STMICROELECTRONICS TSH82ID

TSH80-TSH81-TSH82
Wide band rail-to-rail operational amplifier
with standby function
Features
■
Operating range from 4.5V to 12V
■
3dB-bandwidth: 100MHz
■
Slew-rate 100V/μs
■
Output current up to 55mA
■
Input single supply voltage
■
Output rail-to-rail
■
Specified for 150Ω load
■
Low distortion, THD 0.1%
■
SOT23-5, TSSOP and SO packages
Video buffers
■
A/D converters driver
■
Hi-fi applications
Output 1
5
VCC- 2
VCC+
+4 Inv. input
Non-inv. input 3
Pin connections TSH80/SO-8
NC 1
8 NC
Inv. input 2
_
7 VCC+
3
+
6 Output
5 NC
VCC- 4
Description
The TSH8x series offers single and dual
operational amplifiers featuring high video
performance with large bandwidth, low distortion
and excellent supply voltage rejection. These
amplifiers also feature large output voltage swing
and high output current capability to drive
standard 150Ω loads.
Pin connections TSH81 SO-8/TSSOP8
NC 1
8 STANDBY
Inverting input 2
_
7 VCC+
Non inverting Input 3
+
6 Output
5 NC
VCC- 4
Running at single or dual supply voltage from
4.5V to 12V, these amplifiers are tested at 5V
(±2.5V) and 10V (±5V) supplies.
Pin connections TSH82 SO-8/TSSOP8
The TSH81 also features a standby mode, which
allows the operational amplifier to be put into a
standby mode with low power consumption and
high output impedance. This function allows
power saving or signal switching/multiplexing for
high-speed applications and video applications.
Output1 1
Rev 4
8 VCC+
Inverting input1 2
_
Non inv. input1 3
+
VCC- 4
For board space and weight saving, the TSH8x
series is proposed in SOT23-5, TSSOP8 and
SO-8 plastic micropackages.
October 2007
TSSOP8
Pin connections TSH80/SOT23-5
Applications
■
SO-8
SOT23-5
7 Output2
_
6 Inverting input2
+
5 Non inv. input2
1/24
www.st.com
24
Contents
TSH80-TSH81-TSH82
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1
Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2
Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4
Precautions on asymmetrical supply operation . . . . . . . . . . . . . . . . . 19
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1
SO-8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2
TSSOP8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3
SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/24
TSH80-TSH81-TSH82
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings
Symbol
VCC
Vid
Vi
Parameter
Value
Unit
14
V
±2
V
±6
V
Supply voltage (1)
Differential input voltage
Input voltage
(2)
(3)
Toper
Operating free air temperature range
-40 to +85
°C
Tstg
Storage temperature
-65 to +150
°C
150
°C
80
28
37
°C/W
250
157
130
°C/W
2
kV
Tj
Maximum junction temperature
(4)
Rthjc
Thermal resistance junction to case
SOT23-5
SO8
TSSOPO8
Rthja
Thermal resistance junction to ambient area
SOT23-5
SO8
TSSOPO8
ESD
Human body model (HBM)
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting terminal.
3. The magnitude of input and output must never exceed VCC +0.3V.
4. Short-circuits can cause excessive heating.
Table 2.
Operating conditions
Symbol
VCC
VIC
Standby
(pin 8)
Parameter
Supply voltage
Common mode input voltage range
Threshold on pin 8 for TSH81
VCC-
Value
Unit
4.5 to 12
V
to
(VCC+
-1.1)
(VCC-) to (VCC+)
V
V
3/24
Electrical characteristics
TSH80-TSH81-TSH82
2
Electrical characteristics
Table 3.
