TS4956 Stereo audio amplifier system with I2C bus interface ■ Operating from VCC = 2.7 V to 5.5 V ■ I²C bus control interface ■ 38 mW output power @ VCC = 3.3 V, THD = 1%, F = 1 kHz, with 16Ω Load ■ Ultra low consumption in standby mode: 0.5 µA ■ Digital volume control range from +12 dB to -34 dB ■ 32-step digital volume control ■ Stereo loudspeaker option by I2C ■ 8 different output mode selections ■ Pop & click reduction circuitry ■ Flip-chip package, 18 bumps with 300 µm diameter ■ Lead-free flip chip package ■ Output power limitation on headphone for eardrum damage consideration TS4956 - Flip-Chip18 Pin connections (top view) PGH LHP- RHP+ VCC RIN SDA BYPASS LIN Description MLO GND I2CVCC VCC MIN The TS4956 is a complete audio system device with three dedicated outputs, one stereo headphone, one loudspeaker drive and one mono line for a hands-free set. The stereo headphone is capable of delivering more than 25 mW per channel of continuous average power into 16Ω single-ended loads with 0.3% THD+N from a 5 V power supply. The device functions are controlled via an I²C bus, which minimizes the number of external components needed. The overall gain and the different output modes of the TS4956 are controlled digitally by the control registers which are programmed via the I²C interface. It has also an internal thermal shutdown protection mechanism. SRP+ MIP SRN- GND SCL Applications ■ Mobile phones (cellular / cordless) ■ PDAs ■ Laptop / notebook computers ■ Portable audio devices Device summary table Part Number TS4956EIJT May 2006 Temperature Range Package Packing Marking -40°C to +85°C Lead free flip-chip18 Tape & Reel 56 Rev. 3 1/51 www.st.com 51 Absolute maximum ratings & operating conditions 1 TS4956 Absolute maximum ratings & operating conditions Table 1. Absolute maximum ratings (AMR) Symbol Parameter (1) VCC Supply voltage Vi Input voltage (2) Value Unit 6 V G ND to VCC V Toper Operating free air temperature range -40 to + 85 °C Tstg Storage temperature -65 to +150 °C Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient (3) 200 °C/W Pdiss Power dissipation Tj ESD Latch-up Internally limited(4) Susceptibility - human body model(5) 2 kV Susceptibility - machine model 150 V Latch-up immunity 200 mA Lead temperature (soldering, 10sec) 260 °C 1. All voltage values are measured with respect to the ground pin. 2. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V 3. Device is protected in case of over temperature by a thermal shutdown activated at 150°C. 4. Exceeding the power derating curves during a long period may involve abnormal operating conditions. 5. Human body model, 100 pF discharged through a 1.5 kΩ resistor, into pin to VCC device Table 2. Operating conditions Symbol VCC(1) RL CL Rthja Parameter Supply voltage Load resistor Speaker/BTL output (modes 1,2,7) Headphone, MLO output (modes 3,4,5,6,) Load capacitor RL = 8Ω to 100Ω (Speaker/BTL output - modes 1,2,7) RL = 16Ω to 100Ω (Headphone, MLO output - modes 3,4,5,6) RL > 100Ω Flip-chip thermal resistance junction to ambient Value Unit 2.7 to 5.5V V ≥8 Ω ≥16 500 400 pF 100 90(2) °C/W 1. For proper functionality of I2C bus, V CC pins must not be grounded. ESD protection diodes ground data and clock wires and cause dysfunction of I2C bus in this condition. 2. With heat sink surface 120mm2 Table 3. I²C electrical characteristics Symbol I2CV Parameter Unit 2.7V to 5.5V V Maximum low level input voltage on pins SDA, SCL 0.3 I2CVCC V VIH Minimum high level input voltage 0.7 I2CVCC V IIN Maximum input current (pins SDA, SCL), 0.4V < V in < 4.5V 10 µA SCL maximum clock frequency 400 kHz Max low level output voltage, SDA pin, Isink = 3mA 0.4 V FSCL Vol 1. Must be less or equal than power supply voltage VCC of the device 2/51 Value VILl CC I2C supply voltage(1) TS4956 2 Typical application schematic Typical application schematic Table 4. External components descriptions Components Functional description Cs1, C s2 Supply bypass capacitors which provide power supply filtering. Cb Bypass capacitor which provides half-supply filtering. Cin1 to Cin4 Input capacitors which form together with input impedance Zin first-order high pass filter to block DC voltage on inputs Cout Output capacitor which forms with output load RL first-order high pass filter to block half-supply voltage on single-ended output. R1 Resistor to keep Cout charged for better pop performance on single-ended output. Figure 1. Typical application for the TS4956 (mode 1, 2, 3, 4, 5, 6) Vcc + Cs2 1µF 100nF C3 C5 Vcc Vcc TS4956 Diff. input + Cs1 MODE3: Gx(MIP+MIN) MODE4: GxLIN LHP Amplifier Cin1 A1 MIP Stereo Input Left A2 MIN Stereo Input Right + 330nF LHP B6 PHG A7 16/32 Ohms PHG Amplifier Cin2 Diff. input - + 330nF MODE3: Gx(MIP+MIN) MODE4: GxRIN RHP Amplifier SE input left Mode Select Cin3 + 330nF SE input right Cin4 + 330nF B4 A5 LIN RIN RHP Stereo Input Left 16/32 Ohms D6 Speaker Amplifier B2 MODE1: Gx(MIP+MIN) MODE2: Gx(LIN+RIN) SRP+ SRN- Stereo Input Right MLO Amplifier MLO 8 Ohms D2 MODE5: Gx(MIP+MIN) MODE6: Gx(LIN + RIN) E7 Cout+ 220µF Bias GND C7 GND C1 E5 E3 D4 Cb SDA I2CVCC 16/32 Ohms Digital volume control I2C SCL E1 BYPASS R1 1k I2CVCC + SCL 1µF SDA I2C BUS 3/51 Typical application schematic Figure 2. TS4956 Typical application for the TS4956 (mode 7) Vcc + Cs2 100nF C3 C5 Vcc Vcc TS4956 Cs1 1µF LHP Amplifier A1 MIP Stereo Input Left A2 MIN Stereo Input Right LHP B6 PHG A7 MODE7: BTL - GxRIN PHG Amplifier 8 Ohms RHP Amplifier SE input left Mode Select Cin3 + 330nF SE input right Cin4 + 330nF B4 A5 LIN RIN Stereo Input Left B2 SRN- D2 MLO Amplifier MLO Digital volume control I2C GND C7 SDA I2C BUS GND C1 + SCL 1µF SCL E1 E3 I2CVCC SDA E5 I2CVCC D4 Cb MODE7: GxLIN SRP+ Stereo Input Right BYPASS D6 Speaker Amplifier Bias 4/51 RHP E7 8 Ohms TS4956 2.1 Typical application schematic I2C interface The TS4956 uses a serial bus, which conforms to the I²C protocol (the TS4956 must be powered when it is connected to I²C bus), to control the chip’s functions via two wires: Clock and Data. The Clock line and the Data line are bidirectional (open-collector) with an external chip pullup resistor (typically 10 kΩ). The maximum clock frequency in fast-mode specified by the I²C standard is 400kHz, and this frequency is supported by the TS4956. In this application, the TS4956 is always the slave device and the controlling MCU is the master device. The I2CVCC pin determines the power supply of the TS4956’s I2C interface. The voltage connected to this pin must be equal or less than the TS4956 power supply voltage VCC. The minimum value of the I2CVCC voltage is 2.7V. When the I2CVCC pin is connected to an I2C voltage, the TS4956 is ready to communicate via the I2C bus. When the I2CVCC pin is connected to the ground, the TS4956 is in total standby mode, with an ultra low standby current on the order of a few nanoamperes. In this condition the TS4956 cannot receive I2C command from the I2C bus. In both cases, pins SDA and SCL must respect logic HI or logic LOW thresholds (not floating) presented in Table 3 on page 2, in order for the circuit to function properly. Table on page 5 summarizes the pin descriptions for the I²C bus interface. Table 5. I²C bus interface: pin descriptions Pin 2.1.1 Functional description SDA This is the serial data pin SCL This is the clock input pin I2CVCC I2C interface power supply I²C operation description The host MCU can write into the TS4946 control register to control the TS4956 and read from the control register to get the current configuration of the TS4956. The TS4956 is addressed by a single byte consisting of a 7-bit slave address and an R/W bit. The TS4956 control register address is $5Dh. Table 6. The first byte after the START message for addressing the device A6 A5 A4 A3 A2 A1 A0 Rw 1 0 1 1 1 0 1 X In order to write data into the TS4956 control register, after the “start” message the MCU must send the following data: ● send byte with the I²C 7-bit slave address and with the R/W bit set low ● send the data (control register setting) All bytes are sent with MSB bit first. The transfer of written data ends with a “stop” message. When transmitting several data, the data can be written with no need to repeat the “start” message and addressing byte with the slave address. 