TSH80, TSH81, TSH82, TSH84 Wide band rail-to-rail operational amplifier with standby function Features ■ Operating range from 4.5 to 12 V ■ 3 dB-bandwidth: 100 MHz ■ Slew-rate 100 V/μs ■ Output current up to 55 mA ■ Input single supply voltage ■ Output rail-to-rail ■ Specified for 150 Ω loads ■ Low distortion, THD 0.1% ■ SOT23-5, TSSOP and SO packages Video buffers ■ A/D converter drivers ■ Hi-fi applications Output 1 5 VCC- 2 VCC+ +4 Inv. input Non-inv. input 3 Pin connections TSH80/SO-8 8 NC NC 1 Inv. input 2 _ 7 VCC+ 3 + 6 Output 5 NC VCC- 4 Pin connections TSH81 SO-8/TSSOP8 NC 1 Description The TSH8x series offers single, dual and quad operational amplifiers featuring high video performance with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers also feature large output voltage swings and a high output current capability to drive standard 150 Ω loads. The TSH81 also features a standby mode, which provides the operational amplifier with a low power consumption and high output impedance. This function allows power saving or signal switching/multiplexing for high-speed and video applications. 8 STANDBY Inverting input 2 _ 7 VCC+ Non inverting Input 3 + 6 Output 5 NC VCC- 4 Pin connections TSH82 SO-8/TSSOP8 Output1 1 8 VCC+ Inverting input1 2 _ Non inv. input1 3 + 7 Output2 VCC- 4 Running at single or dual supply voltages ranging from 4.5 to 12 V, these amplifiers are tested at 5 V (±2.5 V) and 10 V (±5 V) supplies. _ 6 Inverting input2 + 5 Non inv. input2 Pin connections TSH84 TSSOP14 Output1 1 14 Output4 Inverting Input1 2 _ _ 13 Inverting Input4 Non Inverting Input1 3 + + 12 Non Inverting Input4 + _ 10 Non Inverting Input3 VCC + 4 Non Inverting Input2 5 Inverting Input2 6 For board space and weight saving, the TSH8x series is proposed in SOT23-5, TSSOP8, SO-8 and TSSOP14 plastic micropackages. May 2009 TSSOP8 Pin connections TSH80/SOT23-5 Applications ■ SO-8 SOT23-5 Doc ID 9413 Rev 5 Output2 7 11 VCC + _ 9 Inverting Input3 8 Output3 1/27 www.st.com 27 Contents TSH80, TSH81, TSH82, TSH84 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Precautions on asymmetrical supply operation . . . . . . . . . . . . . . . . . 19 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.4 SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2/27 Doc ID 9413 Rev 5 TSH80, TSH81, TSH82, TSH84 1 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Supply voltage (1) VCC Vid Differential input voltage Input voltage Vi (2) (3) Value Unit 14 V ±2 V ±6 V Toper Operating free air temperature range -40 to +85 °C Tstg Storage temperature -65 to +150 °C 150 °C Maximum junction temperature Tj (4) Rthjc Thermal resistance junction to case SOT23-5 SO8 TSSOP8 TSSOP14 Rthja Thermal resistance junction to ambient area SOT23-5 SO8 TSSOP8 TSSOP14 250 157 130 110 ESD HBM: human body model(5) MM: machine model(6) CDM: charged device model(7) 2 0.2 1 80 28 37 32 °C/W °C/W kV 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting terminal. 