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
10
12
mV
|Vio|
Input offset voltage
Tamb= 25°C
Tmin < Tamb < Tmax
1.1
ΔVio
Input offset voltage drift vs.
temperature
Tmin < Tamb < Tmax
3
Iio
Input offset current
Tamb= 25°C
Tmin < Tamb < Tmax
0.1
3.5
5
μA
Iib
Input bias current
Tamb= 25°C
Tmin < Tamb < Tmax
6
15
20
μA
Cin
Input capacitance
ICC
Supply current per operator
Tamb= 25°C
Tmin < Tamb < Tmax
CMR
Common mode rejection ratio
(δVic/δVio)
+0.1<Vic<3.9V and Vout=2.5V
Tamb= 25°C
Tmin < Tamb < Tmax
72
70
97
SVR
Supply voltage rejection ratio
(δVCC/δVio)
Tamb= 25°C
Tmin < Tamb < Tmax
68
65
75
PSR
Power supply rejection ratio
(δVCC/δVout)
Positive & negative rail
Large signal voltage gain
RL=150Ω connected to 1.5V
and Vout=1V to 4V
Tamb= 25°C
Tmin < Tamb < Tmax
75
70
84
|Source|
Vid=+1, Vout connected to 1.5V
Tamb= 25°C
Tmin < Tamb < Tmax
35
28
55
Sink
Vid=-1, Vout connected to 1.5V
Tamb= 25°C
Tmin < Tamb < Tmax
33
28
55
4.2
High level output voltage
Tamb= 25°C
RL = 150Ω connected to GND
RL = 600Ω connected to GND
RL = 2kΩ connected to GND
RL = 10kΩ connected to GND
RL = 150Ω connected to 2.5V
RL = 600Ω connected to 2.5V
RL = 2kΩ connected to 2.5V
RL = 10kΩ connected to 2.5V
Tmin < Tamb < Tmax
RL = 150Ω connected to GND
RL = 150Ω connected to 2.5V
4.36
4.85
4.90
4.93
4.66
4.90
4.92
4.93
Avd
Io
Voh
4/24
μV/°C
0.3
8.2
75
4.5
4.1
4.4
pF
10.5
11.5
mA
dB
dB
dB
dB
mA
V
TSH80-TSH81-TSH82
Table 3.
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified)
Symbol
Vol
GBP
Bw
SR
Electrical characteristics
Parameter
Low level output voltage
Test conditions
Min.
Tamb= 25°C
RL = 150Ω connected to GND
RL = 600Ω connected to GND
RL = 2kΩ connected to GND
RL = 10kΩ connectedto GND
RL = 150Ω connected to 2.5V
RL = 600Ω connected to 2.5V
RL = 2kΩ connected to 2.5V
RL = 10kΩ connected to 2.5V
Tmin < Tamb < Tmax
RL = 150Ω connected to GND
RL = 150Ω connected to 2.5V
Gain bandwidth product
F=10MHz
AVCL= +11
AVCL= -10
Bandwidth @-3dB
AVCL= +1
RL= 150Ω connected to 2.5V
Slew rate
AVCL=+2
RL=150Ω // CL to 2.5V
CL = 5pF
CL = 30pF
Typ.
Max.
48
54
55
56
220
105
76
61
150
400
Unit
mV
200
450
60
65
55
MHz
87
MHz
104
105
V/μs
φm
Phase margin
RL= 150Ω // 30pF to 2.5V
40
° (degree)
en
Equivalent input noise voltage
F= 100kHz
11
nV/√Hz
Total harmonic distortion
AVCL= +2, F= 4MHz
RL= 150Ω // 30pF to 2.5V
Vout= 1Vpp
Vout= 2Vpp
-61
-54
Second order intermodulation
product
AVCL= +2, Vout= 2Vpp
RL= 150Ω connected to 2.5V
Fin1= 180kHz, Fin2= 280kHz
spurious measurement
@100kHz
-76
dBc
IM3
Third order intermodulation
product
AVCL= +2, Vout= 2Vpp
RL= 150Ω to 2.5V
Fin1=180kHz, Fin2= 280kHz
spurious measurement
@400kHz
-68
dBc
ΔG
Differential gain
AVCL=+2, RL=150Ω to 2.5V
F= 4.5MHz, Vout= 2Vpp
0.5
%
Df
Differential phase
AVCL= +2, RL=150Ω to 2.5V
F= 4.5MHz, Vout= 2Vpp
0.5
° (degree)
Gf
Gain flatness
F= DC to 6MHz, AVCL= +2
0.2
dB
F= 1MHz to 10MHz
65
dB
THD
IM2
Vo1/Vo2 Channel separation
dB
5/24
Electrical characteristics
Table 4.