5/51 Typical application schematic TS4956 In order to read data from the TS4956, after the “start” message, the MCU must send and receive the following data: ● send byte with the I²C 7-bit slave address and with the R/W bit set high ● receive the data (control register value) All bytes are read with MSB bit first. The transfer of read data is ended with “stop” message. When transmitting several data, the data can be read with no need to repeat the “start” message and the byte with slave address. In this case the value of control register is read repeatedly. Figure 3. I²C read/write operation SLAVE ADDRESS S SDA 1 0 1 1 1 CONTROL REGISTERS 0 1 Start condition 0 R/W A D7 D6 D5 D4 D3 D2 D1 D0 A Volume Control settings Acknowledge from Slave Table 7. Stop condition Acknowledge from Slave Output mode selection: G from -34.5dB to + 12dB (by steps of 1.5dB)(1) Output Mode # RHP LHP Speaker P/N Mono L/O 0 SD SD SD SD 1 SD SD Gx (MIP + MIN) SD 2 SD SD GX (RIN + LIN) SD 3 GX (MIP + MIN) GX (MIP + MIN) SD SD 4 G x RIN G x LIN SD SD 5 SD SD SD GX (MIP + MIN) 6 SD SD SD GX (RIN + LIN) 7 BTL: G x RIN BTL: G x RIN G x LIN SD 1. SD = Shutdown Mode G = Audio Gain MIP = Mono Input Positive MIN = Mono Input Negative RIN = Stereo Input Right LIN = Stereo Input Left 6/51 Output Mode settings P TS4956 2.1.2 Typical application schematic Gain and mode setting operations The gain of the TS4956 ranges from -34.5dB to +12 dB. At power-up, output channels are set to stand-by mode. Table 8. Gain settings truth table G: Gain (dB) # D7 (MSB) D6 D5 D4 D3 -34.5 0 0 0 0 0 -33 0 0 0 0 1 -31.5 0 0 0 1 0 -30 0 0 0 1 1 -28.5 0 0 1 0 0 -27 0 0 1 0 1 -25.5 0 0 1 1 0 -24 0 0 1 1 1 -22.5 0 1 0 0 0 -21 0 1 0 0 1 -19.5 0 1 0 1 0 -18 0 1 0 1 1 -16.5 0 1 1 0 0 -15 0 1 1 0 1 -13.5 0 1 1 1 0 -12 0 1 1 1 1 -10.5 1 0 0 0 0 -9 1 0 0 0 1 -7.5 1 0 0 1 0 -6 1 0 0 1 1 -4.5 1 0 1 0 0 -3 1 0 1 0 1 -1.5 1 0 1 1 0 0 1 0 1 1 1 +1.5 1 1 0 0 0 +3 1 1 0 0 1 +4.5 1 1 0 1 0 +6 1 1 0 1 1 +7.5 1 1 1 0 0 +9 1 1 1 0 1 +10.5 1 1 1 1 0 +12 1 1 1 1 1 7/51 Typical application schematic Table 9. 2.1.3 TS4956 Output mode settings truth table D2 D1 D0 COMMENTS 0 0 0 OUTPUT MODE 0 0 0 1 OUTPUT MODE 1 0 1 0 OUTPUT MODE 2 0 1 1 OUTPUT MODE3 1 0 0 OUTPUT MODE 4 1 0 1 OUTPUT MODE 5 1 1 0 OUTPUT MODE 6 1 1 1 OUTPUT MODE 7 Acknowledge The number of data bytes transferred between the start and the stop conditions from the CPU master to the TS4956 slave is unlimited. Each byte of eight bits is followed by one acknowledge bit. The TS4956 which is addressed, generates an acknowledge after the reception of each byte that has been clocked out. 8/51 TS4956 Electrical characteristics 3 Electrical characteristics Table 10. VCC = +2.7 V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTBY VOO Pout THD+N PSRR Parameter Typ. Max. Mode 1, 2, No input signal, no load 3.4 4.4 Mode 3, No input signal, no load 4.6 6 Mode 4, No input signal, no load 4.4 5.7 Mode 5, 6, No input signal, no load 1.75 2.3 Mode 7, No input signal, no load 5.7 7.4 Standby Current No input signal 0.5 2 5 50 Output Offset Voltage No input signal Modes 1, 2 Speaker Output, RL = 8Ω Mode 3 Headphone Outputs, RL = 16Ω Mode 4 Headphone Outputs, RL = 16Ω Mode 7 BTL, Speaker Output, RL = 8Ω 5 50 5 20 5 20 Supply Current Conditions Min. Modes 3, 4 Headphone Output Power THD+N = 1% max, F = 1kHz, RL = 16Ω (Phantom Ground mode) THD+N = 1% max, F = 1kHz, RL = 32Ω 30 20 35 25 BTL, Speaker Output Power Modes 1, 2, 7 THD+N = 1% max, F = 1kHz, RL = 8Ω 270 285 MLO Output Power Modes 5, 6 THD+N = 1% max, F = 1kHz, RL = 16Ω THD+N = 1% max, F = 1kHz, RL = 32Ω 35 20 42 25 Total Harmonic Distortion + Noise G = +1.5dB, 20Hz < F < 20kHz Modes 1, 2, 7, RL = 8Ω, Pout = 200mW Modes 3, 4, RL = 16Ω, Pout = 15mW Modes 5, 6, RL = 16Ω, Pout = 30mW 0.5 0.5 0.5 Power Supply Rejection Ratio (1) F = 217Hz, G = +1.5dB, Vripple = 200mVpp, Inputs Grounded, Cb = 1µF Mode 1, Speaker output, RL = 8Ω Mode 2, Speaker output, RL = 8Ω Mode 3, Headphone outputs, RL = 16Ω Mode 4, Headphone outputs, RL = 16Ω Mode 5, MLO output, RL = 16Ω Mode 6, MLO output, RL = 16Ω Mode 7, BTL, Speaker outputs, RL = 8Ω 60 55 61 75 62 57 73 Unit mA µA mV mW % dB 9/51 Electrical characteristics Table 10. Symbol VCC = +2.7 V, GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Crosstalk Channel Separation SNR G TS4956 Signal To Noise Ratio Conditions Min. Mode 4 F = 1kHz, RL = 16Ω, Pout = 15mW F = 20Hz to 20kHz, RL = 16Ω, Pout = 15mW Mode 7 F = 1kHz, RL = 8Ω, Pout = 200mW F = 20Hz to 20kHz, RL = 8Ω, Pout = 200mW Zin Differential input Differential input impedance (MIP to MIN) MIP input impedance referenced to ground Input Impedance, all Gain MIN input impedance referenced to ground setting Stereo input RIN input impedance LIN input impedance dB 91 90 84 90 85 85 92 -34.5 dB +12 1.5 0.1 0.6 dB kΩ 60 30 45 70 34.5 62 25.5 25.5 30 30 34.5 34.5 90 Wake up time 70 tSTBY Standby time 1 1. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to V CC @ f = 217Hz. dB dB 50 25.5 38 tWU 10/51 Unit 80 60 Digital Gain Stepsize Stepsize Error Max. 50 50 A-weighted, G = +1.5dB, THD+N < 0.5%, 20Hz < F < 20kHz Mode 1 - Speaker output, RL = 8Ω Mode 2 - Speaker output, RL = 8Ω Mode 3 - Headphone output, RL = 16Ω Mode 4 - Headphone output, RL = 16Ω Mode 5 - MLO output, RL = 16Ω Mode 6 - MLO output, R = 16Ω Mode 7 - BTL, Speaker output, RL = 8Ω, G = +10.5dB Digital Gain Range Typ. ms µs TS4956 Table 11. Symbol ICC Electrical characteristics VCC = +3.3 V, GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Supply Current Conditions Min. Typ. Max. Mode 1, 2, No input signal, no load 3.6 4.7 Mode 3, No input signal, no load 4.8 6.2 Mode 4, No input signal, no load 4.6 6 Modes 5, 6, No input signal, no load 1.8 2.4 6 7.8 0.5 2 5 50 5 50 5 20 5 20 Mode 7, No input signal, no load ISTBY VOO Pout THD+N PSRR Standby Current No input signal Output Offset Voltage No input signal Modes 1, 2 Speaker Output, R L = 8Ω Mode 3 Headphone Outputs, R L = 16Ω Mode 4 Headphone Outputs, R L = 16Ω Mode 7 BTL, Speaker Output, RL = 8Ω Headphone Output Power (Phantom Ground Mode) Modes 3, 4 THD+N = 1% max, F = 1kHz, R L = 16Ω THD+N = 1% max, F = 1kHz, R L = 32Ω 32 30 38(1) 36(1) BTL, Speaker Output Power Modes 1, 2, 7 THD+N = 1% max, F = 1kHz, R L = 8Ω 430 450 MLO Output Power Modes 5, 6 THD+N = 1% max, F = 1kHz, R L = 16Ω THD+N = 1% max, F = 1kHz, R L = 32Ω 58 32 65 38 Total Harmonic Distortion + Noise G = +1.5dB, 20Hz < F < 20kHz Modes 1, 2, 7, RL = 8Ω, Pout = 300mW Modes 3, 4, RL = 16Ω, Pout = 15mW Modes 5, 6, RL = 16Ω, Pout = 50mW 0.5 0.5 0.5 Power Supply Rejection Ratio (2) F = 217Hz, G = +1.5dB, V ripple = 200mVpp, Inputs Grounded, Cb = 1µF Mode 1, Speaker output, RL = 8Ω Mode 2, Speaker output, RL = 8Ω Mode 3, Headphone outputs, RL = 16Ω Mode 4, Headphone outputs, RL = 16Ω Mode 5, MLO output, R L = 16Ω Mode 6, MLO output, R L = 16Ω Mode 7, BTL, Speaker outputs, R L = 8Ω 63 57 63 77 64 58 74 Crosstalk Channel Separation Mode 4 F = 1kHz, RL = 16Ω, Pout = 15mW F = 20Hz to 20kHz, RL = 16Ω, Pout = 15mW Mode 7 F = 1kHz, RL = 8Ω, Pout = 300mW F = 20Hz to 20kHz, RL = 8Ω, Pout = 300mW 50 50 Unit mA µA mV mW % dB dB 80 60 11/51 Electrical characteristics Table 11. Symbol SNR G TS4956 VCC = +3.3 V, GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Signal To Noise Ratio Conditions Min. A-weighted, G = +1.5dB, THD+N < 0.5%, 20Hz < F < 20kHz Mode 1 - Speaker output, R L = 8Ω Mode 2 - Speaker output, RL = 8Ω Mode 3 - Headphone output, R L = 16Ω Mode 4 - Headphone output, R L = 16Ω Mode 5 - MLO output, RL = 16Ω Mode 6 - MLO output, R = 16Ω Mode 7 - BTL, Speaker output, RL = 8Ω, G = +10.5dB Digital Gain Range -34.5 +12 0.1 Differential input Differential input impedance (MIP to MIN) MIP input impedance referenced to ground MIN input impedance referenced to ground Stereo input RIN input impedance LIN input impedance dB kΩ 70 34.5 62 25.5 25.5 30 30 34.5 34.5 90 70 tSTBY Standby time 1 1. Internal power limitation on headphone outputs (see application information). 