STMICROELECTRONICS TSH82I

TSH80-TSH81-TSH82
Wide Band, Rail-to-Rail Operational Amplifier
with Standby Function
■
4.5V, 12V operating conditions
■
3dB-bandwidth: 100MHz
■
Slew-rate: 100V/µs
■
Output current: up to 55mA
■
Input single supply voltage
■
Output rail-to-rail
■
Specified for 150Ω load
■
Low distortion, THD: 0.1%
■
SOT23-5, TSSOP and SO packages
L
SOT23-5
(Plastic Micro package)
D
SO-8
(Plastic Micro package)
Description
The TSH8x series offers single and dual
operational amplifiers featuring high video
performances with large bandwidth, low distortion
and excellent supply voltage rejection. These
amplifiers feature also large output voltage swing
and high output current capability to drive
standard 150Ω loads.
Running at single or dual supply voltage from
4.5V to 12V, these amplifiers are tested at
5V(±2.5V) and 10V(±5V) supplies.
The TSH81 also features a standby mode, which
allows the operational amplifier to be put into a
standby mode with low power consumption and
high output impedance.The function allows power
saving or signals switching/multiplexing for high
speed applications and video applications.
P
TSSOP8
(Plastic Micro package)
Pin Connections (top view)
TSH80 : SOT23-5/SO8
Output 1
VCC - 2
Non-Inv. In. 3
NC 1
5 VCC +
_
7 VCC +
Non-Inv. In. 3
+
6 Output
+4 Inv. In.
Application
■
Video buffers
■
A/D converters driver
■
Hi-Fi applications
August 2005
5 NC
VCC - 4
TSH81 : SO8/TSSOP8
NC 1
For board space and weight saving, TSH8x series
is proposed in SOT23-5, TSSOP8 and SO-8
packages.
8 NC
Inv. In. 2
8 STANDBY
Inverting Input 2
_
7 VCC +
Non Inverting Input 3
+
6 Output
5 NC
VCC - 4
TSH82 : SO8/TSSOP8
Output1 1
8 VCC +
Inverting Input1 2
_
Non Inverting Input1 3
+
VCC - 4
7 Output2
_
6 Inverting Input2
+
5 Non Inverting Input2
Rev 2
1/23
www.st.com
23
TSH80-TSH81-TSH82
Order Codes
Type
Temperature Range
TSH80ILT
Package
Packaging
SOT23-5
Marking
K303
Tape & Reel
TSH80IYLT
-40°C to +85°C
TSH80ID/DT
TSH80IYD/IYDT
-40°C to +125°C
TSH81ID/DT
SOT23-5 (automotive grade level)
K310
SO-8
TSH80I
SO-8 (automotive grade level)
Tube or Tape & Reel
SO-8
TSH81IPT
SH80IY
TSH81I
TSSOP8
Tape & Reel
SH81I
SO-8
Tube or Tape & Reel
TSH82I
TSSOP8
Tape & Reel
SH82I
SO-8 (automotive grade level)
Tube or Tape & Reel
SH82IY
-40°C to +85°C
TSH82ID/DT
TSH82IPT
TSH82IYD/ITDT
2/23
-40°C to +125°C
TSH80-TSH81-TSH82
1
Absolute Maximum Ratings
Absolute Maximum Ratings
Table 1.
Key parameters and their absolute maximum ratings
Symbol
Parameter
Value
Unit
VCC
Supply Voltage (1)
14
V
Vid
Differential Input Voltage (2)
±2
V
Vi
Input Voltage (3)
±6
V
Toper
Operating Free Air Temperature Range
-40 to +85
°C
Tstg
Storage Temperature
-65 to +150
°C
Maximum Junction Temperature
150
°C
Thermal resistance junction to case (4)
SOT23-5
SO8
TSSOPO8
80
28
37
Thermal resistance junction to ambient area
SOT23-5
SO8
TSSOPO8
250
157
130
°C/W
2
kV
Tj
Rthjc
Rthja
ESD
Human Body Model
°C/W
1. All voltage values, except differential voltage are with respect to network ground terminal
2. Differential voltages are non-inverting input terminal with respect to the inverting terminal
3. The magnitude of input and output must never exceed VCC +0.3V
4. Short-circuits can cause excessive heating
Table 2.
