TSH80-TSH81-TSH82 Wide Band, Rail-to-Rail Operational Amplifier with Standby Function ■ 4.5V, 12V operating conditions ■ 3dB-bandwidth: 100MHz ■ Slew-rate: 100V/µs ■ Output current: up to 55mA ■ Input single supply voltage ■ Output rail-to-rail ■ Specified for 150Ω load ■ Low distortion, THD: 0.1% ■ SOT23-5, TSSOP and SO packages L SOT23-5 (Plastic Micro package) D SO-8 (Plastic Micro package) Description The TSH8x series offers single and dual operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers feature also large output voltage swing and high output current capability to drive standard 150Ω loads. Running at single or dual supply voltage from 4.5V to 12V, these amplifiers are tested at 5V(±2.5V) and 10V(±5V) supplies. The TSH81 also features a standby mode, which allows the operational amplifier to be put into a standby mode with low power consumption and high output impedance.The function allows power saving or signals switching/multiplexing for high speed applications and video applications. P TSSOP8 (Plastic Micro package) Pin Connections (top view) TSH80 : SOT23-5/SO8 Output 1 VCC - 2 Non-Inv. In. 3 NC 1 5 VCC + _ 7 VCC + Non-Inv. In. 3 + 6 Output +4 Inv. In. Application ■ Video buffers ■ A/D converters driver ■ Hi-Fi applications August 2005 5 NC VCC - 4 TSH81 : SO8/TSSOP8 NC 1 For board space and weight saving, TSH8x series is proposed in SOT23-5, TSSOP8 and SO-8 packages. 8 NC Inv. In. 2 8 STANDBY Inverting Input 2 _ 7 VCC + Non Inverting Input 3 + 6 Output 5 NC VCC - 4 TSH82 : SO8/TSSOP8 Output1 1 8 VCC + Inverting Input1 2 _ Non Inverting Input1 3 + VCC - 4 7 Output2 _ 6 Inverting Input2 + 5 Non Inverting Input2 Rev 2 1/23 www.st.com 23 TSH80-TSH81-TSH82 Order Codes Type Temperature Range TSH80ILT Package Packaging SOT23-5 Marking K303 Tape & Reel TSH80IYLT -40°C to +85°C TSH80ID/DT TSH80IYD/IYDT -40°C to +125°C TSH81ID/DT SOT23-5 (automotive grade level) K310 SO-8 TSH80I SO-8 (automotive grade level) Tube or Tape & Reel SO-8 TSH81IPT SH80IY TSH81I TSSOP8 Tape & Reel SH81I SO-8 Tube or Tape & Reel TSH82I TSSOP8 Tape & Reel SH82I SO-8 (automotive grade level) Tube or Tape & Reel SH82IY -40°C to +85°C TSH82ID/DT TSH82IPT TSH82IYD/ITDT 2/23 -40°C to +125°C TSH80-TSH81-TSH82 1 Absolute Maximum Ratings Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol Parameter Value Unit VCC Supply Voltage (1) 14 V Vid Differential Input Voltage (2) ±2 V Vi Input Voltage (3) ±6 V Toper Operating Free Air Temperature Range -40 to +85 °C Tstg Storage Temperature -65 to +150 °C Maximum Junction Temperature 150 °C Thermal resistance junction to case (4) SOT23-5 SO8 TSSOPO8 80 28 37 Thermal resistance junction to ambient area SOT23-5 SO8 TSSOPO8 250 157 130 °C/W 2 kV Tj Rthjc Rthja ESD Human Body Model °C/W 1. All voltage values, except differential voltage are with respect to network ground terminal 2. Differential voltages are non-inverting input terminal with respect to the inverting terminal 3. The magnitude of input and output must never exceed VCC +0.3V 4. Short-circuits can cause excessive heating Table 2. Operating conditions