STMICROELECTRONICS TSH81ID/DT

TSH80, TSH81, TSH82, TSH84
Wide band rail-to-rail operational amplifier with standby function
Features
■
Operating range from 4.5 to 12 V
■
3 dB-bandwidth: 100 MHz
■
Slew-rate 100 V/μs
■
Output current up to 55 mA
■
Input single supply voltage
■
Output rail-to-rail
■
Specified for 150 Ω loads
■
Low distortion, THD 0.1%
■
SOT23-5, TSSOP and SO packages
Video buffers
■
A/D converter drivers
■
Hi-fi applications
Output 1
5
VCC- 2
VCC+
+4 Inv. input
Non-inv. input 3
Pin connections TSH80/SO-8
8 NC
NC 1
Inv. input 2
_
7 VCC+
3
+
6 Output
5 NC
VCC- 4
Pin connections TSH81 SO-8/TSSOP8
NC 1
Description
The TSH8x series offers single, dual and quad
operational amplifiers featuring high video
performance with large bandwidth, low distortion
and excellent supply voltage rejection. These
amplifiers also feature large output voltage swings
and a high output current capability to drive
standard 150 Ω loads.
The TSH81 also features a standby mode, which
provides the operational amplifier with a low
power consumption and high output impedance.
This function allows power saving or signal
switching/multiplexing for high-speed and video
applications.
8 STANDBY
Inverting input 2
_
7 VCC+
Non inverting Input 3
+
6 Output
5 NC
VCC- 4
Pin connections TSH82 SO-8/TSSOP8
Output1 1
8 VCC+
Inverting input1 2
_
Non inv. input1 3
+
7 Output2
VCC- 4
Running at single or dual supply voltages ranging
from 4.5 to 12 V, these amplifiers are tested at 5 V
(±2.5 V) and 10 V (±5 V) supplies.
_
6 Inverting input2
+
5 Non inv. input2
Pin connections TSH84 TSSOP14
Output1 1
14 Output4
Inverting Input1 2
_
_
13 Inverting Input4
Non Inverting Input1 3
+
+
12 Non Inverting Input4
+
_
10 Non Inverting Input3
VCC + 4
Non Inverting Input2 5
Inverting Input2 6
For board space and weight saving, the TSH8x
series is proposed in SOT23-5, TSSOP8, SO-8
and TSSOP14 plastic micropackages.
May 2009
TSSOP8
Pin connections TSH80/SOT23-5
Applications
■
SO-8
SOT23-5
Doc ID 9413 Rev 5
Output2 7
11 VCC +
_
9 Inverting Input3
8 Output3
1/27
www.st.com
27
Contents
TSH80, TSH81, TSH82, TSH84
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1
Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2
Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4
Precautions on asymmetrical supply operation . . . . . . . . . . . . . . . . . 19
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2
TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3
TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4
SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings
Symbol
Parameter
Supply voltage (1)
VCC
Vid
Differential input voltage
Input voltage
Vi
(2)
(3)
Value
Unit
14
V
±2
V
±6
V
Toper
Operating free air temperature range
-40 to +85
°C
Tstg
Storage temperature
-65 to +150
°C
150
°C
Maximum junction temperature
Tj
(4)
Rthjc
Thermal resistance junction to case
SOT23-5
SO8
TSSOP8
TSSOP14
Rthja
Thermal resistance junction to ambient area
SOT23-5
SO8
TSSOP8
TSSOP14
250
157
130
110
ESD
HBM: human body model(5)
MM: machine model(6)
CDM: charged device model(7)
2
0.2
1
80
28
37
32
°C/W
°C/W
kV
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting terminal.
3. The magnitude of input and output must never exceed VCC +0.3 V.
4. Short-circuits can cause excessive heating.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
7. Charged device model: all pins and package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
Table 2.
Operating conditions
Symbol
VCC
VIC
Standby (pin 8)
Parameter
Value
Supply voltage
Common mode input voltage range
Threshold on pin 8 for TSH81
Doc ID 9413 Rev 5
Unit
4.5 to 12
V
+
VCC to (VCC -1.1)
V
(VCC-) to (VCC+)
V
-
3/27
Electrical characteristics
TSH80, TSH81, TSH82, TSH84
2
Electrical characteristics
Table 3.
VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25° C
(unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
10
12
mV
|Vio|
Input offset voltage
Tamb = 25° C
Tmin < Tamb < Tmax
1.1
ΔVio
Input offset voltage drift vs.
temperature
Tmin < Tamb < Tmax
3
Iio
Input offset current
Tamb = 25° C
Tmin < Tamb < Tmax
0.1
3.5
5
μA
Iib
Input bias current
Tamb = 25° C
Tmin < Tamb < Tmax
6
15
20
μA
Cin
Input capacitance
ICC
Supply current per operator
Tamb = 25° C
Tmin < Tamb < Tmax
CMR
Common mode rejection ratio
(δVic/δVio)
+0.1<Vic<3.9 V and Vout = 2.5 V
Tamb = 25° C
Tmin < Tamb < Tmax
SVR
Supply voltage rejection ratio Tamb = 25° C
(δVCC/δVio)
Tmin < Tamb < Tmax
PSR
Power supply rejection ratio
(δVCC/δVout)
Positive and negative rail
Large signal voltage gain
RL = 150 Ω connected to 1.5 V and
Vout = 1 V to 4 V
Tamb = 25° C
Tmin < Tamb < Tmax
75
70
84
|Source|
Vid = +1, Vout connected to 1.5 V
Tamb = 25° C
Tmin < Tamb < Tmax
35
28
55
Sink
Vid = -1, Vout connected to 1.5 V
Tamb = 25° C
Tmin < Tamb < Tmax
33
28
55
Avd
Io
4/27
μV/°C
0.3
Doc ID 9413 Rev 5
8.2
72
70
97
68
65
75
75
pF
10.5
11.5
mA
dB
dB
dB
dB
mA
TSH80, TSH81, TSH82, TSH84
Table 3.
Symbol
Voh
Vol
GBP
Bw
SR
Electrical characteristics
VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25° C
(unless otherwise specified) (continued)
Parameter
High level output voltage
Low level output voltage
Test conditions
Tamb = 25° C
RL = 150 Ω connected to GND
RL = 600 Ω connected to GND
RL = 2 kΩ connected to GND
RL = 10 kΩ connected to GND
RL = 150 Ω connected to 2.5 V
RL = 600 Ω connected to 2.5 V
RL = 2 kΩ connected to 2.5 V
RL = 10 kΩ connected to 2.5 V
Tmin < Tamb < Tmax
RL = 150 Ω connected to GND
RL = 150 Ω connected to 2.5 V
Min.
Typ.
4.2
4.36
4.85
4.90
4.93
4.66
4.90
4.92
4.93
4.60(1)
4.5
F = 10 MHz
AVCL= +11
AVCL= -10
Bandwidth at -3 dB
AVCL= +1
RL = 150 Ω connected to 2.5 V
Slew rate
AVCL=+2
RL = 150 Ω // CL to 2.5 V
CL = 5 pF
CL = 30 pF
Unit
V
4.1
4.4
Tamb = 25° C
RL = 150 Ω connected to GND
RL = 600 Ω connected to GND
RL = 2 kΩ connected to GND
RL = 10 kΩ connected to GND
RL = 150 Ω connected to 2.5 V
RL = 600 Ω connected to 2.5 V
RL = 2 kΩ connected to 2.5 V
RL = 10 kΩ connected to 2.5 V
Tmin < Tamb < Tmax
RL = 150 Ω connected to GND
RL = 150 Ω connected to 2.5 V
Gain bandwidth product
Max.
48
54
55
56
220
105
76
61
150
400
mV
200
450
60
65
55
MHz
87
MHz
104
105
V/μs
φm
Phase margin
RL = 150 Ω // 30 pF to 2.5 V
40
° (degree)
en
Equivalent input noise
voltage
F = 100 kHz
11
nV/√Hz
THD
Total harmonic distortion
AVCL= +2, F = 4 MHz
RL = 150 Ω // 30 pF to 2.5 V
Vout = 1Vpp
Vout = 2Vpp
-61
-54
IM2
AVCL = +2, Vout = 2 Vpp
Second order intermodulation RL = 150 Ω connected to 2.5 V
Fin1 = 180 kHz, Fin2 = 280 kHz
product
spurious measurement at 100 kHz
Doc ID 9413 Rev 5
-76
dB
dBc
5/27
Electrical characteristics
Table 3.