Operating conditions
Symbol
Parameter
VCC
Supply Voltage
VIC
Common Mode Input Voltage Range
Standby
Value
Unit
4.5 to 12
V
VCC- to (V CC+ -1.1)
V
(V CC-) to (VCC+)
V
3/23
Electrical Characteristics
2
Electrical Characteristics
Table 3.
Symbol
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified)
Parameter
Test Condition
Min.
Typ.
Max.
Unit
10
12
mV
|Vio|
Input Offset Voltage
Tamb = 25°C
Tmin. < Tamb < Tmax.
1.1
∆Vio
Input Offset Voltage Drift vs.
Temperature
Tmin. < Tamb < Tmax.
3
Iio
Input Offset Current
Tamb = 25°C
Tmin. < Tamb < Tmax.
0.1
3.5
5
µA
Iib
Input Bias Current
Tamb = 25°C
Tmin. < Tamb < Tmax.
6
15
20
µA
Cin
Input Capacitance
ICC
Supply Current per Operator
Tamb = 25°C
Tmin. < Tamb < Tmax.
CMR
Common Mode Rejection Ratio
(δVic/δVio)
+0.1<Vic<3.9V &
Vout=2.5V
Tamb = 25°C
Tmin. < Tamb < Tmax.
SVR
Supply Voltage Rejection Ratio
(δVcc/δVio)
Tamb = 25°C
Tmin. < Tamb < Tmax.
PSR
Power Supply Rejection Ratio
(δVcc/δVout)
Positive & Negative Rail
Large Signal Voltage Gain
RL=150Ω to 1.5V
Vout=1V to 4V
Tamb = 25°C
Tmin. < Tamb < Tmax.
Output Short Circuit Current
Source
Tamb =25°C
Vid=+1, Vout to 1.5V
Vid=-1, Vout to 1.5V
|Source|
Sink
Tmin. < Tamb < Tmax.
Vid=+1, Vout to 1.5V
Vid=-1, Vout to 1.5V
|Source|
Sink
Avd
Io
4/23
TSH80-TSH81-TSH82
µV/°C
0.3
8.2
72
70
97
68
65
75
75
75
70
84
35
33
55
55
28
28
pF
10.5
11.5
mA
dB
dB
dB
dB
mA
TSH80-TSH81-TSH82
Table 3.
Electrical Characteristics
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test Condition
Tamb =25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
Voh
High Level Output Voltage
RL = 150Ω to 2.5V
RL = 600Ω to 2.5V
RL = 2kΩ to 2.5V
RL = 10kΩ to 2.5V
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
RL = 150Ω to 2.5V
Min.
Typ.
4.2
4.36
4.85
4.90
4.93
4.5
4.66
4.90
4.92
4.93
Low Level Output Voltage
RL = 150Ω to 2.5V
RL = 600Ω to 2.5V
RL = 2kΩ to 2.5V
RL = 10kΩ to 2.5V
GBP
Bw
SR
Gain Bandwidth Product
Bandwidth @-3dB
AVCL =+1
RL=150Ω to 2.5V
Slew Rate
AVCL =+2
RL=150Ω // C L to 2.5V
CL = 5pF
CL = 30pF
V
48
54
55
56
150
220
105
76
61
400
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
RL = 150Ω to 2.5V
F=10MHz
AVCL =+11
AVCL =-10
Unit
4.1
4.4
Tamb =25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
Vol
Max.
mV
200
450
60
65
55
MHz
87
MHz
104
105
V/µs
φm
Phase Margin
RL=150Ω // 30pF to 2.5V
40
°
en
Equivalent Input Noise Voltage
F=100kHz
11
nV/√Hz
Total Harmonic Distortion
AVCL =+2, F=4MHz
RL=150Ω // 30pF to 2.5V
Vout=1Vpp
Vout=2Vpp
-61
-54
THD
dB
5/23
Electrical Characteristics
Table 3.