3. The magnitude of input and output must never exceed VCC +0.3 V. 4. Short-circuits can cause excessive heating. 5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 7. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. Table 2. Operating conditions Symbol VCC VIC Standby (pin 8) Parameter Value Supply voltage Common mode input voltage range Threshold on pin 8 for TSH81 Doc ID 9413 Rev 5 Unit 4.5 to 12 V + VCC to (VCC -1.1) V (VCC-) to (VCC+) V - 3/27 Electrical characteristics TSH80, TSH81, TSH82, TSH84 2 Electrical characteristics Table 3. VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25° C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 10 12 mV |Vio| Input offset voltage Tamb = 25° C Tmin < Tamb < Tmax 1.1 ΔVio Input offset voltage drift vs. temperature Tmin < Tamb < Tmax 3 Iio Input offset current Tamb = 25° C Tmin < Tamb < Tmax 0.1 3.5 5 μA Iib Input bias current Tamb = 25° C Tmin < Tamb < Tmax 6 15 20 μA Cin Input capacitance ICC Supply current per operator Tamb = 25° C Tmin < Tamb < Tmax CMR Common mode rejection ratio (δVic/δVio) +0.1<Vic<3.9 V and Vout = 2.5 V Tamb = 25° C Tmin < Tamb < Tmax SVR Supply voltage rejection ratio Tamb = 25° C (δVCC/δVio) Tmin < Tamb < Tmax PSR Power supply rejection ratio (δVCC/δVout) Positive and negative rail Large signal voltage gain RL = 150 Ω connected to 1.5 V and Vout = 1 V to 4 V Tamb = 25° C Tmin < Tamb < Tmax 75 70 84 |Source| Vid = +1, Vout connected to 1.5 V Tamb = 25° C Tmin < Tamb < Tmax 35 28 55 Sink Vid = -1, Vout connected to 1.5 V Tamb = 25° C Tmin < Tamb < Tmax 33 28 55 Avd Io 4/27 μV/°C 0.3 Doc ID 9413 Rev 5 8.2 72 70 97 68 65 75 75 pF 10.5 11.5 mA dB dB dB dB mA TSH80, TSH81, TSH82, TSH84 Table 3. Symbol Voh Vol GBP Bw SR Electrical characteristics VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25° C (unless otherwise specified) (continued) Parameter High level output voltage Low level output voltage Test conditions Tamb = 25° C RL = 150 Ω connected to GND RL = 600 Ω connected to GND RL = 2 kΩ connected to GND RL = 10 kΩ connected to GND RL = 150 Ω connected to 2.5 V RL = 600 Ω connected to 2.5 V RL = 2 kΩ connected to 2.5 V RL = 10 kΩ connected to 2.5 V Tmin < Tamb < Tmax RL = 150 Ω connected to GND RL = 150 Ω connected to 2.5 V Min. Typ. 4.2 4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93 4.60(1) 4.5 F = 10 MHz AVCL= +11 AVCL= -10 Bandwidth at -3 dB AVCL= +1 RL = 150 Ω connected to 2.5 V Slew rate AVCL=+2 RL = 150 Ω // CL to 2.5 V CL = 5 pF CL = 30 pF Unit V 4.1 4.4 Tamb = 25° C RL = 150 Ω connected to GND RL = 600 Ω connected to GND RL = 2 kΩ connected to GND RL = 10 kΩ connected to GND RL = 150 Ω connected to 2.5 V RL = 600 Ω connected to 2.5 V RL = 2 kΩ connected to 2.5 V RL = 10 kΩ connected to 2.5 V Tmin < Tamb < Tmax RL = 150 Ω connected to GND RL = 150 Ω connected to 2.5 V Gain bandwidth product Max. 48 54 55 56 220 105 76 61 150 400 mV 200 450 60 65 55 MHz 87 MHz 104 