STMICROELECTRONICS TSH70CD

TSH70,71,72,73,74,75
Rail-to-Rail, Wide-Band, Low-Power Operational Amplifiers
■
3V, 5V, ±5V specifications
■
3dB bandwidth: 90MHz
■
Gain bandwidth product: 70MHz
■
Slew rate: 100V/ms
Pin Connections (top view)
TSH70 : SOT23-5/SO8
Output 1
VCC - 2
■
Output current: up to 55mA
■
Input single supply voltage
■
Output rail-to-rail
■
Specified for 150Ω loads
■
Low distortion, THD: 0.1%
■
Non-Inv. In. 3
NC 1
5 VCC +
4 Inv. In.
8 NC
Inv. In. 2
_
7 VCC +
Non-Inv. In. 3
+
6 Output
+-
5 NC
VCC - 4
TSH71 : SO8/TSSOP8
NC 1
8 STANDBY
Inverting Input 2
_
7 VCC +
Non Inverting Input 3
+
6 Output
VCC - 4
SOT23-5, TSSOP and SO packages
5 NC
TSH72 : SO8/TSSOP8
Description
Output1 1
The TSH7x series offers single, dual, triple and
quad operational amplifiers featuring high video
performances with large bandwidth, low distortion
and excellent supply voltage rejection.
8 VCC +
Inverting Input1 2
_
Non Inverting Input1 3
+
VCC - 4
7 Output2
_
6 Inverting Input2
+
5 Non Inverting Input2
TSH73 : SO14/TSSOP14
STANDBY1 1
Running with a single supply voltage from 3V to
12V, these amplifiers feature a large output
voltage swing and high output current capable of
driving standard 150Ω loads. A low operating
voltage makes TSH7x amplifiers ideal for use in
portable equipment.
14 Output3
STANDBY2 2
_
13 Inverting Input3
STANDBY3 3
+
12 Non Inverting Input3
+
_
10 Non Inverting Input2
VCC + 4
Non Inverting Input1 5
Inverting Input1 6
11 VCC +
_
Output1 7
8 Output2
TSH74 : SO14/TSSOP14
The TSH71, TSH73 and TSH75 also feature
standby inputs, each of which allows the op-amp
to be put into a standby mode with low power
consumption and high output impedance. This
function allows power saving or signal
switching/multiplexing for high-speed applications
and video applications.
Output1 1
14 Output4
Inverting Input1 2
_
_
13 Inverting Input4
Non Inverting Input1 3
+
+
12 Non Inverting Input4
+
_
+
_
10 Non Inverting Input3
VCC + 4
Non Inverting Input2 5
Inverting Input2 6
11 VCC -
Output2 7
8 Output3
Output1 1
16 Output4
Inverting Input1 2
_
_
15 Inverting Input4
Non Inverting Input1 3
+
+
14 Non Inverting Input4
+
_
+
_
12 Non Inverting Input3
VCC + 4
Applications
Non Inverting Input2 5
Inverting Input2 6
Video buffers
■
ADC driver
■
Hi-fi applications
May 2006
9 Inverting Input3
TSH75 : SO16/TSSOP16
To economize both board space and weight, the
TSH7x series is proposed in SOT23-5, TSSOP
and SO packages.
■
9 Inverting Input2
Output2 7
STANDBY 8
Rev. 3
13 VCC -
11 Inverting Input3
10 Output3
9 STANDBY
1/33
www.st.com
33
Order Codes
1
TSH70,71,72,73,74,75
Order Codes
Part Number
Temperature
Range
Package
Packing
Marking
SOT23-5
Tape & Reel
K301
TSH70CD/CDT
SO-8
Tube or Tape & Reel
70C
TSH71CD/CDT
SO-8
Tube or Tape & Reel
71C
TSSOP8 (Thin Shrink Outline Package)
Tape & Reel
71C
SO-8
Tube or Tape & Reel
72C
TSSOP8 (Thin Shrink Outline Package)
Tape & Reel
72C
SO-14
Tube or Tape & Reel
73C
TSSOP14 (Thin Shrink Outline Package)
Tape & Reel
73C
SO-14
Tube or Tape & Reel
74C
TSSOP14 (Thin Shrink Outline Package)
Tape & Reel
74C
SO-16
Tube or Tape & Reel
75C
TSSOP16 (Thin Shrink Outline Package)
Tape & Reel
75C
TSH70CLT
TSH71CPT
TSH72CD/CDT
TSH72CPT
0°C to 70°C
TSH73CD/CDT
TSH73CPT
TSH74CD/CDT
TSH74CPT
TSH75CD/CDT
TSH75CPT
2/33
TSH70,71,72,73,74,75
2
Typical Application: Video Driver
Typical Application: Video Driver
A typical application for the TSH7x family is that of video driver for driving STi7xxx DAC
outputs on 75-ohm lines.
Figure 1 show the benefits of the TSH7x family as single supply drivers.
Figure 1.
Benefits of TSH7x family: +3V or +5V single supply solution
+5V
Video DAC’s outputs:
Bottom of
synchronization tip
around 50mV
VOH=4.2Vmin.
(Tested)
Vcc=+5V
Vcc=+3V
2Vp-p
Gain=2
GND
VOH=2.45Vmin.
(Tested)
2.1V
2.1V
+
1Vp-p
+3V
2Vp-p
_
50mV
VOL=40mVmax.
(Tested)
GND
100mV
GND
1kΩ
VOL=30mVmax.