Symbol Parameter VCC Supply Voltage VIC Common Mode Input Voltage Range Standby Value Unit 4.5 to 12 V VCC- to (V CC+ -1.1) V (V CC-) to (VCC+) V 3/23 Electrical Characteristics 2 Electrical Characteristics Table 3. Symbol VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified) Parameter Test Condition Min. Typ. Max. Unit 10 12 mV |Vio| Input Offset Voltage Tamb = 25°C Tmin. < Tamb < Tmax. 1.1 ∆Vio Input Offset Voltage Drift vs. Temperature Tmin. < Tamb < Tmax. 3 Iio Input Offset Current Tamb = 25°C Tmin. < Tamb < Tmax. 0.1 3.5 5 µA Iib Input Bias Current Tamb = 25°C Tmin. < Tamb < Tmax. 6 15 20 µA Cin Input Capacitance ICC Supply Current per Operator Tamb = 25°C Tmin. < Tamb < Tmax. CMR Common Mode Rejection Ratio (δVic/δVio) +0.1<Vic<3.9V & Vout=2.5V Tamb = 25°C Tmin. < Tamb < Tmax. SVR Supply Voltage Rejection Ratio (δVcc/δVio) Tamb = 25°C Tmin. < Tamb < Tmax. PSR Power Supply Rejection Ratio (δVcc/δVout) Positive & Negative Rail Large Signal Voltage Gain RL=150Ω to 1.5V Vout=1V to 4V Tamb = 25°C Tmin. < Tamb < Tmax. Output Short Circuit Current Source Tamb =25°C Vid=+1, Vout to 1.5V Vid=-1, Vout to 1.5V |Source| Sink Tmin. < Tamb < Tmax. Vid=+1, Vout to 1.5V Vid=-1, Vout to 1.5V |Source| Sink Avd Io 4/23 TSH80-TSH81-TSH82 µV/°C 0.3 8.2 72 70 97 68 65 75 75 75 70 84 35 33 55 55 28 28 pF 10.5 11.5 mA dB dB dB dB mA TSH80-TSH81-TSH82 Table 3. Electrical Characteristics VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Tamb =25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND Voh High Level Output Voltage RL = 150Ω to 2.5V RL = 600Ω to 2.5V RL = 2kΩ to 2.5V RL = 10kΩ to 2.5V Tmin. < Tamb < Tmax. RL = 150Ω to GND RL = 150Ω to 2.5V Min. Typ. 4.2 4.36 4.85 4.90 4.93 4.5 4.66 4.90 4.92 4.93 Low Level Output Voltage RL = 150Ω to 2.5V RL = 600Ω to 2.5V RL = 2kΩ to 2.5V RL = 10kΩ to 2.5V GBP Bw SR Gain Bandwidth Product Bandwidth @-3dB AVCL =+1 RL=150Ω to 2.5V Slew Rate AVCL =+2 RL=150Ω // C L to 2.5V CL = 5pF CL = 30pF V 48 54 55 56 150 220 105 76 61 400 Tmin. < Tamb < Tmax. RL = 150Ω to GND RL = 150Ω to 2.5V F=10MHz AVCL =+11 AVCL =-10 Unit 4.1 4.4 Tamb =25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND Vol Max. mV 200 450 60 65 55 MHz 87 MHz 104 105 V/µs φm Phase Margin RL=150Ω // 30pF to 2.5V 40 ° en Equivalent Input Noise Voltage F=100kHz 11 nV/√Hz Total Harmonic Distortion AVCL =+2, F=4MHz RL=150Ω // 30pF to 2.5V Vout=1Vpp Vout=2Vpp -61 -54 THD dB 5/23 Electrical Characteristics Table 3. Symbol TSH80-TSH81-TSH82 VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Unit Second order inter modulation product AVCL =+2, Vout=2Vpp RL=150Ω to 2.5V Fin1=180kHz, Fin2=280kHz spurious measurement @100kHz -76 dBc IM3 Third order inter modulation product AVCL =+2, Vout=2Vpp RL=150Ω to 2.5V Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz -68 dBc ∆G Differential gain AVCL =+2, RL=150Ω to 2.5V F=4.5MHz, V out=2Vpp 0.5 % Df Differential phase AVCL =+2, RL=150Ω to 2.5V F=4.5MHz, V out=2Vpp 0.5 ° Gf Gain Flatness F=DC to 6MHz, A VCL=+2 0.2 dB F=1MHz to 10MHz 65 dB IM2 Vo1/Vo2 Channel Separation Table 4. Symbol 6/23 Test Condition VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified) Parameter Test Condition Min. Typ. Max. Unit 10 12 mV |Vio| Input Offset Voltage Tamb = 25°C Tmin. < Tamb < T max. 0.8 ∆Vio Input Offset Voltage Drift vs. Temperature Tmin. < Tamb < T max. 2 Iio Input Offset Current Tamb = 25°C Tmin. < Tamb < T max. 0.1 3.5 5 µA Iib Input Bias Current Tamb = 25°C Tmin. < Tamb < T max. 6 15 20 µA Cin Input Capacitance ICC Supply Current per Operator Tamb = 25°C Tmin. < Tamb < T max. CMR Common Mode Rejection Ratio (δVic/δVio) -4.9 < Vic < 3.9V & Vout=GND Tamb = 25°C Tmin. < Tamb < T max. SVR Supply Voltage Rejection Ratio (δVCC/δVio) Tamb = 25°C Tmin. < Tamb < T max. µV/°C 0.7 9.8 81 72 106 71 65 77 pF 12.3 13.4 mA dB dB TSH80-TSH81-TSH82 Table 4. VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified) Symbol PSR Avd Io Voh Electrical Characteristics Parameter Test Condition Power Supply Rejection Ratio (δVCC/δVout) Positive & Negative Rail Large Signal Voltage Gain RL=150Ω to GND Vout=-4 to +4 Tamb = 25°C Tmin. < Tamb < T max. Output Short Circuit Current Source Tamb=25°C Vid=+1, V out to 1.5V Vid=-1, Vout to 1.5V |Source| Sink Tmin. < Tamb < T max. Vid=+1, V out to 1.5V Vid=-1, Vout to 1.5V |Source| Sink High Level Output Voltage Tamb=25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND Tmin. < Tamb < T max. RL = 150Ω to GND Vol Low Level Output Voltage Min. Typ. 75 75 70 86 35 30 55 55 4.2 Bw SR φm F=10MHz AVCL=+11 AVCL=-10 Bandwidth @-3dB AVCL=+1 RL=150Ω // 30pF to GND Slew Rate AVCL=+2 RL=150Ω // CL to GND CL = 5pF CL = 30pF Phase Margin RL=150Ω to gnd dB dB mA 4.36 4.85 4.9 4.93 V 4.1 Tamb=25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND Gain Bandwidth Product Unit 28 28 -4.63 -4.86 -4.9 -4.93 Tmin. < Tamb < T max. RL = 150Ω to GND GBP Max. -4.4 mV -4.3 68 65 55 MHz 100 MHz 117 118 40 V/µs ° 7/23 Electrical Characteristics Table 4. Symbol en TSH80-TSH81-TSH82 VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Unit nV/ √Hz Equivalent Input Noise Voltage F=100kHz 11 Total Harmonic Distortion AVCL=+2, F=4MHz RL=150Ω // 30pF to gnd Vout=1Vpp Vout=2Vpp -61 -54 Second order inter modulation product AVCL=+2, Vout=2Vpp RL=150Ω to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @100kHz -76 dBc IM3 Third order inter modulation product AVCL=+2, Vout=2Vpp RL=150Ω to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz -68 dBc ∆G Differential gain AVCL=+2, R L=150Ω to gnd F=4.5MHz, Vout=2Vpp 0.5 % Df Differential phase AVCL=+2, R L=150Ω to gnd F=4.5MHz, Vout=2Vpp 0.5 ° Gf Gain Flatness F=DC to 6MHz, AVCL =+2 0.2 dB F=1MHz to 10MHz 65 dB THD IM2 Vo1/Vo2 Channel Separation 8/23 Test Condition dB TSH80-TSH81-TSH82 Table 5. Symbol Electrical Characteristics Standby mode VCC+, VCC-, Tamb = 25°C (unless otherwise specified) Parameter Test Condition Min. Typ. Max. Unit Vlow Standby Low Level VCC - (VCC- +0.8) V Vhigh Standby High Level (V CC- +2) (V CC+) V 55 µA Current Consumption per ICC SBY Operator when STANDBY is Active Zout Output Impedance (Rout// Cout) Ton Time from Standby Mode to Active Mode Toff Time from Active Mode