Symbol
TSH80-TSH81-TSH82
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
Max.
Unit
Second order inter modulation
product
AVCL =+2, Vout=2Vpp
RL=150Ω to 2.5V
Fin1=180kHz,
Fin2=280kHz
spurious measurement
@100kHz
-76
dBc
IM3
Third order inter modulation
product
AVCL =+2, Vout=2Vpp
RL=150Ω to 2.5V
Fin1=180kHz,
Fin2=280KHz
spurious measurement
@400kHz
-68
dBc
∆G
Differential gain
AVCL =+2, RL=150Ω to
2.5V
F=4.5MHz, V out=2Vpp
0.5
%
Df
Differential phase
AVCL =+2, RL=150Ω to
2.5V
F=4.5MHz, V out=2Vpp
0.5
°
Gf
Gain Flatness
F=DC to 6MHz, A VCL=+2
0.2
dB
F=1MHz to 10MHz
65
dB
IM2
Vo1/Vo2 Channel Separation
Table 4.
Symbol
6/23
Test Condition
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified)
Parameter
Test Condition
Min.
Typ.
Max.
Unit
10
12
mV
|Vio|
Input Offset Voltage
Tamb = 25°C
Tmin. < Tamb < T max.
0.8
∆Vio
Input Offset Voltage Drift vs.
Temperature
Tmin. < Tamb < T max.
2
Iio
Input Offset Current
Tamb = 25°C
Tmin. < Tamb < T max.
0.1
3.5
5
µA
Iib
Input Bias Current
Tamb = 25°C
Tmin. < Tamb < T max.
6
15
20
µA
Cin
Input Capacitance
ICC
Supply Current per Operator
Tamb = 25°C
Tmin. < Tamb < T max.
CMR
Common Mode Rejection Ratio
(δVic/δVio)
-4.9 < Vic < 3.9V &
Vout=GND
Tamb = 25°C
Tmin. < Tamb < T max.
SVR
Supply Voltage Rejection Ratio
(δVCC/δVio)
Tamb = 25°C
Tmin. < Tamb < T max.
µV/°C
0.7
9.8
81
72
106
71
65
77
pF
12.3
13.4
mA
dB
dB
TSH80-TSH81-TSH82
Table 4.
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified)
Symbol
PSR
Avd
Io
Voh
Electrical Characteristics
Parameter
Test Condition
Power Supply Rejection Ratio
(δVCC/δVout)
Positive & Negative Rail
Large Signal Voltage Gain
RL=150Ω to GND
Vout=-4 to +4
Tamb = 25°C
Tmin. < Tamb < T max.
Output Short Circuit Current
Source
Tamb=25°C
Vid=+1, V out to 1.5V
Vid=-1, Vout to 1.5V
|Source|
Sink
Tmin. < Tamb < T max.
Vid=+1, V out to 1.5V
Vid=-1, Vout to 1.5V
|Source|
Sink
High Level Output Voltage
Tamb=25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
Tmin. < Tamb < T max.
RL = 150Ω to GND
Vol
Low Level Output Voltage
Min.
Typ.
75
75
70
86
35
30
55
55
4.2
Bw
SR
φm
F=10MHz
AVCL=+11
AVCL=-10
Bandwidth @-3dB
AVCL=+1
RL=150Ω // 30pF to GND
Slew Rate
AVCL=+2
RL=150Ω // CL to GND
CL = 5pF
CL = 30pF
Phase Margin
RL=150Ω to gnd
dB
dB
mA
4.36
4.85
4.9
4.93
V
4.1
Tamb=25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
Gain Bandwidth Product
Unit
28
28
-4.63
-4.86
-4.9
-4.93
Tmin. < Tamb < T max.
