ETC TSH94IN

TSH94

HIGH SPEED LOW POWER QUAD
OPERATIONAL AMPLIFIER (WITH STANDBY POSITION)
.
..
..
..
..
.
2 SEPARATE STANDBY : REDUCED
CONSUMPTION AND HIGH IMPEDANCE
OUTPUTS
LOW SUPPLY CURRENT : 4.5mA/amp. typ.
HIGH SPEED : 150MHz - 110V/µs
UNITY GAIN STABILITY
LOW OFFSET VOLTAGE : 3mV
LOW NOISE 4.2 nV/√

Hz
LOW COST
SPECIFIED FOR 600Ω AND 150Ω LOADS
HIGH VIDEO PERFORMANCES :
Differential Gain : 0.03%
Differential Phase : 0.07o
Gain Flatness : 6MHz, 0.1dB max. @ 10dB
gain
HIGH AUDIO PERFORMANCES
N
DIP16
(Plastic Package)
D
SO16
(Plastic Micropackage)
ORDER CODES
Part Number
Temperature Range
o
-40, +125 C
TSH94I
Package
N
D
•
•
PIN CONNECTIONS (top view)
DESCRIPTION
The TSH94 is a quad low power high frequency
op-amp, designated for high quality video signal
processing. The device offers an excellent speed
consumption ratio with 4.5mA/amp. for 150MHz
bandwidth.
High slew rate and low noise make it also suitable
for high quality audio applications.
The TSH94 offers 2 separate complementary
STANDBY pins :
• STANDBY 1 acting on the n° 2 operator
• STANDBY 2 acting on the n° 3 operator
They reduce the consumption of the corresponding
operator and put the output in a high impedance
state.
November 1998
Output 1
1
Inverting Input 1
2
Non-inve rting Input 1
3
VCC +
4
Non-inve rting Input 2
5
+
+
12 Non-inve rting Input 3
Inverting Input 2
6
-
-
11 Inverting Input 3
Output 2
7
S ta ndby 1 8
16 Output 4
-
-
15 Inverting Input 4
+
+
14 Non-inve rting Input 4
13 VCC -
10 Output 3
9
Sta ndby 2
1/12
TSH94
SCHEMATIC DIAGRAM
V CC +
s tdby
s tdby
non inverting
input
Internal
Vre f
inverting
input
output
Cc
s tdby
s tdby
VCC-
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Vid
Vi
Toper
Tstg
Notes :
Parameter
Supply Voltage - (note 1)
Differential Input Voltage - (note 2)
Input Voltage - (note 3)
Operating Free Air Temperature Range
Storage Temperature
Value
14
±5V
-0.3 to 12
-40 to +125
-65 to +150
Unit
V
V
V
o
C
o
C
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V.
OPERATING CONDITIONS
Symbol
VCC
Vicm
2/12
Parameter
Supply Voltage
Common Mode Input Voltage Range
Value
7 to 12
+
VCC +2V to VCC -1
Unit
V
V
TSH94
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, VCC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC +, Tamb = 25oC
(unless otherwise specified)
Symbol
Parameter
Vio
Input Offset Voltage (V ic = Vo = 0V)
Tmin. ≤ Tamb. ≤ T max.
Input Offset Current
Iio
Tmin. ≤ Tamb. ≤ T max.
Input Bias Current
Iib
Tmin. ≤ Tamb. ≤ T max.
Supply Current (per amplifier, no load)
ICC
Tmin. ≤ Tamb. ≤ T max.
CMR
Common Mode Rejection Ratio (Vic = -3V to +4V, Vo = 0V)
Tmin. ≤ Tamb. ≤ T max.
SVR
Supply Voltage Rejection Ratio (VCC = ±5V to ±3V)
Tmin. ≤ Tamb. ≤ T max.
Large Signal Voltage Gain (RL = 10kΩ, VO = ±2.5V)
Avd
Tmin. ≤ Tamb. ≤ T max.
High Level Output Voltage (Vid = 1V)
VOH
RL = 600Ω
RL = 150Ω
RL = 150Ω
Tmin. ≤ T amb. ≤ Tmax.
Low Level Output Voltage (Vid = -1V)
VOL
RL = 600Ω
RL = 150Ω
RL = 150Ω
Tmin. ≤ T amb. ≤ Tmax.