(Tested)
GND
100mV
1kΩ
-5V
GND
Video
DAC
Y,G
+5V
Reconstruction
Filtering
LPF
75Ω
+
_
75Ω Cable
1Vpp
TV
75Ω
2Vpp
Video
DAC
Pb,B
Reconstruction
Filtering
LPF
75Ω
+
_
75Ω Cable
0.7Vpp
75Ω
1.4Vpp
Video
DAC
Pr,R
Reconstruction
Filtering
LPF
75Ω
+
_
75Ω Cable
0.7Vpp
75Ω
1.4Vpp
TSH73
GND
3/33
Absolute Maximum Ratings & Operating Conditions
3
TSH70,71,72,73,74,75
Absolute Maximum Ratings & Operating Conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vi
Parameter
Unit
14
V
±2
V
±6
V
0 to +70
°C
-65 to +150
°C
150
°C
Supply Voltage (1)
Differential Input Voltage
Input Voltage
(2)
(3)
Toper
Operating Free Air Temperature Range
Tstg
Storage Temperature
Tj
Value
Maximum Junction Temperature
(4)
Rthjc
Thermal resistance junction to case
SOT23-5
SO-8
SO-14
SO-16
TSSOPO8
TSSOP14
TSSOP16
Rthja
Thermal resistance junction to ambient area
SOT23-5
SO-8
SO-14
SO-16
TSSOPO8
TSSOP14
TSSOP16
ESD
Human Body Model
80
28
22
35
37
32
35
°C/W
250
157
125
110
130
110
110
°C/W
2
kV
1. All voltages values, except differential voltage are with respect to network ground terminal
2. Differential voltages are non-inverting input terminal with respect to the inverting terminal
3. The magnitude of input and output must never exceed VCC +0.3V
4. Short-circuits can cause excessive heating
Table 2.
Operating conditions
Symbol
VCC
VIC
Standby
4/33
Parameter
Supply Voltage
Common Mode Input Voltage Range
VCC-
Value
Unit
3 to 12
V
to
-)
(VCC+
-1.1)
V
+)
V
(VCC to (VCC
TSH70,71,72,73,74,75
Electrical Characteristics
4
Electrical Characteristics
Table 3.
VCC+ = 3V, VCC- = GND, VIC = 1.5V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
10
12
mV
|V io|
Input Offset Voltage
Tamb = 25°C
Tmin. < Tamb < Tmax.
1.2
∆Vio
Input Offset Voltage Drift vs. Temp.
Tmin. < Tamb < Tmax.
4
Iio
Input Offset Current
Tamb = 25°C
Tmin. < Tamb < Tmax.
0.1
3.5
5
µA
Iib
Input Bias Current
Tamb = 25°C
Tmin. < Tamb < Tmax.
6
15
20
µA
Cin
Input Capacitance
Supply Current per Operator
Tamb = 25°C
Tmin. < Tamb < Tmax.
7.2
CMRR
Common Mode Rejection Ratio
(δVIC/δVio)
+0.1<VIC<+1.9V & V out=1.5V
Tamb = 25°C
Tmin. < T amb < T max.
65
64
90
SVRR
Supply Voltage Rejection Ratio
(δVCC/δVio)
Tamb = 25°C
Tmin. < Tamb < Tmax.
66
65
74
PSRR
Power Supply Rejection Ratio
(δVCC/δVout)
Positive & Negative Rail
Large Signal Voltage Gain
RL=150Ω to 1.5V, Vout=1V to 2V
Tamb = 25°C
Tmin. < T amb < T max.
Output Short Circuit Current Source
Tamb =25°C,
Vid =+1, Vout to 1.5V,
Vid =-1, Vout to 1.5V
|Source
|Sink
Tmin. < Tamb < Tmax.
Vid =+1, Vout to 1.5V
Vid =-1, Vout to 1.5V
|Source
|Sink
ICC
Avd
Io
0.2
Tamb =25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
VOH
High Level Output Voltage
µV/°C
RL =
RL =
RL =
RL =
150Ω to 1.5V
600Ω to 1.5V
2kΩ to 1.5V
10kΩ to 1.5V
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
RL = 150Ω to 1.5V
pF
9.8
11
mA
dB
dB
75
dB
70
65
81
dB
30
20
43
33
mA
22
19
2.45
2.60
2.87
2.91
2.93
2.65
2.77
2.90
2.92
2.93
V
2.4
2.6
5/33
Electrical Characteristics
Table 3.
TSH70,71,72,73,74,75
VCC+ = 3V, VCC- = GND, VIC = 1.5V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test Conditions
Min.
Tamb =25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
VOL
Low Level Output Voltage
RL =
RL =
RL =
RL =
150Ω to 1.5V
600Ω to 1.5V
2kΩ to 1.5V
10kΩ to 1.5V
Typ.
Max.
10
11
11
11
30
140
90
68
57
300
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
RL = 150Ω to 1.5V
Unit
mV
40
350
Gain Bandwidth Product
F=10MHz
AVCL=+11
AVCL=-10
65
55
MHz
Bw
Bandwidth @-3dB
AVCL =+1, RL=150Ω to 1.5V
87
MHz
SR
Slew Rate
AVCL =+2, RL=150Ω // CL to 1.5V
CL = 5pF
CL = 30pF
80
85
V/µs
GBP
45
φm
Phase Margin
RL=150Ω // 30pF to 1.5V
40
°
en
Equivalent Input Noise Voltage
F=100kHz
11
nV/√Hz
THD
Total Harmonic Distortion
AVCL =+2, F=4MHz, RL=150Ω //
30pF to 1.5V
Vout=1Vpp
Vout=2Vpp
-61
-54
IM2
AVCL =+2, Vout=2Vpp
RL=150Ω to 1.5V
Second order intermodulation product
Fin1=180kHz, Fin2=280KHz
spurious measurements @100kHz
-76
dBc
IM3
Third order inter modulation product
AVCL =+2, Vout=2Vpp
RL=150Ω to 1.5V
Fin1=180kHz, Fin2=280KHz
spurious measurements @400kHz
-68
dBc
∆G
Differential gain
AVCL =+2, RL=150Ω to 1.5V
F=4.5MHz, V out=2Vpp
0.5
%
Df
Differential phase
AVCL =+2, RL=150Ω to 1.5V
F=4.5MHz, V out=2Vpp
0.5
°
Gf
Gain Flatness
F=DC to 6MHz, A VCL=+2
0.2
dB
F=1MHz to 10MHz
65
dB
Vo1/Vo2 Channel Separation
6/33
dB
TSH70,71,72,73,74,75
Table 4.