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to V CC @ F = 217Hz. 12/51 0.6 60 30 45 Wake up time dB dB 50 25.5 38 tWU Unit dB 1.5 Stepsize Error Input Impedance, all Gain setting Max. 93 92 85 91 87 87 95 Digital Gain Stepsize Zin Typ. ms µs TS4956 Table 12. Symbol Electrical characteristics VCC = +5 V, GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Conditions Min. Typ. Max. 4 5.2 Mode 3, No input signal, no load 5.3 6.9 Mode 4, No input signal, no load 5.2 6.8 Modes 5, 6, No input signal, no load 1.9 2.5 Mode 7, No input signal, no load 6.7 8.7 Standby Current No input signal 0.5 2 5 50 Output Offset Voltage No input signal Modes 1, 2 Speaker Output, R L = 8Ω Mode 3 Headphone Outputs, R L = 16Ω Mode 4 Headphone Outputs, R L = 16Ω Mode 7 BTL, Speaker Output, RL = 8Ω 5 50 5 20 5 20 Mode 1, 2, No input signal, no load ICC ISTBY VOO Pout THD+N PSRR Supply Current Headphone Output Power (Phantom Ground Mode) Modes 3, 4 THD+N = 1% max, F = 1kHz, R L = 16Ω THD+N = 1% max, F = 1kHz, R L = 32Ω 32 35 39(1) 43(1) BTL, Speaker Output Power Modes 1, 2, 7 THD+N = 1% max, F = 1kHz, R L = 8Ω 1000 1055 MLO Output Power Modes 5, 6 THD+N = 1% max, F = 1kHz, R L = 16Ω THD+N = 1% max, F = 1kHz, R L = 32Ω 140 80 150 88 Total Harmonic Distortion + Noise G = +1.5dB, 20Hz < F < 20kHz Modes 1, 2, 7, RL = 8Ω, Pout = 700mW Modes 3, 4, RL = 16Ω, Pout = 15mW Modes 5, 6, RL = 16Ω, Pout = 100mW 0.5 0.5 0.5 Power Supply Rejection Ratio (2) F = 217Hz, G = +1.5dB, V ripple = 200mVpp, Inputs Grounded, Cb = 1µF Mode 1, Speaker output, RL = 8Ω Mode 2, Speaker output, RL = 8Ω Mode 3, Headphone outputs, RL = 16Ω Mode 4, Headphone outputs, RL = 16Ω Mode 5, MLO output, R L = 16Ω Mode 6, MLO output, R L = 16Ω Mode 7, BTL, Speaker outputs, R L = 8Ω 66 60 65 78 66 61 75 Crosstalk Channel Separation Mode 4 F = 1kHz, RL = 16Ω, Pout = 15mW F = 20Hz to 20kHz, RL = 16Ω, Pout = 15mW Mode 7 F = 1kHz, RL = 8Ω, Pout = 700mW F = 20Hz to 20kHz, RL = 8Ω, Pout = 700mW 50 50 Unit mA µA mV mW % dB dB 80 60 13/51 Electrical characteristics Table 12. VCC = +5 V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol SNR G TS4956 Parameter Conditions Min. Typ. A-weighted, G = +1.5dB, THD+N < 0.5%, 20Hz < F < 20kHz Mode 1 - Speaker output, R L = 8Ω Mode 2 - Speaker output, RL = 8Ω Mode 3 - Headphone output, R L = 16Ω Mode 4 - Headphone output, R L = 16Ω Mode 5 - MLO output, RL = 16Ω Mode 6 - MLO output, R = 16Ω Mode 7 - BTL, Speaker output, RL = 8Ω, G = +10.5dB Signal To Noise Ratio Digital Gain Range Unit 96 96 85 91 90 90 98 -34.5 Digital Gain Stepsize dB +12 dB 1.5 Stepsize Error Zin Max. 0.1 Input Impedance, all Gain setting Differential input Differential input impedance (MIP to MIN) MIP input impedance referenced to ground MIN input impedance referenced to ground Stereo input RIN input impedance LIN input impedance dB 0.6 dB kΩ 50 25.5 38 60 30 45 70 34.5 62 25.5 25.5 30 30 34.5 34.5 90 tWU Wake up time 70 tSTBY Standby time 1 ms µs 1. Internal power limitation on headphone outputs (see application information). 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to V CC @ F = 217Hz. Table 13. Output noise VCC = 2.7V to 5.5V (all inputs grounded) G = +12dB G = +10.5dB G = +1.5dB A-weighted filter Unweighted filter (20Hz 20kHz) A-weighted filter Unweighted filter (20Hz 20kHz) A-weighted filter Unweighted filter (20Hz 20kHz) Vout (µV) Vout (µV) Vout (µV) Vout (µV) Vout (µV) Vout (µV) Mode1 - SPK out 54 80 67 100 45 66 Mode2 - SPK out 67 99 75 111 45 69 Mode3 - LHP, RHP 55 80 68 100 45 67 Mode4 - LHP, RHP 29 43 35 52 23 34 Mode5 - MLO 53 80 66 97 45 66 Mode6 - MLO 65 96 73 106 45 67 Mode7 - BTL, SPK out 29 42 35 52 23 34 14/51 TS4956 Electrical characteristics Figure 4. THD+N vs. output power Figure 5. 10 10 Mode 1, 2 - SPK out RL = 8 Ω, G = +10.5dB BW < 125kHz Tamb = 25 °C Vcc=5V F=20kHz Mode 1, 2 - SPK out RL = 8 Ω, G = +1.5dB BW < 125kHz Tamb = 25°C Vcc=3.3V F=20kHz 1 Vcc=5V F=20kHz Vcc=3.3V F=20kHz 1 Vcc=2.7V F=20kHz THD + N (%) THD + N (%) THD+N vs. output power 0.1 0.1 Vcc=2.7V F=20kHz Vcc=3.3V F=1kHz Vcc=2.7V F=1kHz 0.01 0.01 Vcc=2.7V F=1kHz Vcc=5V F=1kHz 0.1 0.01 0.01 1 THD+N vs. output power Figure 7. 10 0.1 1 THD+N vs. output power 10 Mode 1, 2 - SPK out RL = 16Ω, G = +1.5dB BW < 125kHz Tamb = 25 °C Vcc=5V F=20kHz Vcc=3.3V F=20kHz 1 Vcc=2.7V F=20kHz THD + N (%) THD + N (%) 1 Vcc=5V F=1kHz Output power (W) Output power (W) Figure 6. Vcc=3.3V F=1kHz 0.1 Mode 1, 2 - SPK out RL = 16 Ω, G = +10.5dB BW < 125kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3.3V F=20kHz 0.1 Vcc=2.7V F=20kHz Vcc=3.3V F=1kHz Vcc=2.7V F=1kHz 0.01 0.01 Vcc=5V F=1kHz 0.1 Vcc=2.7V F=1kHz 0.01 1 0.01 Output power (W) Figure 8. Vcc=5V F=1kHz 0.1 1 Output power (W) THD+N vs. output power Figure 9. THD+N vs. output power 10 10 Mode 3 - LHP, RHP RL = 16Ω , G = +1.5dB BW < 125kHz Tamb = 25°C Vcc=3.3V F=20kHz Mode 3 - LHP, RHP RL = 16Ω , G = +10.5dB BW < 125kHz Tamb = 25°C Vcc=5V F=20kHz 1 Vcc=2.7V F=20kHz THD + N (%) 1 THD + N (%) Vcc=3.3V F=1kHz 0.1 Vcc=5V F=1kHz 0.01 1E-3 Vcc=3.3V F=1kHz 0.01 Output power (W) Vcc=3.3V F=20kHz Vcc=2.7V F=20kHz 0.1 Vcc=5V F=1kHz Vcc=2.7V F=1kHz 0.1 Vcc=5V F=20kHz 0.01 1E-3 Vcc=3.3V F=1kHz Vcc=2.7V F=1kHz 0.01 0.1 Output power (W) 15/51 Electrical characteristics TS4956 Figure 10. THD+N vs. output power Figure 11. THD+N vs. output power 10 10 Mode 3 - LHP, RHP RL = 32Ω , G = +1.5dB BW < 125kHz Tamb = 25°C 1 Vcc=2.7V F=20kHz THD + N (%) THD + N (%) 1 Mode 3 - LHP, RHP RL = 32Ω , G = +10.5dB BW < 125kHz Tamb = 25 °C 0.1 Vcc=5V F=1kHz Vcc=3.3V F=20kHz Vcc=5V F=20kHz 0.01 1E-3 Vcc=2.7V F=1kHz Vcc=2.7V F=20kHz 0.1 Vcc=3.3V F=20kHz Vcc=3.3V F=1kHz 0.01 Vcc=5V F=1kHz Vcc=5V F=20kHz 0.01 1E-3 0.1 Vcc=3.3V F=1kHz 0.01 Output power (W) 0.1 Output power (W) Figure 12. THD+N vs. output power Figure 13. THD+N vs. output power 10 10 1 Vcc=2.7V F=20kHz Mode 4 - LHP, RHP RL = 16Ω, G = +10.5dB BW < 125kHz Tamb = 25 °C Vcc=5V F=20kHz 1 THD + N (%) Mode 4 - LHP, RHP RL = 16Ω , G = +1.5dB BW < 125kHz Tamb = 25°C THD + N (%) Vcc=2.7V F=1kHz Vcc=3.3V F=20kHz 0.1 Vcc=2.7V F=20kHz Vcc=3.3V F=20kHz Vcc=5V F=20kHz 0.1 Vcc=2.7V F=1kHz Vcc=3.3V F=1kHz 0.01 1E-3 Vcc=3.3V F=1kHz Vcc=2.7V F=1kHz Vcc=5V F=1kHz 0.01 Vcc=5V F=1kHz 0.01 1E-3 0.1 0.01 Figure 14. THD+N vs. output power Figure 15. THD+N vs. output power 10 10 Mode 4 - LHP, RHP RL = 32 Ω, G = +1.5dB BW < 125kHz Tamb = 25 °C Vcc=5V F=20kHz 1 Vcc=2.7V F=20kHz Vcc=3.3V F=20kHz THD + N (%) THD + N (%) 1 0.1 0.01 1E-3 Vcc=2.7V F=1kHz Vcc=3.3V F=1kHz 0.01 Output power (W) 16/51 0.1 Output power (W) Output power (W) Vcc=5V F=1kHz 0.1 Mode 4 - LHP, RHP RL = 32 Ω, G = +10.5dB BW < 125kHz Tamb = 25 °C Vcc=5V F=20kHz Vcc=2.7V F=20kHz Vcc=3.3V F=20kHz 0.1 0.01 1E-3 Vcc=2.7V F=1kHz Vcc=3.3V F=1kHz 0.01 Output power (W) Vcc=5V F=1kHz 0.1 TS4956 Electrical characteristics Figure 16. THD+N vs. output power Figure 17. THD+N vs. output power 10 10 Mode 5, 6 - MLO RL = 16Ω , G = +1.5dB BW < 125kHz Tamb = 25°C 1 0.1 Vcc=3.3V F=20kHz Vcc=2.7V F=1kHz 0.1 Vcc=3.3V F=20kHz Vcc=2.7V F=1kHz 0.01 0.1 Vcc=3.3V F=1kHz 0.01 1E-3 1 0.01 Output power (W) 1 Figure 19. THD+N vs. output power 10 10 Mode 5, 6 - MLO RL = 32 Ω, G = +1.5dB BW < 125kHz Tamb = 25 °C Vcc=5V F=1kHz Vcc=2.7V F=20kHz 0.1 Vcc=3.3V F=20kHz 1 THD + N (%) Vcc=2.7V F=1kHz Mode 5, 6 - MLO RL = 32 Ω, G = +10.5dB BW < 125kHz Tamb = 25 °C Vcc=5V F=20kHz 1 THD + N (%) 0.1 Output power (W) Figure 18. THD+N vs. output power 0.01 1E-3 0.01 Vcc=2.7V F=1kHz Vcc=5V F=20kHz Vcc=5V F=1kHz Vcc=2.7V F=20kHz 0.1 Vcc=3.3V F=20kHz Vcc=3.3V F=1kHz Vcc=3.3V F=1kHz 0.01 1E-3 0.1 0.01 0.1 Output power (W) Output power (W) Figure 20. THD+N vs. output power Figure 21. THD+N vs. output power 10 10 Vcc=5V F=20kHz Mode 7 - BTL, SPK out RL = 8 Ω, G = +10.5dB BW < 125kHz Tamb = 25°C 1 Vcc=3.3V F=20kHz 1 Vcc=2.7V F=20kHz Vcc=2.7V F=1kHz 0.1 Vcc=3.3V F=1kHz 0.01 1E-3 Mode 7 - BTL, SPK out RL = 16 Ω, G = +10.5dB BW < 125kHz Tamb = 25 °C THD + N (%) THD + N (%) Vcc=5V F=1kHz Vcc=2.7V F=20kHz Vcc=3.3V F=1kHz 0.01 1E-3 Vcc=5V F=20kHz 1 Vcc=5V F=1kHz Vcc=2.7V F=20kHz THD + N (%) THD + N (%) Mode 5, 6 - MLO RL = 16Ω , G = +10.5dB BW < 125kHz Tamb = 25°C Vcc=5V F=20kHz Vcc=3.3V F=20kHz Vcc=2.7V F=20kHz 0.1 Vcc=5V F=1kHz Vcc=2.7V F=1kHz Vcc=5V F=1kHz 0.01 Vcc=5V F=20kHz 0.1 Output power (W) 1 0.01 1E-3 Vcc=3.3V F=1kHz 0.01 0.1 1 Output power (W) 17/51 Electrical characteristics TS4956 Figure 22. THD+N vs. frequency Figure 23. THD+N vs. frequency 10 1 Vcc=5V Po=700mW Vcc=3.3V Po=300mW Vcc=2.7V Po=200mW 0.1 0.01 20 100 1000 THD + N (%) THD + N (%) 1 10 Mode 1, 2 - SPK out