105 V/μs φm Phase margin RL = 150 Ω // 30 pF to 2.5 V 40 ° (degree) en Equivalent input noise voltage F = 100 kHz 11 nV/√Hz THD Total harmonic distortion AVCL= +2, F = 4 MHz RL = 150 Ω // 30 pF to 2.5 V Vout = 1Vpp Vout = 2Vpp -61 -54 IM2 AVCL = +2, Vout = 2 Vpp Second order intermodulation RL = 150 Ω connected to 2.5 V Fin1 = 180 kHz, Fin2 = 280 kHz product spurious measurement at 100 kHz Doc ID 9413 Rev 5 -76 dB dBc 5/27 Electrical characteristics Table 3. Symbol TSH80, TSH81, TSH82, TSH84 VCC+ = +5 V, VCC- = GND, Vic = 2.5 V, Tamb = 25° C (unless otherwise specified) (continued) Parameter Test conditions Min. Typ. Max. Unit IM3 Third order intermodulation product AVCL = +2, Vout = 2 Vpp RL = 150 Ω to 2.5 V Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 400 kHz -68 dBc ΔG Differential gain AVCL = +2, RL = 150 Ω to 2.5 V F = 4.5 MHz, Vout = 2 Vpp 0.5 % Df Differential phase AVCL = +2, RL = 150 Ω to 2.5 V F = 4.5 MHz, Vout = 2 Vpp 0.5 ° (degree) Gf Gain flatness F = DC to 6 MHz, AVCL = +2 0.2 dB F = 1 MHz to 10 MHz 65 dB Vo1/Vo2 Channel separation 1. Tested on the TSH80ILT only. 6/27 Doc ID 9413 Rev 5 TSH80, TSH81, TSH82, TSH84 Table 4. Electrical characteristics VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25° C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 10 12 mV |Vio| Input offset voltage Tamb = 25° C Tmin < Tamb < Tmax 0.8 ΔVio Input offset voltage drift vs. temperature Tmin < Tamb < Tmax 2 Iio Input offset current Tamb = 25° C Tmin < Tamb < Tmax 0.1 3.5 5 μA Iib Input bias current Tamb = 25° C Tmin < Tamb < Tmax 6 15 20 μA Cin Input capacitance ICC Supply current per operator Tamb = 25° C Tmin < Tamb < Tmax CMR Common mode rejection ratio (δVic/δVio) -4.9 < Vic < 3.9 V and Vout = GND Tamb = 25° C Tmin < Tamb < Tmax 81 72 106 SVR Supply voltage rejection ratio (δVCC/δVio) Tamb = 25° C Tmin < Tamb < Tmax 71 65 77 PSR Power supply rejection ratio (δVCC/δVout) Positive and negative rail Large signal voltage gain RL = 150 Ω connected to GND Vout = -4 to +4 Tamb = 25° C Tmin < Tamb < Tmax 75 70 86 |Source| Vid = +1, Vout connected to 1.5 V Tamb = 25° C Tmin < Tamb < Tmax 35 28 55 Sink Vid = -1, Vout connected to 1.5 V Tamb = 25° C Tmin < Tamb < Tmax 30 28 55 4.2 High level output voltage Tamb = 25° C RL = 150 Ω connected to GND RL = 600 Ω connected to GND RL = 2 kΩ connected to GND RL = 10 kΩ connected to GND Tmin < Tamb < Tmax RL = 150 Ω connected to GND 4.36 4.85 4.9 4.93 Avd Io Voh Vol Low level output voltage μV/°C 0.7 Tamb = 25° C RL = 150 Ω connected to GND RL = 600 Ω connected to GND RL = 2 kΩ connected to GND RL = 10 kΩ connected to GND Tmin < Tamb < Tmax RL = 150 Ω connected to GND Doc ID 9413 Rev 5 9.8 pF 12.3 13.4 mA dB dB 75 dB dB mA V 4.1 -4.63 -4.86 -4.9 -4.93 -4.4 mV -4.3 7/27 Electrical characteristics Table 4. VCC+ = +5 V, VCC- = -5 V, Vic = GND, Tamb = 25° C (unless otherwise specified) (continued) Symbol GBP Bw SR TSH80, TSH81, TSH82, TSH84 Parameter