 JTMS E9 P4.10 / ICAPA6 / WUP20 F9 P4.3 / ICAPB8 / WUP27 G9 VSS H9 VSS E10 P4.9 / ICAPB6 F10 P4.2 / ICAPA8 / WUP26 G10 JTDO H10 VDD E11 P4.6 / SCL1 / WUP19 F11 P4.1 / ICAPB7 / WUP25 G11 JTCK H11 P3.15 / AIN15 / INT5 E12 P4.5 / WUP18 / CAN2RX 1) F12 JTDI G12 nJTRST H12 P3.14 / AIN14 / INT4 J1 P1.4 K1 P1.6 / OCMPB1 L1 P1.7 / OCMPA1 M1 P1.14 / CAN0RX 1) / WUP12 J2 P1.11 / ICAPA0 / WUP29 K2 P1.13 / ICAPB1 / WUP31 L2 P1.15 / CAN0TX1) M2 P2.4 / PWM2 J3 P1.12 / ICAPA1 / WUP30 K3 P2.1 / CAN1RX1) / WUP13 L3 P2.0 / PWM0 M3 P2.5 / PWM3 J4 P2.7 / PWM5 K4 P2.6 / PWM4 L4 P2.3 / PWM1 M4 P2.2 / CAN1TX1) J5 VDD K5 M1 L5 RSTIN M5 M0 J6 P2.9 / RDI1 / WUP14 K6 P2.8 / TDO1 L6 VSS M6 VSS J7 P2.14 / SCL 0 / WUP15 K7 P2.13 / INT15 L7 P2.12 / INT14 M7 XTAL1 J8 P3.1 / AIN1 K8 P3.0 / AIN0 L8 VBIAS M8 TST P3.2 / AIN2 J9 P3.13 / AIN13 / INT3 K9 P3.4 / AIN4 L9 P3.3 / AIN3 M9 J10 P3.12 / AIN12 / INT2 K10 VDDA L10 P3.5 / AIN5 M10 VSS J11 P3.9 / AIN9 K11 VSSA L11 P3.7 / AIN7 M11 VDD J12 P3.8 / AIN8 K12 P3.11 / AIN11 L12 P3.10 / AIN10 M12 P3.6 / AIN6 Note: CAN alternate functions not available on STR735F. 12/52 STR73xFxx STR731F/STR736F (TQFP100) STR731F/STR736F pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 STR731F/STR736F 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P4.14 / SS1 P4.10 / ICAPB5 / WUP20 P4.7 / SDA1 P4.6 / SCL1 / WUP19 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN11 / INT5 P3.14 / AIN10 / INT4 P3.13 / AIN9 / INT3 P3.12 / AIN8 / INT2 P3.11 / AIN7 P3.10 / AIN6 P3.9 / AIN5 P3.8 / AIN4 VDDA VSSA P3.7 / AIN3 P3.6 / AIN2 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.6 / WUP6 P6.4 / TDO3 / WUP4 P6.2 / RDI3 / WUP2 P6.0 / WUP0 VDD VSS V18 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / PWM5 / INT7 P5.8 / PWM4 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 /PWM3 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 Figure 4. WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS CAN2RX / TDO1 / P2.8 WUP14 / CAN2TX / RDI1 / P2.9 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.4 AIN1 / P3.5 3.2.3 Block diagram Note: CAN alternate functions not available on STR736F. 13/52 Block diagram STR73xFxx Legend / Abbreviations for Table 4: Type: I = input, O = output, S = supply, HiZ= high impedance, In/Output level: TT= TTL 0.8 V / 2 V with input trigger CT= CMOS 0.3VDD/0.7VDD with input trigger Port and control configuration: Input: pu/pd = with internal 100 kΩ weak pull-up or pull down Output: OD = open drain (logic level) PP = push-pull Interrupts: INTx = external interrupt line WUPx = wake-up interrupt line The reset state (during and just after the reset) of the I/O ports is input floating (Input tristate TTL mode). To avoid excess power consumption, unused I/O ports must be tied to ground. Table 4. STR73xF pin description Output I/O TT 2mA X X Port 0.0 TIM2: output compare B output 2 B2 2 P0.1/OCMPA2 I/O TT 2mA X X Port 0.1 TIM2: output compare A output 3 C2 3 P0.2/ICAPA2 I/O TT 2mA X X Port 0.2 TIM2: input capture A input 4 C3 4 P0.3/ICAPB2 I/O TT 2mA X X Port 0.3 TIM2: input capture B input 5 D1 VSS S Ground 6 D2 VDD S Supply voltage (5 V) 7 B1 5 P0.4/OCMPA5 I/O TT 2mA X X Port 0.4 TIM5: output compare A output 8 C1 6 P0.5/OCMPB5 I/O TT 2mA X X Port 0.5 TIM5: output compare B output 9 D3 7 P0.6/ICAPA5 I/O TT 2mA X X Port 0.6 TIM5: input capture A input 10 D4 P0.7/ICAPB5 I/O TT 2mA X X Port 0.7 TIM5: input capture B input 11 E1 P0.8/OCMPA6 I/O TT 2mA X X Port 0.8 TIM6: output compare A output 12 E2 P0.9/OCMPB6 I/O TT 2mA X X Port 0.9 TIM6: output compare B output 13 E3 P0.10/OCMPA7 I/O TT 2mA X X Port 0.10 TIM7: output compare A output 14 E4 P0.11/OCMPB 7 TT 2mA X X Port 0.11 TIM7: output compare B output 15 F1 8 VDD S Supply voltage (5 V) 16 G1 9 VSS S Ground 17 E5 10 P0.12/ICAPA3 I/O TT 2mA X X Port 0.12 TIM3: input capture A input 18 F2 11 P0.13/ICAPB3 I/O TT 2mA X X Port 0.13 TIM3: input capture B input 14/52 I/O PP P0.0/OCMPB2 OD 1 Capability Input Level A1 interrupt Type 1 Pin name pu/pd TQFP100 Main function (after reset) LFBGA144 Input TQFP144 Pin n° Alternate function STR73xFxx Table 4. Block diagram STR73xF pin description Output TT 2mA X X Port 0.14 TIM3: output compare B output 20 F4 13 P0.15/OCMPA3 I/O TT 2mA X X Port 0.15 TIM3: output compare A output 21 F5 14 P1.0/OCMPA4 I/O TT 2mA X X Port 1.0 TIM4: output compare A output 22 F6 15 P1.1/OCMPB4 I/O TT 2mA X X Port 1.1 TIM4: output compare B output 23 G2 16 P1.2/ICAPB4 I/O TT 2mA X X Port 1.2 TIM4: input capture B input 24 G3 17 P1.3/ICAPA4 I/O TT 2mA X X Port 1.3 TIM4: input capture A input 25 G4 VSS S Ground 26 H1 VDD S Supply voltage (5 V) 27 J1 P1.4 I/O TT 2mA X X Port 1.4 28 G5 P1.5 I/O TT 2mA X X Port 1.5 29 K1 18 P1.6/OCMPB1 I/O TT 2mA X X Port 1.6 TIM1: output compare B output 30 L1 19 P1.7/OCMPA1 I/O TT 2mA X X Port 1.7 TIM1: output compare A output 31 H2 20 P1.8/OCMPA0 I/O TT INT0 2mA X X Port 1.8 TIM0: output compare A output 32 H3 21 P1.9/OCMPB0 I/O TT INT1 2mA X X Port 1.9 TIM0: output compare B output 33 H4 22 P1.10/ICAPB0 I/O TT WUP28 2mA X X Port 1.10 TIM0: input capture B input 34 J2 23 P1.11/ICAPA0 I/O TT WUP29 2mA X X Port 1.11 TIM0: input capture A input 35 J3 24 P1.12/ICAPA1 I/O TT WUP30 2mA X X Port 1.12 TIM1: input capture A input 36 K2 25 P1.13/ICAPB1 I/O TT WUP31 2mA X X Port 1.13 TIM1: input capture B input 37 M1 26 P1.14/CAN0RX I/O TT WUP12 2mA X X Port 1.14 CAN0: receive data input 38 L2 27 P1.15/CAN0TX I/O TT 2mA X X Port 1.15 CAN0: transmit data output 39 L3 28 P2.0/PWM0 I/O TT 2mA X X Port 2.0 40 K3 29 P2.1/CAN1RX I/O TT WUP13 2mA X X Port 2.1 41 M4 30 P2.2/CAN1TX I/O TT 2mA X X Port 2.2 CAN1: transmit data output 42 L4 31 P2.3/PWM1 I/O TT 2mA X X Port 2.3 PWM1: PWM output 43 M2 32 P2.4/PWM2 I/O TT 2mA X X Port 2.4 PWM2: PWM output 44 M3 P2.5/PWM3 I/O TT 2mA X X Port 2.5 PWM3: PWM output 45 K4 P2.6/PWM4 I/O TT 2mA X X Port 2.6 PWM4: PWM output 46 J4 P2.7/PWM5 I/O TT 2mA X X Port 2.7 PWM5: PWM output 47 M5 33 M0 I TT pd BOOT: mode selection 0 input 48 L5 34 RSTIN I CT pu Reset input 49 K5 35 M1 I TT pd BOOT: mode selection 1 input PP I/O P0.14/OCMPB 3 OD 12 Capability Input Level F3 interrupt Type 19 Pin name pu/pd TQFP100 Main function (after reset) LFBGA144 Input TQFP144 Pin n° Alternate function PWM0: PWM output CAN1: receive data input 15/52 Block diagram Table 4. STR73xFxx STR73xF pin description Input Output 51 M6 37 VSS S Ground 52 M7 38 XTAL1 I Oscillator amplifier circuit input and internal clock generator input. 