RL = 8 Ω G = +1.5dB BW < 125kHz Tamb = 25°C 0.1 20 100 Frequency (Hz) 10 1 Vcc=5V Po=400mW Vcc=3.3V Po=200mW 0.1 THD + N (%) THD + N (%) Mode 1, 2 - SPK out RL = 16 Ω G = +1.5dB BW < 125kHz Tamb = 25 °C Vcc=2.7V Po=120mW 100 1000 0.1 10000 20 100 10 Mode 3 - LHP, RHP RL = 16 Ω G = +1.5dB BW < 125kHz Tamb = 25 °C 0.1 THD + N (%) 1 Vcc=3.3V Po=15mW Vcc=2.7V Po=15mW Mode 3 - LHP, RHP RL = 16Ω G = +10.5dB BW < 125kHz Tamb = 25°C Vcc=2.7V Po=15mW 20 100 1000 Frequency (Hz) 10000 Vcc=3.3V Po=15mW 0.1 Vcc=5V Po=15mW 18/51 10000 Figure 27. THD+N vs. frequency 10 THD + N (%) 1000 Frequency (Hz) Figure 26. THD+N vs. frequency 0.01 Vcc=5V Po=400mW Vcc=3.3V Po=200mW Vcc=2.7V Po=120mW 0.01 20 Mode 1, 2 - SPK out RL = 16 Ω G = +10.5dB BW < 125kHz Tamb = 25 °C Frequency (Hz) 1 10000 Figure 25. THD+N vs. frequency 10 0.01 1000 Frequency (Hz) Figure 24. THD+N vs. frequency 1 Vcc=5V Po=700mW Vcc=3.3V Po=300mW Vcc=2.7V Po=200mW 0.01 10000 Mode 1, 2 - SPK out RL = 8Ω G = +10.5dB BW < 125kHz Tamb = 25 °C Vcc=5V Po=15mW 0.01 20 100 1000 Frequency (Hz) 10000 TS4956 Electrical characteristics Figure 28. THD+N vs. frequency Figure 29. THD+N vs. frequency 10 1 Vcc=2.7V Po=10mW Vcc=3.3V Po=10mW 0.1 THD + N (%) THD + N (%) 1 10 Mode 3 - LHP, RHP RL = 32 Ω G = +1.5dB BW < 125kHz Tamb = 25 °C Mode 3 - LHP, RHP RL = 32Ω G = +10.5dB BW < 125kHz Tamb = 25°C Vcc=2.7V Po=10mW Vcc=3.3V Po=10mW 0.1 Vcc=5V Po=10mW 0.01 20 100 1000 Vcc=5V Po=10mW 0.01 10000 20 100 Frequency (Hz) Figure 30. THD+N vs. frequency 10 Vcc=2.7V Po=15mW 1 Vcc=3.3V Po=15mW Vcc=5V Po=15mW THD + N (%) THD + N (%) Mode 4 - LHP, RHP RL = 16Ω G = +1.5dB BW < 125kHz Tamb = 25°C 0.1 0.01 Vcc=2.7V Po=15mW 100 1000 10000 20 100 1000 10000 Figure 33. THD+N vs. frequency 10 10 Mode 4 - LHP, RHP RL = 32Ω G = +1.5dB BW < 125kHz Tamb = 25°C Vcc=2.7V Po=10mW 0.1 20 100 1 Vcc=3.3V Po=10mW 1000 Frequency (Hz) Vcc=5V Po=10mW 10000 THD + N (%) THD + N (%) Vcc=5V Po=15mW Frequency (Hz) Figure 32. THD+N vs. frequency 0.01 Vcc=3.3V Po=15mW 0.1 0.01 20 Mode 4 - LHP, RHP RL = 16Ω G = +10.5dB BW < 125kHz Tamb = 25°C Frequency (Hz) 1 10000 Figure 31. THD+N vs. frequency 10 1 1000 Frequency (Hz) Mode 4 - LHP, RHP RL = 32Ω G = +10.5dB BW < 125kHz Tamb = 25°C Vcc=2.7V Po=10mW 0.1 0.01 20 100 Vcc=3.3V Po=10mW 1000 Vcc=5V Po=10mW 10000 Frequency (Hz) 19/51 Electrical characteristics TS4956 Figure 34. THD+N vs. frequency Figure 35. THD+N vs. frequency 10 1 THD + N (%) Vcc=5V Po=100mW 0.1 0.01 Vcc=3.3V Po=50mW Vcc=2.7V Po=30mW 20 100 1000 THD + N (%) 1 10 Mode 5, 6 - MLO RL = 16 Ω G = +1.5dB BW < 125kHz Tamb = 25 °C Vcc=2.7V Po=30mW 20 10 Vcc=5V Po=60mW Vcc=3.3V Po=30mW 0.1 1 THD + N (%) THD + N (%) Mode 5, 6 - MLO RL = 32 Ω G = +1.5dB BW < 125kHz Tamb = 25 °C Vcc=2.7V Po=20mW Vcc=2.7V Po=20mW 100 1000 10000 20 100 1000 10000 Figure 39. THD+N vs. frequency 10 10 Mode 7 - BTL, SPK out RL = 8Ω G = +10.5dB BW < 125kHz Tamb = 25 °C Vcc=2.7V Po=200mW 0.1 20 100 Vcc=3.3V Po=300mW 1000 Frequency (Hz) 10000 THD + N (%) 1 Vcc=5V Po=700mW THD + N (%) Vcc=3.3V Po=30mW Frequency (Hz) Figure 38. THD+N vs. frequency 20/51 Vcc=5V Po=60mW 0.1 0.01 20 Mode 5, 6 - MLO RL = 32 Ω G = +10.5dB BW < 125kHz Tamb = 25 °C Frequency (Hz) 0.01 10000 Figure 37. THD+N vs. frequency 10 1 1000 Frequency (Hz) Figure 36. THD+N vs. frequency 0.01 Vcc=3.3V Po=50mW 100 Frequency (Hz) 1 Vcc=5V Po=100mW 0.1 0.01 10000 Mode 5, 6 - MLO RL = 16 Ω G = +10.5dB BW < 125kHz Tamb = 25 °C Mode 7 - BTL, SPK out RL = 16 Ω G = +10.5dB BW < 125kHz Tamb = 25 °C Vcc=2.7V Po=120mW 0.1 0.01 20 100 Vcc=3.3V Po=200mW 1000 Frequency (Hz) Vcc=5V Po=400mW 10000 TS4956 Electrical characteristics 1400 1300 Mode 1, 2, 7 1200 BTL, SPK out 1100 F = 1kHz RL=8 Ω 1000 BW < 125 kHz Tamb = 25°C 900 800 RL=16Ω 700 600 500 400 300 200 100 0 2.5 3.0 3.5 4.0 4.5 Figure 41. Output power vs. power supply voltage 1600 Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) Figure 40. Output power vs. power supply voltage RL=32Ω 5.0 Mode 1, 2, 7 BTL, SPK out F = 1kHz BW < 125 kHz Tamb = 25°C 1400 1200 1000 RL=8 Ω RL=16Ω 800 600 400 200 5.5 RL=32 Ω 0 2.5 Vcc (V) 3.0 3.5 4.0 4.5 5.0 5.5 Vcc (V) Figure 42. Output power vs. power supply voltage Figure 43. Output power vs. power supply voltage 70 RL=32 Ω Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) 50 40 RL=16 Ω 30 20 Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25°C RL=64Ω 10 0 2.5 3.0 3.5 4.0 4.5 5.0 RL=32 Ω 60 50 RL=16 Ω 40 30 RL=64Ω 10 0 2.5 5.5 3.0 3.5 Figure 44. Output power vs. power supply voltage 5.0 5.5 280 Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25 °C Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) 140 4.5 Figure 45. Output power vs. power supply voltage 200 160 4.0 Vcc (V) Vcc (V) 180 Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25°C 20 RL=16 Ω 120 100 RL=32 Ω 80 60 40 20 0 2.5 RL=64 Ω 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 240 200 Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25 °C 160 RL=16 Ω RL=32 Ω 120 80 40 RL=64 Ω 0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Vcc (V) 21/51 Electrical characteristics TS4956 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 Figure 47. Output power vs. load resistance 1600 Mode 1, 2, 7 BTL, SPK out F = 1kHz BW < 125 kHz Tamb = 25 °C Vcc=5.5V Vcc=5V Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) Figure 46. Output power vs. load resistance Vcc=3.3V Vcc=2.7V 8 12 16 20 24 28 Vcc=5.5V 1200 1000 Vcc=5V 800 600 Vcc=3.3V Vcc=2.7V 400 200 0 32 8 12 16 Load resistance (Ω ) Vcc=5V Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) Vcc=5.5V 50 40 30 20 Vcc=3.3V 10 Vcc=2.7V 20 24 28 32 36 40 44 48 52 56 60 80 Vcc=5V 60 Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25°C 40 30 Vcc=3.3V 20 Vcc=2.7V 10 20 24 28 32 36 40 44 48 52 56 60 64 Load resistance (Ω ) Figure 50. Output power vs. load resistance Figure 51. Output power vs. load resistance 300 200 Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25°C 180 Vcc=5.5V 160 140 Output power at 10% THD + N (mW) Output power at 1% THD + N (mW) 32 50 0 16 64 Vcc=5.5V 70 Load resistance (Ω ) Vcc=5V 120 100 80 Vcc=3.3V Vcc=2.7V 40 20 24 32 40 48 Load resistance (Ω ) 22/51 28 90 Mode 3, 4 LHP, RHP F = 1kHz BW < 125 kHz Tamb = 25°C 60 0 16 24 Figure 49. Output power vs. load resistance 70 60 20 Load resistance (Ω ) Figure 48. Output power vs. load resistance 0 16 Mode 1, 2, 7 BTL, SPK out F = 1kHz BW < 125 kHz Tamb = 25 °C 1400 56 64 Mode 5, 6 MLO F = 1kHz BW < 125 kHz Tamb = 25°C 250 Vcc=5.5V 200 Vcc=5V 150 Vcc=3.3V 100 Vcc=2.7V 50 0 16 24 32 40 48 Load resistance (Ω ) 56 64 TS4956 Electrical characteristics Figure 56. PSRR vs. frequency Figure 52. PSRR vs. frequency 0 G=+12dB, +10.5dB -40 G=+6dB -20 PSRR (dB) PSRR (dB) -20 0 Mode 1 - SPK out Vcc = 2.7V RL ≥ 8 Ω , Cb = 1 µ F Inp. grounded Vripple = 200mVpp G=+1.5dB -60 Mode 1 - SPK out Vcc = 3.3V RL ≥ 8Ω , Cb = 1µ F Inp. grounded Vripple = 200mVpp G=+12dB -40 G=+10.5dB G=+1.5dB G=+6dB -60 G=-18dB -80 -100 20 100 G=-9dB -80 G=-34.5dB G=-9dB G=-18dB 1000 -100 20 10000 100 1000 Frequency (Hz) Figure 57. PSRR vs. frequency 0 0 Mode 1 - SPK out Vcc = 5V RL ≥ 8 Ω, Cb = 1µ F Inp. grounded Vripple = 200mVpp -10 -20 -30 G=+10.5dB -40 G=+12dB PSRR (dB) PSRR (dB) 10000 Frequency (Hz) Figure 53. PSRR vs. frequency -20 G=-34.5dB G=+6dB -60 Mode 2 - SPK out Vcc = 2.7V RL ≥ 8Ω , Cb = 1µ F Inp. grounded Vripple = 200mVpp G=+12dB G=+10.5dB G=+6dB G=+1.5dB -40 -50 -60 -80 -100 20 -70 G=-18dB G=+1.5dB G=-9dB 100 1000 -80 G=-34.5dB G=-18dB G=-34.5dB -90 20 10000 100 1000 Frequency (Hz) Figure 58. PSRR vs. frequency 0 PSRR (dB) -30 0 Mode 2 - SPK out Vcc = 3.3V RL ≥ 8 Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp -10 -20 G=+12dB G=+10.5dB -40 G=+6dB G=+1.5dB -50 PSRR (dB) -20 -30 -60 -70 G=-34.5dB 100 G=-18dB 1000 Frequency (Hz) G=-9dB 10000 G=+12dB, +10.5dB G=+6dB G=+1.5dB -50 -70 -90 20 Mode 2 - SPK out Vcc = 5V RL ≥ 8Ω , Cb = 1µ F Inp. grounded Vripple = 200mVpp -40 -60 -80 10000 Frequency (Hz) Figure 54. PSRR vs. frequency -10 G=-9dB -80 -90 20 G=-34.5dB 100 G=-18dB 1000 G=-9dB 10000 Frequency (Hz) 23/51 TS4956 Electrical characteristics Figure 63. PSRR vs. frequency Figure 60. PSRR vs. frequency 0 PSRR (dB) -20 -30 0 Mode 3 - LHP, RHP Vcc = 2.7V RL ≥ 16Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp -40 -50 