Symbol
TSH80, TSH81, TSH82, TSH84
VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25° C
(unless otherwise specified) (continued)
Parameter
Test conditions
Min.
Typ.
Max.
Unit
IM3
Third order intermodulation
product
AVCL = +2, Vout = 2 Vpp
RL = 150 Ω to 2.5 V
Fin1 = 180 kHz, Fin2 = 280 kHz
spurious measurement at 400 kHz
-68
dBc
ΔG
Differential gain
AVCL = +2, RL = 150 Ω to 2.5 V
F = 4.5 MHz, Vout = 2 Vpp
0.5
%
Df
Differential phase
AVCL = +2, RL = 150 Ω to 2.5 V
F = 4.5 MHz, Vout = 2 Vpp
0.5
° (degree)
Gf
Gain flatness
F = DC to 6 MHz, AVCL = +2
0.2
dB
F = 1 MHz to 10 MHz
65
dB
Vo1/Vo2 Channel separation
1. Tested on the TSH80ILT only.
6/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Table 4.
Electrical characteristics
VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25° C
(unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
10
12
mV
|Vio|
Input offset voltage
Tamb = 25° C
Tmin < Tamb < Tmax
0.8
ΔVio
Input offset voltage drift vs.
temperature
Tmin < Tamb < Tmax
2
Iio
Input offset current
Tamb = 25° C
Tmin < Tamb < Tmax
0.1
3.5
5
μA
Iib
Input bias current
Tamb = 25° C
Tmin < Tamb < Tmax
6
15
20
μA
Cin
Input capacitance
ICC
Supply current per operator
Tamb = 25° C
Tmin < Tamb < Tmax
CMR
Common mode rejection ratio
(δVic/δVio)
-4.9 < Vic < 3.9 V and Vout = GND
Tamb = 25° C
Tmin < Tamb < Tmax
81
72
106
SVR
Supply voltage rejection ratio
(δVCC/δVio)
Tamb = 25° C
Tmin < Tamb < Tmax
71
65
77
PSR
Power supply rejection ratio
(δVCC/δVout)
Positive and negative rail
Large signal voltage gain
RL = 150 Ω connected to GND
Vout = -4 to +4
Tamb = 25° C
Tmin < Tamb < Tmax
75
70
86
|Source|
Vid = +1, Vout connected to 1.5 V
Tamb = 25° C
Tmin < Tamb < Tmax
35
28
55
Sink
Vid = -1, Vout connected to 1.5 V
Tamb = 25° C
Tmin < Tamb < Tmax
30
28
55
4.2
High level output voltage
Tamb = 25° C
RL = 150 Ω connected to GND
RL = 600 Ω connected to GND
RL = 2 kΩ connected to GND
RL = 10 kΩ connected to GND
Tmin < Tamb < Tmax
RL = 150 Ω connected to GND
4.36
4.85
4.9
4.93
Avd
Io
Voh
Vol
Low level output voltage
μV/°C
0.7
Tamb = 25° C
RL = 150 Ω connected to GND
RL = 600 Ω connected to GND
RL = 2 kΩ connected to GND
RL = 10 kΩ connected to GND
Tmin < Tamb < Tmax
RL = 150 Ω connected to GND
Doc ID 9413 Rev 5
9.8
pF
12.3
13.4
mA
dB
dB
75
dB
dB
mA
V
4.1
-4.63
-4.86
-4.9
-4.93
-4.4
mV
-4.3
7/27
Electrical characteristics
Table 4.
VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25° C
(unless otherwise specified) (continued)
Symbol
GBP
Bw
SR
TSH80, TSH81, TSH82, TSH84
Parameter
Test conditions
Gain bandwidth product
F = 10 MHz
AVCL = +11
AVCL = -10
Bandwidth at -3 dB
AVCL = +1
RL = 150 Ω // 30 pF to GND
Slew rate
AVCL = +2
RL = 150 Ω // CL to GND
CL = 5 pF
CL = 30 pF
φm
Phase margin
en
Equivalent input noise voltage F = 100 kHz
RL = 150 Ω connected to GND
AVCL = +2, F = 4 MHz
RL = 150 Ω // 30 pF to GND
Vout = 1 Vpp
Vout = 2 Vpp
Min.
