TSH70,71,72,73,74,75 Rail-to-Rail, Wide-Band, Low-Power Operational Amplifiers ■ 3V, 5V, ±5V specifications ■ 3dB bandwidth: 90MHz ■ Gain bandwidth product: 70MHz ■ Slew rate: 100V/ms Pin Connections (top view) TSH70 : SOT23-5/SO8 Output 1 VCC - 2 ■ Output current: up to 55mA ■ Input single supply voltage ■ Output rail-to-rail ■ Specified for 150Ω loads ■ Low distortion, THD: 0.1% ■ Non-Inv. In. 3 NC 1 5 VCC + 4 Inv. In. 8 NC Inv. In. 2 _ 7 VCC + Non-Inv. In. 3 + 6 Output +- 5 NC VCC - 4 TSH71 : SO8/TSSOP8 NC 1 8 STANDBY Inverting Input 2 _ 7 VCC + Non Inverting Input 3 + 6 Output VCC - 4 SOT23-5, TSSOP and SO packages 5 NC TSH72 : SO8/TSSOP8 Description Output1 1 The TSH7x series offers single, dual, triple and quad operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. 8 VCC + Inverting Input1 2 _ Non Inverting Input1 3 + VCC - 4 7 Output2 _ 6 Inverting Input2 + 5 Non Inverting Input2 TSH73 : SO14/TSSOP14 STANDBY1 1 Running with a single supply voltage from 3V to 12V, these amplifiers feature a large output voltage swing and high output current capable of driving standard 150Ω loads. A low operating voltage makes TSH7x amplifiers ideal for use in portable equipment. 14 Output3 STANDBY2 2 _ 13 Inverting Input3 STANDBY3 3 + 12 Non Inverting Input3 + _ 10 Non Inverting Input2 VCC + 4 Non Inverting Input1 5 Inverting Input1 6 11 VCC + _ Output1 7 8 Output2 TSH74 : SO14/TSSOP14 The TSH71, TSH73 and TSH75 also feature standby inputs, each of which allows the op-amp to be put into a standby mode with low power consumption and high output impedance. This function allows power saving or signal switching/multiplexing for high-speed applications and video applications. Output1 1 14 Output4 Inverting Input1 2 _ _ 13 Inverting Input4 Non Inverting Input1 3 + + 12 Non Inverting Input4 + _ + _ 10 Non Inverting Input3 VCC + 4 Non Inverting Input2 5 Inverting Input2 6 11 VCC - Output2 7 8 Output3 Output1 1 16 Output4 Inverting Input1 2 _ _ 15 Inverting Input4 Non Inverting Input1 3 + + 14 Non Inverting Input4 + _ + _ 12 Non Inverting Input3 VCC + 4 Applications Non Inverting Input2 5 Inverting Input2 6 Video buffers ■ ADC driver ■ Hi-fi applications May 2006 9 Inverting Input3 TSH75 : SO16/TSSOP16 To economize both board space and weight, the TSH7x series is proposed in SOT23-5, TSSOP and SO packages. ■ 9 Inverting Input2 Output2 7 STANDBY 8 Rev. 3 13 VCC - 11 Inverting Input3 10 Output3 9 STANDBY 1/33 www.st.com 33 Order Codes 1 TSH70,71,72,73,74,75 Order Codes Part Number Temperature Range Package Packing Marking SOT23-5 Tape & Reel K301 TSH70CD/CDT SO-8 Tube or Tape & Reel 70C TSH71CD/CDT SO-8 Tube or Tape & Reel 71C TSSOP8 (Thin Shrink Outline Package) Tape & Reel 71C SO-8 Tube or Tape & Reel 72C TSSOP8 (Thin Shrink Outline Package) Tape & Reel 72C SO-14 Tube or Tape & Reel 73C TSSOP14 (Thin Shrink Outline Package) Tape & Reel 73C SO-14 Tube or Tape & Reel 74C TSSOP14 (Thin Shrink Outline Package) Tape & Reel 74C SO-16 Tube or Tape & Reel 75C TSSOP16 (Thin Shrink Outline Package) Tape & Reel 75C TSH70CLT TSH71CPT TSH72CD/CDT TSH72CPT 0°C to 70°C TSH73CD/CDT TSH73CPT TSH74CD/CDT TSH74CPT TSH75CD/CDT TSH75CPT 2/33 TSH70,71,72,73,74,75 2 Typical Application: Video Driver Typical Application: Video Driver A typical application for the TSH7x family is that of video driver for driving STi7xxx DAC outputs on 75-ohm lines. Figure 1 show the benefits of the TSH7x family as single supply drivers. Figure 1. Benefits of TSH7x family: +3V or +5V single supply solution +5V Video DAC’s outputs: Bottom of synchronization tip around 50mV VOH=4.2Vmin. (Tested) Vcc=+5V Vcc=+3V 2Vp-p Gain=2 GND VOH=2.45Vmin. (Tested) 2.1V 2.1V + 1Vp-p +3V 2Vp-p _ 50mV VOL=40mVmax. (Tested) GND 100mV GND 1kΩ VOL=30mVmax. (Tested) GND 100mV 1kΩ -5V GND Video DAC Y,G +5V Reconstruction Filtering LPF 75Ω + _ 75Ω Cable 1Vpp TV 