53 H5 39 XTAL2 O Oscillator amplifier circuit output. 54 L6 40 VSS S Ground K6 P2.8/TDO1/CA 41 N2RX 55 I/O TT PP Supply voltage (5 V) OD S Capability 36 VDD interrupt J5 pu/pd TQFP100 50 Pin name Type LFBGA144 Main function (after reset) TQFP144 Input Level Pin n° 2mA X X Port 2.8 P2.9/RDI1/CAN I/O 2TX TT WUP14 2mA X X Port 2.9 H6 P2.10 I/O TT WUP16 2mA X X Port 2.10 58 G6 P2.11 I/O TT WUP17 2mA X X Port 2.11 59 L7 P2.12 I/O TT INT14 2mA X X Port 2.12 60 K7 P2.13 I/O TT INT15 2mA X X Port 2.13 61 J7 43 P2.14/SCL0 I/O TT 62 H7 44 P2.15/SDA0 I/O TT 63 M8 45 Test 56 J6 57 42 I Alternate function UART1: transmit data output CAN2: receive data input (TQFP100 only) UART1: receive data input CAN2: transmit data output (TQFP100 only) WUP15 2mA X X Port 2.14 I2C0: serial clock 2mA X X Port 2.15 I2C0: serial data pd Reserved pin. Must be tied to ground S Internal RC oscillator bias. A 1.3 MΩ external resistor has to be connected to this pin when a 32 kHZ RC oscillator frequency is used. 65 M10 47 VSS S Ground 66 M11 48 VDD S Supply voltage (5 V) 64 L8 46 VBIAS 67 K8 P3.0/AIN0 I/O TT 2mA X X Port 3.0 ADC: analog input 0 68 J8 P3.1/AIN1 I/O TT 2mA X X Port 3.1 ADC: analog input 1 69 M9 P3.2/AIN2 I/O TT 2mA X X Port 3.2 ADC: analog input 2 70 L9 P3.3/AIN3 I/O TT 2mA X X Port 3.3 ADC: analog input 3 71 K9 49 P3.4/AIN4 I/O TT 2mA X X Port 3.4 ADC: analog input 4 (AIN0 in TQFP100) 72 L10 50 P3.5/AIN5 I/O TT 2mA X X Port 3.5 ADC: Analog input 5 (AIN1 in TQFP100) 16/52 STR73xFxx Table 4. Block diagram STR73xF pin description Output Main function (after reset) 52 P3.7/AIN7 I/O TT 2mA X X Port 3.7 ADC: analog input 7 (AIN3 in TQFP100) 75 K11 53 VSSA S Reference ground for A/D converter 76 K10 54 VDDA S Reference voltage for A/D converter 77 J12 55 P3.8/AIN8 I/O TT 2mA X X Port 3.8 ADC: analog input 8 (AIN4 in TQFP100) 78 J11 56 P3.9/AIN9 I/O TT 2mA X X Port 3.9 ADC: analog input 9 (AIN5 in TQFP100) 79 L12 57 P3.10/AIN10 I/O TT 2mA X X Port 3.10 ADC: analog input 10 (AIN6 in TQFP100) 80 K12 58 P3.11/AIN11 I/O TT 2mA X X Port 3.11 ADC: analog input 11 (AIN7 in TQFP100) 81 J10 59 P3.12/AIN12 I/O TT INT2 2mA X X Port 3.12 ADC: analog input 12 (AIN8 in TQFP100) 82 J9 60 P3.13/AIN13 I/O TT INT3 2mA X X Port 3.13 ADC: analog input 13 (AIN9 in TQFP100) 83 H12 61 P3.14/AIN14 I/O TT INT4 2mA X X Port 3.14 ADC: analog input 14 (AIN10 in TQFP100) 84 H11 62 P3.15/AIN15 I/O TT INT5 2mA X X Port 3.15 ADC: analog input 15 (AIN11 in TQFP100) 85 H10 63 VDD 86 H9 64 VSS S PP L11 OD 74 Capability ADC: analog input 6 (AIN2 in TQFP100) interrupt 2mA X X Port 3.6 Pin name pu/pd TT TQFP100 I/O LFBGA144 73 M12 51 P3.6/AIN6 TQFP144 Input Level Input Type Pin n° Alternate function Supply voltage (5 V) S Ground 87 G12 65 JTRST I TT pu JTAG reset Input 88 F12 66 JTDI I TT pu JTAG data input 89 H8 67 JTMS I TT pu JTAG mode selection Input 90 G11 68 JTCK I TT pd JTAG clock Input 91 G10 69 JTDO O 92 G9 70 VSS S Ground 93 G8 71 VDD S Supply voltage (5 V) 94 G7 P4.0/ICAPA7 I/O TT WUP24 2mA X X Port 4.0 TIM7: input capture A input 95 F11 P4.1/ICAPB7 I/O TT WUP25 2mA X X Port 4.1 TIM7: input capture B input 96 F10 P4.2/ICAPA8 I/O TT WUP26 2mA X X Port 4.2 TIM8: input capture A input 4mA JTAG data output. Note: Reset state = HiZ 17/52 Block diagram Table 4. STR73xFxx STR73xF pin description Output WUP27 2mA X X Port 4.3 TIM8: input capture B input 98 F8 P4.4/CAN2TX I/O TT 2mA X X Port 4.4 CAN2: transmit data output 99 E12 P4.5/CAN2RX I/O TT WUP18 2mA X X Port 4.5 CAN2: receive data input I2C1: serial clock PP TT OD I/O Capability P4.3/ICAPB8 interrupt F9 Pin name pu/pd Input Level 97 TQFP100 Type Main function (after reset) LFBGA144 Input TQFP144 Pin n° Alternate function 100 E11 72 P4.6/SCL1 I/O TT WUP19 2mA X X Port 4.6 101 C12 73 P4.7/SDA1 I/O TT 2mA X X Port 4.7 I2C1: serial data 102 B12 P4.8/OCMPA8 I/O TT 2mA X X Port 4.8 TIM8: output compare A output 103 E10 P4.9/ICAPB6 I/O TT 2mA X X Port 4.9 TIM6: input capture B input TIM5: input TIM6: input capture B capture A input WUP20 2mA X X Port 4.10 input (144-pin pkg (TQFP100 only) only) P4.10/ICAPA6/I I/O CAPB5 TT 105 D12 P4.11/OCMPB 8 I/O TT 106 D11 P4.12/ICAPA9 I/O TT WUP21 2mA X X Port 4.12 TIM9: input capture A input 107 D10 P4.13/ICAPB9 I/O TT 2mA X X Port 4.13 TIM9: input capture B input 104 E9 74 2mA X X Port 4.11 TIM8: output compare B output 108 C11 75 P4.14/SS1 I/O TT 2mA X X Port 4.14 BSPI1: slave select 109 B11 76 P4.15/SCK1 I/O TT WUP22 2mA X X Port 4.15 BSPI1: serial clock 110 B10 77 P5.0/MOSI1 I/O TT 2mA X X Port 5.0 BSPI1: master output/slave input 111 C10 78 P5.1/MISO1 I/O TT 2mA X X Port 5.1 BSPI1: master input/Slave output 112 A9 P5.2/OCMPA9 I/O TT 2mA X X Port 5.2 TIM9: output compare A output 113 B9 P5.3/OCMPB9 I/O TT 2mA X X Port 5.3 TIM9: output compare B output 114 C9 P5.4/SS2/PWM 79 I/O 3 TT 2mA X X Port 5.4 BSPI2: slave select 115 D9 80 P5.5/SCK2 I/O TT WUP23 2mA X X Port 5.5 116 A11 81 P5.6/MOSI2 I/O TT 2mA X X Port 5.6 BSPI2: master output/slave input 117 A10 82 P5.7/MISO2 I/O TT 2mA X X Port 5.7 BSPI2: master input/slave output 118 83 P5.8/PWM4 I/O TT 2mA X X Port 5.8 PWM4: PWM output (TQFP100 only) 18/52 A8 INT6 PWM3: PWM output (TQFP100 only) BSPI2: serial clock STR73xFxx Table 4. Block diagram STR73xF pin description Output TT INT7 2mA X X Port 5.9 120 C8 85 P5.10/RDI2 I/O TT INT8 2mA X X Port 5.10 UART2: receive data input 121 A12 86 P5.11/TDO2 I/O TT INT9 2mA X X Port 5.11 UART2: transmit data output 122 D8 87 P5.12 I/O TT INT10 