68
Typ.
Max.
Unit
65
55
MHz
100
MHz
117
118
V/μs
40
°
(degree)
11
nV/√Hz
dB
THD
Total harmonic distortion
IM2
AVCL = +2, Vout = 2 Vpp
Second order intermodulation RL = 150 Ω to GND
product
Fin1 = 180 kHz, Fin2 = 280 kHz
spurious measurement at 100 kHz
-76
dBc
IM3
Third order intermodulation
product
AVCL = +2, Vout = 2 Vpp
RL = 150 Ω to GND
Fin1 = 180 kHz, Fin2 = 280 kHz
spurious measurement at 400 kHz
-68
dBc
ΔG
Differential gain
AVCL = +2, RL = 150 Ω to GND
F = 4.5 MHz, Vout = 2 Vpp
0.5
%
Df
Differential phase
AVCL = +2, RL = 150 Ω to GND
F = 4.5 MHz, Vout = 2 Vpp
0.5
°
(degree)
Gf
Gain flatness
F = DC to 6 MHz, AVCL = +2
0.2
dB
Channel separation
F = 1 MHz to 10 MHz
65
dB
Vo1/Vo2
8/27
Doc ID 9413 Rev 5
-61
-54
TSH80, TSH81, TSH82, TSH84
Table 5.
Symbol
Vlow
Vhigh
ICC-STBY
Electrical characteristics
Standby mode - VCC+, VCC-, Tamb = 25° C (unless otherwise specified)
Parameter
Test conditions
Min.
Standby low level
VCC-
Standby high level
-
Zout
Output impedance (Rout//Cout)
Ton
Time from Standby mode to
Active mode
Toff
Time from Active mode to
Standby mode
Rout
Cout
Down to ICC-STBY = 10 μA
Max.
Unit
(VCC- +0.8)
V
+
(VCC +2)
Current consumption per
Pin 8 (TSH81) to VCCoperator when Standby is active
Table 6.
Typ.
(VCC )
V
55
μA
20
10
17
MΩ
pF
2
μs
10
μs
TSH81 standby control pin status
TSH81 standby control pin 8 (STANDBY)
Operator status
Vlow
Standby
Vhigh
Active
Doc ID 9413 Rev 5
9/27
Electrical characteristics
Figure 1.
TSH80, TSH81, TSH82, TSH84
Closed loop gain and phase vs.
frequency
Gain = +2, VCC = ±2.5 V, RL = 150 Ω, Tamb = 25° C
Figure 2.
Gain = +2, VCC = ±2.5 V, Tamb = 25° C
10
200
10
Overshoot vs. output capacitance
150Ω//33pF
150Ω//22pF
5
Gain
100
150Ω//10pF
-5
Phase
Gain (dB)
0
Ph ase (°)
Gain (dB)
5
0
150Ω
0
-100
-10
-15
-200
1E+4
1E+5
1E+6
1E+7
1E+8
-5
1E+9
1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Freq uen cy (Hz)
Figure 3.
Closed loop gain and phase vs.
frequency
Gain = -10, VCC = ±2.5 V, RL = 150 Ω, Tamb = 25° C
30
Figure 4.
Gain = +11, VCC = ±2.5 V, RL = 150 Ω, Tamb = 25° C
200
Phase
Closed loop gain and phase vs.
frequency
30
0
Ph as e
150
20
20
50
Phase (°)
10
-50
Gain
Gain (dB)
Gain
Phase (°)
Gain (dB)
100
10
-100
0
0
0
-50
-10
1E+4
1E+5
1E+6
1E+7
1E+8
- 10
-100
1E+9
1E+4
Large signal measurement positive slew rate
Figure 6.