RL = 150Ω to GND
GBP
Max.
-4.4
mV
-4.3
68
65
55
MHz
100
MHz
117
118
40
V/µs
°
7/23
Electrical Characteristics
Table 4.
Symbol
en
TSH80-TSH81-TSH82
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
Max.
Unit
nV/
√Hz
Equivalent Input Noise Voltage
F=100kHz
11
Total Harmonic Distortion
AVCL=+2, F=4MHz
RL=150Ω // 30pF to gnd
Vout=1Vpp
Vout=2Vpp
-61
-54
Second order inter modulation
product
AVCL=+2, Vout=2Vpp
RL=150Ω to gnd
Fin1=180kHz,
Fin2=280KHz
spurious measurement
@100kHz
-76
dBc
IM3
Third order inter modulation
product
AVCL=+2, Vout=2Vpp
RL=150Ω to gnd
Fin1=180kHz,
Fin2=280KHz
spurious measurement
@400kHz
-68
dBc
∆G
Differential gain
AVCL=+2, R L=150Ω to gnd
F=4.5MHz, Vout=2Vpp
0.5
%
Df
Differential phase
AVCL=+2, R L=150Ω to gnd
F=4.5MHz, Vout=2Vpp
0.5
°
Gf
Gain Flatness
F=DC to 6MHz, AVCL =+2
0.2
dB
F=1MHz to 10MHz
65
dB
THD
IM2
Vo1/Vo2 Channel Separation
8/23
Test Condition
dB
TSH80-TSH81-TSH82
Table 5.
Symbol
Electrical Characteristics
Standby mode
VCC+, VCC-, Tamb = 25°C (unless otherwise specified)
Parameter
Test Condition
Min.
Typ.
Max.
Unit
Vlow
Standby Low Level
VCC -
(VCC- +0.8)
V
Vhigh
Standby High Level
(V CC- +2)
(V CC+)
V
55
µA
Current Consumption per
ICC SBY Operator when STANDBY is
Active
Zout
Output Impedance (Rout//
Cout)
Ton
Time from Standby Mode to
Active Mode
Toff
Time from Active Mode to
Standby Mode
pin 8 (TSH81) to VCC-
20
Rout
Cout
10
17
MΩ
pF
2
µs
10
µs
Down to ICC SBY =
10µA
TSH81 STANDBY CONTROL pin 8 (SBY)
OPERATOR STATUS
Vlow
Standby
Vhigh
Active
9/23
Electrical Characteristics
TSH80-TSH81-TSH82
Figure 1.
Closed loop gain & phase vs.
frequency
Gain=+2, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C
Figure 2.
Overshoot function of output
capacitance
Gain=+2, Vcc= ±2.5V, Tamb = 25°C
200
10
10
150Ω//33pF
5
Gain
100
150Ω//22pF
5
0
-5
Phase
150Ω//10pF
Gain (dB)
Phase (°)
Gain (dB)
0
150Ω
0
-100
-10
-200
-15
1E+4
1E+5
1E+6
1E+7
1E+8
-5
1E+6
1E+9
1E+7
Frequency (Hz)
1E+8
1E+9
Frequency (Hz)
Figure 3.
Closed loop gain & phase vs.
frequency
Gain=-10, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C
30
Figure 4.
Closed loop gain & phase vs.
frequency
Gain=+11, Vcc= ±2.5V, R L=150Ω, Tamb = 25°C
200
Phase
0
30
Phase
150
20
20
-50
Gain
Phase (°)
Gain (dB)
50
10
Phase (°)
Gain (dB)
100
Gain
10
0
-100
0
0
-50
-10
1E+4
1E+5
1E+6
1E+7
1E+8
-10
1E+4
-100
1E+9
1E+5
1E+6
1E+7
1E+8
-150
1E+9
Frequency (Hz)
Frequency (Hz)
Large signal measurement - positive Figure 6. Large signal measurement slew rate
negative slew rate
Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpk Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpk
3
3
2
2
1
1
Vout (V)
Vout (V)
Figure 5.