2mA X X Port 5.12 123 E8 P5.13 I/O TT INT11 2mA X X Port 5.13 124 B7 P5.14 I/O TT INT12 2mA X X Port 5.14 125 A7 P5.15 I/O TT INT13 2mA X X Port 5.15 PP I/O OD 84 P5.9/PWM5 Capability Input Level B8 interrupt Type 119 Pin name pu/pd TQFP100 Main function (after reset) LFBGA144 Input TQFP144 Pin n° Alternate function PWM5: PWM output (TQFP100 only) 126 A6 88 V18 S 1.8 V decoupling pin: a decoupling capacitor (recommended value: 100 nF) must be connected between this pin and nearest VSS pin. 127 C7 89 VSS S Ground 128 D7 90 VDD S Supply voltage (5 V) 129 E7 91 P6.0 I/O TT WUP0 8mA X X Port 6.0 130 F7 P6.1 I/O TT WUP1 2mA X X Port 6.1 131 B6 92 P6.2/RDI3 I/O TT WUP2 2mA X X Port 6.2 132 C6 P6.3 I/O TT WUP3 2mA X X Port 6.3 133 D6 I/O TT WUP4 2mA X X Port 6.4 134 E6 P6.5 I/O TT WUP5 2mA X X Port 6.5 135 A5 94 P6.6 I/O TT WUP6 2mA X X Port 6.6 136 B5 P6.7 I/O TT WUP7 2mA X X Port 6.7 137 C5 95 P6.8/RDI0 I/O TT WUP10 2mA X X Port 6.8 138 A3 96 P6.9/TDO0 I/O TT 2mA X X Port 6.9 139 A2 P6.10 I/O TT WUP8 2mA X X Port 6.10 140 D5 97 P6.11/MISO0 I/O TT 2mA X X Port 6.11 BSPI0: master input/slave output 141 A4 98 P6.12/MOSI0 I/O TT 2mA X X Port 6.12 BSPI0: master output/slave input 142 B4 99 P6.13/SCK0 I/O TT WUP11 2mA X X Port 6.13 BSPI0: serial clock 143 C4 100 P6.14/SS0 I/O TT 2mA X X Port 6.14 BSPI0: slave select 144 B3 P6.15 I/O TT 93 P6.4/TDO3 UART3: receive data input UART3: transmit data output UART0: receive data input UART0: transmit data output WUP9 2mA X X Port 6.15 19/52 Block diagram 3.3 STR73xFxx Memory mapping Figure 5 shows the various memory configurations of the STR73xF system. The system memory map (from 0x0000_0000 to 0xFFFF_FFFF) is shown on the left part of the figure, the right part shows maps of the Flash and APB areas. For flexibility the Flash or RAM addresses can be aliased to Block 0 addresses using the remapping feature Most reserved memory spaces (gray shaded areas in Figure 5) are protected from access by the user code. When an access this memory space is attempted, an ABORT signal is generated. Depending on the type of access, the ARM processor will enter “prefetch abort” state (Exception vector 0x0000_000C) or “data abort” state (Exception vector 0x0000_0010). It is up to the application software to manage these abort exceptions. Figure 5. Memory map APB memory space 32 Kbytes Addressable memory space 4 Gbytes 0xFFFF FFFF 0xFFFF 8000 APB TO ARM7 BRIDGE 0xFFFF FFFF 32K EIC 1K ADC 1K CMU RTC 1K DMA 0-3 1K TIM 4 1K TIM 3 1K TIM 2 1K BSPI 2 1K BSPI 1 1K BSPI 0 1K GP I/O 0-6 1K PWM 0-5 1K CAN 2(4) 1K (4) CAN 1 1K CAN 0(4) 1K APB BRIDGE 1 REGS 1K reserved 1K WAKEUP 1K reserved 1K TIM 5-9 1K TIM 1 1K 0xFFFF FC00 0xFFFF FBFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 7 Flash memory space 64K/128/256 Kbytes 0xE000 0000 0xDFFF FFFF F800 F7FF F600 F400 F3FF 0xFFFF F000 0xFFFF EFFF 0xFFFF EC00 0xFFFF EBFF 0x8010 DFFF 6 0x8010 C000 0x8010 0017 0x8010 0000 System Memory 8K Flash registers 20B 0xFFFF E800 0xFFFF E7FF 0xFFFF E400 0xFFFF E3FF 0xFFFF E000 0xFFFF DFFF 0xC000 0000 0xBFFF FFFF 0xFFFF DC00 0xFFFF DBFF 0xFFFF D800 0xFFFF D7FF 5 0xA000 3FFF 0xA000 0000 0x9FFF FFFF 0xFFFF D400 0xFFFF D3FF RAM 16K 0xFFFF D000 0xFFFF CFFF 0xFFFF CC00 0xFFFF CBFF 0xFFFF C800 0xFFFF C7FF 4 0x8010 0017 0x8000 0000 0x7FFF FFFF 0xFFFF C400 0xFFFF C3FF Flash 64K/128K/256K 0xFFFF C000 0xFFFF BFFF 0xFFFF BC00 0xFFFF BBFF 0xFFFF B800 0xFFFF B7FF 3 0x6000 03FF 0x6000 0000 0x5FFF FFFF 0xFFFF B400 0xFFFF B3FF PRCCU 1K 0xFFFF B000 0xFFFF AFFF 0x8003 FFFF B0F7(2) 2 0x4000 003F 0x4000 0000 0x3FFF FFFF 64K 0x8003 0000 0x8002 FFFF CONFIG. REGS B0F6(2) 64B 64K 0x8002 0000 0x8001 FFFF 1 0x2000 000F 0x2000 0000 0x1FFF FFFF B0F5(3) 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF A800 A7FF A600 A400 A3FF A200 A000 9FFF 9E00 9C00 9BFF 16B 0x8001 0000 0x8000 FFFF 0 Flash (1) 64K/128K/256K 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 8000 7FFF 6000 5FFF 4000 3FFF 2000 1FFF 0000 0xFFFF 9000 0xFFFF 8FFF 32K B0F1 8K 8K 8K B0TF 8K B0F3 B0F2 TIM 0 WAKEUPTIM WDG UART 3 UART 1 UART 2 UART 0 0xFFFF 8C00 0xFFFF 8BFF 1K 1K 1K 1K TB 0-2 1K reserved 1K reserved 1K reserved 1K I2C 1 1K I2C 1K 0xFFFF 9800 0xFFFF 97FF 0xFFFF 9400 0xFFFF 93FF NATIVE ARBITER B0F4 0x0010 0017 0x0000 0000 64K 0xFFFF AC00 0xFFFF ABFF 0xFFFF 8800 0xFFFF 87FF 0xFFFF 8400 0xFFFF 83FF 0 APB BRIDGE 0 REGS 1K 0xFFFF 8000 (1) Flash aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes) (2) Only available in STR73xZ2/V2 (3) Only available in STR73xZ2/V2 and STR73xZ1/V1 (4) Only available in STR730/STR731 20/52 access to gray shaded area will return an ABORT Drawing not to scale STR73xFxx Electrical parameters 4 Electrical parameters 4.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 4.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA=25° C and TA=TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 4.1.2 Typical values Unless otherwise specified, typical data are based on TA=25° C and VDD=5 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 4.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 4.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 6. 4.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 7. Figure 6. Pin loading conditions Figure 7. Pin input voltage STR7 PIN STR7 PIN L=50pF VIN 21/52 Electrical parameters 4.2 STR73xFxx Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 5. Voltage characteristics Symbol Ratings Min Max Unit External 5 V Supply voltage -0.3 6.0 V VSSA Reference ground for A/D converter VSS VSS V VDDA- VSSA Reference voltage for A/D converter -0.3 VDD+0.3 Input voltage on any pin -0.3 VDD+0.3 Variations between different 5 V power pins - 0.3 Variations between all the different ground pins - 0.3 VDD - VSS VIN |ΔVDDx| V mV |VSSX - VSS| VESD(HBM) Electrostatic discharge voltage (Human Body Model) VESD(MM) Electrostatic discharge voltage (Machine Model) Table 6. see : Absolute maximum ratings (electrical sensitivity) on page 36 Current characteristics Symbol Ratings Max. IVDD Total current into VDD power lines (source) 1) 100 IVSS Total current out of VSS ground lines (sink) 1) 100 Output current sunk by any I/O and control pin 10 Output current source by any I/O and control pin 10 Injected current on any other pin 4) &5) ±10 Total injected current (sum of all I/O and control pins) 4) ±75 IIO IINJ(PIN) 2) & 3) ΣIINJ(PIN) 2) Unit mA 1. All 5 V power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external 5 V supply 2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. 