G=+6dB G=+1.5dB -10 -20 G=+10.5dB PSRR (dB) -10 G=+12dB -60 -30 Mode 3 - LHP, RHP Vcc = 3.3V RL ≥ 16Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp G=+10.5dB -40 -50 G=+6dB -70 -80 G=-18dB -90 20 100 G=-9dB G=-34.5dB 1000 G=-34.5dB -90 20 10000 100 -10 -20 -30 G=+10.5dB G=+12dB G=+6dB G=+1.5dB PSRR (dB) PSRR (dB) 0 Mode 3 - LHP, RHP Vcc = 5V RL ≥ 16 Ω, Cb = 1 µF Inp. grounded Vripple = 200mVpp -40 -60 Mode 4 - LHP, RHP Vcc = 2.7V RL ≥ 16 Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp G=+10.5dB -40 G=+12dB -50 -80 G=-9dB -80 -90 G=-34.5dB G=-18dB -90 20 100 1000 -100 20 10000 100 1000 Figure 65. PSRR vs. frequency 0 -10 -20 -30 PSRR (dB) PSRR (dB) 0 Mode 4 - LHP, RHP Vcc = 3.3V RL ≥ 16 Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp -40 G=+10.5dB G=+1.5dB G=+12dB -50 G=+6dB -60 -70 -100 20 Mode 4 - LHP, RHP Vcc = 5V RL ≥ 16 Ω, Cb = 1µ F Inp. grounded Vripple = 200mVpp -40 G=+1.5dB -50 G=+6dB -60 G=+10.5dB G=+12dB -70 -80 -90 10000 Frequency (Hz) Figure 62. PSRR vs. frequency -30 G=-34.5dB G=-9dB G=-18dB Frequency (Hz) -20 G=+1.5dB G=+6dB -60 -70 -70 -10 10000 Figure 64. PSRR vs. frequency 0 -50 1000 Frequency (Hz) Figure 61. PSRR vs. frequency -30 G=-18dB G=-9dB -80 Frequency (Hz) -20 G=+12dB -60 -70 -10 G=+1.5dB -80 G=-18dB G=-34.5dB G=-9dB 100 G=-34.5dB -90 G=-18dB G=-9dB 1000 Frequency (Hz) 10000 -100 20 100 1000 10000 Frequency (Hz) 24/51 TS4956 Electrical characteristics Figure 69. PSRR vs. frequency Figure 66. PSRR vs. frequency 0 -20 PSRR (dB) -30 0 Mode 5 - MLO Vcc = 2.7V RL ≥ 16Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp -40 -10 -20 G=+12dB G=+10.5dB G=+6dB G=+1.5dB -50 -30 PSRR (dB) -10 -60 -70 G=-9dB -60 G=-34.5dB 100 1000 10000 G=-18dB G=+1.5dB -90 G=-9dB -100 20 100 Frequency (Hz) -20 -30 G=+10.5dB G=+12dB PSRR (dB) PSRR (dB) -10 G=+6dB -50 G=-9dB -60 -70 Mode 6 - MLO Vcc = 2.7V RL ≥ 16Ω , Cb = 1µ F Inp. grounded Vripple = 200mVpp -40 G=+1.5dB 100 -80 G=-34.5dB -90 1000 -100 20 10000 G=-34.5dB 100 1000 10000 Figure 71. PSRR vs. frequency -10 G=+12dB -20 G=+6dB G=+10.5dB -30 PSRR (dB) PSRR (dB) G=-9dB 0 Mode 6 - MLO Vcc = 3.3V RL ≥ 16 Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp -40 G=+1.5dB -50 -60 -70 Mode 6 - MLO Vcc = 5V RL ≥ 16Ω , Cb = 1µ F Inp. grounded Vripple = 200mVpp G=+12dB G=+10.5dB G=+6dB -40 G=+1.5dB -50 -60 -70 -80 G=-9dB G=-34.5dB -90 -100 20 G=-18dB Frequency (Hz) 0 -30 G=+1.5dB -60 G=-18dB Figure 68. PSRR vs. frequency -20 G=+10.5dB G=+6dB -50 Frequency (Hz) -10 G=+12dB -70 -90 -100 20 10000 0 Mode 5 - MLO Vcc = 5V RL ≥ 16 Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp -40 -80 1000 Figure 70. PSRR vs. frequency 0 -30 G=-34.5dB Frequency (Hz) Figure 67. PSRR vs. frequency -20 G=+6dB -50 -80 G=-18dB -90 -10 G=+10.5dB G=+12dB -40 -70 -80 -100 20 Mode 5 - MLO Vcc = 3.3V RL ≥ 16 Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp G=-18dB 100 1000 Frequency (Hz) -80 G=-34.5dB G=-9dB -90 10000 -100 20 G=-18dB 100 1000 10000 Frequency (Hz) 25/51 TS4956 Electrical characteristics Figure 75. PSRR vs. frequency Figure 72. PSRR vs. frequency 0 0 Mode 7 - BTL, SPK out Vcc = 2.7V -20 RL ≥ 8 Ω, Cb = 1µ F Inp. grounded -30 Vripple = 200mVpp -40 -10 -20 -30 G=+12dB G=+6dB G=+10.5dB -50 G=+1.5dB -60 PSRR (dB) PSRR (dB) -10 -70 -100 20 -40 G=+1.5dB -60 -80 G=-9dB G=-18dB 100 -90 G=-34.5dB 1000 -100 20 10000 G=-34.5dB G=-9dB 100 10000 0 Mode 7 - BTL, SPK out Vcc = 5V RL ≥ 8 Ω, Cb = 1 µ F Inp. grounded Vripple = 200mVpp -20 G=+12dB G=+10.5dB -40 CMRR (dB) PSRR (dB) 1000 Figure 76. CMRR vs. frequency 0 -30 G=-18dB Frequency (Hz) Figure 73. PSRR vs. frequency -20 G=+10.5dB G=+6dB -50 Frequency (Hz) -10 G=+12dB -70 -80 -90 Mode 7 - BTL, SPK out Vcc = 3.3V RL ≥ 8Ω , Cb = 1µ F Inp. grounded Vripple = 200mVpp G=+6dB -50 G=+1.5dB -60 Mode 1 - SPK out Vcc = 2.7V, 3.3V, 5V RL ≥ 8 Ω , Cb = 1 µ F Cin = 470 µ F Vic = 200mVpp G=+12dB G=+10.5dB G=+6dB -40 -60 -70 -80 -90 -100 20 G=+1.5dB -80 G=-9dB G=-34.5dB G=-9dB G=-18dB 100 1000 -100 10000 G=-34.5dB 100 Frequency (Hz) 10000 Figure 77. CMRR vs. frequency 0 0 Mode 3 - LHP, RHP Vcc = 2.7V, 3.3V, 5V RL ≥ 8Ω , Cb = 1 µ F Cin = 470µ F Vic = 200mVpp G=+12dB -20 G=+6dB G=+10.5dB -40 CMRR (dB) CMRR (dB) 1000 Frequency (Hz) Figure 74. CMRR vs. frequency -20 G=-18dB -60 G=+1.5dB -80 Mode 5 - MLO Vcc = 2.7V, 3.3V, 5V RL ≥ 16 Ω , Cb = 1 µ F Cin = 470 µ F Vic = 200mVpp G=+12dB G=+10.5dB G=+6dB -40 -60 -80 G=+1.5dB G=-9dB G=-18dB G=-9dB -100 G=-34.5dB 100 G=-18dB 1000 Frequency (Hz) G=-34.5dB 10000 -100 100 1000 10000 Frequency (Hz) 26/51 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +1.5dB, RL = 8Ω THD+N < 0.5% Tamb = 25°C 2.7 3.3 Figure 81. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 78. SNR vs. power supply voltage 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +10.5dB, RL = 8Ω THD+N < 0.5% Tamb = 25 °C 2.7 Vcc (V) Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +1.5dB, RL = 16Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20 kHz) Mode 1, SPK out G = +10.5dB, RL = 16Ω THD+N < 0.5% Tamb = 25°C 2.7 Vcc (V) 3.3 Vcc (V) 5 Figure 83. SNR vs. power supply voltage SNR (dB) SNR (dB) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +1.5dB, RL = 8 Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 Vcc (V) Figure 80. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 5 Figure 82. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 79. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 3.3 Vcc (V) 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +10.5dB, RL = 8Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 5 Vcc (V) 27/51 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +1.5dB, RL = 16Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 Figure 87. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 84. SNR vs. power supply voltage 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 2, SPK out G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 °C 2.7 Vcc (V) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +1.5dB, RL = 16Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 °C 2.7 Vcc (V) 3.3 Vcc (V) 5 Figure 89. SNR vs. power supply voltage SNR (dB) SNR (dB) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +1.5dB, RL = 32Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 Vcc (V) Figure 86. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 5 Figure 88. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 85. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 3.3 Vcc (V) 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 3 - LHP, RHP G = +10.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 5 Vcc (V) 28/51 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 4 - LHP, RHP G = +1.5dB, RL = 16Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 Figure 93. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 90. SNR vs. power supply voltage 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 4 - LHP, RHP G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 °C 2.7 Vcc (V) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +1.5dB, RL = 32Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 4 - LHP, RHP G = +10.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 °C 2.7 Vcc (V) 3.3 Vcc (V) 5 Figure 95. SNR vs. power supply voltage SNR (dB) SNR (dB) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +1.5dB, RL = 16Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 Vcc (V) Figure 92. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 5 Figure 94. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 91. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 3.3 Vcc (V) 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 5 Vcc (V) 29/51 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +1.5dB, RL = 32Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 Figure 99. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 96. SNR vs. power supply voltage 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 5 - MLO G = +10.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 °C 2.7 Vcc (V) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +1.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25°C 2.7 3.3 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 °C 2.7 Vcc (V) 3.3 Vcc (V) 5 Figure 101. SNR vs. power supply voltage SNR (dB) SNR (dB) Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +1.5dB, RL = 32Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 Vcc (V) Figure 98. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 5 Figure 100. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 97. SNR vs. power supply voltage 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 3.3 Vcc (V) 5 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 6 - MLO G = +10.5dB, RL = 32 Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 5 Vcc (V) 30/51 TS4956 Electrical characteristics 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Figure 105. SNR vs. power supply voltage SNR (dB) SNR (dB) Figure 102. SNR vs. power supply voltage Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 7 - BTL, SPKout G = +10.5dB, RL = 8Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 5 100 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 Weighted filter type A Unweighted filter (20Hz to 20kHz) Mode 7 - BTL, SPKout G = +10.5dB, RL = 16 Ω THD+N < 0.5% Tamb = 25 °C 2.7 3.3 Vcc (V) Figure 103. Current consumption vs. power supply voltage Figure 106. Standby current consumption vs. power supply voltage 8 No loads 7 Tamb = 25 °C 6 0.5 Mode7 No loads Tamb = 25°C Mode3 0.4 Mode4 Istdby (µA) 5 Icc (mA) 5 Vcc (V) 4 3 0.3 0.2 Mode 1,2 2 0.1 1 0 Mode 5,6 0.0 0 1 2 3 4 5 0 1 2 Figure 104. Frequency response mode 1, 2, 7 G=+12dB, RL=8Ω G=+6dB, RL=16 Ω G=+6dB, RL=8Ω 2 0 -2 10 Mode 1, 2, 7 BTL, SPK out Cin = 330nF Tamb 25 °C G=+12dB, RL=16 Ω 6 4 5 6 12 G=+1.5dB, RL=16 Ω Mode 3, 4 LHP, RHP Cin = 330nF Tamb 25 °C 6 4 G=+6dB, RL=16 Ω ,32 Ω 2 0 G=+1.5dB, RL=16 Ω ,32Ω G=+1.5dB, RL=8 Ω -2 100 G=+12dB, RL=16 Ω ,32Ω 8 Gain (dB) Gain (dB) 8 4 Figure 107. Frequency response mode 3, 4 12 10 3 Vcc (V) Vcc (V) 1000 Frequency (Hz) 10000 100 1000 10000 Frequency (Hz) 31/51 TS4956 Electrical characteristics Figure 108. Frequency response modes 5, 6 Figure 111. Frequency response modes 5, 6 12 12 10 10 G=+12dB, RL=32 Ω 8 6 G=+12dB, RL=16 Ω 6 4 4 Gain (dB) Gain (dB) G=+12dB, RL=32 Ω 8 G=+12dB, RL=16 Ω 2 0 G=+6dB, RL=32 Ω -2 G=+6dB, RL=16 Ω -4 G=+1.5dB, RL=16Ω -8 -10 100 0 1000 G=+6dB, RL=32Ω -2 G=+6dB, RL=16Ω -4 Mode 5, 6 - MLO Cin = 330nF Cout = 220 µ F Tamb 25 °C G=+1.5dB, RL=32Ω -6 2 G=+1.5dB, RL=16 Ω -8 -10 10000 Mode 5, 6 - MLO Cin = 330nF Cout = 470µ F Tamb 25 °C G=+1.5dB, RL=32Ω -6 100 1000 Frequency (Hz) 10000 Frequency (Hz) Figure 109. Power dissipation vs. output power (per channel) Figure 112. Power dissipation vs. output power (per channel) 200 300 180 250 140 THD+N=1% 120 RL=8Ω 100 80 Mode 1, 2, 7 BTL, SPK out Vcc = 2.7V F = 1kHz THD+N < 10% 60 40 RL=16 Ω 20 0 0 50 100 150 200 250 300 350 Power Dissipation (mW) Power Dissipation (mW) 160 200 THD+N=1% 100 0 400 0 100 200 300 400 500 600 Output Power (mW) Figure 110. Power dissipation vs. output power (per channel) Figure 113. Power dissipation vs. output power (per channel) 900 800 700 THD+N=1% RL=8 Ω Mode 1, 2, 7 BTL, SPK out Vcc = 5V F = 1kHz THD+N < 10% RL=16 Ω 0 200 400 600 800 1000 Output Power (mW) 1200 1400 Power Dissipation (mW) Power Dissipation (mW) Mode 1, 2, 7 BTL, SPK out Vcc = 3.3V F = 1kHz THD+N < 10% RL=16 Ω 50 Output Power (mW) 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 RL=8Ω 150 600 THD+N=1% 500 RL=8 Ω 400 300 200 Mode 1, 2, 7 BTL, SPK out Vcc = 5.5V F = 1kHz THD+N < 10% RL=16 Ω 100 0 0 200 400 600 800 1000 1200 1400 1600 1800 O utput Power (mW) 32/51 TS4956 Electrical characteristics Figure 117. Power dissipation vs. output power (per channel) Figure 114. Power dissipation vs. output power (per channel) 90 130 120 THD+N=1% 80 Power Dissipation (mW) Power Dissipation (mW) 70 RL=16 Ω 60 50 40 RL=32 Ω 30 Mode 3, 4 - LHP, RHP Vcc = 2.7V F = 1kHz THD+N < 10% 20 10 0 THD+N=1% 110 0 10 20 30 40 100 RL=16Ω 90 80 70 60 50 RL=32 Ω 40 Mode 3, 4 - LHP, RHP Vcc = 3.3V F = 1kHz THD+N < 10% 30 20 10 0 50 0 10 20 Output Power (mW) Figure 115. Power dissipation vs. output power (per channel) RL=16Ω 160 140 120 100 RL=32Ω 80 60 Mode 3, 4 - LHP, RHP Vcc = 5V F = 1kHz THD+N < 10% 40 20 0 10 THD+N=1% 220 Power Dissipation (mW) Power Dissipation (mW) 60 240 THD+N=1% 180 20 30 40 50 60 200 RL=16 Ω 180 160 140 120 RL=32Ω 100 80 Mode 3, 4 - LHP, RHP Vcc = 5.5V F = 1kHz THD+N < 10% 60 40 20 0 70 0 10 20 Output Power (mW) 30 40 50 60 70 Output Power (mW) Figure 116. Power dissipation vs. output power Figure 119. Power dissipation vs. output power 24 40 22 35 20 18 16 Power Dissipation (mW) Power Dissipation (mW) 50 260 200 THD+N=1% 14 RL=16 Ω 12 10 8 Mode 5, 6 - MLO Vcc = 2.7V F = 1kHz THD+N < 10% 6 RL=32Ω 4 2 0 40 Figure 118. Power dissipation vs. output power (per channel) 220 0 30 Output Power (mW) 0 10 20 30 40 Output Power (mW) 50 60 30 25 THD+N=1% 20 RL=16 Ω 15 10 0 70 Mode 5, 6 - MLO Vcc = 3.3V F = 1kHz THD+N < 10% RL=32 Ω 5 0 10 20 30 40 50 60 70 80 90 100 Output Power (mW) 33/51 TS4956 Electrical characteristics Figure 123. Power dissipation vs. output power 90 100 80 90 70 80 Power Dissipation (mW) Power Dissipation (mW) Figure 120. Power dissipation vs. output power 60 THD+N=1% 50 RL=16 Ω 40 30 Mode 5, 6 - MLO Vcc = 5V F = 1kHz THD+N < 10% 20 RL=32 Ω 10 0 0 70 THD+N=1% 60 RL=16Ω 50 40 30 20 10 0 20 40 60 80 100 120 140 160 180 200 220 240 0 50 100 Output Power (mW) 1.4 -10 Heat sink surface = 125mm 2 -20 Crosstalk Level (dB) Flip-Chip Package Power Dissipation (W) 0 1.0 0.8 0.6 0.4 0.0 No Heat sink 0 25 200 250 300 Figure 124. Crosstalk vs. frequency 1.6 0.2 150 Output Power (mW) Figure 121. Power derating curves 1.2 Mode 5, 6 - MLO Vcc = 5.5V F = 1kHz THD+N < 10% RL=32Ω -30 Vcc = 5V, 3.3V, 2.7V Mode 4 LHP -> RHP RHP -> LHP Tamb = 25 °C RL=32 Ω Po=10mW RL=16 Ω Po=15mW -40 -50 -60 -70 50 75 100 Ambiant Temperature (° C) 125 150 -80 100 1000 10000 Frequency (Hz) Figure 122. Crosstalk vs. frequency 0 -10 Crosstalk Level (dB) -20 -30 Mode 4 RL = 8 Ω BTL out -> SPK out SPK out -> BTL out Tamb = 25°C -40 -50 -60 -70 Vcc=2.7V Po=200mW Vcc=3.3V Po=300mW Vcc=5V Po=700mW -80 -90 -100 100 1000 10000 Frequency (Hz) 34/51 TS4956 4 Application information Application information The TS4956 integrates 4 monolithic power amplifiers and has one differential input and two single-ended inputs. The output amplifiers can be configured in 7 different modes as one SE (single-ended) capacitively-coupled output, two phantom ground headphone outputs and two BTL outputs. Figure 1 on page 3 and Figure 2 on page 4 shows schemes of these configurations and Table 7 on page 6 describes these configurations in different modes. This chapter gives information on how to configure the TS4956 in application. 4.1 Output configurations 4.1.1 Shutdown When the device is in shutdown mode, all of the device’s outputs are in a high impedance state. 4.1.2 Single-ended output configuration (modes 5 and 6) When the device is woken-up via the I²C interface, output amplifier on output MLO is biased to the V CC/2 voltage. In this configuration an output capacitor, Cout, on the single-ended output is needed to block the VCC/2 voltage and couples the audio signal to the load. VCC/2 voltage is present on this output in all modes (modes 1 to 7) to keep the output capacitor C out charged and to improve pop performance on this output during the switching between any given mode to Mode 5 or 6. When the device is in Mode 5 or 6 where the single-ended output MLO is active, all other outputs are in a high impedance state. 4.1.3 Phantom ground output configuration (modes 3 and 4) In a phantom ground output configuration (modes 3 and 4) the internal buffer is connected to PHG pin and biased to the V CC/2 voltage. Output amplifiers (pins LHP and RHP) are also biased to the V CC/2 voltage. One end of the load is connected to output amplifier and one to the PHG buffer. Therefore, no output capacitors are needed. The advantage of the PHG output configuration is fewer external components compared with a SE configuration. However, note that in this configuration, the device has higher power dissipation (see Section 4.3: Power dissipation and efficiency on page 37). All other inactive outputs are in the high impedance state except for the MLO output, which is biased to VCC/2 voltage. To achieve better crosstalk results in this case, each speaker should be connected with separate PHG wire (2 speakers connected with 4 wires) as shown in Figure 1 on page 3 (instead of using only one common PHG wire for both speakers, i.e. 2 speakers connected with 3 wires). 