Test conditions Gain bandwidth product F = 10 MHz AVCL = +11 AVCL = -10 Bandwidth at -3 dB AVCL = +1 RL = 150 Ω // 30 pF to GND Slew rate AVCL = +2 RL = 150 Ω // CL to GND CL = 5 pF CL = 30 pF φm Phase margin en Equivalent input noise voltage F = 100 kHz RL = 150 Ω connected to GND AVCL = +2, F = 4 MHz RL = 150 Ω // 30 pF to GND Vout = 1 Vpp Vout = 2 Vpp Min. 68 Typ. Max. Unit 65 55 MHz 100 MHz 117 118 V/μs 40 ° (degree) 11 nV/√Hz dB THD Total harmonic distortion IM2 AVCL = +2, Vout = 2 Vpp Second order intermodulation RL = 150 Ω to GND product Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 100 kHz -76 dBc IM3 Third order intermodulation product AVCL = +2, Vout = 2 Vpp RL = 150 Ω to GND Fin1 = 180 kHz, Fin2 = 280 kHz spurious measurement at 400 kHz -68 dBc ΔG Differential gain AVCL = +2, RL = 150 Ω to GND F = 4.5 MHz, Vout = 2 Vpp 0.5 % Df Differential phase AVCL = +2, RL = 150 Ω to GND F = 4.5 MHz, Vout = 2 Vpp 0.5 ° (degree) Gf Gain flatness F = DC to 6 MHz, AVCL = +2 0.2 dB Channel separation F = 1 MHz to 10 MHz 65 dB Vo1/Vo2 8/27 Doc ID 9413 Rev 5 -61 -54 TSH80, TSH81, TSH82, TSH84 Table 5. Symbol Vlow Vhigh ICC-STBY Electrical characteristics Standby mode - VCC+, VCC-, Tamb = 25° C (unless otherwise specified) Parameter Test conditions Min. Standby low level VCC- Standby high level - Zout Output impedance (Rout//Cout) Ton Time from Standby mode to Active mode Toff Time from Active mode to Standby mode Rout Cout Down to ICC-STBY = 10 μA Max. Unit (VCC- +0.8) V + (VCC +2) Current consumption per Pin 8 (TSH81) to VCCoperator when Standby is active Table 6. Typ. (VCC ) V 55 μA 20 10 17 MΩ pF 2 μs 10 μs TSH81 standby control pin status TSH81 standby control pin 8 (STANDBY) Operator status Vlow Standby Vhigh Active Doc ID 9413 Rev 5 9/27 Electrical characteristics Figure 1. TSH80, TSH81, TSH82, TSH84 Closed loop gain and phase vs. frequency Gain = +2, VCC = ±2.5 V, RL = 150 Ω, Tamb = 25° C Figure 2. Gain = +2, VCC = ±2.5 V, Tamb = 25° C 10 200 10 Overshoot vs. output capacitance 150Ω//33pF 150Ω//22pF 5 Gain 100 150Ω//10pF -5 Phase Gain (dB) 0 Ph ase (°) Gain (dB) 5 0 150Ω 0 -100 -10 -15 -200 1E+4 1E+5 1E+6 1E+7 1E+8 -5 1E+9 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) Freq uen cy (Hz) Figure 3. Closed loop gain and phase vs. frequency Gain = -10, VCC = ±2.5 V, RL = 150 Ω, Tamb = 25° C 30 Figure 4. Gain = +11, VCC = ±2.5 V, RL = 150 Ω, Tamb = 25° C 200 Phase Closed loop gain and phase vs. frequency 30 0 Ph as e 150 20 20 50 Phase (°) 10 -50 Gain Gain (dB) Gain Phase (°) Gain (dB) 100 10 -100 0 0 0 -50 -10 1E+4 1E+5 1E+6 1E+7 1E+8 - 10 -100 1E+9 1E+4 Large signal measurement positive slew rate Figure 6. Gain = +2, VCC = ±2.5 V, ZL = 150 Ω//5.6 pF, Vin = 400 2 Vout (V) 1 0 -1 -2 -3 10 20 30 40 50 60 70 80 Time (ns) 10/27 1E+7 1E+8 1E+9 Large signal measurement negative slew rate Gain = +2, VCC = ±2.5 V, ZL = 150 Ω//5.6 pF, Vin = 400 mVpk 3 0 1E+6 Frequency (Hz) Frequency (Hz) Figure 5. -150 1E+5 Doc ID 9413 Rev 5 TSH80, TSH81, TSH82, TSH84 Figure 7. Electrical characteristics Small signal measurement - rise time Small signal measurement - fall time Gain = +2, VCC = ±2.5 V, RL = 150 Ω, Vin = 400 mVpk 0.06 0.06 0.04 0.04 0.02 0.02 Vin, Vout (V) Vin, Vout (V) Gain = +2, VCC = ±2.5 V, RL = 150 Ω, Vin = 400 mVpk Figure 8. 