Output Short Circuit Current (Vid = ±1V)
Source
Io
Sink
Source
Tmin. ≤ Tamb. ≤ T max.
Sink
GBP
Gain Bandwidth Product
(AVCL = 100, RL = 600Ω, CL = 15pF, f =7.5MHz)
fT
Transition Frequency
SR
Slew Rate (A VCL = +1, RL = 600Ω, CL = 15pF, Vin = -2 to +2V)
∅m
Phase Margin (AVM = +1)
en
VO1/VO2
Gf
THD
∆G
∆ϕ
Min.
Typ.
1
5
4.5
Unit
mV
µA
µA
mA
80
70
60
50
57
54
100
dB
75
dB
70
dB
3
2.5
2.4
3.5
3
V
V
-3.5
-2.8
20
20
15
15
36
40
90
150
90
110
35
-3
-2.5
-2.4
mA
MHz
70
Equivalent Input Noise Voltage (Rs = 50Ω, f = 1kHz)
4.2
Channel Separation (f = 1MHz to 10MHz)
Gain Flatness (f = DC to 6MHz, AVCL = 10dB)
Total Harmonic Distortion (f = 1kHz, Vo = ±2.5V, RL = 600Ω)
Differential Gain (f = 3.58MHz, A VCL = +2, RL = 150Ω)
65
Differential Phase (f = 3.58MHz, AVCL = +2, R L = 150Ω)
Max.
3
5
2
5
15
20
6
8
0.1
0.01
0.03
0.07
MHz
V/µs
Degrees
nV

√
Hz
dB
dB
%
%
Degree
3/12
TSH94
STANDBY MODE VCC+ = 5V, VCC- = -5V, Tamb = 25oC (unless otherwise specified)
Symbol
VSBY
ICC SBY
Isol
tON
tOFF
ID
IOL
IIL
Parameter
Pin 8/9 Threshold Voltage for STANDBY Mode
Total Consumption
Standby 1 & 2 = 0
Standby 1 & 2 = 1
Standby 1 = 1, Standby 2 = 0
Input/Output Isolation (f = 1MHz to 10MHz)
Time from Standby Mode to Active Mode
Time from Active Mode to Standby Mode
Standby Driving Current
Output Leakage Current
Input Leakage Current
LOGIC INPUT
Standby 1
Standby 2
0
0
0
1
1
0
1
1
VCC
sta ndby
13.7
13.7
9.4
70
200
200
2
20
20
Op-amp 2
Enable
Enable
Standby
Standby
STATUS
Op-amp 3
Standby
Enable
Standby
Enable
4/12
Max.
+
VCC -1.0
Unit
V
mA
dB
ns
ns
pA
pA
pA
Op-amp 1 & 4
Enable
Enable
Enable
Enable
To put the device in standby, just apply a logic level
on the standby MOS input. As ground is a virtual
level for the device, threshold voltage has been
refered to VCC+ at VCC+ - 1.6V typ.
In standby mode, the output goes in high impedance in 200ns. Be aware that all maximum rating
must still be followed in this mode. It leads to swing
limitation while using the device in signal multiplexing configuration with followers, differential input
voltage must not exceed ±5V limiting input swing
to 2.5Vpp.
APPLICATIONS
SIGNAL MULTIPLEXING
Typ.
+
VCC -1.6
STANDBY MODE
STANDBY POSITION
VCC
Min.
+
VCC -2.2
SAMPLE AND HOLD
TSH94
APPLICATIONS
VIDEO LINE TRANSCEIVER WITH REMOTE CONTROL
PRINTED CIRCUIT LAYOUT
As for any high frequency device, a few rules must
be observed when designing the PCB to get the
best performances from this high speed op amp.
From the most to the least important points :
• Each power supply lead has to be by-passed to
ground with a 10nF ceramic capacitor very
close to the device and 10µF capacitor.
• To provide low inductance and low resistance
common return, use a ground plane or common point return for power and signal.
• All leads must be wide and as short as possible
especially for op amp inputs. This is in order to
decrease parasitic capacitance and inductance.
• Use small resistor values to decrease time constant with parasitic capacitance.
• Choose componentsizes as small as possible
(SMD).
• On output, decrease capacitor load so as to
avoid circuit stability being degraded which
may cause oscillation. You can also add a serial resistor in order to minimise its influence.