0
-1
-1
-2
-2
-3
-3
0
10
20
30
40
Time (ns)
10/23
0
50
60
70
80
0
10
20
30
40
Time (ns)
50
60
70
TSH80-TSH81-TSH82
Electrical Characteristics
Figure 8. Small signal measurement - fall time
Gain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpk
0.06
0.06
0.04
0.04
0.02
0.02
0
Vin Vout (V)
Vin, Vout (V)
Figure 7.
Small signal measurement - rise time
Gain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpk
Vout
Vin
-0.02
Vout
Vin
0
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
0
60
10
20
30
Time (ns)
40
50
60
Time (ns)
Figure 9.
Channel separation (Xtalk) vs.
frequency
Measurement configuration: Xtalk=20log(V0/V1)
Figure 10. Channel separation (Xtalk) vs.
frequency
Gain=+11, Vcc=±2.5V, ZL=150Ω//27pF
-20
VIN
49.9Ω
++
--
-30
-40
V1
4/1output
-50
3/1output
Xtalk (dB)
100Ω 1kΩ
150Ω
-60
-70
-80
+
49.9Ω
-
2/1output
-90
VO
100Ω 1kΩ
-100
-110
1E+4
150Ω
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 11. Equivalent noise voltage
Gain=100, Vcc=±2.5V, No load
Figure 12. Maximum output swing
Gain=11, Vcc=±2.5V, RL=150Ω
30
3
+
_
25
2
Vout
10k
100
Vin, Vout (V)
en (nV/√Hz)
1
20
15
10
Vin
0
-1
-2
5
0.1
1
10
Frequency (kHz)
100
1000
-3
0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Time (ms)
11/23
Inter Modulation Products
3
TSH80-TSH81-TSH82
Inter Modulation Products
The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone
having the same amplitude level.
The HP3585 spectrum analyzer measures the inter modulation products function of the output
voltage. The generator and the spectrum analyzer are phase locked for precision
considerations.
Figure 13. Standby mode - Ton, Toff
Vcc= ±2.5V, Open Loop
Figure 14. Group delay
Gain=2, Vcc= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C
Vin
3
Vin, Vout (V)
2
1
Gain
0
Vout
-1
Group
Delay
-2
5.32ns
-3
Standby
Ton
0
2E-6
4E-6
Toff
6E-6
8E-6
1E-5
Time (s)
Figure 15. Third order inter modulation
Gain=2, Vcc= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C
0
-10
-20
IM3 (dBc)
-30
-40
740kHz
-50
80kHz
-60
-70
-80
-90
380kHz
640kHz
-100
0
1
2
Vout peak(V)
12/23
3
4
TSH80-TSH81-TSH82
Inter Modulation Products
Figure 16. Closed loop gain & phase vs.
frequency
Gain=+2, Vcc= ±5V, RL=150Ω, Tamb = 25°C
Figure 17. Overshoot function of output
capacitance
Gain=+2, Vcc= ±5V, Tamb = 25°C
10
200
10
150Ω//33pF
5
Gain
100
150Ω//22pF
0
-5
150Ω//10pF
Gain (dB)
Phase (°)
Gain (dB)
5
0
150Ω
0
Phase
-100
-10
-15
1E+4
1E+5
1E+6
1E+7
-200
1E+9
1E+8
-5
1E+6
1E+7
Frequency (Hz)
Figure 18. Closed loop gain & phase vs.
frequency
Gain=-10, Vcc= ±5V, RL=150Ω, Tamb = 25°C
30
1E+9
Figure 19. Closed loop gain & phase vs.