0 Vout Vin Vout Vin 0 -0.02 -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 Time (ns) Figure 9. 30 40 50 60 Time (ns) Channel separation (crosstalk) vs. frequency Measurement configuration: crosstalk = 20 log(V0/V1) Figure 10. Channel separation (crosstalk) vs. frequency Gain = +11, VCC = ±2.5 V, ZL = 150 Ω//27 pF VIN -20 ++ 49.9Ω -- -30 V1 4/1output -50 150Ω 3/1output Xtalk (dB) 100Ω 1kΩ -40 -60 -70 -80 2/1output + 49.9Ω - -90 VO 100Ω 1kΩ -100 -110 150Ω 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 11. Equivalent input noise voltage Figure 12. Maximum output swing Gain = +100, VCC = ±2.5 V, no load Gain = +11, VCC = ±2.5 V, RL = 150 Ω 3 30 2 25 Vout + _ 1 1 0k Vin, Vout (V) en (nV/ Hz) 100 20 15 10 Vin 0 -1 -2 5 -3 0 .1 1 10 10 0 1000 Frequency (kHz) 0.0E+0 5.0E -2 1.0E-1 1.5E- 1 2.0 E-1 Time (ms) Doc ID 9413 Rev 5 11/27 Electrical characteristics TSH80, TSH81, TSH82, TSH84 Figure 13. Standby mode - Ton, Toff Figure 14. Third order intermodulation(1) VCC = ±2.5 V, open loop Gain = +2, VCC = ±2.5 V, ZL = 150 Ω//27 pF, Tamb = 25° C 0 3 -10 2 -20 -30 -40 IM3 (dBc) Vin, Vout (V) 1 0 Vout -1 7 40kHz -50 80kHz -60 -70 -2 -80 -3 Ton S tandby -90 Toff 380kHz 640kHz -100 0 2 E-6 4E-6 6E- 6 8 E-6 1E-5 time (s) 0 1 2 3 4 Vout peak(V) 1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy. Figure 15. Group delay Gain = +2, VCC = ±2.5 V, ZL = 150 Ω//27 pF, Tamb = 25° C Gain Group Delay 5.32ns 12/27 Doc ID 9413 Rev 5 TSH80, TSH81, TSH82, TSH84 Electrical characteristics Figure 16. Closed loop gain and phase vs. frequency Figure 17. Overshoot vs. output capacitance Gain = +2, VCC = ±5 V, RL = 150 Ω, Tamb = 25° C Gain = +2, VCC = ±5 V, Tamb = 25° C 10 20 200 150Ω//33pF 5 10 Gain 150Ω//22pF 100 -5 0 Phase -10 Gain (dB) 150Ω//10pF Phase (°) Gain (dB) 0 0 150Ω -10 -100 -20 -15 -20 1E+4 1E+5 1E+6 1E+7 -200 1E+9 1E+8 -30 1E+4 1E+5 Frequency (Hz) 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) Figure 18. Closed loop gain and phase vs. frequency Figure 19. Closed loop gain and phase vs. frequency Gain = -10, VCC = ±5 V, RL = 150 Ω, Tamb = 25° C Gain = +11, VCC = ±5 V, RL = 150 Ω, Tamb = 25° C 20 0 30 30 0 Phas e Phase 15 0 10 50 -50 Gain Phase (°) 10 0 Gain Gain (dB) 20 Phase (°) Gain (dB) 20 10 -100 0 0 0 - 10 -10 1E+4 -5 0 1E+4 1E+5 1E+7 1 E+6 1 E+8 1E+9 1E+5 1E+6 1E+7 -150 1E+9 1E+8 Frequency (Hz) Frequency (Hz) Figure 20. Large signal measurement positive slew rate Figure 21. Large signal measurement negative slew rate Gain = +2, VCC = ±5 V, ZL = 150 Ω//5.6 pF, Vin = 400 mVpk Gain = +2, VCC = ±5 V, ZL = 150 Ω//5.6 pF, Vin = 400 mVpk 5 5 4 4 3 3 2 2 1 