Symbol
VCC+ = 5V, VCC- = GND, VIC = 2.5V, Tamb = 25°C (unless otherwise specified)
Parameter
|Vio|
Input Offset Voltage
∆Vio
Input Offset Voltage Drift vs. Temp.
Iio
Input Offset Current
Iib
Input Bias Current
Cin
Input Capacitance
ICC
Electrical Characteristics
Supply Current per Operator
Test Conditions
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tamb = 25°C
Tmin. < Tamb < Tmax.
0.1
3.5
5
µA
6
15
20
µA
Tamb = 25°C
Tmin. < Tamb < Tmax.
+0.1<V IC<3.9V & Vout=2.5V
Tamb = 25°C
Tmin. < Tamb < Tmax.
8.2
72
71
97
68
67
75
Supply Voltage Rejection Ratio
(δVCC/δVio)
Tamb = 25°C
Tmin. < Tamb < Tmax.
PSRR
Power Supply Rejection Ratio
(δVCC/δVout)
Positive & Negative Rail
Large Signal Voltage Gain
RL=150Ω to 1.5V,
Vout=1V to 4V
Tamb = 25°C
Tmin. < Tamb < Tmax.
Output Short Circuit Current Source
Tamb=25°C,
Vid=+1, V out to 1.5V,
Vid=-1, Vout to 1.5V
|Source
|Sink
Tmin. < Tamb < Tmax.
Vid=+1, V out to 1.5V
Vid=-1, Vout to 1.5V
|Source
|Sink
Tamb=25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
High Level Output Voltage
10
12
RL = 150Ω to 2.5V
RL = 600Ω to 2.5V
RL = 2kΩ to 2.5V
RL = 10kΩ to 2.5V
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
RL = 150Ω to 2.5V
75
75
70
84
35
33
55
55
mV
µV/°C
3
0.3
SVRR
VOH
Unit
1.1
Common Mode Rejection Ratio
(δVIC/δVio)
Io
Typ. Max.
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tmin. < Tamb < Tmax.
CMRR
Avd
Min.
pF
10.5
11.5
mA
dB
dB
dB
dB
mA
34
32
4.2
4.36
4.85
4.90
4.93
4.5
4.66
4.90
4.92
4.93
V
4.1
4.4
7/33
Electrical Characteristics
Table 4.
VCC+ = 5V, VCC- = GND, VIC = 2.5V, Tamb = 25°C (unless otherwise specified)
Symbol
VOL
TSH70,71,72,73,74,75
Parameter
Low Level Output Voltage
Test Conditions
Min.
Typ. Max.
Tamb=25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
20
23
23
23
40
RL = 150Ω to 2.5V
RL = 600Ω to 2.5V
RL = 2kΩ to 2.5V
RL = 10kΩ to 2.5V
220
105
76
61
400
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
RL = 150Ω to 2.5V
Unit
mV
60
450
Gain Bandwidth Product
F=10MHz
AVCL=+11
AVCL=-10
65
55
MHz
Bandwidth @-3dB
AVCL=+1, R L=150Ω to 2.5V
87
MHz
SR
Slew Rate
AVCL=+2,
RL=150Ω // CL to 2.5V
CL = 5pF
CL = 30pF
104
105
φm
Phase Margin
RL=150Ω // 30pF to 2.5V
40
°
en
Equivalent Input Noise Voltage
F=100kHz
11
nV/√Hz
THD
Total Harmonic Distortion
AVCL=+2, F=4MHz
RL=150Ω // 30pF to 2.5V
Vout=1Vpp
Vout=2Vpp
-61
-54
IM2
AVCL=+2, V out=2Vpp
RL=150Ω to 2.5V
Second order intermodulation product
Fin1=180kHz, Fin2=280kHz
spurious measurements @100kHz
-76
dBc
IM3
Third order inter modulation product
AVCL=+2, V out=2Vpp
RL=150Ω to 2.5V
Fin1=180kHz, Fin2=280KHz
spurious measurements @400kHz
-68
dBc
∆G
Differential gain
AVCL=+2, R L=150Ω to 2.5V
F=4.5MHz, V out=2Vpp
0.5
%
Df
Differential phase
AVCL=+2, R L=150Ω to 2.5V
F=4.5MHz, V out=2Vpp
0.5
°
Gf
Gain Flatness
F=DC to 6MHz, A VCL=+2
0.2
dB
F=1MHz to 10MHz
65
dB
GBP
Bw
Vo1/Vo2 Channel Separation
8/33
60
V/µs
dB
TSH70,71,72,73,74,75
Table 5.
Symbol
Electrical Characteristics
VCC+ = 5V, VCC- = -5V, VIC = GND, Tamb = 25°C (unless otherwise specified)
Parameter
Test Conditions
Min.
Typ. Max.
Unit
|V io|
Input Offset Voltage
Tamb = 25°C
Tmin. < Tamb < Tmax.
0.8
∆Vio
Input Offset Voltage Drift vs. Temp.
Tmin. < Tamb < Tmax.
2
Iio
Input Offset Current
Tamb = 25°C
Tmin. < Tamb < Tmax.
0.1
3.5
5
µA
Iib
Input Bias Current
Tamb = 25°C
Tmin. < Tamb < Tmax.
6
15
20
µA
Cin
Input Capacitance
Supply Current per Operator
Tamb = 25°C
Tmin. < Tamb < Tmax.
9.8
CMRR
Common Mode Rejection Ratio
(δVIC/δVio)
-4.9<VIC<3.9V & Vout=GND
Tamb = 25°C
Tmin. < Tamb < T max.
81
80
106
SVRR
Supply Voltage Rejection Ratio
(δVCC/δVio)
Tamb = 25°C
Tmin. < Tamb < Tmax.