to Standby Mode pin 8 (TSH81) to VCC- 20 Rout Cout 10 17 MΩ pF 2 µs 10 µs Down to ICC SBY = 10µA TSH81 STANDBY CONTROL pin 8 (SBY) OPERATOR STATUS Vlow Standby Vhigh Active 9/23 Electrical Characteristics TSH80-TSH81-TSH82 Figure 1. Closed loop gain & phase vs. frequency Gain=+2, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C Figure 2. Overshoot function of output capacitance Gain=+2, Vcc= ±2.5V, Tamb = 25°C 200 10 10 150Ω//33pF 5 Gain 100 150Ω//22pF 5 0 -5 Phase 150Ω//10pF Gain (dB) Phase (°) Gain (dB) 0 150Ω 0 -100 -10 -200 -15 1E+4 1E+5 1E+6 1E+7 1E+8 -5 1E+6 1E+9 1E+7 Frequency (Hz) 1E+8 1E+9 Frequency (Hz) Figure 3. Closed loop gain & phase vs. frequency Gain=-10, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C 30 Figure 4. Closed loop gain & phase vs. frequency Gain=+11, Vcc= ±2.5V, R L=150Ω, Tamb = 25°C 200 Phase 0 30 Phase 150 20 20 -50 Gain Phase (°) Gain (dB) 50 10 Phase (°) Gain (dB) 100 Gain 10 0 -100 0 0 -50 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -10 1E+4 -100 1E+9 1E+5 1E+6 1E+7 1E+8 -150 1E+9 Frequency (Hz) Frequency (Hz) Large signal measurement - positive Figure 6. Large signal measurement slew rate negative slew rate Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpk Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpk 3 3 2 2 1 1 Vout (V) Vout (V) Figure 5. 0 -1 -1 -2 -2 -3 -3 0 10 20 30 40 Time (ns) 10/23 0 50 60 70 80 0 10 20 30 40 Time (ns) 50 60 70 TSH80-TSH81-TSH82 Electrical Characteristics Figure 8. Small signal measurement - fall time Gain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpk 0.06 0.06 0.04 0.04 0.02 0.02 0 Vin Vout (V) Vin, Vout (V) Figure 7. Small signal measurement - rise time Gain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpk Vout Vin -0.02 Vout Vin 0 -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 30 Time (ns) 40 50 60 Time (ns) Figure 9. Channel separation (Xtalk) vs. frequency Measurement configuration: Xtalk=20log(V0/V1) Figure 10. Channel separation (Xtalk) vs. frequency Gain=+11, Vcc=±2.5V, ZL=150Ω//27pF -20 VIN 49.9Ω ++ -- -30 -40 V1 4/1output -50 3/1output Xtalk (dB) 100Ω 1kΩ 150Ω -60 -70 -80 + 49.9Ω - 2/1output -90 VO 100Ω 1kΩ -100 -110 1E+4 150Ω 1E+5 1E+6 1E+7 Frequency (Hz) Figure 11. Equivalent noise voltage Gain=100, Vcc=±2.5V, No load Figure 12. Maximum output swing Gain=11, Vcc=±2.5V, RL=150Ω 30 3 + _ 25 2 Vout 10k 100 Vin, Vout (V) en (nV/√Hz) 1 20 15 10 Vin 0 -1 -2 5 0.1 1 10 Frequency (kHz) 100 1000 -3 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Time (ms) 11/23 Inter Modulation Products 3 TSH80-TSH81-TSH82 Inter Modulation Products The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. Figure 13. Standby mode - Ton, Toff Vcc= ±2.5V, Open Loop Figure 14. Group delay Gain=2, Vcc= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C Vin 3 Vin, Vout (V) 2 1 Gain 0 Vout -1 Group Delay -2 5.32ns -3 Standby Ton 0 2E-6 4E-6 Toff 6E-6 8E-6 1E-5 Time (s) Figure 15. Third order inter modulation Gain=2, Vcc= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C 0 -10 -20 IM3 (dBc) -30 -40 740kHz -50 80kHz -60 -70 -80 -90 380kHz 640kHz -100 0 1 2 Vout peak(V) 12/23 3 4 TSH80-TSH81-TSH82 Inter Modulation Products Figure 16. Closed loop gain & phase vs. frequency Gain=+2, Vcc= ±5V, RL=150Ω, Tamb = 25°C Figure 17. Overshoot function of output capacitance Gain=+2, Vcc= ±5V, Tamb = 25°C 10 200 10 150Ω//33pF 5 Gain 100 150Ω//22pF 0 -5 150Ω//10pF Gain (dB) Phase (°) Gain (dB) 5 0 150Ω 0 Phase -100 -10 -15 1E+4 1E+5 1E+6 1E+7 -200 1E+9 1E+8 -5 1E+6 1E+7 Frequency (Hz) Figure 18. Closed loop gain & phase vs. frequency Gain=-10, Vcc= ±5V, RL=150Ω, Tamb = 25°C 30 1E+9 Figure 19. Closed loop gain & phase vs. frequency Gain=+11, Vcc= ±5V, RL=150Ω, Tamb = 25°C 200 30 0 Phase Phase 150 20 10 50 -50 Gain Phase (°) 100 Gain Gain (dB) 20 Phase (°) Gain (dB) 1E+8 Frequency (Hz) 10 -100 0 0 0 -10 1E+4 1E+5 1E+6 1E+7 -50 1E+9 1E+8 -10 1E+4 1E+5 1E+6 1E+7 -150 1E+9 1E+8 Frequency (Hz) Frequency (Hz) 5 5 4 4 3 3 2 2 1 Vout (V) Vout (V) Figure 20. Large signal measurement - positive Figure 21. Large signal measurement slew rate negative slew rate Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpk Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpk 0 -1 -2 1 0 -1 -2 -3 -3 -4 -4 -5 -5 0 20 40 60 Time (ns) 80 100 0 20 40 60 80 100 Time (ns) 13/23 Inter Modulation Products TSH80-TSH81-TSH82 Figure 23. Small signal measurement - fall time Gain=2,Vcc=±5V,Zl=150Ω,Vin=400mVpk 0.06 0.06 0.04 0.04 0.02 0.02 0 Vin, Vout (V) Vin, Vout (V) Figure 22. Small signal measurement - rise time Gain=2,Vcc=±5V,Zl=150Ω,Vin=400mVpk Vout Vin -0.02 Vout 0 Vin -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 30 40 50 60 Time (ns) Time (ns) Figure 24. Channel separation (Xtalk) vs. frequency Measurement configuration: Xtalk=20log(V0/V1) Figure 25. Channel separation (Xtalk) vs. frequency Gain=+11, Vcc=±5V, ZL=150Ω//27pF VIN -20 ++ -- -30 V1 100Ω 1kΩ -40 4/1output -50 150Ω Xtalk (dB) 49.9Ω 3/1output -60 -70 -80 49.9Ω + - 2/1output -90 VO 100Ω 1kΩ -100 150Ω -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 26. Equivalent noise voltage Gain=100, Vcc=±5V, No load Figure 27. Maximum output swing Gain=11, Vcc=±5V, RL=150Ω 5 30 4 25 3 + _ 2 10k Vin, Vout (V) 100 en (nV/√Hz) Vout 20 15 1 Vin 0 -1 -2 -3 10 -4 5 0.1 1 10 Frequency (kHz) 14/23 100 1000 -5 0.0E+0 5.0E-2 1.0E-1 Time (ms) 1.5E-1 2.0E-1 TSH80-TSH81-TSH82 Inter Modulation Products The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. Figure 28. Standby mode - Ton, Toff Vcc= ±5V, Open Loop Figure 29. Group delay Gain=2, Vcc= ±5V, ZL=150Ω//27pF, Tamb = 25°C Vin Vin, Vout (V) 5 Gain Vout 0 Group Delay 5.1ns -5 Standby Ton 0 2E-6 4E-6 Toff 6E-6 8E-6 Time (s) Figure 30. Third order inter modulation Gain=2, Vcc= ±5V, ZL=150Ω//27pF, Tamb = 25°C 0 -10 -20 IM3 (dBc) -30 -40 80kHz -50 740kHz -60 -70 -80 -90 380kHz 640kHz -100 0 1 2 3 4 Vout peak(V) 15/23 Testing Conditions 4 Testing Conditions 4.1 Layout precautions: TSH80-TSH81-TSH82 To use the TSH8X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: ● First of all, the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return. ● Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. ● Proper