frequency
Gain=+11, Vcc= ±5V, RL=150Ω, Tamb = 25°C
200
30
0
Phase
Phase
150
20
10
50
-50
Gain
Phase (°)
100
Gain
Gain (dB)
20
Phase (°)
Gain (dB)
1E+8
Frequency (Hz)
10
-100
0
0
0
-10
1E+4
1E+5
1E+6
1E+7
-50
1E+9
1E+8
-10
1E+4
1E+5
1E+6
1E+7
-150
1E+9
1E+8
Frequency (Hz)
Frequency (Hz)
5
5
4
4
3
3
2
2
1
Vout (V)
Vout (V)
Figure 20. Large signal measurement - positive Figure 21. Large signal measurement slew rate
negative slew rate
Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpk Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpk
0
-1
-2
1
0
-1
-2
-3
-3
-4
-4
-5
-5
0
20
40
60
Time (ns)
80
100
0
20
40
60
80
100
Time (ns)
13/23
Inter Modulation Products
TSH80-TSH81-TSH82
Figure 23. Small signal measurement - fall time
Gain=2,Vcc=±5V,Zl=150Ω,Vin=400mVpk
0.06
0.06
0.04
0.04
0.02
0.02
0
Vin, Vout (V)
Vin, Vout (V)
Figure 22. Small signal measurement - rise
time
Gain=2,Vcc=±5V,Zl=150Ω,Vin=400mVpk
Vout
Vin
-0.02
Vout
0
Vin
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
0
60
10
20
30
40
50
60
Time (ns)
Time (ns)
Figure 24. Channel separation (Xtalk) vs.
frequency
Measurement configuration: Xtalk=20log(V0/V1)
Figure 25. Channel separation (Xtalk) vs.
frequency
Gain=+11, Vcc=±5V, ZL=150Ω//27pF
VIN
-20
++
--
-30
V1
100Ω 1kΩ
-40
4/1output
-50
150Ω
Xtalk (dB)
49.9Ω
3/1output
-60
-70
-80
49.9Ω
+
-
2/1output
-90
VO
100Ω 1kΩ
-100
150Ω
-110
1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 26. Equivalent noise voltage
Gain=100, Vcc=±5V, No load
Figure 27. Maximum output swing
Gain=11, Vcc=±5V, RL=150Ω
5
30
4
25
3
+
_
2
10k
Vin, Vout (V)
100
en (nV/√Hz)
Vout
20
15
1
Vin
0
-1
-2
-3
10
-4
5
0.1
1
10
Frequency (kHz)
14/23
100
1000
-5
0.0E+0
5.0E-2
1.0E-1
Time (ms)
1.5E-1
2.0E-1
TSH80-TSH81-TSH82
Inter Modulation Products
The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone
having the same amplitude level.
The HP3585 spectrum analyzer measures the inter modulation products function of the output
voltage. The generator and the spectrum analyzer are phase locked for precision
considerations.
Figure 28. Standby mode - Ton, Toff
Vcc= ±5V, Open Loop
Figure 29. Group delay
Gain=2, Vcc= ±5V, ZL=150Ω//27pF, Tamb = 25°C
Vin
Vin, Vout (V)
5
Gain
Vout
0
Group
Delay
5.1ns
-5
Standby
Ton
0
2E-6
4E-6
Toff
6E-6
8E-6
Time (s)
Figure 30. Third order inter modulation
Gain=2, Vcc= ±5V, ZL=150Ω//27pF, Tamb = 25°C
0
-10
-20
IM3 (dBc)
-30
-40
80kHz
-50
740kHz
-60
-70
-80
-90
380kHz
640kHz
-100
0
1
2
3
4
Vout peak(V)
15/23
Testing Conditions
4
Testing Conditions
4.1
Layout precautions:
TSH80-TSH81-TSH82
To use the TSH8X circuits in the best manner at high frequencies, some precautions have to be
taken for power supplies:
●
First of all, the implementation of a proper ground plane in both sides of the PCB is
mandatory for high speed circuit applications to provide low inductance and low resistance
common return.