71
70
77
PSRR
Power Supply Rejection Ratio
(δVCC/δVout)
Positive & Negative Rail
Large Signal Voltage Gain
RL=150Ω to GND
Vout=-4 to +4
Tamb = 25°C
Tmin. < Tamb < T max.
Output Short Circuit Current Source
Tamb =25°C
Vid=+1, Vout to 1.5V
Vid=-1, Vout to 1.5V
|Source
|Sink
Tmin. < Tamb < Tmax.
Vid=+1, Vout to 1.5V
Vid=-1, Vout to 1.5V
|Source
|Sink
ICC
Avd
Io
VOH
VOL
High Level Output Voltage
Low Level Output Voltage
10
12
µV/°C
0.7
Tamb =25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
Tamb =25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
pF
12.3
13.4
86
35
30
55
55
mA
dB
dB
75
75
70
mV
dB
dB
mA
34
29
4.2
4.36
4.85
4.9
4.93
V
4.1
-4.63
-4.86
-4.9
-4.93
-4.4
V
-4.3
9/33
Electrical Characteristics
Table 5.
VCC+ = 5V, VCC- = -5V, VIC = GND, Tamb = 25°C (unless otherwise specified)
Symbol
GBP
Bw
SR
TSH70,71,72,73,74,75
Parameter
Test Conditions
Gain Bandwidth Product
F=10MHz
AVCL=+11
AVCL=-10
Bandwidth @-3dB
AVCL=+1
RL=150Ω // 30pF to GND
Slew Rate
AVCL=+2,
RL=150Ω // C L to GND
CL = 5pF
CL = 30pF
Min.
68
Typ. Max.
Unit
65
55
MHz
100
MHz
117
118
V/µs
φm
Phase Margin
RL=150Ω to GND
40
°
en
Equivalent Input Noise Voltage
F=100kHz
11
nV/√Hz
THD
Total Harmonic Distortion
AVCL=+2, F=4MHz
RL=150Ω // 30pF to GND
Vout=1Vpp
Vout=2Vpp
-61
-54
IM2
AVCL=+2, Vout=2Vpp
RL=150Ω to GND
Second order intermodulation product
Fin1=180kHz, Fin2=280KHz
spurious measurements @100kHz
-76
dBc
IM3
Third order intermodulation product
AVCL=+2, Vout=2Vpp
RL=150Ω to GND
Fin1=180kHz, Fin2=280KHz
spurious measurements @400kHz
-68
dBc
∆G
Differential gain
AVCL=+2, RL=150Ω to GND
F=4.5MHz, Vout=2Vpp
0.5
%
Df
Differential phase
AVCL=+2, RL=150Ω to GND
F=4.5MHz, Vout=2Vpp
0.5
°
Gf
Gain Flatness
F=DC to 6MHz, AVCL=+2
0.2
dB
F=1MHz to 10MHz
65
dB
Vo1/Vo2 Channel Separation
10/33
dB
TSH70,71,72,73,74,75
Electrical Characteristics
4.1
Standby mode
Table 6.
VCC+, VCC-, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
Vlow
Standby Low Level
VCC-
(V CC+0.8)
V
Vhigh
Standby High Level
(V CC- +2)
(V CC+)
V
55
µA
VCC-
Current Consumption per Operator
ICC STBY
when STANDBY is Active
Zout
Output Impedance (Rout//Cout)
Ton
Time from Standby Mode to Active
Mode
Toff
Time from Active Mode to Standby
Mode
pin 8 (TSH71) to
pin 1,2 or 3 (TSH73) to VCCpin 8 (TSH75) to VCC+
pin 9 (TSH75) to VCC-
20
Rout
Cout
10
17
MΩ
pF
2
µs
10
µs
Down to ICC STBY = 10µA
TSH71 STANDBY CONTROL pin 8 (STBY)
OPERATOR STATUS
Vlow
Standby
Vhigh
Active
TSH73 STANDBY CONTROL
OPERATOR STATUS
pin 1
(STBY OP1)
pin 2
(STBY OP2)
pin 3
(STBY OP3)
OP1
OP1
OP3
Vlow
x
x
Standby
x
x
Vhigh
x
x
Active
x
x
x
Vlow
x
x
Standby
x
x
Vhigh
x
Active
x
x
x
Vlow
x
x
Standby
x
x
Vhigh
x
x
Active
TSH75 STANDBY CONTROL
OPERATOR STATUS
pin 8
(STBY OP2)
pin 9
(STBY OP3)
OP1
OP2
OP3
OP4
Vhigh
Vlow
Active
Standby
Standby
Active
Vhigh
Vhigh
Active
Standby
Active
Active
Vlow
Vlow
Active
Active
Standby
Active
Vlow
Vhigh
Active
Active
Active
Active
11/33
Electrical Characteristics
TSH70,71,72,73,74,75
4.2
Characteristic curves for VCC=3V
Figure 2.
Closed loop gain and phase vs.
frequency (Gain = +2, VCC = ±1.5V,
RL = 150Ω, Tamb = 25°C)
10
Figure 3.
200
Overshoot function of output
capacitance (Gain = +2, VCC = ±1.5V,
Tamb = 25°C)
10
150Ω//33pF
5
150Ω//22pF
100
Gain
150Ω//10pF
-5
0
Phase
-10
Gain (dB)
5
Phase (°)
Gain (dB)
0
150Ω
0
-100
-15
-20
1E+4
1E+5
1E+6
1E+7
1E+8
-5
1E+6
-200
1E+9
1E+7
Frequency (Hz)
Figure 4.
Closed loop gain and phase vs.
frequency (Gain = -10, VCC = ±1.5V,
RL = 150Ω, Tamb = 25°C)
Figure 5.
