ETC TS902IDT

TS902
RAIL TO RAIL CMOS DUAL
OPERATIONAL AMPLIFIER (WITH STANDBY POSITION)
■ RAIL TO RAIL INPUT AND OUTPUT VOLT-
N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
AGE RANGES
■ STANDBY POSITION : REDUCED CON■
■
■
■
■
SUMPTION (0.5µA) AND HIGH IMPEDANCE
OUTPUTS
SINGLE (OR DUAL) SUPPLY OPERATION
FROM 2.7V TO 16V
EXTREMELY LOW INPUT BIAS CURRENT :
1pA typ
LOW INPUT OFFSET VOLTAGE : 5mV max.
SPECIFIED FOR 600Ω AND 100Ω LOADS
LOW SUPPLY CURRENT : 200µA/Ampli
(VCC = 3V)
D
SO14
(Plastic Micropackage)
■ SPICE MACROMODEL INCLUDED IN THISSPECIFICATION
DESCRIPTION
The TS902 is a RAIL TO RAIL CMOS dual operational amplifier designed to operate with a single
or dual supply voltage.
The input voltage range Vicm includes the two supply rails VCC+ and VCC-.
The output reaches :
❑ VCC- +50mV VCC+ -50mV with RL = 10kΩ
❑ VCC- +350mV VCC+ -400mV with RL = 600Ω
This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of
only 200µA/amp. (VCC = 3V).
Source and sink output current capability is typically 40mA (at VCC = 3V), fixed by an internal limitation circuit.
The TS902 can be put on STANDBY position
(only 0.5µA and high impedance outputs).
ORDER CODE
PIN CONNECTIONS (top view)
V CC+
Standby 1
14
2
13
Output 2
N.C. 3
12
N.C.
Output 1
Inverting Input 1
4
-
-
11
Inverting Input 2
Non-inverting input 1
5
+
+
10
Non-invertingInput 2
N.C.
6
9
N.C.
N.C. 7
8
VCC -
Package
Part Number
Temperature Range
D
TS902I
December 2001
-40, +125°C
•
1/8
TS902
SCHEMATIC DIAGRAM (1/2 TS902)
VCC
Standby
Sta ndby
Interna l
Vref
Non-inverting
Input
Inverting
Input
Output
Standby
Sta ndby
VCC
STANDBY POSITION
VCC
HIGH IMPEDANCE OUTPUT IN STANDBY MODE
1/2
TS902
V CC
1
STBY OFF
STBY ON
Vsby
V CC
VCC
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Vid
Parameter
Supply voltage 1)
Differential Input Voltage
2)
3)
Value
Unit
18
V
±18
V
Vi
Input Voltage
-0.3 to 18
V
Iin
Current on Inputs
±50
mA
Io
Current on Outputs
±130
mA
Toper
Operating Free Air Temperature Range
TS902I
-40 to + 125
°C
Tstg
Storate Temperature
-65 to +150
°C
Value
Unit
1. All voltages values, except differential voltage are with respect to network ground terminal.
2. Differential voltagesare non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V.
OPERATING CONDITIONS
Symbol
2/8
Parameter
VCC
Supply voltage
Vicm
Common Mode Input Voltage Range
2.7 to 16
V
VCC- -0.2 to VCC+ +0.2
V
TS902
ELECTRICAL CHARACTERISTICS
VCC+ = 10V, Vcc- = 0V, RL, CL connected to VCC/2, Standby OFF, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Vio
Input Offset Voltage (Vic = Vo = VCC/2)
Tmin. ≤ Tamb ≤ Tmax.
∆Vio
Input Offset Voltage Drift
Min.
Typ.
TS902
TS902
Max.
Unit
10
12
mV
µV/°C
5
1)
Iio
Input Offset Current
Tmin. ≤ Tamb ≤ Tmax.
Iib
Input Bias Current 1)
Tmin. ≤ Tamb ≤ Tmax.
