TS902 RAIL TO RAIL CMOS DUAL OPERATIONAL AMPLIFIER (WITH STANDBY POSITION) ■ RAIL TO RAIL INPUT AND OUTPUT VOLT- N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) AGE RANGES ■ STANDBY POSITION : REDUCED CON■ ■ ■ ■ ■ SUMPTION (0.5µA) AND HIGH IMPEDANCE OUTPUTS SINGLE (OR DUAL) SUPPLY OPERATION FROM 2.7V TO 16V EXTREMELY LOW INPUT BIAS CURRENT : 1pA typ LOW INPUT OFFSET VOLTAGE : 5mV max. SPECIFIED FOR 600Ω AND 100Ω LOADS LOW SUPPLY CURRENT : 200µA/Ampli (VCC = 3V) D SO14 (Plastic Micropackage) ■ SPICE MACROMODEL INCLUDED IN THISSPECIFICATION DESCRIPTION The TS902 is a RAIL TO RAIL CMOS dual operational amplifier designed to operate with a single or dual supply voltage. The input voltage range Vicm includes the two supply rails VCC+ and VCC-. The output reaches : ❑ VCC- +50mV VCC+ -50mV with R L = 10kΩ ❑ VCC- +350mV VCC+ -400mV with R L = 600Ω This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of only 200µA/amp. (V CC = 3V). Source and sink output current capability is typically 40mA (at VCC = 3V), fixed by an internal limitation circuit. The TS902 can be put on STANDBY position (only 0.5µA and high impedance outputs). ORDER CODE PIN CONNECTIONS (top view) Standby 1 14 Output 1 2 13 V CC+ Output 2 N.C. 3 12 N.C. Inverting Input 1 4 - - 11 Inverting Input 2 Non-inverting input 1 5 + + 10 N.C. 6 9 N.C. N.C. 7 8 VCC - Non-inverting Input 2 Package Part Number Temperature Range D TS902I December 2001 -40, +125°C • 1/8 TS902 SCHEMATIC DIAGRAM (1/2 TS902) VCC Standby Standby Internal Vref Non-inverting Input Inverting Input Output Standby Standby VCC STANDBY POSITION VCC HIGH IMPEDANCE OUTPUT IN STANDBY MODE 1/2 TS902 VCC 1 STBY OFF STBY ON Vsby VCC VCC ABSOLUTE MAXIMUM RATINGS Symbol VCC Parameter Supply voltage 1) Vid Differential Input Voltage Vi Input Voltage 3) Iin Io Toper Tstg 2) Value Unit 18 V ±18 V -0.3 to 18 V Current on Inputs ±50 mA Current on Outputs ±130 mA Operating Free Air Temperature Range TS902I -40 to + 125 Storate Temperature -65 to +150 °C Value Unit °C 1. All voltages values, except differential voltage are with respect to network ground terminal. 2. Differential voltagesare non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V. OPERATING CONDITIONS Symbol VCC Vicm 2/8 Parameter Supply voltage Common Mode Input Voltage Range 2.7 to 16 - V + VCC -0.2 to VCC +0.2 V TS902 ELECTRICAL CHARACTERISTICS VCC+ = 10V, V cc- = 0V, RL, CL connected to VCC/2, Standby OFF, Tamb = 25°C (unless otherwise specified) Symbol Vio Parameter Input Offset Voltage (Vic = Vo = VCC/2) Tmin. ≤ Tamb ≤ Tmax. Min. Typ. TS902 TS902 ∆Vio Input Offset Voltage Drift Iio Input Offset Current 1) Tmin. ≤ Tamb ≤ Tmax. Iib Input Bias Current 1) Tmin. ≤ Tamb ≤ Tmax. ICC Supply Current (per amplifier, AVCL = 1, no load) Tmin. ≤ Tamb ≤ Tmax. Max. Unit 10 12 mV µV/°C 5 100 200 pA 1 150 300 pA 400 600 700 µA 1 CMR Common Mode Rejection Ratio Vic = 3 to 7V, Vo = 5V Vic = 0 to 10V, Vo = 5V 90 75 dB SVR Supply Voltage Rejection Ratio (VCC+ = 5 to 10V, Vo = VCC/2) 90 dB Avd Large Signal Voltage Gain (RL = 10kΩ, Vo = 2.5V to 7.5V) Tmin. ≤ Tamb ≤ Tmax. High Level Output Voltage (Vid = 1V) VOH Tmin. ≤ Tamb ≤ Tmax. Low Level Output Voltage (Vid = -1V) VOL Io GBP Tmin. ≤ Tamb ≤ Tmax. Output Short Circuit Current (Vid = ±1V) RL = RL = RL = RL = RL = 10kΩ 600Ω 100Ω 10kΩ 600Ω RL = RL = RL = RL = RL = 10kΩ 600Ω 100Ω 10kΩ 600Ω 9.95 9.35 7.8 50 650 2300 V 150 800 mV 150 900 (AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz) Phase