●
Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as
possible to the IC pins in order to improve high frequency bypassing and reduce harmonic
distortion. The power supply capacitors must be incorporated for both the negative and the
positive pins.
●
Proper termination of all inputs and outputs must be in accordance with output termination
resistors; then the amplifier load will be only resistive and the stability of the amplifier will
be improved.
All leads must be wide and as short as possible especially for op amp inputs and outputs
in order to decrease parasitic capacitance and inductance.
●
For lower gain application, attention should be paid not to use large feedback resistance
(>1kΩ) to reduce time constant with parasitic capacitances.
●
Choose component sizes as small as possible (SMD).
●
Finally, on output, the load capacitance must be negligible to maintain good stability. You
can put a serial resistance the closest to the output pin to minimize its influence.
Figure 31. CCIR330 video line
4.2
Maximum input level:
The input level must not exceed the following values:
●
Negative peak: must be greater than -Vcc+400mV.
●
Positive peak value: must be lower than +Vcc-400mV.
The electrical characteristics show the influence of the load on this parameter.
16/23
TSH80-TSH81-TSH82
4.3
Testing Conditions
Video capabilities:
To characterize the differential phase and differential gain a CCIR330 video line is used.
The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. (the first
level contains no luma). The luma gives various amplitudes which define the saturation of the
signal. The chrominance gives various phases which define the color of the signal.
Differential phase (respectively differential gain) distortion is present if a signal chrominance
phase (gain) is affected by luminance level. They represent the ability to uniformly process the
high frequency information at all luminance levels.
When differential gain is present, color saturation is not correctly reproduced.
The input generator is the Rhode & Schwarz CCVS. The output measurement is done by the
Rhode and Schwarz VSA.
Figure 32. Measurement on Rhode and Schwarz VSA
Table 6.
Video results
Parameter
Value (Vcc=±2.5V)
Value (Vcc=±5V)
Unit
Lum NL
Lum NL Step 1
Lum NL Step 2
Lum NL Step 3
Lum NL Step 4
Lum NL Step 5
Diff Gain pos
Diff Gain neg
Diff Gain pp
Diff Gain Step1
Diff Gain Step2
Diff Gain Step3
Diff Gain Step4
Diff Gain Step5
Diff Phase pos
Diff Phase neg
Diff Phase pp
Diff Phase Step1
Diff Phase Step2
Diff Phase Step3
Diff Phase Step4
Diff Phase Step5
0.1
100
100
99.9
99.9
99.9
0
-0.7
0.7
-0.5
-0.7
-0.3
-0.1
-0.4
0
-0.2
0.2
-0.2
-0.1
-0.1
0
-0.2
0.3
100
99.9
99.8
99.9
99.7
0
-0.6
0.6
-0.3
-0.6
-0.5
-0.3
-0.5
0.1
-0.4
0.5
-0.4
-0.4
-0.3
0.1
-0.1
%
%
%
%
%
%
%
%
%
%
%
%
%
%
deg
deg
deg
deg
deg
deg
deg
deg
17/23
Precautions on Asymmetrical Supply Operation
5
TSH80-TSH81-TSH82
Precautions on Asymmetrical Supply Operation
The TSH8X can be used either with a dual or a single supply. If a single supply is used, the
inputs are biased to the mid-supply voltage (+Vcc/2). This bias network must be carefully
designed, in order to reject any noise present on the supply rail.
As the bias current is 15uA, you must carefully choose the resistance R1 not to introduce an
offset mismatch at the amplifier inputs.
IN Cin
Cout OUT
+
Vcc+
R1
R2
R3 C1
RL
R5
C3
Cf
C2
R4
R1=10kΩ will be convenient. C1, C2, C3 are bypass capacitors from perturbation on Vcc as
well as for the input and output signals. We choose C1=100nF and C2=C3=100uF.
R2, R3 are such that the current through them must be superior to 100 times the bias current.
So, we take R2=R3=4.7kΩ.
Cin, as Cout are chosen to filter the DC signal by the low pass filters (R1,Cin) and (Rout, Cout).