ICC
Supply Current (per amplifier, A VCL = 1, no load)
T min. ≤ Tamb ≤ Tmax.
100
200
pA
1
150
300
pA
400
600
700
µA
1
CMR
Common Mode Rejection Ratio
Vic = 3 to 7V, V o = 5V
Vic = 0 to 10V, V o = 5V
90
75
dB
SVR
Supply Voltage Rejection Ratio (VCC+ = 5 to 10V, V o = VCC/2)
90
dB
Avd
Large Signal Voltage Gain (RL = 10kΩ, Vo = 2.5V to 7.5V)
T min. ≤ Tamb ≤ Tmax.
High Level Output Voltage (Vid = 1V)
VOH
T min. ≤ Tamb ≤ Tmax.
Low Level Output Voltage (Vid = -1V)
VOL
Io
GBP
SR
φm
en
THD
Cin
T min. ≤ Tamb ≤ Tmax.
Output Short Circuit Current (Vid = ±1V)
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
R L = 600Ω
15
10
60
9.85
9
9.95
9.35
7.8
V/mV
V
9.8
9
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
R L = 600Ω
50
650
2300
150
800
mV
150
900
Source (Vo = VCC)
Sink (Vo = VCC+)
Gain Bandwith Product
(AVCL = 100, RL = 10kΩ, C L = 100pF, f = 100kHz)
Slew Rate
(AVCL = 1, RL = 10kΩ, CL = 100pF, V i = 2.5V to 7.5V)
Phase Margin
Equivalent Input Noise Voltage (R s = 100Ω, f = 1kHz)
Total Harmonic Distortion
(AVCL = 1, RL = 10kΩ, CL = 100pF, V o = 4.75V to 5.25V, f = 1kHz)
Input Capacitance
VO1 /VO2 Channel Separation (f = 1kHz)
60
60
mA
1.4
MHz
1
V/µs
40
Degrees
30
nV/√Hz
0.02
%
1.5
pF
120
dB
1. Maximum values including unavoidable inaccuracies of the industrial test
STANDBY MODE
VCC+ = 10V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
VinSBY/ON
Pin 1 Threshold Voltage for STANDBY ON
8.2
V
VinSBY/OFF
Pin 1 Threshold Voltage for STANDBY OFF
8.5
V
1
µA
ICC SBY
Total Consumption in Standby Position (STANDBY ON)
3/8
TS902
TYPICAL CHARACTERISTICS
Figure 3a : High Level Output Voltage vs High
Level Output Current
5
600
OUTPUT VOLTAGE, VOH (V)
SUPPLY CURRENT, ICC ( mA)
Figure 1a : Supply Current (each amplifier)
vs Supply Voltage
Ta mb = 25 C
A VCL = 1
V o = VCC / 2
Standby OFF
500
400
300
200
T a m b = 25 C
Vid = 100mV
S ta ndby OFF
4
3
2
VCC = +3V
1
0
100
0
4
8
12
-70
16
S UP P LYVOLTAGE, VCC (V)
OUTPUT VOLTAGE, VOH (V)
Tamb = 25 C
A VCL = 1
Sta ndby ON
30
20
10
T a mb = 25 C
V id = 100mV
S ta ndby OFF
16
-14
0
VCC = +1 6V
12
VCC = +10V
8
4
4
8
12
-70
16
-56
Figure 2 :
Input Bias Current vs Temperature
5
OUTPUT VOLTAGE, V OL (V)
VCC = 10V
Vi = 5V
No load
S tandby OFF
10
50
75
100
TEMPERATURE, Ta mb ( C)
-28
-14
0
Figure 4a : Low Level Output Voltage vs Low
Level Output Current
100
1
25
-42
OUTP UT CURRENT, IO H (mA)
S UP P LY VOLTAGE, V CC (V)
INPUT BIAS CURRENT, I ib (pA)
-28
0
0
4/8
-42
Figure 3b : High Level Output Voltage vs High
Level Output Current
20
50
SUPPLY CURRENT, I CC ( µA)