TSH80-TSH81-TSH82
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
10
12
mV
|Vio|
Input offset voltage
Tamb= 25°C
Tmin < Tamb < Tmax
0.8
ΔVio
Input offset voltage drift vs.
temperature
Tmin < Tamb < Tmax
2
Iio
Input offset current
Tamb= 25°C
Tmin < Tamb < Tmax
0.1
3.5
5
μA
Iib
Input bias current
Tamb= 25°C
Tmin < Tamb < Tmax
6
15
20
μA
Cin
Input capacitance
ICC
Supply current per operator
Tamb= 25°C
Tmin < Tamb < Tmax
CMR
Common mode rejection ratio
(δVic/δVio)
-4.9 < Vic < 3.9V and Vout=GND
Tamb= 25°C
Tmin < Tamb < Tmax
81
72
106
SVR
Supply voltage rejection ratio
(δVCC/δVio)
Tamb= 25°C
Tmin < Tamb < Tmax
71
65
77
PSR
Power supply rejection ratio
(δVCC/δVout)
Positive & negative rail
Large signal voltage gain
RL=150Ω connected to GND
Vout= -4 to +4
Tamb= 25°C
Tmin < Tamb < Tmax
75
70
86
|Source|
Vid=+1, Vout connected to 1.5V
Tamb= 25°C
Tmin < Tamb < Tmax
35
28
55
Sink
Vid=-1, Vout connected to 1.5V
Tamb= 25°C
Tmin < Tamb < Tmax
30
28
55
4.2
High level output voltage
Tamb= 25°C
RL = 150Ω connected to GND
RL = 600Ω connected to GND
RL = 2kΩ connected to GND
RL = 10kΩ connected to GND
Tmin < Tamb < Tmax
RL = 150Ω connected to GND
4.36
4.85
4.9
4.93
Avd
Io
Voh
Vol
6/24
Low level output voltage
μV/°C
0.7
Tamb= 25°C
RL = 150Ω connected to GND
RL = 600Ω connected to GND
RL = 2kΩ connected to GND
RL = 10kΩ connected to GND
Tmin < Tamb < Tmax
RL = 150Ω connected to GND
9.8
pF
12.3
13.4
mA
dB
dB
75
dB
dB
mA
V
4.1
-4.63
-4.86
-4.9
-4.93
-4.4
mV
-4.3
TSH80-TSH81-TSH82
Table 4.
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified)
Symbol
GBP
Bw
SR
Electrical characteristics
Parameter
Test conditions
Gain bandwidth product
F=10MHz
AVCL= +11
AVCL= -10
Bandwidth @-3dB
AVCL= +1
RL=150Ω // 30pF to GND
Slew rate
AVCL=+2
RL=150Ω // CL to GND
CL = 5pF
CL = 30pF
Min.
68
Typ.
Max.
Unit
65
55
MHz
100
MHz
117
118
V/μs
φm
Phase margin
RL= 150Ω connected to GND
40
°
(degree)
en
Equivalent input noise voltage
F= 100kHz
11
nV/√Hz
Total harmonic distortion
AVCL= +2, F=4 MHz
RL=150Ω // 30pF to GND
Vout= 1Vpp
Vout= 2Vpp
-61
-54
Second order intermodulation
product
AVCL= +2, Vout= 2Vpp
RL= 150Ω to GND
Fin1= 180kHz, Fin2= 280kHz
spurious measurement
@100kHz
-76
dBc
IM3
Third order intermodulation
product
AVCL= +2, Vout= 2Vpp
RL=150Ω to GND
Fin1= 180kHz, Fin2= 280kHz
spurious measurement
@400kHz
-68
dBc
ΔG
Differential gain
AVCL=+2, RL=150Ω to GND
F= 4.5MHz, Vout= 2Vpp
0.5
%
Df
Differential phase
AVCL= +2, RL= 150Ω to GND
F= 4.5MHz, Vout= 2Vpp
0.5
°
(degree)
Gf
Gain flatness
F=DC to 6MHz, AVCL=+2
0.2
dB
Channel separation
F=1MHz to 10MHz
65
dB
THD
IM2
Vo1/Vo2
dB
7/24
Electrical characteristics
Table 5.
Symbol
Vlow
Vhigh
ICC-STBY
Standby mode - VCC+, VCC-, Tamb = 25°C (unless otherwise specified)
Parameter
Min.