35/51 TS4956 4.1.4 Application information BTL output configuration (modes 1, 2, 7) In a BTL (Bridge Tied Load) output configuration (modes 1, 2 and 4), active outputs are biased to the VCC/2 voltage. All other inactive outputs are in the high impedance state except for the MLO output, which is biased to VCC/2 voltage. BTL means that each end of the load is connected to two single-ended output amplifiers. Therefore we have: single-ended output 1 = Vout1 = Vout (V) single-ended output 2 = Vout2 = -Vout (V) and Vout1 - Vout2 = 2Vout (V) For the same power supply voltage, the output voltage amplitude is 2 times higher than the output voltage in the single-ended or phantom ground configurations and the output power is 4 times higher than the output power in the single-ended or phantom ground configurations. 4.2 Power limitation in the phantom ground configuration A power limitation is imposed on the headphones in mode 3 and 4. Limitation of output power is achieved by limiting the output voltage and output current on each amplifier. The maximum value of the output voltage, Vout max , is set to a value of 1.65V in order to reach a maximum output power of the sinusoidal signal of around 40mW per channel with a 32Ω load resistance and THD+N<1%. The maximum value of output current Iout max is set to value 70mA in order to reach a maximum output power of the sinusoidal signal of around 40mW per channel with a 16Ω load resistance and THD+N<1%. The maximum output power with these voltage and current limitations is reached with load values more than 16Ω and less than 32Ω as explained by Figure 125. Figure 48 shows the functionality of the power limitation with different load resistances. Figure 125. Voltage and current limitation on headphones RL=32 Ohms Vout RL=24 Ohms VpeakMAX=1.65V RL=16 Ohms Ipeak MAX=70mA Iout 36/51 TS4956 4.3 Application information Power dissipation and efficiency Hypotheses: ● Voltage and current in the load are sinusoidal (Vout and Iout). ● Supply voltage is a pure DC source (VCC). Regarding the load we have: V out = V PEAK sin ωt ( V ) and V out - (A) I out = ---------RL and 2 V PEAK P out = ---------------- (A) 2R L 4.3.1 Single-ended output configuration (modes 5 and 6) The average current delivered by the supply voltage is: π V PEAK 1 V PEAK Icc AVG = ------ ∫ ----------------sin ( t ) dt = ---------------- (A) 2π RL πR L 0 Figure 126. Current delivered by supply voltage in the single-ended output configuration The power delivered by supply voltage is: P supply = V C CI CC AV G (W) So, the power dissipation by single-ended amplifier is P diss = P supply – P out ( W ) 2V C C - P out – P out ( W ) P diss = -----------------π RL and the maximum value is obtained when: ∂P diss ∂ P out = 0 37/51 TS4956 Application information and its value is: 2 P diss Note: M AX V CC = ------------(W) 2 π RL This maximum value depends only on power supply voltage and load values. The efficiency is the ratio between the output power and the power supply: πV PEAK P out - = -------------------η = -----------------P supply 2V CC The maximum theoretical value is reached when VPEAK = VCC/2, so π η = --- = 78.5% 4 4.3.2 Phantom ground output configuration (modes 3, 4): The average current delivered by the supply voltage is: π Icc AVG 2V PEAK 1 V PEAK = --- ∫ ----------------sin ( t ) dt = --------------------(A) π RL πR L 0 Figure 127. Current delivered by supply voltage in the phantom ground output configuration The power delivered by supply voltage is: P supply = V C CI CC AV G (W) Then, the power dissipation by each amplifier is ⎛ 2 2V CC ⎞ P out⎟ – P out ( W ) P diss = ⎜ ---------------------⎝ π RL ⎠ and the maximum value is obtained when: ∂P diss ∂ P out = 0 and its value is: 2 P diss Note: MA X 2V C C = --------------(W) 2 π RL This maximum value depends only on the power supply voltage and load values. 38/51 TS4956 Application information The efficiency is the ratio between the output power and the power supply: P out πV PEAK η = ------------------ = -------------------P supply 4V CC The maximum theoretical value is reached when VPEAK = VCC/2, so π η = --- = 39.25% 8 The TS4956 has in modes 3 and 4 two active output power amplifiers. Each amplifier produces heat due to its power dissipation. Therefore the maximum die temperature is the sum of each amplifier’s maximum power dissipation. It is calculated as follows: Pdiss 1 = power dissipation due to the first power amplifier. Pdiss 2 = power dissipation due to the second power amplifier. Total Pdiss = Pdiss 1 + Pdiss 2 (W) In most cases, Pdiss 1 = Pdiss 2, giving: TotalP diss = 2P diss1 4 2V C C TotalPdiss = ---------------------P out – 2P out ( W ) π RL 4.3.3 BTL output configuration (modes 1, 2, 7): The average current delivered by the supply voltage is: π Icc AVG 2V PEAK 1 V PEAK = --- ∫ ----------------sin ( t ) dt = --------------------(A) π RL πR L 0 Figure 128. Current delivered by supply voltage in the BTL output configuration The power delivered by supply voltage is: P supply = V C CI CC AV G (W) Then, the power dissipation by each amplifier is 2 2V CC P out – P out ( W ) P diss = ---------------------π RL 39/51 TS4956 Application information and the maximum value is obtained when: ∂P diss ∂ P out = 0 and its value is: 2 P diss Note: MA X 2V C C = --------------(W) 2 π RL This maximum value depends only on power supply voltage and load values. The efficiency is the ratio between the output power and the power supply: P out πV PEAK η = ------------------ = -------------------P supply 4V CC The maximum theoretical value is reached when VPEAK = VCC, so π η = --- = 78.5% 4 The TS4956 has one active output BTL power amplifier when in modes 1 and 2. In mode 7, the TS49656 has two active output BTL power amplifiers. Each amplifier produces heat due to its power dissipation. Therefore the maximum die temperature is the sum of each amplifier’s maximum power dissipation. It is calculated as follows: ● Pdiss 1 = power dissipation due to the first BTL power amplifier. ● Pdiss 2 = power dissipation due to the second BTL power amplifier. ● Total Pdiss = Pdiss 1 + Pdiss 2 (W) In most cases, Pdiss 1 = P diss 2, giving: TotalP diss = 2P diss1 4 2V C C TotalPdiss = ---------------------P out – 2P out (W) π RL 40/51 TS4956 Application information 4.4 Low frequency response 4.4.1 Input capacitor Cin The input coupling capacitor blocks the DC part of the input signal at the amplifier input. In the low-frequency region, C in starts to have an effect. Cin with Zin forms a first-order, highpass filter with -3 dB cut-off frequency. 1 F C L = ------------------------ (Hz) 2πZ in C in Zin is the input impedance of the corresponding input. Note: For all inputs, the impedance value remains constant for all gain settings. This means that the lower cut-off frequency doesn’t change with the gain setting. Note also that 30 k Ω is a typical value and there is tolerance around this value. Using Figure 129 you can easily establish the Cin value required for a -3dB cut-off frequency. Figure 129. 3dB lower cut off frequency vs. input capacitance 100 Low -3dB Cut Off Frequency (Hz) All gain setting Tamb=25 °C Minimum Input Impedance 10 Typical Input Impedance Maximum Input Impedance 0.1 1 Input Capacitor Cin ( µF) 4.4.2 Output capacitor Cout In the single-ended configuration an external output coupling capacitor, C out, is needed. This coupling capacitor C out, together with the output load RL, forms a first-order high-pass filter with -3 dB cut off frequency. 1 F CL = -------------------------- ( Hz ) 2πR L C out See Figure 130 to establish the Cout value for a -3dB cut-off frequency required. These two first-order filters form a second-order high-pass filter. The -3 dB cut-off frequency of these two filters should be the same, so the following formula should be respected: 1 1 ------------------------ ≅ -------------------------2πZ in C in 2πR L C out 41/51 TS4956 Application information Figure 130. 