Margin Equivalent Input Noise Voltage (Rs = 100Ω, f = 1kHz) V/mV 9.8 9 Gain Bandwith Product φm en Cin 9.85 9 Source (Vo = VCC) Slew Rate (AVCL = 1, RL = 10kΩ, CL = 100pF, Vi = 2.5V to 7.5V) VO1 /VO2 60 Sink (Vo = VCC+) SR THD 15 10 Total Harmonic Distortion (AVCL = 1, RL = 10kΩ, CL = 100pF, Vo = 4.75V to 5.25V, f = 1kHz) 60 60 mA 1.4 MHz 1 V/µs 40 Degrees 30 nV/√Hz 0.02 % Input Capacitance 1.5 pF Channel Separation (f = 1kHz) 120 dB 1. Maximum values including unavoidable inaccuracies of the industrial test STANDBY MODE VCC+ = 10V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit VinSBY/ON Pin 1 Threshold Voltage for STANDBY ON 8.2 VinSBY/OFF Pin 1 Threshold Voltage for STANDBY OFF 8.5 V 1 µA ICC SBY Total Consumption in Standby Position (STANDBY ON) V 3/8 TS902 TYPICAL CHARACTERISTICS Figure 3a : High Level Output Voltage vs High Level Output Current 5 600 OUTPUT VOLTAGE, VOH (V) SUPPLY CURRENT, ICC ( mA) Figure 1a : Supply Current (each amplifier) vs Supply Voltage Tamb = 25°C A VCL = 1 V o = VCC / 2 Standby OFF 500 400 300 200 100 0 4 8 12 T amb = 25 ° C V id = 100mV Standby OFF 4 3 2 VCC = +3V 1 0 16 -70 -56 SUPPLY VOLTAGE, VCC (V) OUTPUT VOLTAGE, VOH (V) SUPPLY CURRENT, I CC ( m A) Tamb = 25°C A VCL = 1 Standby ON 30 20 10 -14 0 T amb = 25 ° C V id = 100mV Standby OFF 16 VCC = +16V 12 VCC = +10V 8 4 0 4 8 SUPPLY VOLTAGE, V Figure 2 : 12 -70 16 Input Bias Current vs Temperature 10 75 100 TEMPERATURE, T amb ( °C) -28 -14 0 Figure 4a : Low Level Output Voltage vs Low Level Output Current 5 V CC = 10V V i = 5V No load Standby OFF 50 -42 OUTPUT CURRENT, IOH (mA) 100 1 25 -56 CC (V) OUTPUT VOLTAGE, V OL (V) INPUT BIAS CURRENT, I ib (pA) -28 Figure 3b : High Level Output Voltage vs High Level Output Current 20 50 0 4/8 -42 OUTPUT CURRENT, I OH (mA) Figure 1b : Supply Current (each amplifier) vs Supply Voltage (in STANDBY mode) 40 VCC = +5V 125 4 3 T amb = 25 ° C V id = 100mV Standby OFF VCC = +3V 2 VCC = +5V 1 0 14 28 42 56 70 OUTPUT CURRENT, I OL (mA) TS902 OUTPUT VOLTAGE, VOL (V) 10 8 T amb = 25 ° C V id = 100mV Standby OFF 6 V 4 V = 16V CC = 10V CC 2 0 14 28 42 Figure 6a : Gain Bandwidth Product vs Supply Voltage GAIN BANDW. PROD., GBP (kHz) Figure 4b : Low Level Output Voltage vs Low Level Output Current 56 1800 Tamb = 25°C R L = 10kW C L = 100pF Standby OFF 1400 1000 600 200 70 0 OUTPUT CURRENT, I OL (mA) GAIN (dB) 30 PHASE 20 0 45 Phase Margin Tamb = 25°C VCC = 10V R L = 10k W C L = 100pF A VCL = 100 Standby OFF 10 0 90 135 Gain Bandwidth Product 180 -10 10 2 10 3 4 5 6 10 10 10 FREQUENCY, f (Hz) 10 7 GAIN GAIN (dB) 40 30 Tamb = 25°C V CC = 10V R L = 600W C L = 100pF A VCL = 100 Standby OFF 20 10 0 10 10 2 10 3 0 45 PHASE Phase Margin 4 5 90 135 Gain Bandwidth Product 10 10 10 FREQUENCY, f (Hz) 16 1800 Tamb = 25°C R L = 600W C L = 100pF Standby OFF 1400 1000 600 200 0 4 8 12 16 180 6 10 7 Figure 7a : Phase Margin vs Supply Voltage PHASE (Degrees) Figure 5b : Gain and Phase vs Frequency 50 12 SUPPLY VOLTAGE, VCC (V) PHASE MARGIN, f m (Degrees) 40 GAIN BANDW. PROD., GBP (kHz) GAIN 8 Figure 6b : Gain Bandwidth Product vs Supply Voltage PHASE (Degrees) Figure 5a : Gain and Phase vs Frequency 50 4 SUPPLY VOLTAGE, VCC (V) 60 Tamb = 25°C R L = 10kW C L = 100pF Standby OFF 50 40 30 20 0 4 8 12 16 SUPPLY VOLTAGE, VCC (V) 5/8 TS902 60 Tamb = 25°C R L = 600W C L = 100pF Standby OFF 50 40 30 20 0 4 Figure 8 : EQUIVALENT INPUT VOLTAGE NOISE (nV/VHz) PHASE