5/12
TSH94
INPUT OFFSET VOLTAGE DRIFT VERSUS
TEMPERATURE
STATIC OPEN LOOP VOLTAGE GAIN
LARGE SIGNAL FOLLOWER RESPONSE
SMALL SIGNAL FOLLOWER RESPONSE
OPEN LOOP FREQUENCY RESPONSE AND
PHASE SHIFT
CLOSE LOOP FREQUENCY RESPONSE
6/12
TSH94
AUDIO BANDWIDTH FREQUENCY
RESPONSE AND PHASE SHIFT
(TSH94 vs Standard 15MHz Audio Op-Amp)
GAIN FLATNESS AND PHASE SHIFT VERSUS
FREQUENCY
CROSS TALK ISOLATION VERSUS
FREQUENCY (SO16 PACKAGE)
CROSS TALK ISOLATION VERSUS
FREQUENCY (SO16 PACKAGE)
INPUT/OUTPUT ISOLATION IN STANDBY
MODE (SO16 PACKAGE)
STANDBY SWITCHING
7/12
TSH94
DIFFERENTIAL INPUT IMPEDANCE VERSUS
FREQUENCY
SIGNAL MULTIPLEXING (cf p. 5/10)
4.5
4.0
3.5
Zin-diff (kΩ)
3.0
2.5
2.0
1.5
1.0
0.5
1k
10k
100k
1M
Fre que ncy (Hz)
COMMON INPUT IMPEDANCE VERSUS
FREQUENCY
120
Zin-com (MΩ)
100
80
60
40
20
1k
10k
100k
1M
Frequency (Hz)
8/12
10M
100M
10M
100M
TSH94
..
MACROMODEL
LOW DISTORTION
GAIN BANDWIDTH PRODUCT : 150MHz
..
UNITY GAIN STABLE
SLEW RATE : 110V/µs
Applies to : TSH94,I (model without standby)
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TSH94 1 3 2 4 5 (analog)
**********************************************************
.MODEL MDTH D IS=1E-8 KF=1.809064E-15
CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E-01
RIN 15 16 2.600000E-01
RIS 11 15 3.645298E-01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-03
CPS 11 15 2.986990E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 2.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.000000E+00
FCP 4 5 VOFP 3.500000E+00
FCN 5 4 VOFN 3.500000E+00
FIBP 2 5 VOFP 1.000000E-02
FIBN 5 1 VOFN 1.000000E-02
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.530000E+02
FIN 5 19 VOFN 2.530000E+02
RG1 19 5 3.160721E+03
RG2 19 4 3.160721E+03
CC 19 5 2.00000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 1.504000E+03
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 1.400000E+03
VINM 5 27 5.000000E+01
***********************
RZP1 5 80 1E+06
RZP2 4 80 1E+06
GZP 5 82 19 80 2.5E-05
RZP2H 83 4 10000
RZP1H 83 82 80000
RZP2B 84 5 10000
RZP1B 82 84 80000
LZPH 4 83 3.535e-02
LZPB 84 5 3.535e-02
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 3 35
COUT 3 5 30.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.361965E+00
DON 24 19 MDTH 400E-12
VON 24 5 2.361965E+00
.ENDS
ELECTRICAL CHARACTERISTICS
VCC = ±5V, Tamb = 25oC (unless otherwise specified)
Symbol
Vio
Avd
ICC
Vicm
VOH
VOL
Isink
Isource
GBP
SR
∅m
Conditions
RL = 600Ω
No load / Ampli
RL = 600Ω
RL = 600Ω
VO = 0V
VO = 0V
RL = 600Ω, C L = 15pF
RL = 600Ω, C L = 15pF
RL = 600Ω, C L = 15pF
Value
0
3.2
5.2
-3 to 4
+3.6
-3.6
40
40
147
110
42
Unit
mV
V/mV
mA
V
V
V
mA
mA
MHz
V/µs
Degrees
9/12
TSH94
Applies to : TSH94,I (model with standby)
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
* 6 STANDBY
.SUBCKT TSH94 1 3 2 4 5 6 (analog)
**********************************************************
**************** switch *******************
.SUBCKT SWITCH 20 10 IN OUT COM
.MODEL DIDEAL D N=0.1 IS=1E-08
DP IN 1 DIDEAL 400E-12
DN OUT 2 DIDEAL 400E-12
EP 1 OUT COM 10 2
EN 2 IN COM 10 2