Gain = +2, VCC = ±2.5 V, ZL = 150 Ω//5.6 pF, Vin = 400
2
Vout (V)
1
0
-1
-2
-3
10
20
30
40
50
60
70
80
Time (ns)
10/27
1E+7
1E+8
1E+9
Large signal measurement negative slew rate
Gain = +2, VCC = ±2.5 V, ZL = 150 Ω//5.6 pF,
Vin = 400 mVpk
3
0
1E+6
Frequency (Hz)
Frequency (Hz)
Figure 5.
-150
1E+5
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Figure 7.
Electrical characteristics
Small signal measurement - rise
time
Small signal measurement - fall
time
Gain = +2, VCC = ±2.5 V, RL = 150 Ω, Vin = 400 mVpk
0.06
0.06
0.04
0.04
0.02
0.02
Vin, Vout (V)
Vin, Vout (V)
Gain = +2, VCC = ±2.5 V, RL = 150 Ω, Vin = 400 mVpk
Figure 8.
0
Vout
Vin
Vout
Vin
0
-0.02
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
0
60
10
20
Time (ns)
Figure 9.
30
40
50
60
Time (ns)
Channel separation (crosstalk) vs.
frequency
Measurement configuration: crosstalk = 20 log(V0/V1)
Figure 10. Channel separation (crosstalk) vs.
frequency
Gain = +11, VCC = ±2.5 V, ZL = 150 Ω//27 pF
VIN
-20
++
49.9Ω
--
-30
V1
4/1output
-50
150Ω
3/1output
Xtalk (dB)
100Ω 1kΩ
-40
-60
-70
-80
2/1output
+
49.9Ω
-
-90
VO
100Ω 1kΩ
-100
-110
150Ω
1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 11. Equivalent input noise voltage
Figure 12. Maximum output swing
Gain = +100, VCC = ±2.5 V, no load
Gain = +11, VCC = ±2.5 V, RL = 150 Ω
3
30
2
25
Vout
+
_
1
1 0k
Vin, Vout (V)
en (nV/ Hz)
100
20
15
10
Vin
0
-1
-2
5
-3
0 .1
1
10
10 0
1000
Frequency (kHz)
0.0E+0
5.0E -2
1.0E-1
1.5E- 1
2.0 E-1
Time (ms)
Doc ID 9413 Rev 5
11/27
Electrical characteristics
TSH80, TSH81, TSH82, TSH84
Figure 13. Standby mode - Ton, Toff
Figure 14. Third order intermodulation(1)
VCC = ±2.5 V, open loop
Gain = +2, VCC = ±2.5 V, ZL = 150 Ω//27 pF,
Tamb = 25° C
0
3
-10
2
-20
-30
-40
IM3 (dBc)
Vin, Vout (V)
1
0
Vout
-1
7 40kHz
-50
80kHz
-60
-70
-2
-80
-3
Ton
S tandby
-90
Toff
380kHz
640kHz
-100
0
2 E-6
4E-6
6E- 6
8 E-6
1E-5
time (s)
0
1
2
3
4
Vout peak(V)
1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same
amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The
generator and the spectrum analyzer are phase locked for better accuracy.
Figure 15. Group delay
Gain = +2, VCC = ±2.5 V, ZL = 150 Ω//27 pF, Tamb = 25° C
Gain
Group
Delay
5.32ns
12/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Electrical characteristics
Figure 16. Closed loop gain and phase vs.
frequency
Figure 17. Overshoot vs. output capacitance
Gain = +2, VCC = ±5 V, RL = 150 Ω, Tamb = 25° C
Gain = +2, VCC = ±5 V, Tamb = 25° C
10
20
200
150Ω//33pF
5
10
Gain
150Ω//22pF
100
-5
0
Phase
-10
Gain (dB)
150Ω//10pF
Phase (°)
Gain (dB)
0
0
150Ω
-10
-100
-20
-15
-20
1E+4
1E+5
1E+6
1E+7
-200
1E+9
1E+8
-30
1E+4
1E+5
Frequency (Hz)
1E+6
1E+7
1E+8
1E+9
Frequency (Hz)
Figure 18. Closed loop gain and phase vs.
frequency
Figure 19. Closed loop gain and phase vs.