termination of all inputs and outputs must be in accordance with output termination resistors; then the amplifier load will be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op amp inputs and outputs in order to decrease parasitic capacitance and inductance. ● For lower gain application, attention should be paid not to use large feedback resistance (>1kΩ) to reduce time constant with parasitic capacitances. ● Choose component sizes as small as possible (SMD). ● Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance the closest to the output pin to minimize its influence. Figure 31. CCIR330 video line 4.2 Maximum input level: The input level must not exceed the following values: ● Negative peak: must be greater than -Vcc+400mV. ● Positive peak value: must be lower than +Vcc-400mV. The electrical characteristics show the influence of the load on this parameter. 16/23 TSH80-TSH81-TSH82 4.3 Testing Conditions Video capabilities: To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. (the first level contains no luma). The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, color saturation is not correctly reproduced. The input generator is the Rhode & Schwarz CCVS. The output measurement is done by the Rhode and Schwarz VSA. Figure 32. Measurement on Rhode and Schwarz VSA Table 6. Video results Parameter Value (Vcc=±2.5V) Value (Vcc=±5V) Unit Lum NL Lum NL Step 1 Lum NL Step 2 Lum NL Step 3 Lum NL Step 4 Lum NL Step 5 Diff Gain pos Diff Gain neg Diff Gain pp Diff Gain Step1 Diff Gain Step2 Diff Gain Step3 Diff Gain Step4 Diff Gain Step5 Diff Phase pos Diff Phase neg Diff Phase pp Diff Phase Step1 Diff Phase Step2 Diff Phase Step3 Diff Phase Step4 Diff Phase Step5 0.1 100 100 99.9 99.9 99.9 0 -0.7 0.7 -0.5 -0.7 -0.3 -0.1 -0.4 0 -0.2 0.2 -0.2 -0.1 -0.1 0 -0.2 0.3 100 99.9 99.8 99.9 99.7 0 -0.6 0.6 -0.3 -0.6 -0.5 -0.3 -0.5 0.1 -0.4 0.5 -0.4 -0.4 -0.3 0.1 -0.1 % % % % % % % % % % % % % % deg deg deg deg deg deg deg deg 17/23 Precautions on Asymmetrical Supply Operation 5 TSH80-TSH81-TSH82 Precautions on Asymmetrical Supply Operation The TSH8X can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+Vcc/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15uA, you must carefully choose the resistance R1 not to introduce an offset mismatch at the amplifier inputs. IN Cin Cout OUT + Vcc+ R1 R2 R3 C1 RL R5 C3 Cf C2 R4 R1=10kΩ will be convenient. C1, C2, C3 are bypass capacitors from perturbation on Vcc as well as for the input and output signals. We choose C1=100nF and C2=C3=100uF. R2, R3 are such that the current through them must be superior to 100 times the bias current. So, we take R2=R3=4.7kΩ. Cin, as Cout are chosen to filter the DC signal by the low pass filters (R1,Cin) and (Rout, Cout). By taking R1=10kΩ, RL=150Ω, and Cin=2uF, Cout=220uF we provide a cutoff frequency below 10Hz. Figure 33. Use of the TSH8x in gain = -1 configuration Cf 1k IN Cin 1k - Vcc+ R1 R2 R3 C1 Cout OUT + RL C3 C2 Some precautions have to be added, specially for low power supply application. A feedback capacitance Cf should be added for better stability. The table summarizes the impact of the capacitance Cf on the phase margin of the circuit. 