3. Negative injection disturbs the analog performance of the device. See note in Section 4.3.6: 10-bit ADC characteristics on page 43. 4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device. 5.) In 144-pin devices, only +10 mA on P0.3, P1.13, P3.6 and P4.13 pins (negative injection not allowed). 22/52 STR73xFxx Electrical parameters Table 7. Thermal characteristics Symbol Ratings Value Unit TSTG Storage temperature range -55 to +150 °C TJ Maximum junction temperature (see Section 5.2: Thermal characteristics on page 48) 23/52 Electrical parameters 4.3 STR73xFxx Operating conditions Subject to general operating conditions for VDD, and TA. Table 8. Symbol fMCLK Parameter Conditions Accessing SRAM or Flash (zero wait state Flash access up to 36 MHz) Internal CPU and system clock frequency Min Max Unit 0 36 MHz VDD Standard Operating Voltage 4.5 5.5 V VDDA Operating analog reference voltage with respect to ground 4.5 VDD+0.1 V TA Ambient temperature range -40 -40 85 105 °C Table 9. Symbol tVDD 24/52 General operating conditions 6 partnumber suffix 7 partnumber suffix Operating conditions at power-up / power-down Parameter VDD rise time rate Conditions Subject to general operating conditions for TA. Min Typ Max Unit - 20 - ms/V STR73xFxx 4.3.1 Electrical parameters Supply current characteristics The current consumption is measured as described in Figure 6 and Figure 7. Total current consumption The MCU is placed under the following conditions: ● All I/O pins in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except if explicitly mentioned. Subject to general operating conditions for VDD, and TA. Table 10. Symbol Total current consumption Parameter Conditions Formula, fMCLK in MHz, RAM execution Typ 1) Max 2) Unit 7 + 1.9 fMCLK mA fMCLK = 36 MHz, RAM execution 76 mA fMCLK = 36 MHz, Flash execution 86 mA WFI mode fOSC = 4 MHz, fMCLK= fOSC/16 = 250 kHz Main voltage regulator ON, LP voltage regulator = 2 mA, RTC and WDG on, other modules off. 6.7 8 mA LPWFI mode fRC = high frequency (CMU_RCCTL= 0x8), fMCLK= fRC /16, LP voltage regulator = 2 mA, other modules off. 220 350 µA fOSC = 4 MHz, RC oscillator on fRC = high frequency (CMU_RCCTL= 0x0) LP voltage regulator = 6 mA, RTC and WUT ON, other modules off. Internal wake-up possible. 500 700 RUN mode3) IDD STOP mode HALT mode µA fRC = high frequency (CMU_RCCTL= 0xF), LP voltage regulator = 2mA. WUT ON, other modules off. Internal wake-up possible. 150 220 LP voltage regulator = 2 mA, WIU on, Other modules off, external wake-up. 50 140 LP voltage regulator = 2 mA. 50 140 µA 1. Typical data are based on TA=25° C, VDD=5 V 2. Data based on characterization results, tested in production at VDD max. and TA = 25° C. 3. I/O in static configuration (not toggling). RUN mode is almost independent of temperature. On the contrary RUN mode current is highly dependent on the application. The IDDRUN value can be significantly reduced by the application in the following ways: switch-off unused peripherals (default), reduce peripheral frequency through internal prescaler, fetch the most frequently-used functions from RAM and use low power mode when possible. 25/52 Electrical parameters STOP IDD vs. VDD Figure 9. 300 300 250 250 200 TA=-45°C TA=25°C 150 TA=85°C TA=105°C 100 Idd HALT (µA) Idd STOP (µA) Figure 8. STR73xFxx 50 HALT IDD vs. VDD 200 TA=-45°C TA=25°C 150 TA=85°C TA=105°C 100 50 0 3.5 4 4.5 5 5.5 6 0 6.5 3.5 4 4.5 Vdd (V) 5 5.5 6 6.5 Vdd (V) Figure 10. WFI IDD vs. VDD Figure 11. LPWFI IDD vs. VDD 8.0 500 450 7.5 TA=-45°C 7.0 TA=25°C TA=85°C 6.5 TA=105°C Idd LPWFI (µA) Idd Wfi (mA) 400 350 300 TA=-45°C 250 TA=25°C 200 TA=85°C 150 TA=105°C 100 6.0 50 0 5.5 3.5 3.5 4 4.5 5 Vdd (V) 26/52 5.5 6 6.5 4 4.5 5 Vdd (V) 5.5 6 6.5 STR73xFxx Electrical parameters Typical application current consumption Table 11. Typical consumption in Run mode at 25°C and 85°C Conditions fMCLK (MHz) fADC (MHz) Typical IDD (mA) 10 VDD= 5.5 V, RC oscillator off, PLL on, RTC enabled, 1 Timer (TIM) running, and ADC running in scan mode. Code executing in RAM 20 36 Mode RUN WFI SLOW LPWFI 29 9 42 10 Code executing in Flash 22 10 20 36 Table 12. 20 10 32 9 48 Typical consumption in Run and low power modes at 25°C Conditions fMCLK Typical IDD 36 MHz 76 mA 24 MHz 56 mA Main voltage regulator on, Flash on, EIC on, WIU on, GPIOs on. 36 MHz 33 mA 24 MHz 31 mA PLL off, main voltage regulator on 4 MHz 11 mA CLOCK2/16, main voltage regulator on 250 kHz 8 mA CLOCK2/16, main voltage regulator off 250 kHz 3 mA RC oscillator running in low frequency, main crystal oscillator off, main voltage regulator off 29 kHz 2.5 mA CLOCK2/16, main voltage regulator off, LP voltage regulator = 2 mA, Flash in power down mode. 250 kHz 528 µA Main voltage regulator off, RTC on, RC oscillator off, LP voltage regulator = 6 mA - 378 µA Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 6 mA - 83 µA Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 4 mA - 64 µA Main voltage regulator off, RTC off, RC oscillator off, LP voltage regulator = 2 mA - 44 µA RTC off, LP voltage regulator = 2 mA - 44 µA All peripherals on, RAM execution STOP HALT 27/52 Electrical parameters STR73xFxx On-chip peripherals Table 13. Symbol Peripheral current consumption at TA= 25°C Parameter Conditions Typ Unit High frequency 120 µA Low frequency 60 µA 350 µA IDD(BSPI) BSPI supply current 1) 1.1 mA IDD(UART) UART supply current 1) 850 µA 430 µA 5 mA 2.88 mA 2.95 mA 150 µA 250 µA IDD(PWM) PWM supply current 240 µA IDD(RTC) RTC supply current 370 µA IDD(DMA) DMA supply current 2.5 mA IDD(ARB) 180 µA IDD(AHB) AHB arbiter supply current 570 µA IDD(WUT) WUT supply current 300 µA IDD(WIU) 460 µA IDD(RC) RC (backup oscillator) supply current IDD(TIM) TIM timer supply current 1) IDD(I2C) I2C supply current 1) IDD(ADC) ADC supply current when converting 2) IDD(EIC) EIC supply current IDD(CAN) CAN supply current 1) IDD(GPIO) GPIO supply current IDD(TB) TB supply current Native arbiter supply current WIU supply current fMCLK=36 MHz 1. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset, not clocked and the on-chip peripheral when clocked and not kept under reset. This measurement does not include the pad toggling consumption. 2. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions. 28/52 STR73xFxx 4.3.2 Electrical parameters Clock and timing characteristics Crystal / ceramic resonator oscillator The STR73xF can operate with a crystal oscillator or resonator clock source. Figure 12 describes a simple model of the internal oscillator driver as well as example of connection for an oscillator or a resonator. Figure 12. Crystal oscillator and resonator VDD STR73x I XTAL2 XTAL1 RF XTAL1 XTAL2 XTAL1 Crystal XTAL2 STR73x STR73x Resonator RS CL Note: CL 1 XTAL2 must not be used to directly drive external circuits. 2 For test or boot purpose, XTAL2 can be used as an high impedance input pin to provide an external clock to the device. XTAL1 should be grounded, and XTAL2 connected to a wave signal generator providing a 0 to VDD signal. Directly driving XTAL2 may results in deteriorated jitter and duty cycle. 29/52 Electrical parameters STR73xFxx Main oscillator characteristics VDD = 5 V ± 10%, TA = -40° C to TAmax, unless otherwise specified. Table 14. Main oscillator characteristics Value Symbol Parameter Conditions Unit Min fOSC Oscillator transconductance gm VOSC1) VAV1) tSTUP 30/52 Oscillator frequency 1) Oscillation amplitude Oscillator operating point Oscillator start-up time fOSC = 4 MHz, TA= 25o C Typ Max 4 8 MHz 1.5 4.2 mA/V - 2.4 V fOSC = 8 MHz, TA= 25o C 1.- Sine wave middle, TA= 25o C - 0.77 - V External crystal, VDD = 5.5 V, fOSC = 4 MHz, TA=-40o C - - 12 ms External crystal, VDD = 5.0 V, fOSC = 4 MHz, TA=25o C - 5.5 - ms External crystal, VDD = 5.5 V, fOSC = 6 MHz, TA=-40o C - - 8 ms External crystal, VDD = 5.0 V, fOSC = 6 MHz, TA=25o C - 3.3 - ms External crystal, VDD = 5.5 V, fOSC = 8 MHz, TA=-40o C - - 7 ms External crystal, VDD = 5.0 V, fOSC = 8 MHz, TA= 25o C - 2.7 - ms STR73xFxx Electrical parameters Table 14. Main oscillator characteristics (continued) Value Symbol Parameter Conditions fOSC = 4 MHz Cp2) = 10 pF fOSC = 5 MHz Cp = 10 pF RF1) Feedback resistor fOSC = 6 MHz Cp = 10 pF fOSC = 7 MHz Cp = 10 pF fOSC = 8 MHz Cp = 10 pF Unit Min Typ Max C13) = C2 4)= 10 pF 150 555 - C1 = C2 = 20 pF 490 1035 - C1 = C2 = 30 pF 490 1030 - C1 = C2 = 40 pF 380 850 - C1 = C2 = 10 pF 160 470 - C1 = C2 = 20 pF 415 800 - C1 = C2 = 30 pF 340 735 - C1 = C2 = 40 pF 260 580 - C1 = C2 = 10 pF 160 415 - C1 = C2 = 20 pF 325 640 - C1 = C2 = 30 pF 250 550 - C1 = C2 = 40 pF 180 420 - C1 = C2 = 10 pF 160 375 - C1 = C2 = 20 pF 260 525 - C1 = C2 = 30 pF 185 420 - C1 = C2 = 40 pF 135 315 - C1 = C2 = 10 pF 155 340 - C1 = C2 = 20 pF 210 435 - C1 = C2 = 30 pF 145 335 - C1 = C2 = 40 pF 100 245 - Ω 1. Min and max values are guaranteed by characterization, not tested in production. 2. CP represents the total capacitance between XTAL1 and XTAL2, including the shunt capacitance of the external quartz crystal as well as the total board parasitic cross-capacitance between XTAL1 track and XTAL2 track. 3. C1 represents the total capacitance between XTAL1 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL1 track and ground (this includes application board track capacitance to ground and device pin capacitance). 4. C2 represents the total capacitance between XTAL2 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL2 track and ground (this includes application board track capacitance to ground and device pin capacitance). 31/52 Electrical parameters STR73xFxx RC/backup oscillator characteristics VDD = 5V ± 10%, TA = -40°C to TAmax, unless otherwise specified. Table 15. RC oscillator characteristics Value Symbol Parameter Conditions Unit Min fRC RC frequency fRCHF RC high frequency fRCLF RC low frequency fRCHFS2) fRCLFS2) tRCSTUP Max High frequency mode 1) 2.35 MHz Low frequency mode1) 29 kHz CMU_RCCTL = 0x0 3 MHz CMU_RCCTL = 0xF CMU_RCCTL = 0x0 2.3 35 MHz kHz CMU_RCCTL = 0xF 30 kHz RC high frequency stability Fixed CMU_RCCTL 10 % RC low frequency stability Fixed CMU_RCCTL 23 % RC start-up time Stable VDD, fRC = 2.35 MHz, TA = 25oC 1) CMU_RCCTL = 0x8 2) RC frequency shift versus average value (%) 32/52 Typ 2.35 µs STR73xFxx Electrical parameters PLL electrical characteristics VDD = 5 V ± 10%, TA = -40° C to TAmax, unless otherwise specified Table 16. PLL characteristics Value Symbol Parameter Conditions Unit Min fPLLIN(1) FREF_RANGE = ‘0’ FREF_RANGE = ‘1’ PLL reference clock fPLLOUT PLL output clock MX = ”00” MX = ”01” MX = ”10” MX = ”11” fMCLK System clock DX = 1..7 fFREE (2) PLL free running frequency tLOCK(3) PLL lock time ΔtPKJIT PLL jitter (pk to pk) Typ Max 1.5 3.0 3.0 5.0 20 x fPLLIN 12 x fPLLIN 28 x fPLLIN 16 x fPLLIN fPLLOUT/DX FREF_RANGE = ‘0’, MX0 = ’1’ FREF_RANGE = ‘0’, MX0 = ’0’ FREF_RANGE = ‘1’, MX0 = ’1’ FREF_RANGE = ‘1’, MX0 = ’0’ 120 240 240 480 Stable oscillator (fPLLIN = 4 MHz), stable VDD 100 fPLLIN = 4 MHz (pulse generator) MHz MHz 36 MHz kHz 300 μs 1.5 ns 1. fPLLIN is obtained from fOSC directly or through an optional divider by 2. 