RFUIT1 IN 1 1E+09
RFUIT2 OUT 2 1E+09
RCOM COM 0 1E+12
.ENDS SWITCH
**************** inverter *****************
.SUBCKT INV 20 10 IN OUT
.MODEL DIDEAL D N=0.1 IS=1E-08
RP1 20 15 1E+09
RN1 15 10 1E+09
RIN IN 10 1E+12
RIP IN 20 1E+12
DPINV OUT 20 DIDEAL 400E-12
DNINV 10 OUT DIDEAL 400E-12
GINV 0 OUT IN 15 -6.7E-7
CINV 0 OUT 210f
.ENDS INV
***************** AOP **********************
.MODEL MDTH D IS=1E-8 KF=1.809064E-15
CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E-01
RIN 15 16 2.600000E-01
RIS 11 15 3.645298E-01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
FPOL 13 5 VSTB 1E+03
CPS 11 15 2.986990E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 2.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.000000E+00
10/12
FCP 4 5 VOFP 3.500000E+00
FCN 5 4 VOFN 3.500000E+00
ISTB0 4 5 130UA
FIBP 2 5 VOFP 1.000000E-02
FIBN 5 1 VOFN 1.000000E-02
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.530000E+02
FIN 5 19 VOFN 2.530000E+02
RG1 19 120 3.160721E+03
XCOM1 4 0 120 5 COM SWITCH
RG2 19 121 3.160721E+03
XCOM2 4 0 4 121 COM SWITCH
CC 19 5 2.00000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 1.504000E+03
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 1.400000E+03
VINM 5 27 5.000000E+01
*********** ZP **********
RZP1 5 80 1E+06
RZP2 4 80 1E+06
GZP 5 82 19 80 2.5E-05
RZP2H 83 4 10000
RZP1H 83 82 80000
RZP2B 84 5 10000
RZP1B 82 84 80000
LZPH 4 83 3.535e-02
LZPB 84 5 3.535e-02
**************************
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 103 35
COUT 103 5 30.000000E-12
XCOM 4 0 103 3 COM SWITCH
DOP 19 25 MDTH 400E-12
VOP 4 25 2.361965E+00
DON 24 19 MDTH 400E-12
VON 24 5 2.361965E+00
********** STAND BY ********
RMI1 4 111 1E+7
RMI2 0 111 2E+7
RONOFF 6 60 1K
CONOGG 60 0 10p
RSTBIN 60 0 1E+12
ESTBIN 106 0 6 0 1
ESTBREF 106 107 111 0 1
DSTB1 107 108 MDTH 400E-12
VSTB 108 109 0
ISTB 109 0 1U
RSTB 109 110 1
DSTB2 0 110 MDTH 400E-12
XINV 4 0 6 COM INV
.ENDS
TSH94
PM-DIP16.EPS
PACKAGE MECHANICAL DATA
16 PINS - PLASTIC DIP
a1
B
b
b1
D
E
e
e3
F
i
L
Z
Min.
0.51
0.77
Millimeters
Typ.
Max.
1.65
0.5
0.25
Min.
0.020
0.030
Inches
Typ.
Max.
0.065
0.020
0.010
20
8.5
2.54
17.78
0.787
0.335
0.100
0.700
7.1
5.1
3.3
0.280
0.201
DIP16.TBL
Dimensions
0.130
1.27
0.050
11/12
TSH94
PM-SO16.EPS
PACKAGE MECHANICAL DATA
16 PINS - PLASTIC MICROPACKAGE (SO)
Dimensions
Millimeters
Typ.
0.1
0.35
0.19
Max.
1.75
0.2
1.6
0.46
0.25
Min.
Inches
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45o (typ.)
9.8
5.8
10
6.2
0.386
0.228
1.27
8.89
3.8
4.6
0.5
0.394
0.244
0.050
0.350
4.0
5.3
1.27
0.62
0.150
0.181
0.020
0.157
0.209
0.050
0.024
o
8 (max.)
SO16.TBL
A
a1
a2
b
b1
C
c1
D
E
e
e3
F
G
L
M
S
Min.
 1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
 http://www.st.com
12/12
ORDER CODE :
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infri ngement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for useas critical components inlife support devices or systems
without express written approval of STMicroelectronics.
 The ST logo is a trademark of STMicroelectronics