frequency
Gain = -10, VCC = ±5 V, RL = 150 Ω, Tamb = 25° C
Gain = +11, VCC = ±5 V, RL = 150 Ω, Tamb = 25° C
20 0
30
30
0
Phas e
Phase
15 0
10
50
-50
Gain
Phase (°)
10 0
Gain
Gain (dB)
20
Phase (°)
Gain (dB)
20
10
-100
0
0
0
- 10
-10
1E+4
-5 0
1E+4
1E+5
1E+7
1 E+6
1 E+8
1E+9
1E+5
1E+6
1E+7
-150
1E+9
1E+8
Frequency (Hz)
Frequency (Hz)
Figure 20. Large signal measurement positive slew rate
Figure 21. Large signal measurement negative slew rate
Gain = +2, VCC = ±5 V, ZL = 150 Ω//5.6 pF,
Vin = 400 mVpk
Gain = +2, VCC = ±5 V, ZL = 150 Ω//5.6 pF,
Vin = 400 mVpk
5
5
4
4
3
3
2
2
1
Vout (V)
Vout (V)
1
0
-1
0
-1
-2
-2
-3
-3
-4
-4
-5
-5
0
20
40
60
80
10 0
Time (ns)
0
20
40
60
80
10 0
Time (ns)
Doc ID 9413 Rev 5
13/27
Electrical characteristics
TSH80, TSH81, TSH82, TSH84
Figure 23. Small signal measurement - fall
time
Gain = +2, VCC = ±5 V, RL = 150 Ω, Vin = 400 mVpk
Gain = +2, VCC = ±5 V, RL = 150 Ω, Vin = 400 mVpk
0.06
0 .06
0.04
0 .04
0.02
0 .02
Vin, Vout (V)
Vin, Vout (V)
Figure 22. Small signal measurement - rise
time
0
Vout
Vin
-0.02
Vout
Vin
0
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
0
60
10
20
30
40
50
60
Time (ns)
Time (ns)
Figure 24. Channel separation (crosstalk) vs.
frequency
Figure 25. Channel separation (crosstalk) vs.
frequency
Measurement configuration: crosstalk = 20 log(V0/V1)
Gain = +11, VCC = ±5 V, ZL = 150 Ω/ /27 pF
VIN
-2 0
++
--
-3 0
V1
100Ω 1kΩ
-4 0
4/1 output
-5 0
150Ω
3/1output
Xtalk (dB)
49.9Ω
-6 0
-7 0
-8 0
+
49.9Ω
-
2/1out put
-9 0
VO
100Ω 1kΩ
-1 00
150Ω
-110
1E+4
1E+5
1E+6
1E+7
Frequency (Hz)
Figure 26. Equivalent input noise voltage
Figure 27. Maximum output swing
Gain = +100, VCC = ±5 V, no load
Gain = +11, VCC = ±5 V, RL = 150 Ω
30
5
4
Vout
25
3
+
_
2
1 0k
Vin, Vout (V)
en (nV/ Hz)
100
20
15
1
Vin
0
-1
-2
10
-3
-4
5
-5
0 .1
1
10
10 0
1000
Frequency (kHz)
14/27
0.0E+0
5.0 E-2
1.0E-1
Time (ms)
Doc ID 9413 Rev 5
1.5E- 1
2 .0E- 1
TSH80, TSH81, TSH82, TSH84
Electrical characteristics
Figure 28. Standby mode - Ton, Toff
Figure 29. Third order intermodulation(1)
VCC = ±5 V, open loop
Gain = +2, VCC = ±5 V, ZL = 150 Ω/ /27 pF, Tamb = 25° C
0
-10
5
-20
-40
IM3 (dBc)
Vin, Vout (V)
-30
Vout
0
80kHz
-50
740kHz
-60
-70
-80
-5
-90
Standby
Ton
Toff
380kHz
640kHz
-10 0
0
2E -6
4E-6
6E- 6
8E-6
time (s)
0
1
2
3
4
Vout peak(V)
1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same
amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The
generator and the spectrum analyzer are phase locked for better accuracy.