75Ω 2Vpp Video DAC Pb,B Reconstruction Filtering LPF 75Ω + _ 75Ω Cable 0.7Vpp 75Ω 1.4Vpp Video DAC Pr,R Reconstruction Filtering LPF 75Ω + _ 75Ω Cable 0.7Vpp 75Ω 1.4Vpp TSH73 GND 3/33 Absolute Maximum Ratings & Operating Conditions 3 TSH70,71,72,73,74,75 Absolute Maximum Ratings & Operating Conditions Table 1. Absolute maximum ratings (AMR) Symbol VCC Vid Vi Parameter Unit 14 V ±2 V ±6 V 0 to +70 °C -65 to +150 °C 150 °C Supply Voltage (1) Differential Input Voltage Input Voltage (2) (3) Toper Operating Free Air Temperature Range Tstg Storage Temperature Tj Value Maximum Junction Temperature (4) Rthjc Thermal resistance junction to case SOT23-5 SO-8 SO-14 SO-16 TSSOPO8 TSSOP14 TSSOP16 Rthja Thermal resistance junction to ambient area SOT23-5 SO-8 SO-14 SO-16 TSSOPO8 TSSOP14 TSSOP16 ESD Human Body Model 80 28 22 35 37 32 35 °C/W 250 157 125 110 130 110 110 °C/W 2 kV 1. All voltages values, except differential voltage are with respect to network ground terminal 2. Differential voltages are non-inverting input terminal with respect to the inverting terminal 3. The magnitude of input and output must never exceed VCC +0.3V 4. Short-circuits can cause excessive heating Table 2. Operating conditions Symbol VCC VIC Standby 4/33 Parameter Supply Voltage Common Mode Input Voltage Range VCC- Value Unit 3 to 12 V to -) (VCC+ -1.1) V +) V (VCC to (VCC TSH70,71,72,73,74,75 Electrical Characteristics 4 Electrical Characteristics Table 3. VCC+ = 3V, VCC- = GND, VIC = 1.5V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit 10 12 mV |V io| Input Offset Voltage Tamb = 25°C Tmin. < Tamb < Tmax. 1.2 ∆Vio Input Offset Voltage Drift vs. Temp. Tmin. < Tamb < Tmax. 4 Iio Input Offset Current Tamb = 25°C Tmin. < Tamb < Tmax. 0.1 3.5 5 µA Iib Input Bias Current Tamb = 25°C Tmin. < Tamb < Tmax. 6 15 20 µA Cin Input Capacitance Supply Current per Operator Tamb = 25°C Tmin. < Tamb < Tmax. 7.2 CMRR Common Mode Rejection Ratio (δVIC/δVio) +0.1<VIC<+1.9V & V out=1.5V Tamb = 25°C Tmin. < T amb < T max. 65 64 90 SVRR Supply Voltage Rejection Ratio (δVCC/δVio) Tamb = 25°C Tmin. < Tamb < Tmax. 66 65 74 PSRR Power Supply Rejection Ratio (δVCC/δVout) Positive & Negative Rail Large Signal Voltage Gain RL=150Ω to 1.5V, Vout=1V to 2V Tamb = 25°C Tmin. < T amb < T max. Output Short Circuit Current Source Tamb =25°C, Vid =+1, Vout to 1.5V, Vid =-1, Vout to 1.5V |Source |Sink Tmin. < Tamb < Tmax. Vid =+1, Vout to 1.5V Vid =-1, Vout to 1.5V |Source |Sink ICC Avd Io 0.2 Tamb =25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND VOH High Level Output Voltage µV/°C RL = RL = RL = RL = 150Ω to 1.5V 600Ω to 1.5V 2kΩ to 1.5V 10kΩ to 1.5V Tmin. < Tamb < Tmax. RL = 150Ω to GND RL = 150Ω to 1.5V pF 9.8 11 mA dB dB 75 dB 70 65 81 dB 30 20 43 33 mA 22 19 2.45 2.60 2.87 2.91 2.93 2.65 2.77 2.90 2.92 2.93 V 2.4 2.6 5/33 Electrical Characteristics Table 3. TSH70,71,72,73,74,75 VCC+ = 3V, VCC- = GND, VIC = 1.5V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Conditions Min. Tamb =25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND VOL Low Level Output Voltage RL = RL = RL = RL = 150Ω to 1.5V 600Ω to 1.5V 2kΩ to 1.5V 10kΩ to 1.5V Typ. Max. 10 11 11 11 30 140 90 68 57 300 Tmin. < Tamb < Tmax. RL = 150Ω to GND RL = 150Ω to 1.5V Unit mV 40 350 Gain Bandwidth Product F=10MHz AVCL=+11 AVCL=-10 65 55 MHz Bw Bandwidth @-3dB AVCL =+1, RL=150Ω to 1.5V 87 MHz SR Slew Rate AVCL =+2, RL=150Ω // CL to 1.5V CL = 5pF CL = 30pF 80 85 V/µs GBP 45 φm Phase Margin RL=150Ω // 30pF to 1.5V 40 ° en Equivalent Input Noise Voltage F=100kHz 11 nV/√Hz THD Total Harmonic Distortion AVCL =+2, F=4MHz, RL=150Ω // 30pF to 1.5V Vout=1Vpp Vout=2Vpp -61 -54 IM2 AVCL =+2, Vout=2Vpp RL=150Ω to 1.5V Second order intermodulation product Fin1=180kHz, Fin2=280KHz spurious measurements @100kHz -76 dBc IM3 Third order inter modulation product AVCL =+2, Vout=2Vpp