200
30
1E+9
Phase
Closed loop gain and phase vs.
frequency (Gain = +11, VCC = ±1.5V,
RL = 150Ω, Tamb = 25°C)
0
30
Phase
150
20
20
-50
Gain
Phase (°)
50
10
Gain (dB)
Gain
Phase (°)
100
Gain (dB)
1E+8
Frequency (Hz)
10
-100
0
0
0
-50
-10
1E+4
1E+5
1E+6
1E+7
1E+8
-10
1E+4
-100
1E+9
1E+5
Figure 7.
1
0.5
0.5
Vout (V)
Vout (V)
Large signal measurement positive slew rate (Gain = 2,
VCC = ±1.5V, ZL = 150Ω//5.6pF)
1
0
1E+8
-150
1E+9
Large signal measurement negative slew rate (Gain = 2,
VCC = ±1.5V, ZL = 150Ω//5.6pF)
0
-0.5
-0.5
-1
-1
0
10
20
30
Time (ns)
12/33
1E+7
Frequency (Hz)
Frequency (Hz)
Figure 6.
1E+6
40
50
60
0
10
20
30
Time (ns)
40
50
TSH70,71,72,73,74,75
Small signal measurement - rise
time (Gain = 2, VCC = ±1.5V,
ZL = 150Ω)
Figure 9.
0.06
0.06
0.04
0.04
0.02
0.02
0
Vin, Vout (V)
Vin, Vout (V)
Figure 8.
Electrical Characteristics
Vout
Vin
Small signal measurement - fall time
(Gain = 2, V CC = ±1.5V, ZL = 150Ω)
Vout
Vin
0
-0.02
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
60
0
10
20
30
40
50
60
Time (ns)
Time (ns)
Figure 10. Channel separation (Xtalk) vs.
frequency (measurement
configuration: Xtalk = 20log (V0/V1))
Figure 11. Channel separation (Xtalk) vs.
frequency (Gain = +11, VCC = 1.5V,
ZL = 150Ω//27pF)
-20
VIN
49.9Ω
-30
++
--
-40
V1
4/1output
-50
150Ω
Xtalk (dB)
100Ω 1kΩ
3/1output
-60
-70
-80
+
49.9Ω
-
2/1output
-90
VO
100Ω 1kΩ
-100
150Ω
-110
1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 12. Equivalent noise voltage
(Gain = 100, VCC = ±1.5V, No load)
Figure 13. Maximum output swing
(Gain = 11, V CC = ±5V, RL = 150Ω)
30
5
4
+
_
3
25
Vout
10k
100
Vin, Vout (V)
en (nV/√Hz)
2
20
15
1
Vin
0
-1
-2
-3
10
-4
5
0.1
1
10
Frequency (kHz)
100
1000
-5
0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Time (ms)
13/33
Electrical Characteristics
TSH70,71,72,73,74,75
Figure 15. Group delay gain = 2 (VCC = ±1.5V,
ZL = 150Ω//27pF, Tamb = 25°C)
Figure 14. Standby mode - Ton, Toff
(VCC = ±1.5V, open loop)
2
Vin
Vin, Vout (V)
1
Gain
0
Vout
-1
Standby
-2
Ton
0
2E-6
4E-6
6E-6
Group
Delay
Toff
8E-6
1E-5
Time (s)
Figure 16. Third order intermodulation(1)
(Gain = 2, VCC = ±1.5V,
ZL = 150Ω//27pF, Tamb = 25°C)
0
-10
-20
IM3 (dBc)
-30
-40
80kHz
-50
740kHz
-60
-70
640kHz
-80
-90
380kHz
-100
0
1
2
3
Vout peak(V)
1. Note on intermodulation products:
The IFR2026 synthesizer generates a two tones signal
(F1=180kHz, F2=280kHz); each tone having the same
amplitude level.
The HP3585 spectrum analyzer measures the
intermodulation products function of the output voltage.
The generator and the spectrum analyzer are phase
locked for precision considerations.
14/33
4
5.87ns
TSH70,71,72,73,74,75
4.3
Electrical Characteristics
Characteristic curves for VCC=5V
Figure 17. Closed loop gain and phase vs.
frequency (Gain = +2, VCC = ±2.5V,
RL = 150Ω, Tamb = 25°C)
10
Figure 18. Overshoot function of output
capacitance (Gain = +2, VCC = ±2.5V,
Tamb = 25°C)
200
10
150Ω//33pF
5
Gain
100
150Ω//22pF
0
-5
Phase
150Ω//10pF
Gain (dB)
0
Phase (°)
Gain (dB)
5
150Ω
0
-100
-10
-200
-15
1E+4
1E+5
1E+6
1E+7
1E+8
-5
1E+6
1E+9
1E+7
Frequency (Hz)
1E+8
1E+9
Frequency (Hz)
Figure 19. Closed loop gain and phase vs.
frequency (Gain = -10, V CC = ±2.5V,
RL = 150Ω, Tamb = 25°C)
30
Figure 20. Closed loop gain and phase vs.
frequency (Gain = +11, VCC = ±2.5V,
RL = 150Ω, Tamb = 25°C)
200
Phase
0
30
Phase
150
20
20
Gain
Phase (°)
50
Gain (dB)
10
-50
Phase (°)
Gain (dB)
100
Gain
10
-100
0
0
0
-50
-10
1E+4
1E+5
1E+6
1E+7
-10
1E+4
-100
1E+9
1E+8
1E+5
1E+6
1E+7
1E+8
-150
1E+9
Frequency (Hz)
Frequency (Hz)
3
3
2
2
1
1
Vout (V)
Vout (V)
Figure 21. Large signal measurement - positive Figure 22. Large signal measurement slew rate (Gain = 2, VCC = ±2.5V,
negative slew rate (Gain = 2,
ZL= 150Ω//5.6pF)
VCC = ±2.5V, ZL = 150Ω//5.6pF)
0
0
-1
-1
-2
-2
-3
-3
0
10
20
30
40
Time (ns)
50
60
70
80
0
10
20
30
40
50
60
70
Time (ns)
15/33
Electrical Characteristics
TSH70,71,72,73,74,75
Figure 24. Small signal measurement - fall time
(Gain = 2, V CC = ±2.5V, ZL= 150Ω)
0.06
0.06
0.04
0.04
0.02
0.02
0
Vout
Vin Vout (V)
Vin, Vout (V)
Figure 23. Small signal measurement - rise
time (Gain = 2, VCC = ±2.5V,
ZL = 150Ω)
Vout
Vin
Vin
0
-0.02
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
0
60
10
20
30
40
50
60
Time (ns)
Time (ns)
Figure 25. Channel separation (Xtalk) vs.