2. Typical data are based on TA=25°C, VDD=5V 3. Max value is guaranteed by characterization, not tested in production. Table 17. Symbol Low-power mode wake-up timing Parameter tWUHALT Wake-up from HALT mode tWUSTOP Wake-up from STOP mode Conditions Typ Unit 200 µs RC high frequency in STOP mode 180 µs RC low frequency in STOP mode 234 µs 27 µs 46 µs 3.6 ms Main voltage regulator on RC oscillator off fOSC = 4 MHz, fMCLK= fOSC/16 RAM or FLASH execution tWULPWFI 1) Wake-up from LPWFI mode Main voltage regulator on RC oscillator = high frequency Flash execution Main voltage regulator on RC oscillator = low frequency Flash execution 1. Flash memory programmed to enter Power Down mode during LPWFI. 33/52 Electrical parameters 4.3.3 STR73xFxx Memory characteristics Flash memory Table 18. Flash memory characteristics Value Symbol Parameter Test Conditions Unit Min tWP Word program (32-bit) 35 80 μs tDWP Double word program(64-bit) 64 150 μs tBP64 Bank program (64 K) Double word program 0.5 1.25 s tBP128 Bank program (128 K) Double word program 1 2.5 s tBP256 Bank program (256 K) Double word program 2 4.9 s tSE8 Sector erase (8 K) Not preprogrammed Preprogrammed 2) 0.6 0.5 0.9 0.8 s tSE32 Sector erase (32 K) Not preprogrammed Preprogrammed2) 1.1 0.8 2 1.8 s tSE64 Sector erase (64 K) Not preprogrammed preprogrammed 2) 1.7 1.3 3.7 3.3 s tRPD3) Recovery from power-down 20 μs tPSL3) Program suspend latency 10 μs tESL3) Erase suspend latency 30 μs tESR3) Erase suspend rate 20 20 ms tSP3) 170 µs Min. time from erase resume to next erase suspend Set protection 40 tFPW3) First word program 1 NEND Endurance tRET Data retention TA = 85° C 3. Guaranteed by design, not tested in production. ms 10 kcycles 20 Years 1. TA = -45° C after 0 cycles, Guaranteed by characterization, not tested in production. 2. All bits programmed to 0. 34/52 Typ Max1) STR73xFxx 4.3.4 Electrical parameters EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). ● ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard. ● FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations: The software flowchart must include the management of runaway conditions such as: ● Corrupted program counter ● Unexpected reset ● Critical data corruption (control registers...) Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 19. EMS data Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD=5 V, TA=+25° C, fMCLK=36 MHz conforms to IEC 1000-4-2 4A VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD=5 V, TA=+25° C, fMCLK=36 MHz conforms to IEC 1000-4-4 4A 35/52 Electrical parameters STR73xFxx Electromagnetic interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin. Table 20. Symbol EMI data Parameter Monitored frequency band Conditions Max vs. [fOSC4M/fMCLK] Unit 6/36 MHz 8/8 MHz SEMI Peak level VDD=5.0V, TA=+25°C, All packages 0.1 MHz to 30 MHz 23 30 30 MHz to 130 MHz 37 34 130 MHz to 1 GHz 20 7 SAE EMI Level 4 3.5 dBµV - Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and machine model. This test conforms to the JESD22-A114A/A115A standard. Table 21. Symbol ESD Absolute Maximum ratings Ratings VESD(HBM) Electrostatic discharge voltage (human body model) VESD(MM) Electrostatic discharge voltage (machine model) VESD(CDM) Electrostatic discharge voltage (charge device model) Conditions Maximum value 1) Unit 2000 TA=+25° C 200 V 750 on corner pins, 500 on others Notes: 1. Data based on characterization results, not tested in production. Static and dynamic latch-up ● 36/52 LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each STR73xFxx Electrical parameters sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. ● DLU: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181. Table 22. Symbol LU DLU Electrical sensitivities Parameter Conditions Class 1) Static latch-up class TA=+25°C TA=+85°C TA=+105°C A A A Dynamic latch-up class VDD= 5.5 V, fOSC4M = 4 MHz, fMCLK = 32 MHz, TA = +25° C A 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard). 37/52 Electrical parameters 4.3.5 STR73xFxx I/O port pin characteristics General characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. Table 23. I/O static characteristics Symbol Parameter VIL Conditions Min Typ Input low level voltage 1) Max 0.8 TTL ports VIH IINJ(PIN) Unit Input high level voltage 1) V 2.0 Injected current on any I/O pin ΣIINJ(PIN) Total injected current (sum of all I/O and control pins) 2) ±10 mA ±75 mA ±1 μA Ilkg Input leakage current 3) VSS≤VIN≤VDD IS Static current consumption 4) Floating input mode RPU Weak pull-up equivalent resistor5) VIN=VSS 55 120 220 kΩ RPD Weak pull-down equivalent resistor5) VIN=VDD 55 120 220 kΩ CIO I/O pin capacitance 200 5 µA pF 1. Data based on characterization results, not tested in production. 2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>V33 while a negative injection is induced by VIN<VSS. Refer to Section 4.2 on page 22 for more details. 3. Leakage could be higher than max. if negative current is injected on adjacent pins. 4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. Data based on design simulation and/or technology characteristics, not tested in production. 6. The RPU pull-up and RPD pull-down equivalent resistor are based on a resistive transistor (corresponding IPU and IPD current characteristics described in Figure 19). 38/52 STR73xFxx Electrical parameters Output driving current Subject to general operating conditions for VDD and TA unless otherwise specified. Table 24. I/O Type Output driving current Symbol Parameter Conditions VOL 1) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH 2) Output high level voltage for an I/O pin I =-2 mA when 4 pins are sourced at same time IO VOL 1) Output low level voltage for an I/O pin Min IIO=+2 mA Max Unit 0.4 Standard Med. Current 2) VDD-0.8 IIO=+6 mA Output high level voltage for an I/O pin IIO=-6 mA (JTDO) VOH High Current VOL 1) Output low level voltage for an I/O pin P6.0 VOH 2) Output high level voltage for an I/O pin IIO=-8 mA 0.4 V VDD-0.8 IIO=+8 mA 0.4 VDD-0.8 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Figure 13. VOH standard ports vs IOH @ VDD 5V Figure 14. VOL standard ports vs IOL @ VDD 5 V TA -45° C 5.10 0.25 Ta -45°C Ta 25°C Ta 90°C Ta 110°C 0.20 VOL(V) at VDD= 5 V VOH(V) at VDD= 5 V 5.00 4.90 4.80 