TSH95 HIGH SPEED LOW POWER QUAD OPERATIONAL AMPLIFIER WITH DUAL STANDBY POSITION ■ 2 SEPARATE STANDBY : REDUCED ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ CONSUMPTION AND HIGH IMPEDANCE OUTPUTS LOW SUPPLY CURRENT : 4.5mA HIGH SPEED : 150MHz - 110V/µs UNITY GAIN STABILITY LOW OFFSET VOLTAGE : 4mV LOW NOISE 4.2 nV/√Hz LOW COST SPECIFIED FOR 600Ω AND 150Ω LOADS HIGH VIDEO PERFORMANCES : Differential Gain : 0.03% Differential Phase : 0.07° Gain Flatness : 6MHz, 0.1dB max. @ 10dB gain HIGH AUDIO PERFORMANCES ESD TOLERANCE : 2kV D SO16 (Plastic Micropackage) PIN CONNECTIONS (top view) DESCRIPTION The TSH95 is a quad low power high frequency op-amp, designated for high quality video processing. The device offers an excellent speed consumption ratio with 4.5mA per amplifier for 150MHz bandwidth. High slew rate and low noise make it also suitable for high quality audio applications. The TSH95 offers 2 separate complementary STANDBY pins : ❑ STANDBY 1 acting on both n° 1 & 2 operators ❑ STANDBY 2 acting on both n° 3 & 4 operators They reduce the consumption of the corresponding operatorS and put the output in a high impedance state. Output 1 1 Inverting Input 1 2 - - 15 Inverting Input 4 Non-inverting Input 1 3 + + 14 Non-inverting Input 4 VCC + 4 Non-inverting Input 2 5 + + 12 Non-inverting Input 3 Inverting Input 2 6 - - 11 Inverting Input 3 Output 2 7 Standby 1 8 16 Output 4 13 VCC - 10 Output 3 9 Standby 2 ORDER CODE Package Part Number Temperature Range D TSH95I -40°C, +125°C • D = Small Outline Package (SO) - also available in Tape & Reel (DT) November 2000 1/9 TSH95 SCHEMATIC DIAGRAM V CC+ stdby stdby non inverting input Internal Vref inverting input output Cc stdby stdby VCC- MAXIMUM RATINGS Symbol Parameter Value Unit VCC Supply Voltage 1) 14 V Vid Differential Input Voltage 2) ±5 V -0.3 to 12 V Vi Input Voltage 3) Toper Operating Free-Air Temperature range -40 to +125 °C Tstg Storage Temperature Range -65 to +150 °C Value Unit 1. All voltages values, except differential voltage are with respect to network ground terminal 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V OPERATING CONDITIONS Symbol VCC Vic 2/9 Parameter Supply Voltage Common Mode Input Voltage Range 7 to 12 - V + VCC +2 to VCC -1 V TSH95 ELECTRICAL CHARACTERISTICS VCC+ = 5V, V CC- = -5V, pin 8 connected to 0V, pin 9 connected to VCC+, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit 4 6 mV Vio Input Offset Voltage Vic = Vo = 0V Tmin. ≤ Tamb ≤ Tmax. Iio Input Offset Current Tmin. ≤ Tamb ≤ Tmax. 1 2 5 µA Iib Input Bias Current. Tmin. ≤ Tamb ≤ Tmax. 5 15 20 µA ICC Supply Current (per amplifier, no load) Tmin. ≤ Tamb ≤ Tmax. 4.5 6 8 mA CMR Common-mode Rejection Ratio Vic = -3V to +4V, Vo = 0V Tmin. ≤ Tamb ≤ Tmax. 80 70 100 SVR Supply Voltage Rejection Ratio VCC = ±5V to ±3V Tmin. ≤ Tamb ≤ Tmax 60 50 75 Avd Large Signal Voltage Gain RL = 10kΩ, Vo = ±2.5V Tmin. ≤ Tamb ≤ Tmax. 57 54 70 3 2.5 2.4 3.5 3 dB dB dB High Level Output Voltage Vid = 1V VOH Tmin. ≤ Tamb ≤ Tmax. RL = 600Ω RL = 150Ω RL = 150Ω V Low Level Output Voltage Vid = 11V VOL Tmin. ≤ Tamb ≤ Tmax. RL = 600Ω RL = 150Ω RL = 150Ω -3.5 -2.8 -3 -2.5 -2.4 V Output Short Circuit Current Vid = ±1V Io GBP fT SR Tmin. ≤ Tamb ≤ Tmax. Source Sink Source Sink Gain Bandwidth Product AVCL = 100, RL = 600Ω, CL = 15pF, f = 7.5MHz Transition Frequency Slew Rate Vin = -2 to +2V, AVCL = +1, RL = 600Ω, CL = 15pF 20 20 15 15 36 40 90 150 mA MHz 90 62 MHz V/µs 110 en Equivalent Input Voltage Noise Rs = 50Ω, f = 1kHz 4.2 nV/√Hz φm Phase Margin AVM = +1 35 Degrees Channel Seperation f = 1MHz to 10MHz 65 VO1 /VO2 Gf THD Gain Flatness f = DC to 6MHz, AVCL = 10dB Total Harmonic Distortion f = 1kHz, Vo = ±2.5V, RL = 600Ω dB 0.1 0.01 dB % ∆G Differential Gain f = 3.58MHz, AVCL = +2, RL = 150Ω 0.03 % ∆ϕ Differential Phase f = 3.58MHz, AVCL = +2, RL = 150Ω 0.07 Degree 3/9 TSH95 STANDBY MODE VCC+ = 5V, VCC- = -5V, Tamb = 25°C (unless otherwise specified) Symbol VSBY Parameter Pin 8/9 Threshold Voltage for STANDBY Mode Min. + VCC -2.2 + VCC -1.6 Max. + VCC -1.0 Unit V Total Consumption Pin 8 (Standby 1) = 0, Pin 9 (Standby 2) = 0 Pin 8 (Standby 1) = 0, Pin 9 (Standby 2) = 1 Pin 8 (Standby 1) = 0, Pin 9 (Standby 2) = 0 9.4 9.4 0.8 Isol Input/Output Isolation (f = 1MHz to 10MHz) 70 tON Time from Standby Mode to Active Mode 200 ns tOFF Time from Active Mode to Standby Mode 200 ns ICC SBY mA dB ID Standby Driving Current 2 pA IOL Output Leakage Current 20 pA IIL Input Leakage Current 20 pA LOGIC INPUT STATUS Standby 1 Standby 2 Op-Omp 1 & 2 Op-Amp 2 & 3 0 0 1 1 0 1 0 1 Enable Enable Standby Standby Standby Enable Standby Enable STANDBY MODE STANDBY POSITION VCC standby VCC APPLICATIONS SIGNAL MULTIPLEXING 4/9 Typ. To put the device in standby, just apply a logic level on the standby MOS input. As ground is a virtual level for the device, threshold voltage has been refered to VCC+ at VCC+ - 1.6V typ. In standby mode, the output goes in high impedance in 200ns. Be aware that all maximum rating must still be followed in this mode. It leads to swing limitation while using the device in signal multiplexing configuration with followers, differential input voltage must not exceed ±5V limiting input swing to 2.5Vpp. SAMPLE AND HOLD TSH95 PRINTED CIRCUIT LAYOUT As for any high frequency device, a few rules must be observed when designing the PCB to get the best performances from this high speed op amp. LARGE SIGNAL FOLLOWER RESPONSE From the most to the least important points : ❑ Each power supply lead has to be by-passed to ground with a 10nF ceramic capacitor very close to the device and 10µF capacitor. ❑ To provide low inductance and low resistance common return, use a ground plane or common point return for power and signal. ❑ All leads must be wide and as short as possible especially for op amp inputs. This is in order to decrease parasitic capacitance and inductance. STATIC OPEN LOOP VOLTAGE GAIN ❑ Use small resistor values to decrease time constant with parasitic capacitance. ❑ Choose component sizes as small as possible (SMD). ❑ On output, decrease capacitor load so as to avoid circuit stability being degraded which may cause oscillation. You can also add a serial resistor in order to minimise its influence. INPUT OFFSET VOLTAGE DRIFT VERSUS TEMPERATURE SMALL SIGNAL FOLLOWER RESPONSE 5/9 TSH95 CLOSE LOOP FREQUENCY RESPONSE AND PHASE SHIFT CLOSE LOOP FREQUENCY RESPONSE AUDIO BANDWIDTH FREQUENCY RESPONSE AND PHASE SHIFT (TSH94 vs Standard 15MHz Audio Op-Amp) GAIN FLATNESS AND PHASE SHIFT VERSUS FREQUENCY CROSS TALK ISOLATION VERSUS FREQUENCY (SO16 PACKAGE) CROSS TALK ISOLATION VERSUS FREQUENCY (SO16 PACKAGE) 6/9 TSH95 INPUT/OUTPUT ISOLATION IN STANDBY MODE (SO16 PACKAGE) STANDBY SWITCHING SIGNAL MULTIPLEXING (cf p. 