frequency (measurement
configuration: Xtalk = 20log (V0/V1))
Figure 26. Channel separation (Xtalk) vs.
frequency (Gain = +11, VCC = ±2.5V,
ZL = 150Ω//27pF)
-20
VIN
49.9Ω
-30
++
--
-40
V1
4/1output
-50
Xtalk (dB)
100Ω 1kΩ
150Ω
3/1output
-60
-70
-80
+
49.9Ω
100Ω 1kΩ
2/1output
-90
VO
-100
150Ω
-110
1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 27. Equivalent noise voltage
(Gain = 100, VCC = ±2.5V, no load)
Figure 28. Maximum output swing
(Gain = 11, V CC = ±2.5V, RL = 150Ω)
30
3
+
_
25
2
Vout
10k
Vin, Vout (V)
en (nV/√Hz)
100
20
15
10
Vin
0
-1
-2
5
0.1
1
10
Frequency (kHz)
16/33
1
100
1000
-3
0.0E+0
5.0E-2
1.0E-1
Time (ms)
1.5E-1
2.0E-1
TSH70,71,72,73,74,75
Electrical Characteristics
Figure 30. Group delay (Gain = 2, VCC = ±2.5V,
ZL = 150Ω//27pF, Tamb = 25°C)
Figure 29. Standby mode - Ton, Toff
(VCC = ±2.5V, open loop)
Vin
3
Vin, Vout (V)
2
1
Gain
0
Vout
-1
Group
Delay
-2
-3
0
5.32ns
Standby
Ton
2E-6
4E-6
Toff
6E-6
8E-6
1E-5
Time (s)
Figure 31. Third order intermodulation(1)
(Gain = 2, VCC = ±2.5V,
ZL = 150Ω//27pF, Tamb = 25°C)
0
-10
-20
IM3 (dBc)
-30
-40
740kHz
-50
80kHz
-60
-70
-80
-90
380kHz
640kHz
-100
0
1
2
3
4
Vout peak(V)
1. Note on intermodulation products:
The IFR2026 synthesizer generates a two tones signal
(F1=180kHz, F2=280kHz); each tone having the same
amplitude level.
The HP3585 spectrum analyzer measures the
intermodulation products function of the output voltage.
The generator and the spectrum analyzer are phase
locked for precision considerations.
17/33
Electrical Characteristics
4.4
TSH70,71,72,73,74,75
Characteristic curves for VCC=10V
Figure 32. Closed loop gain and phase vs.
frequency (Gain = +2, VCC = ±5V,
RL = 150Ω, Tamb = 25°C)
10
Figure 33. Overshoot function of output
capacitance (Gain = +2, VCC = ±5V,
Tamb = 25°C)
200
10
150Ω//33pF
5
Gain
100
150Ω//22pF
0
0
-5
150Ω//10pF
Gain (dB)
Phase (°)
Gain (dB)
5
150Ω
0
Phase
-100
-10
-15
1E+4
1E+5
1E+6
1E+7
1E+8
-5
1E+6
-200
1E+9
1E+7
1E+8
1E+9
Frequency (Hz)
Frequency (Hz)
Figure 34. Closed loop gain and phase vs.
frequency (Gain = -10, V CC = ±5V,
RL = 150Ω, Tamb = 25°C)
Figure 35. Closed Loop Gain and Phase vs.
Frequency (Gain = +11, VCC = ±5V,
RL = 150Ω, Tamb = 25°C)
200
30
30
0
Phase
Phase
150
20
50
-50
Gain
Phase (°)
10
Gain (dB)
100
Gain
Phase (°)
Gain (dB)
20
10
-100
0
0
0
-10
1E+4
1E+5
1E+6
1E+7
1E+8
-10
1E+4
-50
1E+9
1E+5
1E+6
1E+7
1E+8
-150
1E+9
Frequency (Hz)
Frequency (Hz)
5
5
4
4
3
3
2
2
1
Vout (V)
Vout (V)
Figure 36. Large signal measurement - positive Figure 37. Large Signal Measurement slew rate (Gain = 2,VCC = ±5V,
Negative Slew Rate (Gain = 2
ZL = 150Ω//5.6pF)
VCC = ±5V, ZL = 150Ω//5.6pF)
0
-1
1
0
-1
-2
-2
-3
-3
-4
-4
-5
-5
0
20
40
60
Time (ns)
18/33
80
100
0
20
40
60
Time (ns)
80
100
TSH70,71,72,73,74,75
Electrical Characteristics
0.06
0.06
0.04
0.04
0.02
0.02
Vin, Vout (V)
Vin, Vout (V)
Figure 38. Small signal measurement - rise
Figure 39. Small signal measurement - fall time
time (Gain = 2, VCC = ±5V, ZL = 150Ω)
(Gain = 2, V CC = ±5V, ZL = 150Ω)
0
Vout
Vin
-0.02
Vout
0
Vin
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
0
60
10
20
30
40
50
60
Time (ns)
Time (ns)
Figure 40. Channel separation (Xtalk) vs.
frequency (measurement
configuration: Xtalk = 20log(V0/V1))
Figure 41. Channel separation (Xtalk) vs.