3dB lower cut off frequency vs. output capacitance Low -3 dB Cut Off frequency (Hz) 100 All gain setting Tamb = 25 °C 10 RL=16 Ω RL=32Ω 1 100 1000 Output capacitor Cout ( µ F) 4.5 Single-ended input configuration in modes 1, 3 and 5 It is possible to use the differential inputs MIP and MIN of the TS4956 as one single-ended input in modes where the differential inputs are active (modes 1, 3 and 5). The schematic in Figure 131 shows this configuration. Figure 131. Single-ended input in modes 1, 3 and 5 for a typical application Vcc A A + TS4956 Cs2 1µF 100nF C3 Vcc C5 Vcc B Cs1 B MODE3: GxMIP LHP Amplifier Cin1 A1 MIP + 330nF Stereo Input Left LHP B6 PHG A7 16/32 Ohms PHG Amplifier Cin2 C A2 MIN + 330nF Stereo Input Right RHP Amplifier Mode Select B4 LIN Stereo Input Left RHP RIN 16/32 Ohms D6 Speaker Amplifier B2 MODE1: GxMIP SRP+ D A5 C MODE3: GxMIP SRN- Stereo Input Right 8 Ohms D D2 MODE5: GxMIP MLO Amplifier MLO E7 Cout+ 220µF Bias E 16/32 Ohms E GND C7 GND C1 E3 SDA E5 I2CVCC SCL E1 BYPASS Digital volume control I2C R1 1k D4 Cb I2CVCC + SCL 1µF F SDA I2C BUS F 42/51 TS4956 4.6 Application information Decoupling of the circuit Two capacitors are needed to properly bypass the TS4956 — a power supply capacitor Cs and a bias voltage bypass capacitor C b. Cs has a strong influence on the THD+N at high frequencies (above 7 kHz) and indirectly on the power supply disturbances. With a C s value of about 1 µF, you can expect to obtain THD+N performances similar to those shown in the datasheet. If C s is lower than 1 µF, THD+N increases in high frequency and disturbances on power supply rail are less filtered. On the contrary, if Cs is higher than 1 µF, disturbances on the power supply rail are more filtered. Cb has an influence on THD+N at lower frequencies, but its value has critical impact on the final result of PSRR with inputs grounded at lower frequencies: ● If Cb is lower than 1 µF, THD+N increases at lower frequencies and the PSRR worsens upwards. ● If Cb is higher than 1 µF, the benefit on THD+N and PSRR in the lower frequency range is small. The value of C b also has an influence on startup time. 4.7 Power On Reset When power is applied to VCC, an internal Power On Reset holds the TS4956 in a reset state (shutdown) until the supply voltage reaches its nominal value. The Power On Reset has a typical threshold of 1.75 V. During this reset state the output configuration is the same as in the shutdown mode. 43/51 TS4956 Application information 4.8 Notes on PSRR measurements 4.8.1 What is PSRR? The PSRR is the Power Supply Rejection Ratio. The PSRR of a device is the ratio between a power supply disturbance and the result on the output. In other words, the PSRR is the ability of a device to minimize the impact of power supply disturbance to the output. 4.8.2 How we measure the PSRR? The PSRR was measured with the TS4956 in the configuration shown in the schematic in Figure 132 Figure 132. Configuration schematic of TS4956 for PSRR measurement A A Vripple Vcc C3 C5 TS4956 Diff. input + 10 Ohms B Vcc Vcc B LHP Amplifier Cin1 A1 MIP Stereo Input Left A2 MIN Stereo Input Right + 330nF LHP B6 PHG A7 MODE7 RL 16 Ohms PHG Amplifier Cin2 C 10 Ohms + 330nF Diff. input - RHP Amplifier Mode Select SE input left Cin3 10 Ohms + 330nF B4 LIN Stereo Input Left 10 Ohms + 330nF A5 RIN RHP D6 B2 SRP+ SRN- Stereo Input Right RL 8 Ohms D2 MLO E7 Cout+ 220µF Bias Digital volume control I2C RL 16 Ohms E GND C7 GND C1 E3 D4 Cb SDA E5 I2CVCC SCL E1 BYPASS D MLO Amplifier SE input right E C Speaker Amplifier D Cin4 RL 8 Ohms RL 16 Ohms I2CVCC + SCL 1µF SDA F I2C BUS F Main operating principles of TS4956 for purposes of PSRR measurement: ● The DC voltage supply (VCC) is fixed ● The AC sinusoidal ripple voltage (Vripple) is fixed ● No bypass capacitor Cs is used The PSRR value for each frequency is calculated as: RMS ( Out put ) ( dB ) PSRR = 20Log ---------------------------------RMS ( Vripple ) RMS is a rms selective measurement. 44/51 TS4956 4.9 Application information Pop and click performance The TS4956 has internal pop and click reduction circuitry which eliminates the output transients, such as for example during switch-on or switch-off phases, or during a switch from one output mode to another, or when changing the volume. The performance of this circuitry is closely linked to the values of the input capacitor Cin, the output capacitor C out (for single-ended configuration) and the bias voltage bypass capacitor C b. The values of C in and Cout are determined by the lower cut-off frequency value requested. The value of C b will affect the THD+N and PSRR values in lower frequencies. The TS4956 is optimized to have low pop and click in the typical schematic configurations (see Figure 1 on page 3 and Figure 2 on page 4). 4.10 Thermal shutdown The TS4956 device has internal thermal shutdown protection in the event of extreme temperatures. Thermal shutdown is active when the device reaches temperature 150°C. 45/51 TS4956 4.11 Application information Evaluation board An evaluation board for the TS4956 is available. For more information about this evaluation board, please refer to the Application Note, which can be found on www.st.com. Figure 133. Schematic of the evaluation board available for the TS4956Figure 133. I2CVCC Vcc Vcc Cn5 Cn2 Cn1 3 2 1 I2C SUPPLY TS4956 POWER SUPPLY + 7 LHP Amplifier Stereo Input Left MIP + 330nF 4 3 2 1 Vcc Vcc Cin1 JP1 Cs2 100nF 8 17 TS4956 Diff. input + Cs1 1µF LHP 1 PHONEJACK STEREO 1 JP6 PHG Amplifier Cin2 5 Diff. input - Stereo Input Right MIN + 330nF PHG 2 3 1 2 3 2 J2 RHP Amplifier Mode Select SE input left Cin3 4 1 2 LIN RHP Stereo Input Left + 330nF 6 Cin4 3 SRN- Stereo Input Right RIN + 330nF JP4 1 2 SRP+ JP2 1 2 15 Speaker Amplifier 10 MLO Amplifier MLO JP3 C2 + 16 SE input right 220µF JP5 1 2 R7 1K Bias Digital volume control I2C GND 18 12 13 + C1 1µF GND 9 I2CVCC SDA 14 SCL 11 BYPASS I2CVCC Cn3 Cn4 I2CVCC I2CVCC R5 10K R6 10K I2CVCC SCL SDA R4 180R SDA 16 1A 1 15 SDA I2C BUS SDA T1 BS170 2 KP1040 J1 5 9 4 8 3 7 2 6 1 DB9 SCL SCL GND DTR GND2 TXD RTS R2 1K DSR D1 3 1N4148 1B 4 14 13 KP1040 R1 2k2 GND2 R3 1K D2 5 1N4148 1C 6 12 11 KP1040 GND2 46/51 TS4956 5 Package mechanical data Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 5.1 18-bump flip-chip package 2500 µm 2400 µm 750µm Die size: 2.5x2.4 mm ± 30µm Die height (including bumps): 600µm Bumps diameter: 315µm ±50µm Bump diameter before reflow: 300µm ±10µm Bumps height: 250µm ±40µm Die height: 350µm ±20µm Pitch: 500µm ±50µm Coplanarity: 50µm max 500µm 866µm 866µm 600 µm Figure 134. Footprint recommendations 47/51 TS4956 Package mechanical data Figure 135. Pin out (top view) PGH 6 5 RHP LHP- 4 3 SDA BYPASS LIN I2CVCC VCC MIN SRP SRP+ 2 1 56 X YWW LHP RHP+ VCC RIN E MLO GND MIP A GND B Markings are: – ST logo – First two letters give part number code:56 – Third letter gives assembly plant code: X – Three digit date code: YWW – Lead-free EcoPack symbol: E – The dot marks pin A1 SRN SRN- SCL C D E Figure 137. Tape & reel schematic (top view) 1.5 4 1 1 A Die size Y + 70µm 7 Figure 136. Marking (top view) 8 A Die size X + 70µm 4 All dimensions are in mm User direction of feed Device orientation The devices are oriented in the carrier pocket with pin number 1A adjacent to the sprocket holes. 48/51 TS4956 5.2 Package mechanical data Daisy chain sample The daisy chain sample features pins connected two by two. The schematic in Figure 138 illustrates the way that the pins are connected to each other. This sample is used for testing continuity on board. Your PCB needs to be designed the opposite way, so that pins that are unconnected in the daisy chain sample, are connected on your PCB. If you do this, by simply connecting a Ohmmeter between pin A1 and pin A3, the soldering process continuity can be tested. Figure 138. Top view of daisy chain sample 2.5 mm 7 6 5 2.2 mm 4 3 2 1 A Table 14. C D E Order code for daisy chain sample Part Number TSDC02JT B Temperature Range Package Marking -40, +85°C Flip-Chip18 DC2 49/51 TS4956 6 Revision history Revision history Table 15. Document revision history Date Revision Changes Nov. 2005 1 First release corresponding to the preliminary data version. Dec. 2005 2 cancellation the back coating sale type. May 2006 3 Final datasheet. 50/51 TS4956 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 51/51