RL=150Ω to 1.5V Fin1=180kHz, Fin2=280KHz spurious measurements @400kHz -68 dBc ∆G Differential gain AVCL =+2, RL=150Ω to 1.5V F=4.5MHz, V out=2Vpp 0.5 % Df Differential phase AVCL =+2, RL=150Ω to 1.5V F=4.5MHz, V out=2Vpp 0.5 ° Gf Gain Flatness F=DC to 6MHz, A VCL=+2 0.2 dB F=1MHz to 10MHz 65 dB Vo1/Vo2 Channel Separation 6/33 dB TSH70,71,72,73,74,75 Table 4. Symbol VCC+ = 5V, VCC- = GND, VIC = 2.5V, Tamb = 25°C (unless otherwise specified) Parameter |Vio| Input Offset Voltage ∆Vio Input Offset Voltage Drift vs. Temp. Iio Input Offset Current Iib Input Bias Current Cin Input Capacitance ICC Electrical Characteristics Supply Current per Operator Test Conditions Tamb = 25°C Tmin. < Tamb < Tmax. Tamb = 25°C Tmin. < Tamb < Tmax. 0.1 3.5 5 µA 6 15 20 µA Tamb = 25°C Tmin. < Tamb < Tmax. +0.1<V IC<3.9V & Vout=2.5V Tamb = 25°C Tmin. < Tamb < Tmax. 8.2 72 71 97 68 67 75 Supply Voltage Rejection Ratio (δVCC/δVio) Tamb = 25°C Tmin. < Tamb < Tmax. PSRR Power Supply Rejection Ratio (δVCC/δVout) Positive & Negative Rail Large Signal Voltage Gain RL=150Ω to 1.5V, Vout=1V to 4V Tamb = 25°C Tmin. < Tamb < Tmax. Output Short Circuit Current Source Tamb=25°C, Vid=+1, V out to 1.5V, Vid=-1, Vout to 1.5V |Source |Sink Tmin. < Tamb < Tmax. Vid=+1, V out to 1.5V Vid=-1, Vout to 1.5V |Source |Sink Tamb=25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND High Level Output Voltage 10 12 RL = 150Ω to 2.5V RL = 600Ω to 2.5V RL = 2kΩ to 2.5V RL = 10kΩ to 2.5V Tmin. < Tamb < Tmax. RL = 150Ω to GND RL = 150Ω to 2.5V 75 75 70 84 35 33 55 55 mV µV/°C 3 0.3 SVRR VOH Unit 1.1 Common Mode Rejection Ratio (δVIC/δVio) Io Typ. Max. Tamb = 25°C Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. CMRR Avd Min. pF 10.5 11.5 mA dB dB dB dB mA 34 32 4.2 4.36 4.85 4.90 4.93 4.5 4.66 4.90 4.92 4.93 V 4.1 4.4 7/33 Electrical Characteristics Table 4. VCC+ = 5V, VCC- = GND, VIC = 2.5V, Tamb = 25°C (unless otherwise specified) Symbol VOL TSH70,71,72,73,74,75 Parameter Low Level Output Voltage Test Conditions Min. Typ. Max. Tamb=25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND 20 23 23 23 40 RL = 150Ω to 2.5V RL = 600Ω to 2.5V RL = 2kΩ to 2.5V RL = 10kΩ to 2.5V 220 105 76 61 400 Tmin. < Tamb < Tmax. RL = 150Ω to GND RL = 150Ω to 2.5V Unit mV 60 450 Gain Bandwidth Product F=10MHz AVCL=+11 AVCL=-10 65 55 MHz Bandwidth @-3dB AVCL=+1, R L=150Ω to 2.5V 87 MHz SR Slew Rate AVCL=+2, RL=150Ω // CL to 2.5V CL = 5pF CL = 30pF 104 105 φm Phase Margin RL=150Ω // 30pF to 2.5V 40 ° en Equivalent Input Noise Voltage F=100kHz 11 nV/√Hz THD Total Harmonic Distortion AVCL=+2, F=4MHz RL=150Ω // 30pF to 2.5V Vout=1Vpp Vout=2Vpp -61 -54 IM2 AVCL=+2, V out=2Vpp RL=150Ω to 2.5V Second order intermodulation product Fin1=180kHz, Fin2=280kHz spurious measurements @100kHz -76 dBc IM3 Third order inter modulation product AVCL=+2, V out=2Vpp RL=150Ω to 2.5V Fin1=180kHz, Fin2=280KHz spurious measurements @400kHz -68 dBc ∆G Differential gain AVCL=+2, R L=150Ω to 2.5V F=4.5MHz, V out=2Vpp 0.5 % Df Differential phase AVCL=+2, R L=150Ω to 2.5V F=4.5MHz, V out=2Vpp 0.5 ° Gf Gain Flatness F=DC to 6MHz, A VCL=+2 0.2 dB F=1MHz to 10MHz 65 dB GBP Bw Vo1/Vo2 Channel Separation 8/33 60 V/µs dB TSH70,71,72,73,74,75 Table 5. Symbol Electrical Characteristics VCC+ = 5V, VCC- = -5V, VIC = GND, Tamb = 25°C (unless otherwise specified) Parameter Test Conditions Min. Typ. Max. Unit |V io| Input Offset Voltage Tamb = 25°C Tmin. < Tamb < Tmax. 0.8 ∆Vio Input Offset Voltage Drift vs. Temp. Tmin. < Tamb < Tmax. 2 Iio Input Offset Current Tamb = 25°C Tmin. < Tamb < Tmax. 0.1 3.5 5 µA Iib Input Bias Current Tamb = 25°C Tmin. < Tamb < Tmax. 6 15 20 µA Cin Input Capacitance Supply Current per Operator Tamb = 25°C Tmin. < Tamb < Tmax. 9.8 CMRR Common Mode Rejection Ratio (δVIC/δVio) -4.9<VIC<3.9V & Vout=GND Tamb = 25°C Tmin. < Tamb < T max. 81 80 106 SVRR Supply