frequency (Gain = +11, VCC = ±5V,
ZL = 150Ω//27pF)
-20
VIN
49.9Ω
-30
++
--
-40
V1
4/1output
-50
Xtalk (dB)
100Ω 1kΩ
150Ω
3/1output
-60
-70
-80
+
49.9Ω
-
2/1output
-90
VO
100Ω 1kΩ
-100
150Ω
-110
1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 42. Equivalent noise voltage
(Gain =100, VCC = ±5V, no load)
Figure 43. Maximum output swing
(Gain = 11, V CC = ±5V, RL = 150Ω)
30
5
4
25
3
+
_
2
10k
Vin, Vout (V)
100
en (nV/√Hz)
Vout
20
15
1
Vin
0
-1
-2
-3
10
-4
5
0.1
1
10
Frequency (kHz)
100
1000
-5
0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Time (ms)
19/33
Electrical Characteristics
TSH70,71,72,73,74,75
Figure 45. Group Delay (Gain = 2, VCC= ±5V
ZL = 150Ω//27pF, Tamb = 25°C)
Figure 44. Standby mode - Ton, Toff
(VCC = ±5V, open loop)
Vin
Vin, Vout (V)
5
Vout
Gain
0
Group
Delay
-5
Standby
Ton
0
2E-6
Toff
4E-6
6E-6
8E-6
Time (s)
Figure 46. Third order intermodulation(1)
(Gain = 2, VCC = ±5V,
ZL = 150Ω//27pF, Tamb = 25°C
0
-10
-20
IM3 (dBc)
-30
-40
80kHz
-50
740kHz
-60
-70
-80
-90
380kHz
640kHz
-100
0
1
2
3
Vout peak(V)
1. Note on intermodulation products:
The IFR2026 synthesizer generates a two tones signal
(F1=180kHz, F2=280kHz); each tone having the same
amplitude level.
The HP3585 spectrum analyzer measures the
intermodulation products function of the output voltage.
The generator and the spectrum analyzer are phase
locked for precision considerations.
.
20/33
4
5.1ns
TSH70,71,72,73,74,75
5
Testing Conditions
5.1
Layout precautions
Testing Conditions
To use the TSH7X circuits in the best manner at high frequencies, some precautions have to
be taken for power supplies:
– First of all, the implementation of a proper ground plane in both sides of the PCB is
mandatory for high speed circuit applications to provide low inductance and low
resistance common return.
– Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as
close as possible to the IC pins in order to improve high frequency bypassing and
reduce harmonic distortion. The power supply capacitors must be incorporated for
both the negative and the positive pins.
●
●
●
●
●
5.2
Proper termination of all inputs and outputs must be in accordance with output
termination resistors; in this way, the amplifier load will be resistive only, and the
stability of the amplifier will be improved.
All leads must be wide and as short as possible (especially for op-amp inputs and
outputs) in order to decrease parasitic capacitance and inductance.
For lower gain applications, care should be taken to avoid large feedback resistance
(>1kΩ) in order to reduce the time constant of parasitic capacitances.
Choose component sizes as small as possible (SMD).
Finally, on output, the load capacitance must be negligible to maintain good stability.
You can put a serial resistance as close as possible to the output pin to minimize
capacitance.
Maximum input level
Figure 47. CCIR330 video line
The input level must not exceed the following values:
●
●
negative peak: must be greater than -VCC+400mV.
positive peak value: must be lower than +VCC-400mV.
21/33
Testing Conditions
TSH70,71,72,73,74,75
The electrical characteristics show the influence of the load on this parameter.
5.3
Video capabilities
To characterize the differential phase and differential gain, a CCIR330 video line is used.
The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. The
first level contains no luma. The luma gives various amplitudes which define the saturation
of the signal. The chrominance gives various phases which define the color of the signal.
Differential phase (respectively differential gain) distortion is present if a signal chrominance
phase (gain) is affected by luminance level. They represent the ability to uniformly process
the high frequency information at all luminance levels.
When differential gain is present, color saturation is not correctly reproduced.
The input generator is the Rohde & Schwarz CCVS. The output measurement was done by
the Rohde and Schwarz VSA.
Figure 48. Measurement on Rohde and Schwarz VSA
Table 7.
22/33
Video results
Parameter
Value
Value
VCC = ±2.5V
VCC = ±5V
Unit
Lum NL
0.1
0.3
%
Lum NL Step 1
100
100
%
Lum NL Step 2
100
99.9
%
Lum NL Step 3
99.9
99.8
%
Lum NL Step 4
99.9
99.9
%
Lum NL Step 5
99.9
99.7
%
Diff Gain pos
0
0
%
Diff Gain neg
-0.7
-0.6
%
Diff Gain pp
0.7
0.6
%
TSH70,71,72,73,74,75
Table 7.
5.4
Testing Conditions
Video results
Parameter
Value
Value
VCC = ±2.5V
VCC = ±5V
Unit
Diff Gain Step1
-0.5
-0.3
%
Diff Gain Step2
-0.7
-0.6
%
Diff Gain Step3
-0.3
-0.5
%
Diff Gain Step4
-0.1
-0.3
%
Diff Gain Step5
-0.4
-0.5
%
Diff Phase pos
0
0.1
deg
Diff Phase neg
-0.2
-0.4
deg
Diff Phase pp
0.2
0.5
deg
Diff Phase Step1
-0.2
-0.4
deg
Diff Phase Step2
-0.1
-0.4
deg
Diff Phase Step3
-0.1
-0.3
deg
Diff Phase Step4
0
0.1
deg
Diff Phase Step5
-0.2
-0.1
deg
Precautions when operating on an asymmetrical supply
The TSH7X can be used with either a dual or a single supply. If a single supply is used, the
inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully
designed, in order to reject any noise present on the supply rail.
As the bias current is 15uA, you must carefully choose the resistance R1 so as not to
introduce an offset mismatch at the amplifier inputs.