18/23 TSH80-TSH81-TSH82 Table 7. Precautions on Asymmetrical Supply Operation Capacitance Cf on the phase margin of the circuit Parameter Cf (pF) Phase Margin Vcc=±1.5V Vcc=±2.5V Vcc=±5V Unit 28 43 56 deg 40 39.3 38.3 MHz 30 43 56 deg 0 f-3dB Phase Margin 5.6 f-3dB Phase Margin 22 f-3dB Phase Margin 33 f-3dB 40 39.3 38.3 MHz 37 52 67 deg 37 34 32 MHz 48 65 78 deg 33.7 30.7 27.6 MHz Figure 34. Example of a video application Vcc/2 IN Ce Rb1 AOP1 + V3 A1 C4 Rb1 + - R4 LPF1 R2 R1 Vcc/2 PAL V2 - Re Vcc/2 R3 C3 V1 AOP2 R6 Cf Vcc/2 R5 Cf Standby Vcc/2 C8 Rb1 NTSC R7 C7 A2 R8 LPF2 V4 Rout Cout OUT RL + AOP3 R10 Vcc/2 R9 Cf Standby This example shows a possible application of the TSH8X circuit. Here, you can multiplex the channels for the different standard PAL, NTSC as you filter for the different bands; the video signal can be filtered with two different cutoff frequencies, corresponding to a PAL encoded signal (LPF1) or a NTSC signal (LPF2). You can multiplex input signals, as the outputs are in high impedance state in standby mode. This enables you, to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise. The video application requires 1Vpeak at input and output. Calculation of components: A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias. Hence Ce=10uF, with Rb1=10kΩ. At the output, Cout=220uF. The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1kΩ,V1=2Vpk, V2=1Vpk For the PAL communication, we need a low pass filtering. The load resistance R4 is function of the output resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1. To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier AOP2. For example, for an attenuation of 3dB, we choose R5=300Ω and R6=1kΩ. We have V4=2Vpk and Vout=1Vpk. The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same 19/23 Package Mechanical Data 6 TSH80-TSH81-TSH82 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 6.1 SO-8 Package SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 e 1.27 0.157 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 20/23 TSH80-TSH81-TSH82 6.2 Package Mechanical Data TSSOP8 Package TSSOP8 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. 1.2 A1 0.05 A2 0.80 b MAX. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 K 0˚ L 0.45 L1 1.00 0.60 1 0.006 0.039 0.041 0.122 0.0256 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 0.039 0079397/D 21/23 Package Mechanical Data 6.3 TSH80-TSH81-TSH82 SOT23-5 Package SOT23-5L MECHANICAL DATA mm. mils DIM. MIN. MAX. MIN. TYP. MAX. A 0.90 1.45 35.4 57.1 A1 0.00 0.15 0.0 5.9 A2 0.90 1.30 35.4 51.2 b 0.35 0.50 13.7 19.7 C 0.09 0.20 3.5 7.8 D 2.80 3.00 110.2 118.1 E 2.60 3.00 102.3 118.1 E1 1.50 1.75 59.0 68.8 e 0 .95 37.4 e1 1.9 74.8 L 22/23 TYP 0.35 0.55 13.7 21.6 TSH80-TSH81-TSH82 7 Revision History Revision History Date Revision Changes Feb. 2003 1 First Release Aug. 2005 2 PPAP references inserted in the datasheet see Table : Order Codes on page 2 . Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 23/23