VCC-
Standby high level
-
Ton
Time from Standby mode to
Active mode
Toff
Time from Active mode to
Standby mode
Typ.
Rout
Cout
Down to ICC-STBY = 10μA
Max.
Unit
(VCC- +0.8)
V
+
(VCC +2)
Current consumption per
pin 8 (TSH81) to VCCoperator when Standby is active
Output impedance (Rout//Cout)
8/24
Test conditions
Standby low level
Zout
Table 6.
TSH80-TSH81-TSH82
20
(VCC )
V
55
μA
10
17
MΩ
pF
2
μs
10
μs
TSH81 standby control pin status
TSH81 standby control pin 8 (STANDBY)
Operator status
Vlow
Standby
Vhigh
Active
TSH80-TSH81-TSH82
Figure 1.
Electrical characteristics
Closed loop gain and phase vs.
frequency
Gain=+2, VCC= ±2.5V, RL=150Ω, Tamb = 25°C
10
Figure 2.
Overshoot vs. output capacitance
Gain=+2, VCC= ±2.5V, Tamb = 25°C
10
200
150Ω//33pF
5
Gain
100
150Ω//22pF
0
-5
Phase
150Ω//10pF
Gain (dB)
0
Phase (°)
Gain (dB)
5
150Ω
0
-100
-10
-15
1E+4
-200
1E+5
1E+6
1E+7
1E+8
-5
1E+6
1E+9
1E+7
Frequency (Hz)
Figure 3.
1E+8
1E+9
Frequency (Hz)
Closed loop gain and phase vs.
frequency
Gain=-10, VCC= ±2.5V, RL=150Ω, Tamb = 25°C
Figure 4.
Gain=+11, VCC= ±2.5V, RL=150Ω, Tamb = 25°C
200
30
Phase
Closed loop gain and phase vs.
frequency
30
0
Phase
150
20
20
-50
Gain
Phase (°)
Gain (dB)
50
10
Phase (°)
Gain (dB)
100
Gain
10
0
-100
0
0
-50
-10
1E+4
1E+5
1E+6
1E+7
1E+8
-10
1E+4
-100
1E+9
1E+5
Large signal measurement positive slew rate
Figure 6.
Gain=2, VCC=±2.5V, ZL=150Ω//5.6pF, Vin=400mVpk
1E+8
-150
1E+9
Large signal measurement negative slew rate
Gain=2, VCC=±2.5V, ZL=150Ω//5.6pF, Vin=400mVpk
3
3
2
2
1
1
Vout (V)
Vout (V)
1E+7
Frequency (Hz)
Frequency (Hz)
Figure 5.
1E+6
0
0
-1
-1
-2
-2
-3
-3
0
10
20
30
40
Time (ns)
50
60
70
80
0
10
20
30
40
50
60
70
Time (ns)
9/24
Electrical characteristics
Figure 7.
TSH80-TSH81-TSH82
Small signal measurement - rise
time
0.06
0.06
0.04
0.04
0.02
0.02
0
Small signal measurement - fall
time
Gain=2, VCC=±2.5V, RL=150Ω, Vin=400mVpk
Vout
Vin Vout (V)
Vin, Vout (V)
Gain=2, VCC=±2.5V, RL=150Ω, Vin=400mVpk
Figure 8.
Vout
Vin
-0.02
Vin
0
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
0
60
10
20
30
Figure 9.
40
50
60
Time (ns)
Time (ns)
Channel separation (crosstalk) vs.
frequency
Measurement configuration: crosstalk=20log(V0/V1)
Figure 10. Channel separation (crosstalk) vs.