Vout (V) Vout (V) 1 0 -1 0 -1 -2 -2 -3 -3 -4 -4 -5 -5 0 20 40 60 80 10 0 Time (ns) 0 20 40 60 80 10 0 Time (ns) Doc ID 9413 Rev 5 13/27 Electrical characteristics TSH80, TSH81, TSH82, TSH84 Figure 23. Small signal measurement - fall time Gain = +2, VCC = ±5 V, RL = 150 Ω, Vin = 400 mVpk Gain = +2, VCC = ±5 V, RL = 150 Ω, Vin = 400 mVpk 0.06 0 .06 0.04 0 .04 0.02 0 .02 Vin, Vout (V) Vin, Vout (V) Figure 22. Small signal measurement - rise time 0 Vout Vin -0.02 Vout Vin 0 -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 30 40 50 60 Time (ns) Time (ns) Figure 24. Channel separation (crosstalk) vs. frequency Figure 25. Channel separation (crosstalk) vs. frequency Measurement configuration: crosstalk = 20 log(V0/V1) Gain = +11, VCC = ±5 V, ZL = 150 Ω/ /27 pF VIN -2 0 ++ -- -3 0 V1 100Ω 1kΩ -4 0 4/1 output -5 0 150Ω 3/1output Xtalk (dB) 49.9Ω -6 0 -7 0 -8 0 + 49.9Ω - 2/1out put -9 0 VO 100Ω 1kΩ -1 00 150Ω -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 26. Equivalent input noise voltage Figure 27. Maximum output swing Gain = +100, VCC = ±5 V, no load Gain = +11, VCC = ±5 V, RL = 150 Ω 30 5 4 Vout 25 3 + _ 2 1 0k Vin, Vout (V) en (nV/ Hz) 100 20 15 1 Vin 0 -1 -2 10 -3 -4 5 -5 0 .1 1 10 10 0 1000 Frequency (kHz) 14/27 0.0E+0 5.0 E-2 1.0E-1 Time (ms) Doc ID 9413 Rev 5 1.5E- 1 2 .0E- 1 TSH80, TSH81, TSH82, TSH84 Electrical characteristics Figure 28. Standby mode - Ton, Toff Figure 29. Third order intermodulation(1) VCC = ±5 V, open loop Gain = +2, VCC = ±5 V, ZL = 150 Ω/ /27 pF, Tamb = 25° C 0 -10 5 -20 -40 IM3 (dBc) Vin, Vout (V) -30 Vout 0 80kHz -50 740kHz -60 -70 -80 -5 -90 Standby Ton Toff 380kHz 640kHz -10 0 0 2E -6 4E-6 6E- 6 8E-6 time (s) 0 1 2 3 4 Vout peak(V) 1. The IFR2026 synthesizer generates a two-tone signal (F1 = 180 kHz, F2 = 280 kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy. Figure 30. Group delay Gain = +2, VCC = ±5 V, ZL = 150 Ω//27 pF, Tamb = 25° C Gain Group Delay 5.1ns Doc ID 9413 Rev 5 15/27 Test conditions TSH80, TSH81, TSH82, TSH84 3 Test conditions 3.1 Layout precautions To make the best use of the TSH8X circuits at high frequencies, some precautions have to be taken with regard to the power supplies. ● In high-speed circuit applications, the implementation of a proper ground plane on both sides of the PCB is mandatory to ensure low inductance and low resistance common return. ● Power supply bypass capacitors (4.7 µF and ceramic 100 pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and positive pins. ● All inputs and outputs must be properly terminated with output resistors; thus, the amplifier load is resistive only and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op-amp inputs and outputs in order to decrease parasitic capacitance and inductance. ● Time constants result from parasitic capacitance. To reduce time constants in lowergain applications, use a low feedback resistance (under 1 kΩ). ● Choose the smallest possible component sizes (SMD). ● On the output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance as close as possible to the output pin to minimize the effect of the load capacitance. Figure 31. CCIR330 video line 16/27 Doc ID 9413 Rev 5 TSH80, TSH81, TSH82, TSH84 3.2 Test conditions Video capabilities To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains five (flat) levels of luminance onto which the chrominance signal is superimposed. The luminance gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (or differential gain) distortion is present if a signal chrominance phase (gain) is affected by the luminance level. The differential phase and gain represent the ability to uniformly process the high frequency information at all luminance levels. When a differential gain is present, color saturation is not correctly reproduced. The input generator is the Rhode & Schwarz CCVS. The output measurement is done by the Rhode and Schwarz VSA. Figure 32. Measurement on Rhode and Schwarz VSA Doc ID 9413 Rev 5 17/27 Test conditions TSH80, TSH81, TSH82, TSH84 Table 7. 18/27 Video results Parameter Value (VCC = ±2.5 V) Value (VCC = ±5 V) Unit Lum NL 0.1 0.3 % Lum NL Step 1 100 100 % Lum NL Step 2 100 99.9 % Lum NL Step 3 99.9 99.8 % Lum NL Step 4 99.9 99.9 % Lum NL Step 5 99.9 99.7 % Diff Gain pos 0 0 % Diff Gain neg -0.7 -0.6 % Diff Gain pp 0.7 0.6 % Diff Gain Step1 -0.5 -0.3 % Diff Gain Step2 -0.7 -0.6 % Diff Gain Step3 -0.3 -0.5 % Diff Gain Step4 -0.1 -0.3 % Diff Gain Step5 -0.4 -0.5 % Diff Phase pos 0 0.1 Degree Diff Phase neg -0.2 -0.4 Degree Diff Phase pp 0.2 0.5 Degree Diff Phase Step1 -0.2 -0.4 Degree Diff Phase Step2 -0.1 -0.4 Degree Diff Phase Step3 -0.1 -0.3 Degree Diff Phase Step4 0 0.1 Degree Diff Phase Step5 -0.2 -0.1 Degree Doc ID 9413 Rev 5 TSH80, TSH81, TSH82, TSH84 4 Precautions on asymmetrical supply operation Precautions on asymmetrical supply operation The TSH8x can be used with either a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully designed so as to reject any noise present on the supply rail. As the bias current is 15 µA, you should use a high resistance R1 (approximately 10 kΩ) to avoid introducing an offset mismatch at the amplifier’s inputs. Figure 33. Asymmetrical supply schematic diagram IN Cin Cout OUT + Vcc+ - R1 R5 R2 R3 RL C3 Cf C2 C1 R4 AM00845 C1, C2, C3 are bypass capacitors intended to filter perturbations from VCC. The following capacitor values are appropriate. C1 = 100 nF and C2 = C3 = 100 µF R2 and R3 are such that the current through them must be superior to 100 times the bias current. Therefore, you could use the following resistance values. R2 = R3 = 4.7 kΩ Cin and Cout are chosen to filter the DC signal by the low pass filters (R1, Cin) and (Rout, Cout). With R1 = 10 kΩ, Rout = RL = 150 Ω, and Cin = 2 µF, Cout = 220 µF the cutoff frequency obtained is lower than 10 Hz. Figure 34. Use of the TSH8x in a gain = -1 configuration Cf 1k IN Cin 1k Vcc+ + R1 R2 R3 C3 C1 Cout OUT RL C2 AM00846 Doc ID 9413 Rev 5 19/27 Package information 5 TSH80, TSH81, TSH82, TSH84 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 20/27 Doc ID 9413 Rev 5 TSH80, TSH81, TSH82, TSH84 5.1 Package information SO-8 package information Figure 35. SO-8 package mechanical drawing Table 8. SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.75 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.25 Max. 