Voltage Rejection Ratio (δVCC/δVio) Tamb = 25°C Tmin. < Tamb < Tmax. 71 70 77 PSRR Power Supply Rejection Ratio (δVCC/δVout) Positive & Negative Rail Large Signal Voltage Gain RL=150Ω to GND Vout=-4 to +4 Tamb = 25°C Tmin. < Tamb < T max. Output Short Circuit Current Source Tamb =25°C Vid=+1, Vout to 1.5V Vid=-1, Vout to 1.5V |Source |Sink Tmin. < Tamb < Tmax. Vid=+1, Vout to 1.5V Vid=-1, Vout to 1.5V |Source |Sink ICC Avd Io VOH VOL High Level Output Voltage Low Level Output Voltage 10 12 µV/°C 0.7 Tamb =25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND Tmin. < Tamb < Tmax. RL = 150Ω to GND Tamb =25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND Tmin. < Tamb < Tmax. RL = 150Ω to GND pF 12.3 13.4 86 35 30 55 55 mA dB dB 75 75 70 mV dB dB mA 34 29 4.2 4.36 4.85 4.9 4.93 V 4.1 -4.63 -4.86 -4.9 -4.93 -4.4 V -4.3 9/33 Electrical Characteristics Table 5. VCC+ = 5V, VCC- = -5V, VIC = GND, Tamb = 25°C (unless otherwise specified) Symbol GBP Bw SR TSH70,71,72,73,74,75 Parameter Test Conditions Gain Bandwidth Product F=10MHz AVCL=+11 AVCL=-10 Bandwidth @-3dB AVCL=+1 RL=150Ω // 30pF to GND Slew Rate AVCL=+2, RL=150Ω // C L to GND CL = 5pF CL = 30pF Min. 68 Typ. Max. Unit 65 55 MHz 100 MHz 117 118 V/µs φm Phase Margin RL=150Ω to GND 40 ° en Equivalent Input Noise Voltage F=100kHz 11 nV/√Hz THD Total Harmonic Distortion AVCL=+2, F=4MHz RL=150Ω // 30pF to GND Vout=1Vpp Vout=2Vpp -61 -54 IM2 AVCL=+2, Vout=2Vpp RL=150Ω to GND Second order intermodulation product Fin1=180kHz, Fin2=280KHz spurious measurements @100kHz -76 dBc IM3 Third order intermodulation product AVCL=+2, Vout=2Vpp RL=150Ω to GND Fin1=180kHz, Fin2=280KHz spurious measurements @400kHz -68 dBc ∆G Differential gain AVCL=+2, RL=150Ω to GND F=4.5MHz, Vout=2Vpp 0.5 % Df Differential phase AVCL=+2, RL=150Ω to GND F=4.5MHz, Vout=2Vpp 0.5 ° Gf Gain Flatness F=DC to 6MHz, AVCL=+2 0.2 dB F=1MHz to 10MHz 65 dB Vo1/Vo2 Channel Separation 10/33 dB TSH70,71,72,73,74,75 Electrical Characteristics 4.1 Standby mode Table 6. VCC+, VCC-, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit Vlow Standby Low Level VCC- (V CC+0.8) V Vhigh Standby High Level (V CC- +2) (V CC+) V 55 µA VCC- Current Consumption per Operator ICC STBY when STANDBY is Active Zout Output Impedance (Rout//Cout) Ton Time from Standby Mode to Active Mode Toff Time from Active Mode to Standby Mode pin 8 (TSH71) to pin 1,2 or 3 (TSH73) to VCCpin 8 (TSH75) to VCC+ pin 9 (TSH75) to VCC- 20 Rout Cout 10 17 MΩ pF 2 µs 10 µs Down to ICC STBY = 10µA TSH71 STANDBY CONTROL pin 8 (STBY) OPERATOR STATUS Vlow Standby Vhigh Active TSH73 STANDBY CONTROL OPERATOR STATUS pin 1 (STBY OP1) pin 2 (STBY OP2) pin 3 (STBY OP3) OP1 OP1 OP3 Vlow x x Standby x x Vhigh x x Active x x x Vlow x x Standby x x Vhigh x Active x x x Vlow x x Standby x x Vhigh x x Active TSH75 STANDBY CONTROL OPERATOR STATUS pin 8 (STBY OP2) pin 9 (STBY OP3) OP1 OP2 OP3 OP4 Vhigh Vlow Active Standby Standby Active Vhigh Vhigh Active Standby Active Active Vlow Vlow Active Active Standby Active Vlow Vhigh Active Active Active Active 11/33 Electrical Characteristics TSH70,71,72,73,74,75 4.2 Characteristic curves for VCC=3V Figure 2. Closed loop gain and phase vs. frequency (Gain = +2, VCC = ±1.5V, RL = 150Ω, Tamb = 25°C) 10 Figure 3. 200 Overshoot function of output capacitance (Gain = +2, VCC = ±1.5V, Tamb = 25°C) 10 150Ω//33pF 5 150Ω//22pF 100 Gain 150Ω//10pF -5 0 Phase -10 Gain (dB) 5 Phase (°) Gain (dB) 0 150Ω 0 -100 -15 -20 1E+4 1E+5 1E+6 1E+7 1E+8 -5 1E+6 -200 1E+9 1E+7 Frequency (Hz) Figure 4. Closed loop gain and phase vs. frequency (Gain = -10, VCC = ±1.5V, RL = 150Ω, Tamb = 25°C) Figure 5. 200 30 1E+9 Phase Closed loop gain and phase vs. frequency (Gain = +11, VCC = ±1.5V, RL = 150Ω, Tamb = 25°C) 0 30 Phase 150 20 20 -50 Gain Phase (°) 50 10 Gain (dB) Gain Phase (°) 100 Gain (dB) 1E+8 Frequency (Hz) 10 -100 0 0 0 -50 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -10 1E+4 -100 1E+9 1E+5 Figure 7. 