Ta -45°C Ta 25°C Ta 90°C Ta 110°C 4.70 0.15 0.10 0.05 4.60 4.50 0.00 0 1 2 Ioh (mA) 3 4 0 1 2 3 4 Iol (mA) 39/52 Electrical parameters STR73xFxx Figure 15. VOH JTDO pin vs IOL @ VDD 5 V Figure 16. VOL JTDO pin vs IOL @ VDD 5 V 5.10 0.14 0.12 5.00 VOL(V) at VDD= 5 V VOH(V) at VDD= 5 V 0.10 4.90 4.80 4.70 Ta -45°C Ta 25°C Ta 90°C Ta 110°C 4.60 0.08 0.06 0.04 Ta -45°C Ta 25°C Ta 90°C Ta 110°C 0.02 4.50 0.00 0 1 2 3 4 5 6 0 1.2 2.4 Ioh (mA) 3.6 4.8 6 Iol (mA) Figure 17. VOH P6.0 pin vs IOL @ VDD 5 V Figure 18. VOL P6.0 pin vs IOL @ VDD 5 V 5.10 0.18 0.16 5.00 VOL(V) at VDD= 5 V VOH(V) at VDD= 5 V 0.14 4.90 4.80 4.70 Ta -45°C Ta 25°C Ta 90°C Ta 110°C 4.60 0.10 0.08 0.06 Ta -45°C Ta 25°C Ta 90°C Ta 110°C 0.04 0.02 4.50 0.00 0 1 2 3 4 Ioh (mA) 40/52 0.12 5 6 7 8 0 1 2 3 4 Iol (mA) 5 6 7 8 STR73xFxx Electrical parameters NRSTIN pin The NRSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as RPU (see : General characteristics on page 38) Subject to general operating conditions for VDD and TA unless otherwise specified. Table 25. Reset pin characteristics Symbol Parameter Conditions VIL(NRSTIN) NRSTIN Input low level voltage 1) VIH(NRSTIN) NRSTIN Input high level voltage 1) Vhys(NRSTIN) NRSTIN Schmitt trigger voltage hysteresis 2) Min Typ 1) Max 0.3 VDD Unit V 0.7 VDD 800 mV VF(RSTINn) NRSTIN Input filtered pulse3) VNF(RSTINn) NRSTIN Input not filtered pulse3) 2 µs VRP(RSTINn) NRSTIN removal after Power-up3) 100 µs 500 ns 1. Data based on characterization results, not tested in production. 2. Hysteresis voltage between Schmitt trigger switching levels. 3. Data guaranteed by design, not tested in production. Figure 19. Recommended NRSTIN pin protection1) VDD RPU EXTERNAL RESET CIRCUIT Filter 0.01μF INTERNAL RESET STR7X Required 1. The RPU pull-up equivalent resistor is based on a resistive transistor. 2. The reset network protects the device against parasitic resets. 3. The user must ensure that the level on the NRSTIN pin can go below the VIL(NRSTIN) max. level specified in Table 25. Otherwise the reset will not be taken into account internally. 41/52 Electrical parameters STR73xFxx Figure 20. NRSTIN RPU vs. VDD 250 Rpu (kOhm) 200 150 25C -45C 110C 100 50 0 3 3.5 4 4.5 Vdd (v) 42/52 5 5.5 STR73xFxx 4.3.6 Electrical parameters 10-bit ADC characteristics Subject to general operating conditions for VDDA, fMCLK, and TA unless otherwise specified. Table 26. Symbol ADC characteristics Parameter Conditions fADC VAIN Ilkg Conversion voltage range 2) Internal sample and hold capacitor tCAL2) Calibration time Sampling time Unit 0.4 10 MHz VSSA VDDA V 6 μA 3.5 pF 5 fADC = 10 MHz fADC = 10 MHz Typ 1) Max VIN<VSS, | IIN |< 400 Negative input leakage current on µA on adjacent analog pins analog pin CADC tS3) Min 1 580.2 µs 5802 1/fADC 14 µs 3 tCONV IADC Total conversion time (including sampling time) Running mode fADC = 10 MHz Normal mode Power-down mode µs 30 (10 for sampling +20 for successive approximation) 1/fADC 5 mA 1 μA 1. Unless otherwise specified, typical data are based on TA=25°C and VDDA-VSS=5.0V. They are given only as design guidelines and are not tested. 2. Calibration is recommended once after each power-up. 3. During the sample time the input capacitance CAIN (6.8 max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tS depend on programming. 43/52 Electrical parameters STR73xFxx Table 27. ADC accuracy with fMCLK = 20 MHz, fADC=10 MHz, RAIN < 10 kΩ RAIN, VDDA=5 V. This assumes that the ADC is calibrated2) Symbol Parameter Conditions Typ Max |ET| Total unadjusted error 1) 1.0 2.0 |EO| Offset error 1) 0.15 1.0 |EG| Gain error 1) 0.97 1.1 |ED| Differential linearity error1) 0.7 1.0 |EL| Integral linearity error 1) 0.76 1.5 Unit LSB 1. ADC accuracy vs. negative injection current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. The effect of negative injection current on robust pins is specified in Section 4.3.5. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 4.3.5 does not affect the ADC accuracy. 2. Calibration is needed once after each power-up. Figure 21. ADC accuracy characteristics EG 1023 1022 1021 1LSB IDEAL V –V DDA SSA = ----------------------------------------- 1024 (2) ET (3) 7 (1) 6 5 EO 4 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line EL 3 ED 2 ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. 1 LSBIDEAL 1 0 1 VSSA 2 3 4 5 6 7 V 1021 1022 1023 1024 VDDA Figure 22. Typical application with ADC VDD STR73X VT 0.6V RAIN AINx 2.3kΩ(max) VAIN CAIN 44/52 VT 0.6V IL ±1μA 10-Bit A/D conversion CADC 3.5pF STR73xFxx Electrical parameters Analog power supply and reference pins The VDDA and VSSA pins are the analog power supply of the A/D converter cell. They act as the high and low reference voltages for the conversion. Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see: General PCB design guidelines). General PCB design guidelines To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals. ● Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB. ● Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 µF and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 µF capacitor close to the power source (see Figure 23). ● The analog and digital power supplies should be connected in a star network. Do not use a resistor, as VDDA is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy. ● Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted. Software filtering of spurious conversion results For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques. Figure 23. Power supply filtering STR73x 1 to 10 μF 0.1 μF STR7 DIGITAL NOISE FILTERING VSS VDD 5V POWER SUPPLY SOURCE 0.1 μF EXTERNAL NOISE FILTERING VDDA VSSA 45/52 Package characteristics STR73xFxx 5 Package characteristics 5.1 Package mechanical data Figure 24. 