Figure 30. Group delay
Gain = +2, VCC = ±5 V, ZL = 150 Ω//27 pF, Tamb = 25° C
Gain
Group
Delay
5.1ns
Doc ID 9413 Rev 5
15/27
Test conditions
TSH80, TSH81, TSH82, TSH84
3
Test conditions
3.1
Layout precautions
To make the best use of the TSH8X circuits at high frequencies, some precautions have to
be taken with regard to the power supplies.
●
In high-speed circuit applications, the implementation of a proper ground plane on both
sides of the PCB is mandatory to ensure low inductance and low resistance common
return.
●
Power supply bypass capacitors (4.7 µF and ceramic 100 pF) should be placed as
close as possible to the IC pins in order to improve high frequency bypassing and
reduce harmonic distortion. The power supply capacitors must be incorporated for both
the negative and positive pins.
●
All inputs and outputs must be properly terminated with output resistors; thus, the
amplifier load is resistive only and the stability of the amplifier will be improved.
All leads must be wide and as short as possible especially for op-amp inputs and
outputs in order to decrease parasitic capacitance and inductance.
●
Time constants result from parasitic capacitance. To reduce time constants in lowergain applications, use a low feedback resistance (under 1 kΩ).
●
Choose the smallest possible component sizes (SMD).
●
On the output, the load capacitance must be negligible to maintain good stability. You
can put a serial resistance as close as possible to the output pin to minimize the effect
of the load capacitance.
Figure 31. CCIR330 video line
16/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
3.2
Test conditions
Video capabilities
To characterize the differential phase and differential gain a CCIR330 video line is used.
The video line contains five (flat) levels of luminance onto which the chrominance signal is
superimposed. The luminance gives various amplitudes which define the saturation of the
signal. The chrominance gives various phases which define the color of the signal.
Differential phase (or differential gain) distortion is present if a signal chrominance phase
(gain) is affected by the luminance level. The differential phase and gain represent the ability
to uniformly process the high frequency information at all luminance levels.
When a differential gain is present, color saturation is not correctly reproduced.
The input generator is the Rhode & Schwarz CCVS. The output measurement is done by
the Rhode and Schwarz VSA.
Figure 32. Measurement on Rhode and Schwarz VSA
Doc ID 9413 Rev 5
17/27
Test conditions
TSH80, TSH81, TSH82, TSH84
Table 7.
18/27
Video results
Parameter
Value (VCC = ±2.5 V)
Value (VCC = ±5 V)
Unit
Lum NL
0.1
0.3
%
Lum NL Step 1
100
100
%
Lum NL Step 2
100
99.9
%
Lum NL Step 3
99.9
99.8
%
Lum NL Step 4
99.9
99.9
%
Lum NL Step 5
99.9
99.7
%
Diff Gain pos
0
0
%
Diff Gain neg
-0.7
-0.6
%
Diff Gain pp
0.7
0.6
%
Diff Gain Step1
-0.5
-0.3
%
Diff Gain Step2
-0.7
-0.6
%
Diff Gain Step3
-0.3
-0.5
%
Diff Gain Step4
-0.1
-0.3
%
Diff Gain Step5
-0.4
-0.5
%
Diff Phase pos
0
0.1
Degree
Diff Phase neg
-0.2
-0.4
Degree
Diff Phase pp
0.2
0.5
Degree
Diff Phase Step1
-0.2
-0.4
Degree
Diff Phase Step2
-0.1
-0.4
Degree
Diff Phase Step3
-0.1
-0.3
Degree
Diff Phase Step4
0
0.1
Degree
Diff Phase Step5
-0.2
-0.1
Degree
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
4
Precautions on asymmetrical supply operation
Precautions on asymmetrical supply operation
The TSH8x can be used with either a dual or a single supply. If a single supply is used, the
inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully
designed so as to reject any noise present on the supply rail.
As the bias current is 15 µA, you should use a high resistance R1 (approximately 10 kΩ) to
avoid introducing an offset mismatch at the amplifier’s inputs.
Figure 33. Asymmetrical supply schematic diagram
IN Cin
Cout OUT
+
Vcc+
-
R1
R5
R2
R3
RL
C3
Cf
C2
C1
R4
AM00845
C1, C2, C3 are bypass capacitors intended to filter perturbations from VCC. The following
capacitor values are appropriate.