1 0.5 0.5 Vout (V) Vout (V) Large signal measurement positive slew rate (Gain = 2, VCC = ±1.5V, ZL = 150Ω//5.6pF) 1 0 1E+8 -150 1E+9 Large signal measurement negative slew rate (Gain = 2, VCC = ±1.5V, ZL = 150Ω//5.6pF) 0 -0.5 -0.5 -1 -1 0 10 20 30 Time (ns) 12/33 1E+7 Frequency (Hz) Frequency (Hz) Figure 6. 1E+6 40 50 60 0 10 20 30 Time (ns) 40 50 TSH70,71,72,73,74,75 Small signal measurement - rise time (Gain = 2, VCC = ±1.5V, ZL = 150Ω) Figure 9. 0.06 0.06 0.04 0.04 0.02 0.02 0 Vin, Vout (V) Vin, Vout (V) Figure 8. Electrical Characteristics Vout Vin Small signal measurement - fall time (Gain = 2, V CC = ±1.5V, ZL = 150Ω) Vout Vin 0 -0.02 -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 60 0 10 20 30 40 50 60 Time (ns) Time (ns) Figure 10. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 20log (V0/V1)) Figure 11. Channel separation (Xtalk) vs. frequency (Gain = +11, VCC = 1.5V, ZL = 150Ω//27pF) -20 VIN 49.9Ω -30 ++ -- -40 V1 4/1output -50 150Ω Xtalk (dB) 100Ω 1kΩ 3/1output -60 -70 -80 + 49.9Ω - 2/1output -90 VO 100Ω 1kΩ -100 150Ω -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 12. Equivalent noise voltage (Gain = 100, VCC = ±1.5V, No load) Figure 13. Maximum output swing (Gain = 11, V CC = ±5V, RL = 150Ω) 30 5 4 + _ 3 25 Vout 10k 100 Vin, Vout (V) en (nV/√Hz) 2 20 15 1 Vin 0 -1 -2 -3 10 -4 5 0.1 1 10 Frequency (kHz) 100 1000 -5 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Time (ms) 13/33 Electrical Characteristics TSH70,71,72,73,74,75 Figure 15. Group delay gain = 2 (VCC = ±1.5V, ZL = 150Ω//27pF, Tamb = 25°C) Figure 14. Standby mode - Ton, Toff (VCC = ±1.5V, open loop) 2 Vin Vin, Vout (V) 1 Gain 0 Vout -1 Standby -2 Ton 0 2E-6 4E-6 6E-6 Group Delay Toff 8E-6 1E-5 Time (s) Figure 16. Third order intermodulation(1) (Gain = 2, VCC = ±1.5V, ZL = 150Ω//27pF, Tamb = 25°C) 0 -10 -20 IM3 (dBc) -30 -40 80kHz -50 740kHz -60 -70 640kHz -80 -90 380kHz -100 0 1 2 3 Vout peak(V) 1. Note on intermodulation products: The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 14/33 4 5.87ns TSH70,71,72,73,74,75 4.3 Electrical Characteristics Characteristic curves for VCC=5V Figure 17. Closed loop gain and phase vs. frequency (Gain = +2, VCC = ±2.5V, RL = 150Ω, Tamb = 25°C) 10 Figure 18. Overshoot function of output capacitance (Gain = +2, VCC = ±2.5V, Tamb = 25°C) 200 10 150Ω//33pF 5 Gain 100 150Ω//22pF 0 -5 Phase 150Ω//10pF Gain (dB) 0 Phase (°) Gain (dB) 5 150Ω 0 -100 -10 -200 -15 1E+4 1E+5 1E+6 1E+7 1E+8 -5 1E+6 1E+9 1E+7 Frequency (Hz) 1E+8 1E+9 Frequency (Hz) Figure 19. Closed loop gain and phase vs. frequency (Gain = -10, V CC = ±2.5V, RL = 150Ω, Tamb = 25°C) 30 Figure 20. Closed loop gain and phase vs. frequency (Gain = +11, VCC = ±2.5V, RL = 150Ω, Tamb = 25°C) 200 Phase 0 30 Phase 150 20 20 Gain Phase (°) 50 Gain (dB) 10 -50 Phase (°) Gain (dB) 100 Gain 10 -100 0 0 0 -50 -10 1E+4 1E+5 1E+6 1E+7 -10 1E+4 -100 1E+9 1E+8 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) 3 3 2 2 1 1 Vout (V) Vout (V) Figure 21. Large signal measurement - positive Figure 22. Large signal measurement slew rate (Gain = 2, VCC = ±2.5V, negative slew rate (Gain = 2, ZL= 150Ω//5.6pF) VCC = ±2.5V, ZL = 150Ω//5.6pF) 0 0 -1 -1 -2 -2 -3 -3 0 10 20 30 40 Time (ns) 50 60 70 80 0 10 20 30 40 50 60 70 Time (ns) 15/33 Electrical Characteristics TSH70,71,72,73,74,75 Figure 24. Small signal measurement - fall time (Gain = 2, V CC = ±2.5V, ZL= 150Ω) 0.06 0.06 0.04 0.04 0.02 0.02 0 Vout Vin Vout (V) Vin, Vout (V) Figure 23. Small signal measurement - rise time (Gain = 2, VCC = ±2.5V, ZL = 150Ω) Vout Vin Vin 0 -0.02 -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 30 40 50 60 Time (ns) Time (ns) Figure 25. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 20log (V0/V1)) Figure 26. Channel separation (Xtalk) vs. frequency (Gain = +11, VCC = ±2.5V, ZL = 150Ω//27pF) -20 VIN 49.9Ω -30 ++ -- -40 V1 4/1output -50 Xtalk (dB) 100Ω 1kΩ 150Ω 3/1output -60 -70 -80 + 49.9Ω 100Ω 1kΩ 2/1output -90 VO -100 150Ω -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 27. Equivalent noise voltage (Gain = 100, VCC = ±2.5V, no load) Figure 28. Maximum output swing (Gain = 11, V CC = ±2.5V, RL = 150Ω) 30 3 + _ 25 2 Vout 10k Vin, Vout (V) en (nV/√Hz) 100 20 15 10 Vin 0 -1 -2 5 0.1 1 10 Frequency (kHz) 16/33 1 100 1000 -3 0.0E+0 5.0E-2 1.0E-1 Time (ms) 1.5E-1 2.0E-1 TSH70,71,72,73,74,75 Electrical Characteristics Figure 30. Group delay (Gain = 2, VCC = ±2.5V, ZL = 150Ω//27pF, Tamb = 25°C) Figure 29. Standby mode - Ton, Toff (VCC = ±2.5V, open loop) Vin 3 Vin, Vout (V) 2 1 Gain 0 Vout -1 Group Delay -2 -3 0 5.32ns Standby Ton 2E-6 4E-6 Toff 6E-6 8E-6 1E-5 Time (s) Figure 31. Third order intermodulation(1) (Gain = 2, VCC = ±2.5V, ZL = 150Ω//27pF, Tamb = 25°C) 0 -10 -20 IM3 (dBc) -30 -40 740kHz -50 80kHz -60 -70 -80 -90 380kHz 640kHz -100 0 1 2 3 4 Vout peak(V) 1. Note on intermodulation products: The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 17/33 Electrical Characteristics 4.4 TSH70,71,72,73,74,75 Characteristic curves for VCC=10V Figure 32. Closed loop gain and phase vs. frequency (Gain = +2, VCC = ±5V, RL = 150Ω, Tamb = 25°C) 10 Figure 33. Overshoot function of output capacitance (Gain = +2, VCC = ±5V, Tamb = 25°C) 200 10 150Ω//33pF 5 Gain 100 150Ω//22pF 0 0 -5 150Ω//10pF Gain (dB) Phase (°) Gain (dB) 5 150Ω 0 Phase -100 -10 -15 1E+4 1E+5 1E+6 1E+7 1E+8 -5 1E+6 -200 1E+9 1E+7 1E+8 1E+9 Frequency (Hz) Frequency (Hz) Figure 34. Closed loop gain and phase vs. frequency (Gain = -10, V CC = ±5V, RL = 150Ω, Tamb = 25°C) Figure 35. Closed Loop Gain and Phase vs. Frequency (Gain = +11, VCC = ±5V, RL = 150Ω, Tamb = 25°C) 200 30 30 0 Phase Phase 150 20 50 -50 Gain Phase (°) 10 Gain (dB) 100 Gain Phase (°) Gain (dB) 20 10 -100 0 0 0 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -10 1E+4 -50 1E+9 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) 5 5 4 4 3 3 2 2 1 Vout (V) Vout (V) Figure 36. Large signal measurement - positive Figure 37. Large Signal Measurement slew rate (Gain = 2,VCC = ±5V, Negative Slew Rate (Gain = 2 ZL = 150Ω//5.6pF) VCC = ±5V, ZL = 150Ω//5.6pF) 0 -1 1 0 -1 -2 -2 -3 -3 -4 -4 -5 -5 0 20 40 60 Time (ns) 18/33 80 100 0 20 40 60 Time (ns) 80 100 TSH70,71,72,73,74,75 Electrical Characteristics 0.06 0.06 0.04 0.04 0.02 0.02 Vin, Vout (V) Vin, Vout (V) Figure 38. Small signal measurement - rise Figure 39. Small signal measurement - fall time time (Gain = 2, VCC = ±5V, ZL = 150Ω) (Gain = 2, V CC = ±5V, ZL = 150Ω) 0 Vout Vin -0.02 Vout 0 Vin -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 30 40 50 60 Time (ns) Time (ns) Figure 40. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 20log(V0/V1)) Figure 41. Channel separation (Xtalk) vs. frequency (Gain = +11, VCC = ±5V, ZL = 150Ω//27pF) -20 VIN 49.9Ω -30 ++ -- -40 V1 4/1output -50 Xtalk (dB) 100Ω 1kΩ 150Ω 3/1output -60 -70 -80 + 49.9Ω - 2/1output -90 VO 100Ω 1kΩ -100 150Ω -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 42. Equivalent noise voltage (Gain =100, VCC = ±5V, no load) Figure 43. Maximum output swing (Gain = 11, V CC = ±5V, RL = 150Ω) 30 5 4 25 3 + _ 2 10k Vin, Vout (V) 100 en (nV/√Hz) Vout 20 15 1 Vin 0 -1 -2 -3 10 -4 5 0.1 1 10 Frequency (kHz) 100 1000 -5 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Time (ms) 19/33 Electrical Characteristics TSH70,71,72,73,74,75 Figure 45. Group Delay (Gain = 2, VCC= ±5V ZL = 150Ω//27pF, Tamb = 25°C) Figure 44. Standby mode - Ton, Toff (VCC = ±5V, open loop) Vin Vin, Vout (V) 5 Vout Gain 0 Group Delay -5 Standby Ton 0 2E-6 Toff 4E-6 6E-6 8E-6 Time (s) Figure 46. Third order intermodulation(1) (Gain = 2, VCC = ±5V, ZL = 150Ω//27pF, Tamb = 25°C 0 -10 -20 IM3 (dBc) -30 -40 80kHz -50 740kHz -60 -70 -80 -90 380kHz 640kHz -100 0 1 2 3 Vout peak(V) 1. Note on intermodulation products: The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. . 