MARGIN,f m (Degrees) Figure 7b : Phase Margin vs Supply Voltage 8 12 SUPPLY VOLTAGE, VCC (V) 16 Input Voltage Noise vs Frequency 150 VCC = 10V Tamb= 25°C R S = 100W Standby OFF 100 50 0 10 100 1000 FREQUENCY (Hz) STANDBY APPLICATION The two operators of the TS902 are both put on STANDBY. In this configuration (standby ON) : ❑ The total consumption of the circuit is considerably reduced down to 0.5µA (VCC = 3V). This standby consumption vs V CC curve is given figure 1b. ❑ The both outputs are in high impedance state. No output current can then be sourced or sinked by the device. The standby pin 1 should never stay unconnected. ❑ The “standby OFF” state, is reached when the pin 1 voltage is higher than Vin SBY/OFF. ❑ The “standby ON” state is assured by a pin 1 voltage lower than Vin SBY/ON. (see electrical characteristics) 6/8 10000 TS902 MACROMODELS Applies to : TS902I ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * 6 STANDBY .SUBCKT TS902 1 3 2 4 5 6 (analog) ********************************************************** .MODEL MDTH D IS=1E-8 KF=6.563355E-14 CJO=10F * INPUT STAGE CIP 2 5 1.500000E-12 CIN 1 5 1.500000E-12 EIP 10 0 2 0 1 EIN 16 0 1 0 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.655100E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 FPOL 13 0 VSTB 1 CPS 11 15 3.82E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.5000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 -0.5000000E+00 FCP 4 5 VOFP 8.6E+00 FCN 5 4 VOFN 8.6E+00 ISTB0 5 4 900NA * AMPLIFYING STAGE FIP 0 19 VOFP 5.500000E+02 FIN 0 19 VOFN 5.500000E+02 RG1 19 120 5.087344E+05 GCOM1 120 5 POLY(1) 110 109 LEVEL=1 6.25E+11 RG2 121 19 5.087344E+05 GCOM2 121 4 POLY(1) 110 109 LEVEL=1 6.25E+11 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 12.33E+02 HZTN 5 30 VOFN 12.33E+02 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3135 VIPM 28 4 150 HONM 21 27 VOUT 3135 VINM 5 27 150 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 103 65 COUT 103 5 1.000000E-12 GCOM 103 3 POLY(1) 110 109 LEVEL=1 6.25E+11 * OUTPUT SWING DOP 19 68 MDTH 400E-12 VOP 4 25 1.924 HSCP 68 25 VSCP1 1E8 DON 69 19 MDTH 400E-12 VON 24 5 2.4419107 HSCN 24 69 VSCN1 1.5E8 VSCTHP 60 61 0.1375 DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.75 ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 * STAND BY RMI1 4 111 1E+12 RMI2 5 111 1E+12 RSTBIN 6 0 1E+12 ESTBIN 106 0 6 0 1 ESTBREF 106 107 111 0 1 DSTB1 107 108 MDTH 400E-12 VSTB 108 109 0 ISTB 109 0 40U RSTB 109 110 1 DSTB2 0 110 MDTH 400E-12 .ENDS ELECTRICAL CHARACTERISTICS VCC+ = 5V, V CC- = 0V, RL, CL connected to VCC/2, Standby OFF, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Value Unit 0 mV Avd RL = 10kΩ 30 V/mV ICC No load, per operator 230 µA -0.2 to 5.2 V Vicm VOH RL = 10kΩ 4.95 V VOL RL = 10kΩ 50 mV Isink VO = 10V 60 mA Isource VO = 0V 60 mA GBP RL = 10kΩ, CL = 100pF 0.8 MHz SR RL = 10kΩ, CL = 100pF 0.8 V/µs RL = 10kΩ, CL = 100pF 30 Degrees VSTBY = 0V 500 nA φm ICC STBY 7/8 TS902 PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO) Millimeters Inches Dim. Min. A a1 a2 b b1 C c1 D (1) E e e3 F (1) G L M S Typ. Max. Min. 1.75 0.2 1.6 0.46 0.25 0.1 0.35 0.19 Typ. 0.069 0.008 0.063 0.018 0.010 0.004 0.014 0.007 0.5 Max. 0.020 45° (typ.) 8.55 5.8 8.75 6.2 0.336 0.228 1.27 7.62 3.8 4.6 0.5 0.344 0.244 0.050 0.300 4.0 5.3 1.27 0.68 0.150 0.181 0.020 0.157 0.208 0.050 0.027 8° (max.) Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com 8/8