100-pin thin quad flat package A D D1 A2 Typ e E Max 0.0630 0.15 0.0020 0.0059 1.35 1.40 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 C 0.09 0.20 0.0035 0.0079 D 16.00 0.6299 D1 14.00 0.5512 E 16.00 0.6299 E1 14.00 0.5512 e 0.50 h 0° 3.5° L 0.45 0.60 0.0197 7° 0° 3.5° 7° 0.75 0.0177 0.0236 0.0295 1.00 0.0394 Number of Pins N h Typ 1.60 0.05 L1 L Min A2 c L1 Max A1 b E1 Min A A1 inches(1) mm Dim. 100 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 25. 144-pin thin quad flat package Dim. D A A2 D3 A1 108 109 73 72 0.10mm .004 in. b Seating Plane b E3 E1 E 37 36 c e L1 L h Max Min Typ Max 1.60 0.0630 0.15 0.0020 0.0059 A1 0.05 A2 1.35 1.40 b 0.17 0.22 c 0.09 D 21.80 22.00 22.20 0.8583 0.8661 0.8740 D1 19.80 20.00 20.20 0.7795 0.7874 0.7953 D3 144 1 Typ A D1 inches(1) mm Min 1.45 0.0531 0.0551 0.0571 0.27 0.0067 0.0087 0.0106 0.20 0.0035 17.50 0.0079 0.6890 E 21.80 22.00 22.20 0.8583 0.8661 0.8740 E1 19.80 20.00 20.20 0.7795 0.7874 0.7953 E3 17.50 e 0.50 K 0° 3.5° L 0.45 0.60 L1 0.6890 0.0197 7° 0° 3.5° 1.00 0.0394 Number of Pins N 1. 46/52 7° 0.75 0.0177 0.0236 0.0295 144 Values in inches are converted from mm and rounded to 4 decimal digits. STR73xFxx Package characteristics Figure 26. 144-ball low profile fine pitch ball grid array package Dim. inches1) mm Min A 1.21 A1 0.21 A2 Typ Max Min Typ 1.70 0.0476 Max 0.0669 0.0083 1.085 0.35 D 9.85 10.00 10.15 0.3878 0.3937 0.3996 D1 E 0.40 0.0427 b 0.45 0.0138 0.0157 0.0177 8.80 0.3465 9.85 10.00 10.15 0.3878 0.3937 0.3996 E1 8.80 0.3465 e 0.80 0.0315 F 0.60 0.0236 ddd 0.10 0.0039 eee 0.15 0.0059 fff 0.08 0.0031 Number of Pins N 1 144 Values in inches are converted from mm and rounded to 4 decimal digits. Figure 27. Recommended PCB design rules (0.80/0.75mm pitch BGA) Dpad 0.37 mm 0.52 mm typ. (depends on solder Dsm mask registration tolerance Solder paste 0.37 mm aperture diameter – Non solder mask defined pads are recommended – 4 to 6 mils screen print Dpad Dsm 47/52 Package characteristics 5.2 STR73xFxx Thermal characteristics The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the following equation: TJ = TA + (PD x ΘJA) (1) Where: – TA is the ambient temperature in °C, – ΘJA is the package junction-to-ambient thermal resistance, in °C/W, – PD is the sum of PINT and PI/O (PD = PINT + PI/O), – PINT is the product of IDD and VDD, expressed in Watts. This is the chip internal power, – PI/O represents the power dissipation on input and output pins; user determined. Most of the time for the applications PI/O < PINT and may be neglected. On the other hand, PI/O may be significant if the device is configured to drive continuously external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273°C) (2) Therefore (solving equations 1 and 2): K = PD x (TA + 273°C) + ΘJA x PD2 (3) Where: – K is a constant for the particular part, which may be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations (1) and (2) iteratively for any value of TA Table 28. Symbol ΘJA 48/52 Thermal characteristics Description Thermal resistance junction-ambient Package Value (typical) LFBGA144 50 TQFP144 40 TQFP100 40 Unit °C/W STR73xFxx Order codes 6 Order codes Table 29. Order codes Partnumber Flash Kbytes STR730FZ1T6 128 STR730FZ2T6 256 STR730FZ1H6 128 STR730FZ2H6 256 STR735FZ1T6 128 STR735FZ2T6 256 STR735FZ1H6 128 STR735FZ2H6 256 STR731FV0T6 64 STR731FV1T6 128 STR731FV2T6 256 STR736FV0T6 64 STR736FV1T6 128 STR736FV2T6 256 STR730FZ1T7 128 STR730FZ2T7 256 STR730FZ1H7 128 STR730FZ2H7 256 STR735FZ1T7 128 STR735FZ2T7 256 STR735FZ1H7 128 Package TIM 6x PWM CAN A/D Wake-up I/O RAM lines ports Kbytes timers module periph chan. Temp. range TQFP144 20x20 3 LFBGA144 10x10 10 16 32 112 TQFP144 20x20 0 LFBGA144 10x10 16 -40 to +85°C 1 TQFP100 14x14 3 6 TQFP100 14x14 12 18 72 16 32 112 0 TQFP144 20x20 3 LFBGA144 10x10 10 TQFP144 20x20 0 STR735FZ2H7 256 STR731FV0T7 64 STR731FV1T7 128 STR731FV2T7 256 STR736FV0T7 64 STR736FV1T7 128 STR736FV2T7 256 LFBGA144 10x10 16 -40 to +105°C 1 TQFP100 14x14 3 6 TQFP100 14x14 12 18 72 0 49/52 Known limitations 7 Known limitations 7.1 Low power wait for interrupt mode STR73xFxx When the STR73x device is put in Low Power Wait For Interrupt mode (LPWFI), the Flash goes into low power mode or power down mode, depending on the setting of the PWD bit in the Flash Control Register 0 (default is ‘0’, Low Power mode). This default mode can create excessive voltage conditions on the transistor gates and may affect the long term behavior of the Low Power mode circuitry. Workaround There is no workaround. If Low Power Wait For Interrupt mode is used, it is strongly suggested to configure the Flash to enter power down mode (bit PWD = ‘1’). 7.2 PLL free running mode at high temperature When the STR73x device is operated and an ambient temperature (TA) of more than 55° C and the main system clock (fMCLK) is sourced by the PLL in free running mode, the device may not work properly. Workaround At high temperature (more than 55° C), it is recommended to use the internal RC oscillator as a backup clock source rather than the PLL free running mode. 50/52 STR73xFxx 8 Revision history Revision history Table 30. Document revision history Date Revision Description of changes 19-Sep-2005 1 First release 02-Nov-2005 2 Removed Table 8 power consumption in LP modes Updated PLL frequency in Section 1.1 and Table 12 08-Mar-2006 3 Section 3.4: Preliminary power consumption data updated Section 3.5: DC electrical characteristics updated Section 7: Known limitations added 04-Jun-2006 4 Section 4: Electrical parameters updated Section 7: Known limitations updated Added temperature range -40°C to 85°C in Section 6: Order codes 19-Jun-2006 5 Changed Flash data retention to 20 years at 85°C in Table 18 on page 34. 08-Sep-2006 6 Changed Table 24: Output driving current on page 39 Added Figure 14: VOL standard ports vs IOL @ VDD 5 V thru Figure 18: VOL P6.0 pin vs IOL @ VDD 5 V on page 40. Added Figure 20: NRSTIN RPU vs. VDD 08-Jun-2008 7 Inch values rounded to 4 decimal digits in Section 5.1: Package mechanical data Modified BSPI speed in Section 2.1: On-chip peripherals 51/52 STR73xFxx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 52/52