frequency
Gain=+11, VCC=±2.5V, ZL=150Ω//27pF
-20
VIN
49.9Ω
-30
++
--
-40
V1
4/1output
-50
3/1output
Xtalk (dB)
100Ω 1kΩ
150Ω
-60
-70
-80
+
49.9Ω
-
2/1output
-90
VO
100Ω 1kΩ
-100
-110
1E+4
150Ω
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 11. Equivalent input noise voltage
Figure 12. Maximum output swing
Gain=100, VCC=±2.5V, no load
Gain=11, VCC=±2.5V, RL=150Ω
30
3
+
_
25
2
Vout
10k
Vin, Vout (V)
en (nV/√Hz)
100
20
15
10
Vin
0
-1
-2
5
0.1
1
10
Frequency (kHz)
10/24
1
100
1000
-3
0.0E+0
5.0E-2
1.0E-1
Time (ms)
1.5E-1
2.0E-1
TSH80-TSH81-TSH82
Electrical characteristics
Figure 13. Standby mode - Ton, Toff
Figure 14. Third order intermodulation(1)
VCC= ±2.5V, open loop
Gain=2, VCC= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C
0
Vin
3
-10
2
-20
IM3 (dBc)
Vin, Vout (V)
-30
1
0
Vout
-1
-40
740kHz
-50
80kHz
-60
-70
-2
-80
-3
Ton
-90
Standby
380kHz
Toff
640kHz
-100
0
2E-6
4E-6
6E-6
8E-6
1E-5
0
1
2
3
4
Vout peak(V)
Time (s)
1. The IFR2026 synthesizer generates a two-tone signal (F1=180kHz, F2=280kHz), each tone having the same amplitude.
The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator
and the spectrum analyzer are phase locked for better accuracy.
Figure 15. Group delay
Gain=2, VCC= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C
Gain
Group
Delay
5.32ns
11/24
Electrical characteristics
TSH80-TSH81-TSH82
Figure 16. Closed loop gain and phase vs.
frequency
Figure 17. Overshoot vs. output capacitance
Gain=+2, VCC= ±5V, RL=150Ω, Tamb = 25°C
Gain=+2, VCC= ±5V, Tamb = 25°C
10
10
200
150Ω//33pF
5
Gain
100
150Ω//22pF
0
-5
150Ω//10pF
Gain (dB)
Phase (°)
Gain (dB)
5
0
150Ω
0
Phase
-100
-10
-15
1E+4
1E+5
1E+6
1E+7
-200
1E+9
1E+8
-5
1E+6
1E+7
Frequency (Hz)
1E+8
1E+9
Frequency (Hz)
Figure 18. Closed loop gain and phase vs.
frequency
Figure 19. Closed loop gain and phase vs.
frequency
Gain=-10, VCC= ±5V, RL=150Ω, Tamb = 25°C
Gain=+11, VCC= ±5V, RL=150Ω, Tamb = 25°C
200
30
30
0
Phase
Phase
150
10
50
-50
Gain
Phase (°)
100
Gain
Gain (dB)
20
Phase (°)
Gain (dB)
20
10
-100
0
0
0
-10
1E+4
1E+5
1E+6
1E+7
-50
1E+9
1E+8
-10
1E+4
1E+5
1E+6
1E+7
-150
1E+9
1E+8
Frequency (Hz)
Frequency (Hz)
Figure 21. Large signal measurement negative slew rate
Gain=2, VCC=±5V, ZL=150Ω//5.6pF, Vin=400mVpk
Gain=2, VCC=±5V, ZL=150Ω//5.6pF, Vin=400mVpk
5
5
4
4
3
3
2
2
1
Vout (V)
Vout (V)
Figure 20. Large signal measurement positive slew rate
0
-1
-2
-1
-2
-3
-3
-4
-4
-5
-5
0
20
40
60
Time (ns)
12/24
1
0
80
100
0
20
40
60
Time (ns)
80
100
TSH80-TSH81-TSH82
Electrical characteristics
Figure 22. Small signal measurement - rise
time
Figure 23. Small signal measurement - fall
time
Gain=2, VCC=±5V, RL=150Ω, Vin=400mVpk
Gain=2, VCC=±5V, RL=150Ω, Vin=400mVpk
0.06
0.04
0.04
0.02
0.02
Vin, Vout (V)
Vin, Vout (V)
0.06
0
Vout
Vin
-0.02
Vout
0
Vin
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
0
60
10
20
30
40
50
60
Time (ns)
Time (ns)
Figure 24. Channel separation (crosstalk) vs.
frequency
Figure 25. Channel separation (crosstalk) vs.