-56
OUTP UT CURRENT, IO H (mA)
Figure 1b : Supply Current (each amplifier)
vs Supply Voltage (in STANDBY
mode)
40
VCC = +5V
125
4
3
T a m b = 25 C
V id = 100mV
S ta ndby O FF
VCC = +3V
2
VCC = +5V
1
0
14
28
42
56
70
OUTP UT CURRENT, I OL (mA)
TS902
OUTPUT VOLTAGE, VOL (V)
10
8
T amb = 25 C
V id = 100mV
S ta nd by OFF
6
V
4
V
= 16V
CC
CC
= 10V
2
0
14
28
42
Figure 6a : Gain Bandwidth Product vs Supply
Voltage
GAIN BANDW. PROD., GBP (kHz)
Figure 4b : Low Level Output Voltage vs Low
Level Output Current
56
1800
Ta mb = 25 C
R L = 10kΩ
C L = 100pF
S ta ndby OFF
1400
1000
600
200
0
70
50
GAIN
45
P ha s e
Margin
90
Tamb = 25 C
VCC = 10V
R L = 10k Ω
C L = 100pF
AVCL = 100
Standby OFF
10
0
135
Ga in
Ba ndwidth
P roduct
180
-10
10
2
10
3
4
5
6
10
10
10
FRE QUENCY, f (Hz)
10
7
Figure 5b : Gain and Phase vs Frequency
GAIN
Ta mb = 25 C
VCC = 10V
R L = 600Ω
C L = 100pF
A VCL = 100
S ta ndby OFF
20
10
0
10
10
45
PHASE
2
10
3
Pha s e
Margin
90
135
Gain
Ba ndwidth
Product
4
5
10
10
10
FREQUENCY, f (Hz)
180
6
10
7
PHASE (Degrees)
GAIN (dB)
0
30
1800
Tamb = 25 C
R L = 600Ω
C L = 100pF
Standby OFF
1400
1000
600
200
0
4
8
12
16
Figure 7a : Phase Margin vs Supply Voltage
50
40
16
S UP P LY VOLTAGE, VCC (V)
PHASE MARGIN, φ m (Degrees)
20
PHASE (Degrees)
GAIN (dB)
0
P HASE
12
Figure 6b : Gain Bandwidth Product vs Supply
Voltage
GAIN BANDW. PROD., GBP (kHz)
Figure 5a : Gain and Phase vs Frequency
30
8
SUP PLY VOLTAGE , VCC (V)
O UTPUT CURR ENT, I OL (mA)
40
4
60
Ta mb = 25 C
R L = 10kΩ
C L = 100pF
S ta ndby OFF
50
40
30
20
0
4
8
12
16
SUP PLY VOLTAGE , VCC (V)
5/8
TS902
Figure 8 :
60
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
PHASE MARGIN,φ m (Degrees)
Figure 7b : Phase Margin vs Supply Voltage
Ta mb = 25 C
R L = 600Ω
C L = 100pF
Sta ndby OFF
50
40
30
20
0
4
8
12
S UPP LY VOLTAGE, VCC (V)
16
Input Voltage Noise vs Frequency
150
100
VCC = 10V
Ta mb = 25 C
R S = 100 Ω
S ta ndby OFF
50
0
10
1000
100
FREQUENCY (Hz)
STANDBY APPLICATION
The two operators of the TS902 are both put on STANDBY.
In this configuration (standby ON) :
❑ The total consumption of the circuit is considerably reduced down to 0.5µA (VCC = 3V).
This standby consumption vs VCC curve is given figure 1b.
❑ The both outputs are in high impedance state.
No output current can then be sourced or sinked by the device.
The standby pin 1 should never stay unconnected.
❑ The “standby OFF” state, is reached when the pin 1 voltage is higher than Vin SBY/OFF.
❑ The “standby ON” state is assured by a pin 1 voltage lower than Vin SBY/ON.