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 k ccc 1.04 1° 0.040 8° 0.10 Doc ID 9413 Rev 5 1° 8° 0.004 21/27 Package information 5.2 TSH80, TSH81, TSH82, TSH84 TSSOP8 package information Figure 36. TSSOP8 package mechanical drawing Table 9. TSSOP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0° L 0.45 aaa 1.00 0.65 k L1 22/27 Inches 0.60 0.006 0.039 0.041 0.0256 8° 0° 0.75 0.018 1 8° 0.024 0.030 0.039 0.10 Doc ID 9413 Rev 5 0.004 TSH80, TSH81, TSH82, TSH84 5.3 Package information TSSOP14 package information Figure 37. TSSOP14 package mechanical drawing Table 10. TSSOP14 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L 0.65 0.45 L1 k aaa 1.00 0.60 0.0256 0.75 0.018 1.00 0° 0.024 0.030 0.039 8° 0.10 Doc ID 9413 Rev 5 0° 8° 0.004 23/27 Package information 5.4 TSH80, TSH81, TSH82, TSH84 SOT23-5 package information Figure 38. SOT23-5 package mechanical drawing Table 11. SOT23-5 package mechanical data Dimensions Ref. A Millimeters Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 24/27 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.013 0.015 0.019 C 0.09 0.15 0.20 0.003 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.013 0.023 K 0 degrees 10 degrees Doc ID 9413 Rev 5 TSH80, TSH81, TSH82, TSH84 6 Ordering information Ordering information Table 12. Order codes Type Temperature range TSH80ILT Package SOT23-5 TSH80IYLT(1) SOT23-5 (Automotive grade level) TSH80ID/DT SO-8 SO-8 (Automotive grade level) TSH80IYD/IYDT(1) TSH81ID/DT TSH81IPT Packaging -40°C to +85°C Marking K303 Tape & reel K310 TSH80I Tube or tape & reel SO-8 SH80IY TSH81I TSSOP8 Tape & reel SH81I SO-8 Tube or tape & reel TSH82I TSH82IPT TSSOP8 Tape & reel SH82I TSH84IPT TSSOP14 Tape & reel SH84I TSH82ID/DT 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. Doc ID 9413 Rev 5 25/27 Revision history 7 26/27 TSH80, TSH81, TSH82, TSH84 Revision history Date Revision Changes 1-Feb-2003 1 First release. 2-Aug-2005 2 PPAP references inserted in the datasheet, see Table 12: Order codes on page 25. 12-Apr-2007 3 Corrected temperature range for TSH80IYD/IYDT and TSH82IYD/IYDT order codes in Table 12: Order codes on page 25. 24-Oct-2007 4 TSH81IYPT PPAP references inserted in the datasheet, see Table 12: Order codes on page 25. 19-May-2009 5 Added data relating to the quad TSH84 device. Removed TSH81IYPT, TSH81IYD-IYDT, TSH82IYPT and TSH82IYD-IYDT order codes in Table 12: Order codes. Doc ID 9413 Rev 5 TSH80, TSH81, TSH82, TSH84 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 9413 Rev 5 27/27