frequency
Measurement configuration: crosstalk=20log(V0/V1)
Gain=+11, VCC=±5V, ZL=150Ω/ /27pF
-20
VIN
49.9Ω
-30
++
--
-40
V1
4/1output
-50
150Ω
Xtalk (dB)
100Ω 1kΩ
3/1output
-60
-70
-80
+
49.9Ω
-
2/1output
-90
VO
100Ω 1kΩ
-100
150Ω
-110
1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 26. Equivalent input noise voltage
Figure 27. Maximum output swing
Gain=100, VCC=±5V, no load
Gain=11, VCC=±5V, RL=150Ω
30
5
4
25
3
+
_
2
10k
Vin, Vout (V)
100
en (nV/√Hz)
Vout
20
15
1
Vin
0
-1
-2
-3
10
-4
5
0.1
1
10
Frequency (kHz)
100
1000
-5
0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Time (ms)
13/24
Electrical characteristics
TSH80-TSH81-TSH82
Figure 28. Standby mode - Ton, Toff
Figure 29. Third order intermodulation(1)
VCC= ±5V, open loop
Gain=2, VCC= ±5V, ZL=150Ω/ /27pF, Tamb = 25°C
0
Vin
-10
5
-20
IM3 (dBc)
Vin, Vout (V)
-30
Vout
0
-40
80kHz
-50
740kHz
-60
-70
-80
-5
0
-90
Standby
Ton
2E-6
4E-6
6E-6
380kHz
640kHz
Toff
-100
8E-6
0
1
2
3
4
Vout peak(V)
Time (s)
1. The IFR2026 synthesizer generates a two-tone signal (F1=180kHz, F2=280kHz), each tone having the same amplitude.
The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator
and the spectrum analyzer are phase locked for better accuracy.
Figure 30. Group delay
Gain=2, VCC= ±5V, ZL=150Ω//27pF, Tamb = 25°C
Gain
Group
Delay
5.1ns
14/24
TSH80-TSH81-TSH82
3
Test conditions
3.1
Layout precautions
Test conditions
To use the TSH8X circuits in the best manner at high frequencies, some precautions have to
be taken for power supplies:
●
In high-speed circuit applications, the implementation of a proper ground plane on both
sides of the PCB is mandatory to ensure low inductance and low resistance common
return.
●
Power supply bypass capacitors (4.7µF and ceramic 100pF) should be placed as close
as possible to the IC pins in order to improve high frequency bypassing and reduce
harmonic distortion. The power supply capacitors must be incorporated for both the
negative and the positive pins.
●
All inputs and outputs must be properly terminated with output resistors; thus, the
amplifier load is resistive only and the stability of the amplifier will be improved.
All leads must be wide and as short as possible especially for op-amp inputs and
outputs in order to decrease parasitic capacitance and inductance.
●
In lower gain applications, use a low feedback resistance (under 1kΩ) to reduce the
time constant with parasitic capacitance.
●
Choose component sizes as small as possible (SMD).
●
On the output, the load capacitance must be negligible to maintain good stability. You
can put a serial resistance as close as possible to the output pin to minimize the effect
of the load capacitance.
Figure 31. CCIR330 video line
15/24
Test conditions
3.2
TSH80-TSH81-TSH82
Video capabilities
To characterize the differential phase and differential gain a CCIR330 video line is used.
The video line contains 5 (flat) levels of luminance onto which the chrominance signal is
superimposed. The luminance gives various amplitudes which define the saturation of the
signal. The chrominance gives various phases which define the color of the signal.
Differential phase (or differential gain) distortion is present if a signal chrominance phase
(gain) is affected by luminance level. Differential phase and gain represent the ability to
uniformly process the high frequency information at all luminance levels.
When differential gain is present, color saturation is not correctly reproduced.
The input generator is the Rhode & Schwarz CCVS. The output measurement is done by
the Rhode and Schwarz VSA.
Figure 32. Measurement on Rhode and Schwarz VSA
16/24
TSH80-TSH81-TSH82
Table 7.