(see electrical characteristics)
6/8
10000
TS902
MACROMODELS
Applies to : TS902I
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
* 6 STANDBY
.SUBCKT TS902 1 3 2 4 5 6 (analog)
**********************************************************
.MODEL MDTH D IS=1E-8 KF=6.563355E-14 CJO=10F
* INPUT STAGE
CIP 2 5 1.500000E-12
CIN 1 5 1.500000E-12
EIP 10 0 2 0 1
EIN 16 0 1 0 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.655100E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
FPOL 13 0 VSTB 1
CPS 11 15 3.82E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 -0.5000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 -0.5000000E+00
FCP 4 5 VOFP 8.6E+00
FCN 5 4 VOFN 8.6E+00
ISTB0 5 4 900NA
* AMPLIFYING STAGE
FIP 0 19 VOFP 5.500000E+02
FIN 0 19 VOFN 5.500000E+02
RG1 19 120 5.087344E+05
GCOM1 120 5 POLY(1) 110 109 LEVEL=1 6.25E+11
RG2 121 19 5.087344E+05
GCOM2 121 4 POLY(1) 110 109 LEVEL=1 6.25E+11
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 12.33E+02
HZTN 5 30 VOFN 12.33E+02
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3135
VIPM 28 4 150
HONM 21 27 VOUT 3135
VINM 5 27 150
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 103 65
COUT 103 5 1.000000E-12
GCOM 103 3 POLY(1) 110 109 LEVEL=1 6.25E+11
* OUTPUT SWING
DOP 19 68 MDTH 400E-12
VOP 4 25 1.924
HSCP 68 25 VSCP1 1E8
DON 69 19 MDTH 400E-12
VON 24 5 2.4419107
HSCN 24 69 VSCN1 1.5E8
VSCTHP 60 61 0.1375
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.75
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
* STAND BY
RMI1 4 111 1E+12
RMI2 5 111 1E+12
RSTBIN 6 0 1E+12
ESTBIN 106 0 6 0 1
ESTBREF 106 107 111 0 1
DSTB1 107 108 MDTH 400E-12
VSTB 108 109 0
ISTB 109 0 40U
RSTB 109 110 1
DSTB2 0 110 MDTH 400E-12
.ENDS
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, VCC- = 0V, RL, CL connected to VCC/2, Standby OFF, T amb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Value
Unit
0
mV
Avd
R L = 10kΩ
30
V/mV
ICC
No load, per operator
230
µA
-0.2 to 5.2
V
4.95
V
V icm
VOH
R L = 10kΩ
VOL
R L = 10kΩ
50
mV
Isink
VO = 10V
60
mA
Isource
VO = 0V
60
mA
GBP
R L = 10kΩ, CL = 100pF
0.8
MHz
SR
R L = 10kΩ, CL = 100pF
0.8
V/µs
φm
R L = 10kΩ, CL = 100pF
30
Degrees
VSTBY = 0V
500
nA
ICC STBY
7/8
TS902
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)
Millimeters
Inches
Dim.
Min.
A
a1
a2
b
b1
C
c1
D (1)
E
e
e3
F (1)
G
L
M
S
Typ.
Max.
Min.
1.75
0.2
1.6
0.46
0.25
0.1
0.35
0.19
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45° (typ.)
8.55
5.8
8.75
6.2
0.336
0.228
1.27
7.62
3.8
4.6
0.5
0.344
0.244
0.050
0.300
4.0
5.3
1.27
0.68
0.150
0.181
0.020
0.157
0.208
0.050
0.027
8° (max.)
Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibil ity for the
consequences of use of such information nor for any infring ement of patents or other righ ts of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change witho ut notice. This publ ication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life suppo rt devices or
systems withou t express written approval of STMicroelectronics.
 The ST logo is a registered trademark of STMicroelectronics
 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Swit zerland - United Kingdom - United States
 http://www. st.com
8/8