C1 = 100 nF and C2 = C3 = 100 µF
R2 and R3 are such that the current through them must be superior to 100 times the bias
current. Therefore, you could use the following resistance values.
R2 = R3 = 4.7 kΩ
Cin and Cout are chosen to filter the DC signal by the low pass filters (R1, Cin) and (Rout,
Cout). With R1 = 10 kΩ, Rout = RL = 150 Ω, and Cin = 2 µF, Cout = 220 µF the cutoff
frequency obtained is lower than 10 Hz.
Figure 34. Use of the TSH8x in a gain = -1 configuration
Cf
1k
IN Cin
1k
Vcc+
+
R1
R2
R3
C3
C1
Cout OUT
RL
C2
AM00846
Doc ID 9413 Rev 5
19/27
Package information
5
TSH80, TSH81, TSH82, TSH84
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
20/27
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
5.1
Package information
SO-8 package information
Figure 35. SO-8 package mechanical drawing
Table 8.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.75
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.25
Max.
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
1.04
1°
0.040
8°
0.10
Doc ID 9413 Rev 5
1°
8°
0.004
21/27
Package information
5.2
TSH80, TSH81, TSH82, TSH84
TSSOP8 package information
Figure 36. TSSOP8 package mechanical drawing
Table 9.
TSSOP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0°
L
0.45
aaa
1.00
0.65
k
L1
22/27
Inches
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
1
8°
0.024
0.030
0.039
0.10
Doc ID 9413 Rev 5
0.004
TSH80, TSH81, TSH82, TSH84
5.3
Package information
TSSOP14 package information
Figure 37. TSSOP14 package mechanical drawing
Table 10.
TSSOP14 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.90
5.00
5.10
0.193
0.197
0.201
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.176
e
L
0.65
0.45
L1
k
aaa
1.00
0.60
0.0256
0.75
0.018
1.00
0°
0.024
0.030
0.039
8°
0.10
Doc ID 9413 Rev 5
0°
8°
0.004
23/27
Package information
5.4
TSH80, TSH81, TSH82, TSH84
SOT23-5 package information
Figure 38. SOT23-5 package mechanical drawing
Table 11.
SOT23-5 package mechanical data
Dimensions
Ref.
A
Millimeters
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
1.20
1.45
0.035
0.047
0.057
A1
24/27
Inches
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.013
0.015
0.019
C
0.09
0.15
0.20
0.003
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.013
0.023
K
0 degrees
10 degrees
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
6
Ordering information
Ordering information
Table 12.
Order codes
Type
Temperature
range
TSH80ILT
Package
SOT23-5
TSH80IYLT(1)
SOT23-5
(Automotive grade level)
TSH80ID/DT
SO-8
SO-8
(Automotive grade level)
TSH80IYD/IYDT(1)
TSH81ID/DT
TSH81IPT
Packaging
-40°C to +85°C
Marking
K303
Tape & reel
K310
TSH80I
Tube or
tape & reel
SO-8
SH80IY
TSH81I
TSSOP8
Tape & reel
SH81I
SO-8
Tube or
tape & reel
TSH82I
TSH82IPT
TSSOP8
Tape & reel
SH82I
TSH84IPT
TSSOP14
Tape & reel
SH84I
TSH82ID/DT
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are on-going.
Doc ID 9413 Rev 5
25/27
Revision history
7
26/27
TSH80, TSH81, TSH82, TSH84
Revision history
Date
Revision
Changes
1-Feb-2003
1
First release.
2-Aug-2005
2
PPAP references inserted in the datasheet, see Table 12: Order
codes on page 25.
12-Apr-2007
3
Corrected temperature range for TSH80IYD/IYDT and
TSH82IYD/IYDT order codes in Table 12: Order codes on page 25.
24-Oct-2007
4
TSH81IYPT PPAP references inserted in the datasheet, see
Table 12: Order codes on page 25.
19-May-2009
5
Added data relating to the quad TSH84 device.
Removed TSH81IYPT, TSH81IYD-IYDT, TSH82IYPT and
TSH82IYD-IYDT order codes in Table 12: Order codes.
Doc ID 9413 Rev 5
TSH80, TSH81, TSH82, TSH84
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 9413 Rev 5
27/27