By taking R1=10kΩ, RL=150Ω, and Cin=2uF, Cout=220uF we provide a cutoff frequency below
10Hz.
Figure 33. Use of the TSH8x in gain = -1 configuration
Cf
1k
IN Cin
1k
-
Vcc+
R1
R2
R3 C1
Cout OUT
+
RL
C3
C2
Some precautions have to be added, specially for low power supply application.
A feedback capacitance Cf should be added for better stability.
The table summarizes the impact of the capacitance Cf on the phase margin of the circuit.
18/23
TSH80-TSH81-TSH82
Table 7.
Precautions on Asymmetrical Supply Operation
Capacitance Cf on the phase margin of the circuit
Parameter
Cf (pF)
Phase Margin
Vcc=±1.5V
Vcc=±2.5V
Vcc=±5V
Unit
28
43
56
deg
40
39.3
38.3
MHz
30
43
56
deg
0
f-3dB
Phase Margin
5.6
f-3dB
Phase Margin
22
f-3dB
Phase Margin
33
f-3dB
40
39.3
38.3
MHz
37
52
67
deg
37
34
32
MHz
48
65
78
deg
33.7
30.7
27.6
MHz
Figure 34. Example of a video application
Vcc/2
IN
Ce
Rb1
AOP1
+
V3
A1
C4
Rb1
+
-
R4
LPF1
R2
R1
Vcc/2
PAL
V2
-
Re
Vcc/2
R3 C3
V1
AOP2
R6
Cf
Vcc/2
R5
Cf
Standby
Vcc/2
C8 Rb1
NTSC
R7 C7
A2
R8
LPF2
V4
Rout Cout OUT
RL
+ AOP3
R10
Vcc/2 R9
Cf
Standby
This example shows a possible application of the TSH8X circuit. Here, you can multiplex the
channels for the different standard PAL, NTSC as you filter for the different bands; the video
signal can be filtered with two different cutoff frequencies, corresponding to a PAL encoded
signal (LPF1) or a NTSC signal (LPF2).
You can multiplex input signals, as the outputs are in high impedance state in standby mode.
This enables you, to use a PAL filter as the Standby mode is active and to use the NTSC filter
otherwise.
The video application requires 1Vpeak at input and output.
Calculation of components:
A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias.
Hence Ce=10uF, with Rb1=10kΩ. At the output, Cout=220uF.
The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1kΩ,V1=2Vpk, V2=1Vpk
For the PAL communication, we need a low pass filtering. The load resistance R4 is function of
the output resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1.
To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd
amplifier AOP2.
For example, for an attenuation of 3dB, we choose R5=300Ω and R6=1kΩ. We have V4=2Vpk
and Vout=1Vpk.
The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same
19/23
Package Mechanical Data
6
TSH80-TSH81-TSH82
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com.
6.1
SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
e
1.27
0.157
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
20/23
TSH80-TSH81-TSH82
6.2
Package Mechanical Data
TSSOP8 Package
TSSOP8 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
1.2
A1
0.05
A2
0.80
b
MAX.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0.65
K
0˚
L
0.45
L1
1.00
0.60
1
0.006
0.039
0.041
0.122
0.0256
8˚
0˚
0.75
0.018
8˚
0.024
0.030
0.039
0079397/D
21/23
Package Mechanical Data
6.3
TSH80-TSH81-TSH82
SOT23-5 Package
SOT23-5L MECHANICAL DATA
mm.
mils
DIM.
MIN.
MAX.
MIN.
TYP.
MAX.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.0
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0 .95
37.4
e1
1.9
74.8
L
22/23
TYP
0.35
0.55
13.7
21.6
TSH80-TSH81-TSH82
7
Revision History
Revision History
Date
Revision
Changes
Feb. 2003
1
First Release
Aug. 2005
2
PPAP references inserted in the datasheet see Table : Order Codes on
page 2 .
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
23/23