20/33 4 5.1ns TSH70,71,72,73,74,75 5 Testing Conditions 5.1 Layout precautions Testing Conditions To use the TSH7X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: – First of all, the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return. – Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. ● ● ● ● ● 5.2 Proper termination of all inputs and outputs must be in accordance with output termination resistors; in this way, the amplifier load will be resistive only, and the stability of the amplifier will be improved. All leads must be wide and as short as possible (especially for op-amp inputs and outputs) in order to decrease parasitic capacitance and inductance. For lower gain applications, care should be taken to avoid large feedback resistance (>1kΩ) in order to reduce the time constant of parasitic capacitances. Choose component sizes as small as possible (SMD). Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance as close as possible to the output pin to minimize capacitance. Maximum input level Figure 47. CCIR330 video line The input level must not exceed the following values: ● ● negative peak: must be greater than -VCC+400mV. positive peak value: must be lower than +VCC-400mV. 21/33 Testing Conditions TSH70,71,72,73,74,75 The electrical characteristics show the influence of the load on this parameter. 5.3 Video capabilities To characterize the differential phase and differential gain, a CCIR330 video line is used. The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. The first level contains no luma. The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, color saturation is not correctly reproduced. The input generator is the Rohde & Schwarz CCVS. The output measurement was done by the Rohde and Schwarz VSA. Figure 48. Measurement on Rohde and Schwarz VSA Table 7. 22/33 Video results Parameter Value Value VCC = ±2.5V VCC = ±5V Unit Lum NL 0.1 0.3 % Lum NL Step 1 100 100 % Lum NL Step 2 100 99.9 % Lum NL Step 3 99.9 99.8 % Lum NL Step 4 99.9 99.9 % Lum NL Step 5 99.9 99.7 % Diff Gain pos 0 0 % Diff Gain neg -0.7 -0.6 % Diff Gain pp 0.7 0.6 % TSH70,71,72,73,74,75 Table 7. 5.4 Testing Conditions Video results Parameter Value Value VCC = ±2.5V VCC = ±5V Unit Diff Gain Step1 -0.5 -0.3 % Diff Gain Step2 -0.7 -0.6 % Diff Gain Step3 -0.3 -0.5 % Diff Gain Step4 -0.1 -0.3 % Diff Gain Step5 -0.4 -0.5 % Diff Phase pos 0 0.1 deg Diff Phase neg -0.2 -0.4 deg Diff Phase pp 0.2 0.5 deg Diff Phase Step1 -0.2 -0.4 deg Diff Phase Step2 -0.1 -0.4 deg Diff Phase Step3 -0.1 -0.3 deg Diff Phase Step4 0 0.1 deg Diff Phase Step5 -0.2 -0.1 deg Precautions when operating on an asymmetrical supply The TSH7X can be used with either a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15uA, you must carefully choose the resistance R1 so as not to introduce an offset mismatch at the amplifier inputs. Figure 49. Schematic of asymmetrical (single) supply IN Cin Cout OUT + Vcc+ R1 R2 R3 C1 - R5 C3 RL Cf C2 R4 R1 = 10KΩ is a typical and convenient value. C1, C2, C3 are bypass capacitors that filter perturbations on VCC, as well as for the input and output signals. We choose C1 = 100nF and C2 = C3 = 100uF. R2, R3 are such that the current through them must be greater than 100 times the bias current. Therefore, we set R2 = R3 = 4.7KΩ. 23/33 Testing Conditions TSH70,71,72,73,74,75 Cin, as Cout, is chosen to filter the DC signal by the low-pass filters (R1,Cin and Rout, Cout). By taking R1 = 10KΩ, RL = 150Ω, and Cin = 2uF, Cout=220uF we provide a cut-off frequency below 10Hz. Figure 50. Use of the TSH7x in gain = -1 configuration Cf 1k IN Cin 1k Vcc+ R1 R2 R3 C1 Cout OUT + RL C3 C2 Some precautions