Test conditions
Video results
Parameter
Value (VCC=±2.5V)
Value (VCC=±5V)
Unit
Lum NL
0.1
0.3
%
Lum NL Step 1
100
100
%
Lum NL Step 2
100
99.9
%
Lum NL Step 3
99.9
99.8
%
Lum NL Step 4
99.9
99.9
%
Lum NL Step 5
99.9
99.7
%
Diff Gain pos
0
0
%
Diff Gain neg
-0.7
-0.6
%
Diff Gain pp
0.7
0.6
%
Diff Gain Step1
-0.5
-0.3
%
Diff Gain Step2
-0.7
-0.6
%
Diff Gain Step3
-0.3
-0.5
%
Diff Gain Step4
-0.1
-0.3
%
Diff Gain Step5
-0.4
-0.5
%
Diff Phase pos
0
0.1
degree
Diff Phase neg
-0.2
-0.4
degree
Diff Phase pp
0.2
0.5
degree
Diff Phase Step1
-0.2
-0.4
degree
Diff Phase Step2
-0.1
-0.4
degree
Diff Phase Step3
-0.1
-0.3
degree
Diff Phase Step4
0
0.1
degree
Diff Phase Step5
-0.2
-0.1
degree
17/24
Precautions on asymmetrical supply operation
4
TSH80-TSH81-TSH82
Precautions on asymmetrical supply operation
The TSH8x can be used either with a dual or a single supply. If a single supply is used, the
inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully
designed, in order to reject any noise present on the supply rail.
As the bias current is 15µA, you should use a high resistance R1 (approximately 10kΩ) to
avoid introducing an offset mismatch at the amplifier inputs.
Figure 33. Asymmetrical supply schematic diagram
IN Cin
Cout OUT
+
Vcc+
R1
R2
R3 C1
RL
R5
C3
Cf
C2
R4
C1, C2, C3 are bypass capacitors intended to filter perturbation from VCC. The following
capacitor values are appropriate:
C1=100nF and C2=C3=100µF
R2 and R3 are such that the current through them must be superior to 100 times the bias
current. Therefore, you could use the following resistance values:
R2=R3=4.7kΩ
Cin and Cout are chosen to filter the DC signal by the low pass filters (R1, Cin) and (Rout,
Cout). With R1=10kΩ, Rout=RL=150Ω, and Cin=2µF, Cout=220µF the cutoff frequency
obtained is lower than 10Hz.
Figure 34. Use of the TSH8x in gain = -1 configuration
Cf
1k
IN Cin
1k
Vcc+
R1
R2
R3 C1
18/24
+
C3
C2
Cout OUT
RL
TSH80-TSH81-TSH82
5
Package information
Package information
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
19/24
Package information
5.1
TSH80-TSH81-TSH82
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
H
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
1°
8°
1°
8°
ccc
20/24
Inches
0.10
0.004
TSH80-TSH81-TSH82
5.2
Package information
TSSOP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.2
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
1.00
0.65
k
0°
L
0.45
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
8°
0.024
L1
1
0.039
aaa
0.1
0.004
0.030
21/24
Package information
5.3
TSH80-TSH81-TSH82
SOT23-5 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Max.
Min.
Typ.
Max.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.00
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0.95
37.4
e1
1.9
74.8
L
22/24
Typ.
Mils
0.35
0.55
13.7
21.6
TSH80-TSH81-TSH82
6
Ordering information
Ordering information
Table 8.
Order codes
Type
Temperature
range
Package
TSH80ILT
Packaging
SOT23-5
K303
TSH80IYLT(1)
SOT23-5
(Automotive grade level)
TSH80ID/DT
SO-8
TSH81ID/DT
TSH81IPT
-40°C to +85°C
Tape & reel
K310
TSH80I
SO-8
(Automotive grade level)
TSH80IYD/IYDT(1)
Marking
Tube or
tape & reel
SH80IY
SO-8
TSH81I
TSSOP8
SH81I
Tape & reel
TSH81IYPT(1)
TSSOP8
(Automotive grade level)
TSH82ID/DT
SO-8
Tube or
tape & reel
TSH82I
TSSOP8
Tape & reel
SH82I
SO-8
(Automotive grade level)
Tube or
tape & reel
SH82IY
TSH82IPT
TSH82IYD/IYDT(1)
H81IY
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are on-going.
7
Revision history
Date
Revision
Changes
1-Feb-2003
1
First release.
2-Aug-2005
2
PPAP references inserted in the datasheet, see Table 8: Order codes
on page 23.
12-Apr-2007
3
Corrected temperature range for TSH80IYD/IYDT and
TSH82IYD/IYDT order codes in Table 8: Order codes on page 23.
24-Oct-2007
4
TSH81IYPT PPAP references inserted in the datasheet, see Table 8:
Order codes on page 23.
23/24
TSH80-TSH81-TSH82
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
24/24