Figure 49. Schematic of asymmetrical (single) supply
IN Cin
Cout OUT
+
Vcc+
R1
R2
R3 C1
-
R5
C3
RL
Cf
C2
R4
R1 = 10KΩ is a typical and convenient value. C1, C2, C3 are bypass capacitors that filter
perturbations on VCC, as well as for the input and output signals. We choose C1 = 100nF
and C2 = C3 = 100uF.
R2, R3 are such that the current through them must be greater than 100 times the bias
current. Therefore, we set R2 = R3 = 4.7KΩ.
23/33
Testing Conditions
TSH70,71,72,73,74,75
Cin, as Cout, is chosen to filter the DC signal by the low-pass filters (R1,Cin and Rout, Cout).
By taking R1 = 10KΩ, RL = 150Ω, and Cin = 2uF, Cout=220uF we provide a cut-off frequency
below 10Hz.
Figure 50. Use of the TSH7x in gain = -1 configuration
Cf
1k
IN Cin
1k
Vcc+
R1
R2
R3 C1
Cout OUT
+
RL
C3
C2
Some precautions must be taken, especially for low-power supply applications.
A feedback capacitance, Cf, should be added for better stability. Table 8 summarizes the
impact of the capacitance Cf on the phase margin of the circuit.
Table 8.
Impact capacitance Cf
Parameter
Cf (pF)
Phase Margin
VCC = ±1.5V
VCC = ±2.5V
VCC = ±5V
Unit
28
43
56
deg
40
39.3
38.3
MHz
30
43
56
deg
40
39.3
38.3
MHz
37
52
67
deg
37
34
32
MHz
48
65
78
deg
33.7
30.7
27.6
MHz
0
f-3dB
Phase Margin
5.6
f-3dB
Phase Margin
22
f-3dB
Phase Margin
33
f-3dB
24/33
TSH70,71,72,73,74,75
6
Package Mechanical Data
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
6.1
SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
e
1.27
0.157
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
25/33
Package Mechanical Data
6.2
TSH70,71,72,73,74,75
TSSOP8 Package
TSSOP8 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
1.2
A1
0.05
A2
0.80
b
0.19
1.00
MAX.
0.047
0.15
0.002
1.05
0.031
0.30
0.007
0.006
0.039
0.041
0.012
c
0.09
0.20
0.004
D
2.90
3.00
3.10
0.114
0.118
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
8˚
0˚
0.75
0.018
e
0.65
K
0˚
L
0.45
L1
0.60
1
0.008
0.122
0.0256
8˚
0.024
0.030
0.039
0079397/D
26/33
TSH70,71,72,73,74,75
6.3
Package Mechanical Data
SO-14 Package
SO-14 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
0.003
0.007
0.46
0.013
0.018
0.25
0.007
1.65
b
0.35
b1
0.19
C
MAX.
0.064
0.5
0.010
0.019
c1
45˚ (typ.)
D
8.55
8.75
0.336
E
5.8
6.2
0.228
e
1.27
e3
0.344
0.244
0.050
7.62
0.300
F
3.8
4.0
0.149
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
0.050
M
S
0.68
0.157
0.026
8 ˚ (max.)
PO13G
27/33
Package Mechanical Data
6.4
TSH70,71,72,73,74,75
TSSOP14 Package
TSSOP14 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
MAX.
1.2
A1
0.05
A2
0.8
b
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.9
5
5.1
0.193
0.197
0.201
E
6.2
6.4
6.6
0.244
0.252
0.260
E1
4.3
4.4
4.48
0.169
0.173
0.176
1
e
0.65 BSC
K
0˚
L
0.45
A
0.60
0.0256 BSC
8˚
0˚
0.75
0.018
8˚
0.024
0.030
A2
A1
b
e
K
c
L
E
D
E1
PIN 1 IDENTIFICATION
1
0080337D
28/33
TSH70,71,72,73,74,75
6.5
Package Mechanical Data
SO-16 Package
SO-16 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
0.004
0.008
0.46
0.013
0.018
0.25
0.007
1.65
b
0.35
b1
0.19
C
MAX.
0.064
0.5
0.010
0.019
c1
45˚ (typ.)
D
9.8
10
0.385
E
5.8
6.2
0.228
e
1.27
e3
0.393
0.244
0.050
8.89
0.350
F
3.8
4.0
0.149
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
0.050
M
S
0.62
8
0.157
0.024
˚ (max.)
PO13H
29/33
Package Mechanical Data
6.6
TSH70,71,72,73,74,75
TSSOP16 Package
TSSOP16 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
MAX.
1.2
A1
0.05
A2
0.8
b
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0079
D
4.9
5
5.1
0.193
0.197
0.201
E
6.2
6.4
6.6
0.244
0.252
0.260
E1
4.3
4.4
4.48
0.169
0.173
0.176
1
e
0.65 BSC
K
0˚
L
0.45
A
0.60
0.0256 BSC
8˚
0˚
0.75
0.018
8˚
0.024
0.030
A2
A1
b
e
K
c
L
E
D
E1
PIN 1 IDENTIFICATION
1
0080338D
30/33
TSH70,71,72,73,74,75
6.7
Package Mechanical Data
SOT23-5 Package
SOT23-5L MECHANICAL DATA
mm.
mils
DIM.
MIN.
TYP
MAX.
MIN.
TYP.
MAX.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.0
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0 .95
37.4
e1
1.9
74.8
L
0.35
0.55
13.7
21.6
31/33
Revision History
7
TSH70,71,72,73,74,75
Revision History
Table 9.
Document revision history
Date
Revision
Nov. 2000
1
First Release.
Aug. 2002
2
Limit min. of Isink from 24mA to 20mA (only on 3V power
supply).
Reason: yield improvement.
3
Improvement of VOL max. at 3V and 5V power supply on 150ohm load connected to GND (pages 6 and 8).
Reason: TSH7x can drive video signals from DACs to lines in
single supply (3V or 5V) without any DC level change of the
video signals.
Grammatical and typographical changes throughout.
Package mechanical data updated.
May 2006
32/33
Changes
TSH70,71,72,73,74,75
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
33/33