5/10) DIFFERENTIAL INPUT IMPEDANCE VERSUS FREQUENCY 4.5 4.0 3.5 Zin-diff (kW ) 3.0 2.5 2.0 1.5 1.0 0.5 1k 10k 100k 1M 10M 100M Frequency (Hz) COMMON INPUT IMPEDANCE VERSUS FREQUENCY 120 Zin-com (MW ) 100 80 60 40 20 1k 10k 100k 1M 10M 100M Frequency (Hz) 7/9 TSH95 MACROMODEL Applies to: TSH95I ** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * 6 STANDBY .SUBCKT TSH95 1 3 2 4 5 6 (analog) ******************************************************** **************** switch ******************* .SUBCKT SWITCH 20 10 IN OUT COM .MODEL DIDEAL D N=0.1 IS=1E-08 DP IN 1 DIDEAL 400E-12 DN OUT 2 DIDEAL 400E-12 EP 1 OUT COM 10 2 EN 2 IN COM 10 2 RFUIT1 IN 1 1E+09 RFUIT2 OUT 2 1E+09 RCOM COM 0 1E+12 .ENDS SWITCH **************** inverter ***************** .SUBCKT INV 20 10 IN OUT .MODEL DIDEAL D N=0.1 IS=1E-08 RP1 20 15 1E+09 RN1 15 10 1E+09 RIN IN 10 1E+12 RIP IN 20 1E+12 DPINV OUT 20 DIDEAL 400E-12 DNINV 10 OUT DIDEAL 400E-12 GINV 0 OUT IN 15 -6.7E-7 CINV 0 OUT 210f .ENDS INV ***************** AOP ********************** .MODEL MDTH D IS=1E-8 KF=1.809064E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E-01 RIN 15 16 2.600000E-01 RIS 11 15 3.645298E-01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 1314DC 0 FPOL 13 5 VSTB 1E+03 CPS 11 15 2.986990E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 2.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.000000E+00 FCP 4 5 VOFP 3.500000E+00 FCN 5 4 VOFN 3.500000E+00 ISTB0 4 5 130UA FIBP 2 5 VOFP 1.000000E-02 FIBN 5 1 VOFN 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 2.530000E+02 FIN 5 19 VOFN 2.530000E+02 RG1 19 120 3.160721E+03 XCOM1 4 0 120 5 COM SWITCH RG2 19 121 3.160721E+03 XCOM2 4 0 4 121 COM SWITCH CC 19 5 2.00000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 1.504000E+03 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 1.400000E+03 VINM 5 27 5.000000E+01 *********** ZP ********** RZP1 5 80 1E+06 RZP2 4 80 1E+06 GZP 5 82 19 80 2.5E-05 RZP2H 83 4 10000 RZP1H 83 82 80000 RZP2B 84 5 10000 RZP1B 82 84 80000 LZPH 4 83 3.535e-02 LZPB 84 5 3.535e-02 ************************** EOUT26 2382 51 VOUT 23 5 0 ROUT 26 103 35 COUT 103 5 30.000000E-12 XCOM 4 0 103 3 COM SWITCH DOP 19 25 MDTH 400E-12 VOP 4 25 2.361965E+00 DON 24 19 MDTH 400E-12 VON 24 5 2.361965E+00 ********** STAND BY ******** RMI1 4 111 1E+7 RMI2 0 111 2E+7 RONOFF 6 60 1K CONOGG 60 0 10p RSTBIN 60 0 1E+12 ESTBIN 106 0 6 0 1 ESTBREF 106 107 111 0 1 DSTB1 107 108 MDTH 400E-12 VSTB 108 109 0 ISTB 109 0 1U RSTB 109 110 1 DSTB2 0 110 MDTH 400E-12 XINV 4 0 6 COM INV .ENDS ELECTRICAL CHARACTERISTICS VCC = ±5V, Tamb = 25°C (unless otherwise specificed) Symbol Conditions Vio Value Unit 0 mV Avd RL = 600Ω 3.2 V/mV ICC No load / Ampli 5.2 mA -3 to 4 V Vicm VOH RL = 600Ω +3.6 V VOL RL = 600Ω -3.6 V Isink Vo = 0V 40 mA Isource Vo = 0V 40 mA GBP RL = 600Ω, CL = 15pF 147 MHz SR RL = 600Ω, CL = 15pF 110 V/µs φm RL = 600Ω, CL = 15pF 42 Degrees 8/9 TSH95 PACKAGE MECHANICAL DATA 16 PINS - PLASTIC MICROPACKAGE (SO) Millimeters Inches Dim. Min. A a1 a2 b b1 C c1 D E e e3 F G L M S Typ. Max. Min. 1.75 0.2 1.6 0.46 0.25 0.1 0.35 0.19 Typ. 0.004 0.014 0.007 0.5 Max. 0.069 0.008 0.063 0.018 0.010 0.020 45° (typ.) 9.8 5.8 10 6.2 0.386 0.228 1.27 8.89 3.8 4.6 0.5 0.394 0.244 0.050 0.350 4.0 5.3 1.27 0.62 0.150 0.181 0.020 0.157 0.209 0.050 0.024 8° (max.) Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com 9/9