must be taken, especially for low-power supply applications. A feedback capacitance, Cf, should be added for better stability. Table 8 summarizes the impact of the capacitance Cf on the phase margin of the circuit. Table 8. Impact capacitance Cf Parameter Cf (pF) Phase Margin VCC = ±1.5V VCC = ±2.5V VCC = ±5V Unit 28 43 56 deg 40 39.3 38.3 MHz 30 43 56 deg 40 39.3 38.3 MHz 37 52 67 deg 37 34 32 MHz 48 65 78 deg 33.7 30.7 27.6 MHz 0 f-3dB Phase Margin 5.6 f-3dB Phase Margin 22 f-3dB Phase Margin 33 f-3dB 24/33 TSH70,71,72,73,74,75 6 Package Mechanical Data Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 6.1 SO-8 Package SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 e 1.27 0.157 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 25/33 Package Mechanical Data 6.2 TSH70,71,72,73,74,75 TSSOP8 Package TSSOP8 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. 1.2 A1 0.05 A2 0.80 b 0.19 1.00 MAX. 0.047 0.15 0.002 1.05 0.031 0.30 0.007 0.006 0.039 0.041 0.012 c 0.09 0.20 0.004 D 2.90 3.00 3.10 0.114 0.118 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 8˚ 0˚ 0.75 0.018 e 0.65 K 0˚ L 0.45 L1 0.60 1 0.008 0.122 0.0256 8˚ 0.024 0.030 0.039 0079397/D 26/33 TSH70,71,72,73,74,75 6.3 Package Mechanical Data SO-14 Package SO-14 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.068 0.2 a2 0.003 0.007 0.46 0.013 0.018 0.25 0.007 1.65 b 0.35 b1 0.19 C MAX. 0.064 0.5 0.010 0.019 c1 45˚ (typ.) D 8.55 8.75 0.336 E 5.8 6.2 0.228 e 1.27 e3 0.344 0.244 0.050 7.62 0.300 F 3.8 4.0 0.149 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M S 0.68 0.157 0.026 8 ˚ (max.) PO13G 27/33 Package Mechanical Data 6.4 TSH70,71,72,73,74,75 TSSOP14 Package TSSOP14 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. MAX. 1.2 A1 0.05 A2 0.8 b 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 1 e 0.65 BSC K 0˚ L 0.45 A 0.60 0.0256 BSC 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 A2 A1 b e K c L E D E1 PIN 1 IDENTIFICATION 1 0080337D 28/33 TSH70,71,72,73,74,75 6.5 Package Mechanical Data SO-16 Package SO-16 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.068 0.2 a2 0.004 0.008 0.46 0.013 0.018 0.25 0.007 1.65 b 0.35 b1 0.19 C MAX. 0.064 0.5 0.010 0.019 c1 45˚ (typ.) D 9.8 10 0.385 E 5.8 6.2 0.228 e 1.27 e3 0.393 0.244 0.050 8.89 0.350 F 3.8 4.0 0.149 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M S 0.62 8 0.157 0.024 ˚ (max.) PO13H 29/33 Package Mechanical Data 6.6 TSH70,71,72,73,74,75 TSSOP16 Package TSSOP16 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. MAX. 1.2 A1 0.05 A2 0.8 b 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0079 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 1 e 0.65 BSC K 0˚ L 0.45 A 0.60 0.0256 BSC 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 A2 A1 b e K c L E D E1 PIN 1 IDENTIFICATION 1 0080338D 30/33 TSH70,71,72,73,74,75 6.7 Package Mechanical Data SOT23-5 Package SOT23-5L MECHANICAL DATA mm. mils DIM. MIN. TYP MAX. MIN. TYP. MAX. A 0.90 1.45 35.4 57.1 A1 0.00 0.15 0.0 5.9 A2 0.90 1.30 35.4 51.2 b 0.35 0.50 13.7 19.7 C 0.09 0.20 3.5 7.8 D 2.80 3.00 110.2 118.1 E 2.60 3.00 102.3 118.1 E1 1.50 1.75 59.0 68.8 e 0 .95 37.4 e1 1.9 74.8 L 0.35 0.55 13.7 21.6 31/33 Revision History 7 TSH70,71,72,73,74,75 Revision History Table 9. Document revision history Date Revision Nov. 2000 1 First Release. Aug. 2002 2 Limit min. of Isink from 24mA to 20mA (only on 3V power supply). Reason: yield improvement. 3 Improvement of VOL max. at 3V and 5V power supply on 150ohm load connected to GND (pages 6 and 8). Reason: TSH7x can drive video signals from DACs to lines in single supply (3V or 5V) without any DC level change of the video signals. Grammatical and typographical changes throughout. Package mechanical data updated. May 2006 32/33 Changes TSH70,71,72,73,74,75 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 33/33